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APPLICATIONS OF SPINOR CLASS FIELDS:
EMBEDDINGS OF ORDERS AND QUATERNIONIC

LATTICES

by Luis ARENAS-CARMONA (*)

1. Introduction.

Chevalley [6] studied the following question:
Let D be a central simple algebra over a number field k, let L be a

maximal abelian subalgebra of D, and let 2 be an order in L. Does every
maximal order of D contain an isomorphic copy of 2?

When the answer to the above question was negative, Chevalley asked:

If Z is the set of isomorphism classes of maximal orders of D, and X
the subset of classes of orders containing a copy of ,~, what are the possible
values of the ratio of their cardinalities p = 

When £ = OL is the ring of integers of a field L and D = is

a matrix algebra, Chevalley proved that p = [E n L : where E is the

Hilbert class field of k ([6], p. 26).

Chinburg and Friedman [7] answered Chevalley’s questions when D
is a quaternion algebra and £ is an arbitrary order in L. Their result,

(*) Supported by Fondecyt, proyecto No. 3010018, and the Chilean Catedra Presidencial
in Number Theory.
Keywords: Spinor norm - Spinor genus - Class fields - Skew-Hermitian forms - Maximal
orders - Central simple algebras.
Math. classification: llR52 - l1E41 - llR56 - llR37 - 16G30.
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when £ = OL, again implies p = [E n L : k] - 1, where in this case E is a
multiple quadratic extension contained in the wide Hilbert class field of k
and defined in terms of the ramification of the quaternion algebra. These
results suggest that a similar theorem might hold for a general central
simple algebra. In this paper we prove this for algebras that are everywhere
locally either matrix or division algebras, a condition that trivially holds
for global matrix algebras or quaternion algebras.

THEOREM 1. - Let D be a central simple algebra over k of dimension

[D : k] - n2 &#x3E; 4. Assume that D is locally either a matrix algebra or a
division algebra at every finite place. Then there exists an Abelian extension

with the following property: For any field extension of maximal

dimension that embeds into D, exactly [E n L : of the conjugacy classes
of maximal orders of D contain a copy of the ring OL of integers of L.

Our proof makes essential use of the spinor genus of a maximal order
0. It also applies to quaternion algebras, but the result involves spinor
genera when the algebra is totally definite. The field E in Theorem 1 is

a spinor class field defined in terms of local (spinor) norms. We prove the
existence of a bijective map f that associates an element of the Galois
group Gal(E/k) to each conjugacy class of maximal orders of D. This
correspondence is canonical up to the choice of a single class of maximal
orders containing a copy of OL. The set of all conjugacy classes of orders
which contain a copy of OL is mapped by f to the subgroup Gal(£ /£ n L).

Our proof of Theorem 1 begins by generalizing the definition of spinor
class fields given by Estes and Hsia [8]. Hsia studied the problem of whether
a quadratic form with coefficients in the ring of integers C7~ of a number
field 1~ is represented by another quadratic form of the same kind ([9], [10]).
Clearly, a necessary assumption is that this hold at all completions of k.
Hsia carried out his study in the language of genera and spinor genera of
lattices ([15], p. 297). In this language, he calculates p = iXliZ, where Z
is the set of spinor genera in the genus of an integral quadratic lattice A
and X is the subset of spinor genera containing a form that represents a
fixed lattice M. Hsia’s main results are as follows:

. If dim A &#x3E; dim M + 3, then p is 0 or 1.

~ If dim A = dim M + 2, then p is 0, 1, or 1/2.
~ If dim A ~ dim M + 1, then p is 0 or 2-t for some integer t &#x3E; 0.

In this paper we extend Hsia’s results to skew-Hermitian 0-lattices.

Thus, let D be a quaternion division algebra over k with standard involution
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q - q, and let 0 be a maximal order in D. A skew-Hermitian form is a

(-1)-Hermitian form in the sense of [19], p. 236. A skew-Hermitian space
over D is a pair (V, h) where V is a D-module and h is a skew-Hermitian
form on V. A skew-Hermitian 0-lattice is a lattice A in V ([15], p. 209)
satisfying OA = A. The concepts of genera and spinor genera are also
defined for these lattices [4].

In Section 4.1, we prove

THEOREM 2. - Let (V, h) be a non-degenerate skew-Hermitian space
over a quaternion algebra D over a number held k. Let A be a 0-lattice
in V of maximal rank, and let M be an arbitrary 0-lattice in V. Let
W = kM and assume that A represents M. Let Z be the set of spinor
genera in the genus of A, let X be the subset of spinor genera containing
a form that represents M, and let p = Then, p is 0 or 1 provided
dimD V # dimD W + 2. If dimD V = dimD W + 1, then p is 0, 1, or 1/2.
If dimD V = dimD W, then p is 0 or 2-’ for some integer t &#x3E; 0, except
possibly if W = V and if there exists a dyadic place v, ramified for D,
such that v2 divides 2 and every Jordan component either of Av or of Mv
is non-diagonalizable.

