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CURVES WITH ONLY TRIPLE RAMIFICATION

by Stefan SCHRÖER

Introduction.

Let C be a smooth proper curve over an algebraically closed ground
field k of characteristic p &#x3E; 0. Assuming p ~ 2, Fulton [4] showed that
there are generically etale finite maps C -~ P’ such that all ramification
points have index e = 2. In this paper, I pose the following question: Does
there exist a generically étale finite map C --+ I~1 whose ramification points
all have index e = 3 ?

Fried, Klassen, and Kopeliovich [3] took a first step into this direction.
They proved that all but finitely many complex elliptic curves admit such
a map. In fact, their proof reveals that for any given genus g &#x3E; 1, the
set of Riemann surfaces of genus g admitting such maps is at least 1-

dimensional. The arguments, however, are purely topological and involve
homeomorphism spaces, Dehn twists, and Teichmfller theory.

The main result of this paper is an improved lower bound on the
dimension via purely algebraic methods. We shall prove that the set of
points in the moduli space Mg whose corresponding curve admits rational
functions with only triple ramification has dimension &#x3E; max(2g - 3, g) .
Our arguments work in all characteristics p # 3 and rely on deformation
theory and the moduli space of stable curves. The basic idea is to deform a
covering Xo --~ I~1 where Xo is a curve with cuspidal singularities, so that
each cuspidal ramification point breaks up into two regular ramification

Keywords: Triple ramification - Tame coverings - Belyi’s Theorem.
Math. classification : 14HlO - 14H25 - 14H51.
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points. The stable reduction process involved in this neatly explains why
we miss g dimensions from the (3g - 3)-dimensional moduli space Mg. One
might speculate whether we found the best lower bound.

Actually, Fulton’s result on the existence of maps with ramification
indices e = 2 gives some additional information: He proved in [4], Propo-
sition 8.1, that for a given curve C of genus g in characteristic 2 and

n &#x3E; g, there are generically etale maps C - I~1 of degree n such that all
ramification points have index e = 2 and that each fiber contains at most
one ramification point. The methods of this paper, however, do not give
much information in this direction.

My initial motivation to study this problem was Belyi’s Theorem [1].
It states that a compact Riemann surface is defined over a number field if
and only if it admits a finite map to the Riemann sphere with at most three
branch points. Saidi [14] generalized this to odd characteristics as follows:
An algebraic curve C in characteristic p &#x3E; 3 is defined over a finite field
if and only if it admits a tamely ramified morphism C - I~1 with at most
three branch points. In characteristic p = 2, the if part holds true, but the

only-if part remains mysterious. However, a curve C over F2 admits a tame
function with at most three branch points if it admits a tame function at all.
In some sense, the result of this paper tells us that the Belyi-Saidi Theorem
is valid in characteristic p = 2 at least for a (2g - 3)-dimensional set.

The question whether a finite morphism X ~ I~1 whose ramification
points have index e = 3 exists is also interesting for nonclosed ground fields.
There, however, I showed in [15] that the generic curve C17 of genus g &#x3E; 3 in
characteristic p = 2 does not admit such a map. This relies on Franchetta’s

Conjecture, which states that Pic(C~) - Here the ground field is
the function field K(71) of the moduli space Mg. Of course, it still might be
true that the desired map exists over some field extension K(77) C L.

Here is a plan for the paper. In Section 1 we study collisions of
triple ramification points in terms of Weierstrass equations for elliptic
curves. To globalize this, we collect in Section 2 some general results about
deformations of coverings whose fibers are complete intersections. We use
this to construct effective formal deformation in Section 3, and explain
the resulting increase of transcendence degree in moduli fields. Section 4
contains a construction of maps I~1 -~ P’ with only triple coverings so that
P’ marked with the ramification points has a large moduli field. We use
this to prove our main result in Section 5. The last section contains some

applications regarding Belyi’s Theorem in positive characteristics.
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1. Collision of triple ramification points.

Fix a ground field k of characteristic p # 3, and let h : C - D be a
finite generically etale morphism of proper smooth curves. For a rational
point c E C the length c &#x3E; 1 of the Artin ring is called

the ramification index. We say that h : C - D has only triple ramification
if all ramification points are rational have ramification index e = 3. The

key idea of this paper is to collide triple ramification points in flat families.
We now explain this by using elliptic curves, where explicit computations
are possible.