In the course of the proof of Theorem 2 we show that the set of spinor
genera in the genus of A has a group structure. The subset of spinor genera
that represents M is a subgroup, except possibly in the case mentioned
in the last sentence of Theorem 2. Again, our proof establishes a bijection
between the set Z and the Galois group Gal{E/k) for some spinor class
field The subset X corresponds to the stabilizer of an intermediate
extension the so-called relative spinor class field or representation
field of A over M.

In this paper we define a concept of relative spinor class field that

applies to semisimple algebraic groups whose fundamental group is the

group of roots of unity pn. Examples of such groups are unitary groups
of quaternionic skew-Hermitian forms and automorphism groups of central

simple algebras. The field EAIM, when it is well defined, plays a central
role in the proof of Theorems 1 and 2. The idea of extending the concept of
spinor genera to maximal orders in central simple algebras appears already
in [5], even before spinor class fields were defined.



2024

2. Preliminaries.

Throughout this article k denotes a number field. The set of both finite
(or non-archimedean) and infinite (or archimedean) places ([15], p. 7) in k
is denoted H(k).

All algebraic groups considered here are subgroups of the general
linear group GL(V) of a finite dimensional k-vector space V. For any field
extension the group of E-points of G is denoted GE. For any place
v E H(k), the field kv is the completion of k at v ([15], p. 11). We write G_
for with its natural topology induced from the topology of The

same conventions apply to spaces and algebras. All spaces and algebras are
assumed to be finite dimensional over k or 

Let ,S’ be a finite subset of containing the infinite places. The
set ,S’ is fixed throughout. Let C~ denote the set of S-integers ([17], p.11 ) of
k. For the sake of generality, all results in what follows are stated in the
context of S-integers. An S-lattice in the space V is an (9-module contained
in a free module ([15], p. 209). An S-order in the algebra D is an S-lattice
T satisfying 1 E 0, and 00 = 0. Let v E H(k) - S. If A denotes an S-
lattice, then Av denotes its closure in We say that A~ is the localization
at v of A. Observe that C7 is itself an S-lattice. The localization Cw is the

ring of integers of 

If G C GL(V) is a linear algebraic group and A is an S-lattice in V,
the stabilizer of A in G~ is denoted Gf. The definition of Gv is analogous.

Let A and A’ be S-lattices of maximal rank in V. Then, Av
for all but a finite number of places v. If Av - Av for all v E S,
then A = A’. If, for every place v E H(k) - S, A"(v) is a local lattice, and
Av = A" (v) for all but a finite number of places v, then there exists a global
S-lattice A" such that = All for all v ([15], §81:14).

For any algebraic group G, we denote by G~ its group of adelic points,
which is the restricted topological product of the localizations Gv with
respect to the lattice stabilizers G~ ([17], p. 249), where A is an S-lattice
of maximal rank in V. This definition does not depend on A since any
two such S-lattices are equal at almost all places. In particular, for the
multiplicative group GLI , we write Jk = (GLI ) A, the idele group of k.

Let cr E GA. Define aA as the S-lattice satisfying the local relations
= The G-genus of A is the orbit G AA. The G-class of A is the

set of lattices GkA. We omit the prefix G if it is clear from the context.
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The stabilizer of A in G~ is denoted GA. The set of classes contained in a
genus is in one-to-one correspondence with the set of double cosets

The cardinality of is called the class number of A with

respect to G.

Let k be the algebraic closure of k, and Gal(-k/k). For any
semisimple algebraic group G with universal cover G and fundamental
group F we have a short exact sequence

This gives, by (1.11) in [17] a long exact sequence in cohomology

Assume henceforth that Fk, as 9-module, is isomorphic to the group ~cn
of n-roots of unity, for some n. Then H1 (~, F~ ) - k* / (1~* )n ([21], p. 83),
where R* denotes the group of units of the ring R. This defines a map
8 : G~ - the spinor norm on G k. We say that G is a group
with spinor norm. There is also a local spinor norm 0, : G, - 
at any place v. It is known ([16], Lemma 13) that the sequence

can be restricted to the set of adelic points to get a sequence

Example 1. - Let D be a central simple algebra over k and let
G = be the automorphism group of D. Then, G is the group
SL(D) = Ix E D*IN(x) = 11 where N is the reduced norm ([13], pp. 21-
22). Therefore, Fk = fl k* = /-tn, where n 2 = dimk D.