Let A = k[[t]] be the formal power series ring in one indeterminate
t, and x, y, z be homogeneous coordinates for P’ . Consider the closed
subscheme X C p2 defined by the Weierstrass equation x3 = ~2 - ty, or
more precisely by the homogenous equation x3 = y2 z - tyz2 . The generic
fiber XTJ is an elliptic curve with j-invariant j = 0 over the field of formal
Laurent series K = k((t)). The closed fiber Xo is a rational curve with a
cusp located at [0, 0, 1] C 

The diagonal group scheme G = J13,A of third roots of unity acts
on p2 via the Z/3Z-grading on A[x,y,z] given by deg(x) - 1 and

deg(y) = deg(z) = 0, as explained in [9], Expose I, Proposition 4.7.3.
The quotient p2 A IG is the homogeneous spectrum of which is

isomorphic to a weighted projective space with weights (3, l,1). Clearly, the
equation x3 = ~2z - tyz2 is homogenous with respect to the Z/3Z-grading,
so the closed subscheme X C p2 A is G-invariant. The corresponding quotient
scheme X/G C p2 IG is the homogenous spectrum of 
tyz2 - x3 ) = A[y, z]. In particular, we have an identification X/G = 

The fixed scheme X G for the G-action on X is the homogenous
spectrum of

Hence the generic fiber XG comprises the three rational points ~0,1, 0] ,
~0, 0,1~, and [0, t, 1]. In contrast, the closed fiber consists of the rational
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point ~0,1, 0~ together with Proj k [y, z] / (y’), which is an Artin scheme of
length two around [0, 0, 1]. Intuitively, the two generic fixed points [0, 0, 1]
and [0, t, 1] collide in the flat family upon specialization.

Let f : X - be the quotient map. Its generic fiber fry : 
is a generically etale finite map with only triple ramification. It has three
ramification points, two of which collide in the family. The closed fiber
fo : Xo - P) is generically etale as well, but the domain Xo has a cusp
resulting from the collision of triple points.

For later use we take a closer look at the complete local rings near
the cusp a E Xo and its image b E Clearly,

and

Let Xo - Xo be the normalization map and a E Xo be the preimage of
a E Xo. Then there is a uniformizer s E such that the inclusion

o,a

C is nothing but 82 and y/z H 83. Summing up:0, o,a

PROPOSITION 1.1. - Inside O x,0 = k||s||, the complete local
o,a

subalgebra is generated by 82 = x/z and 83 = y/z, whereas is
0, 

generated by 83 = y / z.

The next task is to find regular models for the elliptic curve X", over
K = I~ ( (T ) ) whose closed fiber is a reduced divisor with simple normal

crossings. This is indeed possible after replacing A = k[[t]] by the finite
ring extension A’ - 1~ ~ It 1 ~3 ~ ~ . Let X~ be the induced elliptic curve over
~’ - I~ ( (t1~3 ) ) . The coordinate change x = and y - ty shows that
x3 = y2 _ ~ is a Weierstrass equation for X~, so the corresponding constant
elliptic curve over A’ is a regular model.

For later applications, however, we prefer a regular model X’ -

Spec(A’) such that the projection X~ 2013~ X~ extends to a morphism
X’ -~ X. Recall that X c is defined by the homogeneous equation
x3 = It follows that Sing(X) consists of a single point located at
[0,0,1], and this singularity is a rational double point of type A2. Consider
the induced surface X 0 A’.

PROPOSITION 1.2. - The surface XOA’ is normal and Sing(X©A’ )
consists of a single point mapping to the singular point on X. The
exceptional divisor E’ c X’ for the minimal resolution X’ -~ X 0 A’
is an elliptic curve with j-invariant j = 0 and selfintersection number
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-1. The strict transform R’ C X ‘ of Xo is a smooth rational curve with
selfintersection number - 1. The closed fiber Xo = E’-f-R’ for the projection
X’ ---+ Spec(A’) is a simple normal crossing divisor with E’ - R’ = 1 -

Proof. - First note that XOA’ satisfies Serre’s condition (,5’2 ) by [6],
Proposition 6.4.1. It also satisfies the regularity condition (R1 ), because
X - Spec(A) is smooth outside Sing(X). It follows that X Q9 A’ is normal
and that Sing(X Q9 A’) consists of at most one point, which must map to
Sing(X).

Let W ---+ X be the blowing up of the unique singular point [0, 0, 1] E X.
A local computation shows that the surface W is regular, and that the
closed fiber Wo is a degeneration of type IV of the elliptic curve Wry == X,7.
In other words Wo = where the Di are smooth rational curves
with selfintersection numbers D2 = -2 meeting in a single point. Let V -
W be the blowing up of this intersection point. Then vo = 3F+Cl -~-C2 -~C3,
where F denotes the reduced exceptional divisor and the Ci are the strict
transforms of the Di. Note that F2 = -1 and C2 = -3.

To get rid of the multiplicity of F C vo we make a stable reduction
process as discussed in [10], Section 3C. Consider the base change V ®
A’ --+ V along the A-algebra A’ = k [[tl/3]] . This is a Kummer covering
of degree three with branch locus the closed fiber vo C V. We have

Ov EB where the multiplication law is given
by the canonical inclusion Ovt C Ov. According to [2], Proposition 4.3,
the normalization v’ -~ V Q9 A’ is given by the Ov-algebra

where C = CI + C2 + C3, and the multiplication law is induced by the
composite mapping Ov (-3C) C Ovt C Ov. The projection h : V’ - V is
a Kummer covering of degree three with branch locus C C V. The resulting
surface V’ is regular because the branch locus is regular.

Let F’, Ci C V’ be the reduced preimages of F, Ci C V, respectively.
We have h* (F’) = 3F and h* (C§) = Ci and infer that Vj = F’-~Ci -t-~‘2-t-C3
is reduced. By construction, F’ -~ F is a Kummer covering of degree
three whose branch locus consists of three reduced points, hence F’ is

an elliptic curve. Since Yo has arithmetic genus one, the other components
Cil are smooth rational curves and the closed fiber ~o is a divisor with

simple normal crossings. Using h* (F) = F’ and h* (CZ) = 3C:, we conclude
F’2 - -3 and Ci, 2= -1 with the projection formula. After contracting the
( -1 )-curves CZ C V’, we obtain a relative elliptic curve with generic fiber
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V~ = X~, which must be isomorphic to the constant family with Weierstrass
equation x3 = y2 - y. In particular, the elliptic curve F’ has j-invariant
j = 0.

Let C’ C V’ be the reduced strict transform of Xo C X, and Y’ -~ X’
be the contraction of the remaining two disjoint (-1)-curves Then

we have an induced map X’ --~ X Q9A’ ---+ X. The image E’ C X’ of F’ c V’
is an elliptic curve with j-invariant j = 0, which is the exceptional divisor
for X’ -~ X Q9 A’. It follows that X 0 A’ actually has a singularity and that
X’ --+ X Q9 A’ is the minimal resolution of singularities. The image R’ c X’
of C~ is a smooth rational curve, which is also the strict transform of Xo.
By construction, X’ 0 = E’ + R’ is a simple normal crossing divisor with
intersection numbers E’2 - -1, R’2 - -1, and E’ . R’ = 1. D

Remarks 1.3. - Laufer showed in [12], Theorem 4.1 that the formal
isomorphism class of the singularity on is uniquely determined by the

j-invariant j (E) - 0 and the selfintersection number E2 = -1. Wagreich
observed in [18], page 425 that the minimal resolution X’ ~ X Q9 A’ is not
realized by blowing-up the reduce singular locus and normalizing. More
generally, Tomari showed in [17], Theorem 7.4 that an elliptic Gorenstein
surface singularity is resolved by a succession of blowing ups with reduced
centers and normalizations if and only if the minimal elliptic cycle on the
exceptional divisor has selfintersection  -2.