Let g E G k. Then, g is the inner automorphism of D defined by
g (a) - bab-1, for some b E D*. A preimage of g in the universal cover
SL(DK) is A-’ b where An = ~(~). Hence, the image of g under the coborder
map is the cocycle which corresponds, via the isomorphism
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to the class It

follows that

Example 2. - Let B be a non-degenerate k-bilinear form on the space
V. Let G = O+ (B) be the special orthogonal group of B. Then, F = A2
and Gk is generated by elements of the form where v and w are in

Vk and satisfy B (v, v) ~ 0, B (w, w) ~ 0 ([15], p. 102). Here, the symmetry
Tz is given by 

-

In this case, This is the case

studied in [10] and [11].

Example 3. - Let D be a quaternion algebra, and let (V, h) be a
skew-Hermitian space over D. Let G = U+ (h) be the special unitary group
of h. Then, F = /L2 and Gk is generated by elements of the form (s; a),
where s E = h(s, ~) 7~ 0, and

In this case,

In some cases, the spinor norm provides us with a method to compute
the number of classes in the genus of a lattice. If we denote the kernel

of the spinor norm by G£, the quotient GA/(GkG1GA) is in one-to-one
correspondence with the quotient

GkG£-orbits are called spinor genera ([15], §102:7). The strong approxima-
tion theorem [12] states that if G is simply connected, absolutely almost
simple, and GS = TIvES Gv is not compact, then GsGk = GA. If the uni-
versal cover G of G satisfies these conditions, and if G is a group with
spinor norm, so that (2) holds, then

since GA is compact and Gk is closed. It follows that every spinor genus in
the genus of A contains exactly one class. In particular, the class number
equals the cardinality of the group (3). This is the case when G is the

automorphism group of a central simple algebra D of dimension at least 9,
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since D, contains a matrix algebra at every infinite place v. Since all

maximal orders in a local central simple algebra are conjugate ([17], p. 46),
it follows that:

LEMMA 2.0.1. Let D be a central simple algebra of dimension at
least 9. Then the set of conjugacy classes of maximal orders in D equals
the set of spinor genera in the genus of any maximal order of D.

This result will allow us to reduce the proof of Theorem 1 to

Proposition 4.3.4, which is a statement about spinor genera.

We return to the general case of a group G with spinor norm.
Let p : k* - k*/(k*16’~ 2013~ k*l(k*)’ be the natural
projections. Let X C Gk, Xv C Gv . We define

Analogously, if P : Jk --~ is the natural
, ,

projection, and Y C GA, we define , The Hasse

principle for G ([17], p. 286) readily implies that

For any S-lattice A, we define

Class field theory ([14]) yields a one-to-one correspondence between
open subgroups H of Jk containing 1~* and finite Abelian extensions 
If L and L’ are the extensions corresponding to H and H’, then H C H’
if and only if L’ C L. We regard the ring of S-integers 0 as an S-lattice of
rank 1. Let be the group of S-integral ideles. The Hilbert
S-class field is the class field corresponding to k*Jk,s. This field is

unramified at all finite places and splits completely at finite places in S.
If oo is the set of infinite places, Hoo is the (wide) Hilbert class field of k
([14], p. 224). The class field corresponding to where J:oo is the
group of integral ideles that are positive at all real places, is called the

strict Hilbert class field Hto. It seems desirable to have a similar concept
for a more general algebraic group. In order to do this, we must replace the
set of double cosets (1), which in general has no additional structure, by a
quotient of Jk as in (3). We want to do this in a way that allow us to use
class field theory. This was done in (~11~, p.4) for the orthogonal group of
a quadratic form. This procedure can be generalized to other semisimple
algebraic groups, as we show now.
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In the rest of §2, let G be any semisimple group with fundamental
group pn, i.e., a group with spinor norm. Let A be an S-lattice in V. Let

Jt be the set of ideles that are positive at those infinite primes at which
the spinor norm is not surjective. It follows from Theorem 1 on page 60
of [13] that the spinor norm is surjective at all finite places. Note that

J1. Also, by (4), Jt f1 k*. Furthermore, because of
the weak approximation theorem ([17], p. 14), we have = Jk . It follows
that

Thus, for the set HA (A) defined in (5), we have a canonical isomorphism

The subgroup on the left-hand side above corresponds, via class
field theory, to an Abelian field extension This field EA is, by
definition, the spinor class field of A. For the case of a quadratic form,
see [11].