2. Deformations for coverings of complete intersection.

Fix a ground field 1~ of arbitrary characteristic p &#x3E; 0. Let C and

D be two curves without embedded components, and h : C ~ D a
flat finite morphism that is generically etale. Then SZC~D is a coherent

skyscraper sheaf supported by the ramification points x E C. We shall
study infinitesimal deformations of h : (7 2013~ D. Let R be a local Artin

k-algebra with residue field k. A deformation of h over A consists of a

curve G flat and of finite type over A, a morphism / : (~ 2013~ D Q9 A, and an
isomorphism f h.

Suppose I C A is an ideal with I2 = 0, and f : ~ --~ D Q9 A/I is
a deformation of 9 over A/I. According to [11], Proposition 2.1.2.3, the
obstruction for extending it to a deformation f’ : ~’ ~ D Q9 A over A lies
in the vector space of hyperextensions
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Here Lë/D is the cotangent complex for h. These obstructions vanish under
suitable assumptions. Recall that h : C - D is a morphism locally of
complete intersection if for all c E C, the Artin local ring OC,cIMh(c)OC,c
is the quotient of some power series algebra r~(c) ~~tl, ... , tn~~ by a regular
sequence ([8], Definition 19.3.6).

PROPOSITION 2.1. - If the morphism of curves h : C --+ D is locally
of complete intersection, then the group Ext 2 (Lë / D’ C7C) vanishes.

Proof. First note that the cotangent complex Lë/D has a very
explicit form in our situation. Consider the coherent OD-module ,A =

and the projective D-scheme P = Since h : C - D is affine,
the invertible Oc-module Oc is very ample with respect to D, so there is a
closed embedding flat and finite, the OD-module
,A, is locally free of finite rank, hence the projection P - D is smooth. It
follows from [8], Corollary 19.3.5 that the closed embedding C C P is a
regular embedding, because h : C ~ D is a morphism locally of complete
intersection. Hence the conormal sheaf 1/12 is locally free. By
~11~, Proposition 3.3.6, the cotangent complex Lë/D is quasiisomorphic to
the complex concentrated in degrees ~-1, 0~ given by the canonical map
Alclp - from the exact sequence

The map on the left is injective, because it is generically injective and

.A/c/p is torsion free. It follows that 0 for s ~ 0 and

Consider the spectral sequence

The sheaves HS(Lc/D) are skyscraper sheaves supported by the ramifica-
tion points c E C. We have Oc) = 0 because Oc is torsion
free. It follows that the edge map Ext 2 (Ql CID ~ JExt2(Lc/D’ Oc) from
the spectral sequence is surjective. Next, consider the spectral sequence

The sheaf Oc) vanishes, because is torsion and Oc is tor-

sion free. The group vanishes because 

has 0-dimensional support. The sheaf vanishes, because
the stalks of Ql CID have projective dimension # 1. We conclude that

and hence vanishes.
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Suppose again that I C A has square zero, and that / : C 2013~ D 0 A/I
is a deformation over A/I. According to [11], Proposition 2.1.2.3, the set
of isomorphism classes of deformation f’ : G’ --~ D Q9 A endowed with

an isomorphism f’ 0 f is an affine space for the vector space of
hyperextensions

This group splits up into local parts:

PROPOSITION 2.2. - Let a2 E C be the ramification points and
bi = h(ai) the corresponding branch points. Then JExtI(Lc/D’ 

Proof. The spectral sequence

gives an exact sequence

The term on the right vanishes because torsion and Oc is
torsion free. The coherent Oc-module Ql CID is a skyscraper sheaf supported
by the and the result follows. D

3. Construction of effective formal deformations.

We now apply the results of the preceding section in the following
situation. Fix an algebraically closed ground field k of characteristic p # 3,
and let C be a proper smooth curve of genus g &#x3E; 0 over k. Suppose we have
a finite generically etale morphism h : 6 ~ with only triple ramification
points.

Let a E C be such a ramification point. Applying an automorphism
of JP&#x3E;1, we may assume that a maps to 0 E Using that k is algebraically
closed and that p # 3, one easily sees that there is a uniformizer s E c,a
such that s3 is a uniformizer for the subring C O,C,a 

Following Serre’s discussion in [16], Chapter VI, Section 1.3, we
now construct a singular curve C of arithmetic genus g + 1 with C as
normalization. The underlying topological space of C is the same as C, but
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we write a E C for the point corresponding to a E C. The structure sheaf
is the sheaf of subalgebras Oc C 00 such that = °õ,c for all c # a.
In contrast, we set Intuitively, C is obtained from C

by pinching the first order infinitesimal neighborhood of ii E C. The exact
sequence

gives an exact sequence

and we infer that C has arithmetic genus h’ (0c) = g ~ 1. By construction,
the canonical bijective morphism C - C is the normalization, and the
image a E C of a E C is a cuspidal singularity with 1~ ~~s2, 
It follows that the morphism h : C 2013~ induces a finite generically
etale morphism h : C -~ with h(a) = 0. Obviously, the flat morphism
h : C -~ is locally of complete intersection.

PROPOSITION 3.1. - Set A = k[[t]]. Then there is a flat family
X - Spec(A) and a finite A-morphism f : X - such that the following
holds:

(i) The map on closed fibers fo : Xo -~ Pl is isomorphic to

(ii) The formal completion is isomorphic to k[[x, y, t~ J / (y2 - ty -
as algebra over

(iii) For every closed point c E Xo with c =1= a, the formal completion
is isomorphic to as algebra over

(iv) The generic fiber X~ is a geometrically connected smooth curve
of genus g + 1.

Proof. First, we shall construct a formal flat morphism X -
Spf (A) and a finite formal morphism X - x Spf(A) with properties
corresponding to (i)-(iii). Set An = Suppose we already have
constructed a flat An-1-scheme Xn-l and a morphism fn-l : 
P1 An-1 with properties as in (i)-(iii). According to Proposition 2.1, there
is a flat An-scheme Xn and a morphism fn : Xn - Pl An whose restriction
to admits an isomorphism cpn : The set of

isomorphism classes of such extensions is a torsor under
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by Proposition 2.2, where ai E C are the ramification points and bi E JP&#x3E;l
are the corresponding branch points. Hence we may choose, for each
ramification point ai E C, an element ai

so that (ai ) applied to the isomorphism class of (Xn, fn, gives another
flat An-scheme Xn together with a morphism fn : Xn - satisfying
our conditions (i)-(iii). By induction we construct for all integers n &#x3E; 0

morphisms fn : Xn --~ together with identifications pn : fn 0 
Such a system is nothing but the desired morphism of formal schemes.

Being 1-dimensional, the proper scheme Xo admits an ample invert-
ible sheaf. The obstruction for extending an invertible sheaf from Xn- i to
Xn lies in the group H2 (Xo, = 0. It follows that there is a formal in-

vertible sheaf on X that is ample on Xo. By Grothendieck’s Algebraization
Theorem ([5], Theorem 5.4.5), the formal scheme X is the formal completion
of a projective A-scheme X. Moreover ([5], Theorem 5.4.1), the morphism
X - x Spf(A) of formal schemes comes from a morphism of schemes
f : X - P £. Properties (i)-(iii) hold because they depend only on the
underlying formal schemes.

Concerning the last property (iv), observe that C = Xo is geomet-
rically integral, because 6 - C is a birational universal homeomorphism.
Then is geometrically integral as well by [7], Theorem 12.2.1. Hence

and in turn by flat-
ness. 0

Starting with a proper smooth k-curve C of genus g &#x3E; 1 endowed with
a finite generically etale morphism C -~ with only triple ramification,
Proposition 3.1 produces a proper geometrically connected smooth curve

Xq over k((t)) of genus g + 1 endowed with a finite generically etale
morphism Xq - with only triple ramification. The curve X~ defines
a morphism -~ into the moduli space of smooth curves

of genus g + 1. Let x E Mg+l be the image point. Its residue field is

called the mod uli field for the smooth curve X~ . The crucial observation
is:

PROPOSITION 3.2. - The moduli field for the smooth curve Xq has
transcendence degree &#x3E; 1 over k.

Proof. Set A - k[[t]] and consider the family X ---+ Spec(A)
constructed above. The generic fiber defines a rational map Spec(A) --&#x3E;

This rational map is not necessarily everywhere defined, because
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is not proper. However, the moduli space Mg+l of stable curves of
genus g ~-1 yields a compactification Mg+l C and the rational map
extends to a morphism Spec(A) - 

To prove our assertion it suffices to check that the latter map does
not factor over a closed point. To see this we make base change with
respect to the ring extension A’ = k[[t’l’]]. In light of Proposition 3.1
(ii), the surface X at its singular point a E X is formally isomorphic to the
surface X studied in Section 1. It then follows from Proposition 1.2 that the
induced surface X (9 A’ has a unique singularity, and its minimal resolution
J~ 2013~ X ®A’ yields a family of stable curves X’ ~ Spec(A’). More precisely,
the exceptional curve for the minimal resolution is an elliptic curve with j-
invariant j = 0. In turn, the image of the classifying map Spec(A’) - 
hits the boundary divisor Mg+l - whereas the generic point maps
to the interior Mg+,. It follows that this morphism does not factor over a
closed point, and therefore the moduli field of Xq is not algebraic. 0

4. Moduli fields for pointed rational curves.

In this section we discuss another method to achieve large moduli
fields, namely to use pointed rational curves. Throughout we fix an integer
n &#x3E; 3. Recall that an n-pointed smooth curve of genus zero over a scheme
,S’ is a smooth proper map f : X - ,S’ whose fibers are isomorphic to P~,
together with n disjoint sections Xi C X. The following is well known:

LEMMA 4.1. - In the above situation, there is a unique isomor-

phism X - P1 sending Xl, X2, X3 C X to the constant sections 0, 1, oo C
P1, respectively.

Proof. The Os-module £ = is locally free of rank 2,
and X - P(£). The sections Xi C X correspond via XZ - to

invertible quotients Li - and the condition of disjointness means
/Ci n - 0 for i # j. In turn, the canonical maps £ - ,C1 (B ,C2 and
LI f- IC2 C3 are bijective, so we may assume ,C 1 = ,C2 , ? = and

that 1C2 C ~ is the diagonal submodule. Tensoring E and the ,Ci with 
we obtain the desired isomorphism X - P1 sending X 1, X2, X3 to 0,1, oo,
respectively. This isomorphism is unique because any automorphism of

fixing the summands and the diagonal submodule is multiplication
by a scalar. 0
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It follows that the functor sending a scheme ,S’ to the set of isomor-

phism classes of n-pointed smooth curves of genus zero over ,S’ is repre-
sentable by the scheme Mo,n = x ... x D. The product has n - 3
factors, and D denotes the closed subset of all points (X4,..., xn) with
xi E {O, 1,00} for some 4  i  n or xi = xj for some 4  i  j £ n.

Fix a ground field k. In light of this explicit nature of Mo,n, it is

easy to compute moduli fields. Suppose (pl K 0,1, oo, x4, ... , i xn) is an n-

pointed smooth curve of genus zero over a field extension 1~ C K. Using the
identifications A’ - fool and ~1 (K) - K, we see that the rational

correspond to certain scalars t4, ... , tn E K-~0,1~.

PROPOSITION 4.2. - The moduli field of (Pl K 0,1, oo, x4, ... , xn)
is nothing but the subfield k(t4, C K.

Proof. - Let L c K be the moduli field in question, and (X, ... ,

be a pointed smooth curve of genus zero over L inducing our given
pointed curve over K. We may assume z[ = 0,2 oo

by Lemma 4.1. Then the remaining ~4,...,~ correspond to scalars

E L - ~0,1~. The uniqueness in Lemma 4.1 implies t2 = ti, so we
have I~(t4, ... , tn) C L. The reverse inclusion is obvious. D

We now examine the effect of finite morphisms on moduli fields:

PROPOSITION 4.3. - Let f : Pl K -~ Pl K be a finite morphism
and E Pl K be rational points such that the images yl -

are pairwise different. Then the moduli fields for
the n-pointed smooth curves (Pl ; xl, ... , xn) and (Pl ; Yi, Yn) have the
same transcendence degree over k.

Proof. The finite morphism induces on

the moduli space a rational map 0 : Mo,n --&#x3E; Mo,n sending an n-pointed
smooth curve of genus zero (P , Xn) to (P , yi , ... , yn ) . The domain
of definition for o comprises those pointed curves for which the image
points yl, ... , yn are pairwise different.

The rational map o : Mo,n --&#x3E; Mo,n is quasifinite on its domain of
definition, because f is a finite map. So if a E Mo,n is a point in the domain
of definition, and b = is its image point, then C is a finite

field extension. This immediately implies our assertion. 0
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We now relate these moduli fields to coverings with only triple ramifi-
cation. For this we assume that our ground field k has characteristic p # 3.
Choose an algebraically closed extension field k c K of transcendence de-
gree n - 3, and algebraically independent elements t4,..., tn E K. Consider
the n-pointed smooth curve (Pl , yl, ... , yn) with yl - 0, y2 - l, y3 - o0
and such the remaining marked points y4, ... , yn E Pl K correspond to the
scalars t4,..., tn E K.

PROPOSITION 4.4. - There is a generically étale finite map h :
Pl K -~ Pl K with only triple ramification such that the yi E Pl K occur
as branch points. If we choose for each yi E Pl K a ramification point
xi E h- 1 (yi), then the moduli field for xn) has transcendence
degree n - 3.

Proof. Consider the polynomial map r : ---~ Pl K given by
Izo, zi ] ~ ~zo , z1 ~ . Then r is a generically étale finite map of degree three
with only triple ramification, whose ramification and branch points are
0, oo E For suitable p E PGL2 (K), the composition cpr realizes any
given pair of rational points a, b E Pl K as branch locus.

We now construct the desired map h by induction. Suppose we
already have a generically etale finite map hi : Pl K --+ Pl K with only triple
ramification such that the yj occur as branch points for 1  j  i and hi is
etale over yi for i + 1 ~ ,y ~ n. Fix a rational point x’ E hi 1 (yi+,). Choose
p E PGL2(K) so that x’ is a branch point for but that pr is étale over

for all points yj with j # i + 1. Then = hi Wr is the desired
map.

It remains to check the assertion on moduli fields. According to
Proposition 4.2, the moduli field for (Pl K yl , ... , yn ) is 1~ (t4, ... , tn ) C K,
which has transcendence degree n - 3. It then follows from Proposition 4.3
that the moduli field for Xl, ... , xn) has transcendence degree n - 3
as well. 0

5. Curves with only triple ramification.

We come to the main result of this paper:

THEOREM 5.1. - Let k be a field of characteristic p =1= 3. For each
integer g &#x3E; 0, there is finitely generated field extension k C K and a smooth
proper curve C of genus g over K with the following properties:
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(i) The moduli field of C has transcendence degree over k at least
max(2g - 3, g).

(ii) There is a finite generically étale map C -~ P’ K with only triple
ramification.

Let me reformulate this in terms of moduli spaces over algebraically
closed ground fields.

COROLLARY 5.2. - Suppose k is algebraically closed of character-
3 and assume g &#x3E; 2. Let S C Mg be closure for the set of all closed

points such that the corresponding curve C admits a finite generically 6tale
map C - with only triple ramification. Then we have dim(S) ) 2g - 3.

Proof. Let C -~ be as in Theorem 5.1, and choose an integral
k-scheme U of finite type whose field of rational functions is K = 

Shrinking U, we may extend C to a smooth relative curve X - U, and
C - Pl to a U-morphism f : X - Shrinking further, we may assume
that all fibers fu : 1 Xu - Pl u are generically etale finite maps with only
triple ramification.

By Chevalley’s Theorem, the image Y = of the classifying map
cp : U - Mg is constructible. Shrinking U, we may assume that V C Mg is
a subscheme. Since the moduli field of C has transcendence degree &#x3E; 2g - 3,
the dimension of V is at least 2g - 3. For each rational point E V, the
fiber c U contains a rational point because k is algebraically closed,
and the result follows. 0

We also extend the result on elliptic curves of Fried, Klassen, and

Kopeliovich [3] to all characteristics:

COROLLARY 5.3. - Suppose k is algebraically closed of character-
istic p 7~ 3. Then for all but finitely many j-invariants j E k, the corre-
sponding elliptic curve E admits a finite generically étale map E - JP&#x3E;l
with only triple ramification.

Proof. The argument is as for the preceding corollary, except that
one uses the moduli space Ml,l instead of Mg. 0

Proof of Theorem 5.1. - First consider the case g &#x3E; 3. We

shall construct by induction on n &#x3E; 0 a pointed smooth stable curve
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1 9-n) of genus n with g - n marked points over some alge-
braically closed field extension Kn, so that the moduli field has transcen-
dence degree &#x3E; n + g - 3. Moreover, there will be a generically etale finite
map hn : Cn ---+ P’ with only triple ramification such that the c2 are
ramification points. Induction terminates at n = g.

According to Proposition 4.4, the desired curve exists for n = 0.

Suppose we already found by induction (Cn 7 c’, and hn : Cn -~
for some n  g. The idea now is to trade the last marked point

for a genus increase. Conforming with the notation in Section 3, we set
C = Cn and a = and let C be the corresponding cuspidal curve of

genus n + 1 with normalization C. According to Proposition 3.1, there is
an effective deformation X - Spec(A) over A = Kn ~~t~~ with closed fiber
isomorphic to C. Moreover, our given map C - Pl extends to a family
f : X - whose generic fiber generically etale finite
map with only triple ramification. Furthermore, the rational ramification
points c1, ... , E C extend to ramification sections over A, and define
rational I ramification points Cn+l E X,, in the generic fiber.rational ramification points , ... , E Xn in the generic fiber.

Let X’ --&#x3E; Spec(A’) be the stable reduction over the base change
A’ = k [[tl/3]] for X - Spec(A) constructed in the proof for Proposition 3.2.
Then we have a classifying morphism Spec(A’) - Mn+l,g-(n+l). The
image of the closed point 0 E Spec(A’) is a point a E 
corresponding to the pointed stable curve (Cn U E, Cn, 1 c9-(n+1) ) of

genus n + 1. Here E is an elliptic curve with j - 0 as in the proof for
Proposition 3.2, and Cn f1 E = It follows that the residue field

K(a) has transcendence degree &#x3E; n + g - 3. As a consequence, the image
of the generic point q E Spec(A’) in has residue field of

transcendence degree &#x3E; (n + 1) + g - 3. We now let Kn+l be the algebraic
closure of Kn((T)), set 0 and choose as marked points

This completes the induction.

In this way we obtain a smooth proper curve C of genus g satisfying
properties (i) and (ii). The field extension k C K in the construction is
algebraically closed, but it follows from [7], Theorem 8.8.2 that the map
C ~ P’ K is already defined over some finitely generated field extension.
This finishes the case g &#x3E; 3.

It remains to treat the case g x 2. For g = 0, we simply take C = I~~
and the identity map C - For g = 1 or g - 2, we choose Co = I~1,
c° = 0, c2 = 1, and co = oo without caring for the moduli field, and apply
the preceding deformation argument once ore twice, respectively. 0
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6. Connections with Belyi’s Theorem.

Belyi’s Theorem [1] states that a compact Riemann surface is defined
over a number field if and only if it admits a rational function with at most
three critical values. Saïdi [14] generalized this to odd characteristics p &#x3E; 3.
Let me rephrase the part of his result that holds true for all characteristics:

PROPOSITION 6.1. - Let k be an algebraically closed field of char-
acteristic p &#x3E; 0.

(i) A smooth proper curve C over k is defined over a finite fields if
there is a finite map C - P) with only tame ramification and at most three
branch points.

(ii) A smooth proper curve C over Fp admits a finite map h : C --&#x3E; P) pP,
with only tame ramification and at most three branch points if there is at
least one finite map g : C ---+ P- p with only tame ramification.F,

Proof. For convenience, I recall Saidi’s argument: The first state-
ment follows from Grothendieck’s theory of the tame fundamental group
(compare [13], Theorem 6.1). For the second statement, let hn : P- 2013&#x3E; P- pFp P,

be the polynomial map Then h = hn o g is the
desired map for some n sufficiently large, as explained in [14], Theorem
5.6. 0

In characteristic p &#x3E; 3, tame functions g : C --&#x3E; P1 p as in (ii) exist byF,
[4], Proposition 8.1. In characteristic p = 2, Corollary 5.2 tells us that this
holds true for a set of of curves of dimension at least 2g - 3.
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