Example 1 continued. - Let D be a maximal S-order in a central
simple k-algebra D. Let G = be the automorphism group of D. As
all maximal S-orders are locally conjugate ([17], p. 46), E = Eo depends
only on D. We call EÐ the spinor class field of maximal S-orders of D,
and denote it Let v E 1-I(k) - S. If D_ E£ i.e., r x r matrices
over a division algebra Do with maximal order then Ov is conjugate to
3)i = and G~1 = It follows that 0*(k*)’.
In particular, contains J: (x)’ Thus, ED is contained in the strict
Hilbert S-class field of k. For example, if D and S = oo, then Eo
is the maximal subextension of exponent n of the wide Hilbert class field.

3. Representations of S-lattices.

Let V be a vector space, let G C GL(V) be a group with spinor norm,
and let A be an S-lattice of maximal rank in V. By definition an S-lattice
M C V is G-represented by A if there exists an element g in Gk such that
gM C A. If X is a set of S-lattices, we say that M is G-represented by 3i
if it is represented by some element of ~.



2029

We call an adelic point u = GA a generator for if

M C uA. Let GA denote the set of such generators. In all that
follows we assume M C A. The following lemmas are immediate from the
definitions and generalize Lemmas 2.1-2.3 in [10]:

LEMMA 3.1. - Let g E GA. Then, M is G-represented by the spinor
genus of gA if and only GkG£u for some u E 

LEMMA 3.2. where G~ is the

stabilizer of M. In particular, if r is the point-wise stabilizer of the subspace
kM of V, then XAIM - 

LEMMA 3.3. - The set of spinor genera in the genus of A that G-

represent M is in bijection with the image the quotient
Jk / (k* HA (A)) -

Let C Jk be the group generated by Let

the maximal group H satisfying.
Let be the class field corresponding to and let

E - (A I M) be the class field corresponding to H_(AIM). We call E - (A I M)
the upper relative spinor class field the lower relative spinor
class field. Observe that If

we denote this field by EAIM and call it the relative spinor class field.

Notice that is defined if and only if is a group.
Whenever the relative spinor class field is defined, the fraction of the total
number of spinor genera in the genus of A that G-represent M is

(Lemma 3.3). All indices above are bounded by the class number of G,
which is finite ([17], p. 251). It was proved in [10] that the relative spinor
class field is always defined if G is the orthogonal group of a quadratic
form. It is not known whether this is the case for all groups G with spinor
norm.

The spinor norm associates an element in the quotient 
(k*HA(A)) to every spinor genus t in the genus of A. If A’ is another lattice
in the genus of A we get (spn(11’)) _ where spn(A’) denotes
the spinor genus of A’. For an abelian extension let x F-4 (x, 
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denote the Artin map for ideles ([14], p. 206). We obtain the following
result:

PROPOSITION 3.4. The map f (t) - associates an

element of to every spinor genus in the genus of A. If is

defined, then the set of spinor genera representing M is the pre-image of
under this map. In this case, a spinor genus t represents M

if and only if f (t) is trivial on and the map t H 

does not depend on the choice of the lattice A representing M.

4. Applications.

4.1. Skew-Hermitian forms

over quaternion division algebras.

Let (V, h) be a non-degenerate skew-Hermitian space of dimension at
least 2 over a quaternion division algebra D. The form h is non-degenerate
if for any non-zero x E V there exists y E V, such that h(x, y) # 0. We
assume this throughout this section. In all of this section G = U+ (h) is

the special unitary group of (V, h) ([17], p. 84). Classes, genera, and spinor
genera (§2) of skew-Hermitian lattices are defined as classes, genera, and
spinor genera with respect to this group. Let 0 denote a maximal S-order
of D, and let A be a 0-lattice of maximal rank in V. Let M be an arbitrary
D-lattice in V, and let W = kM. We assume that the restriction of h to
W is non-degenerate. Let Wj- be the orthogonal complement of W ([19],
p. 238) and let

The group F can be identified with the unitary group of the restriction of h
to the space W 1. Similarly, the group T can be identified with the unitary
group of the restriction of h to W. It follows from Lemma 3.2 that

As left vector spaces over D, the dimensions dimD V and dimD W are well
defined ([18], Theorem 2.8.14).
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PROPOSITION 4.1.1. If dirnD W x dimD V - 2, then every spinor
genus in the genus of A represents M. If dimD W - dimD V - 1, then
either all the spinor genera in the genus of A represent M, or exactly half
of them do.

Proof. If dimD W~ &#x3E; 1, then h is a semisimple linear algebraic
group ([17 , p. 92). Hence the spinor norm on h is surjective at every finite
place ([17], thm. 6.20). It follows from the construction of the universal

cover for unitary groups of skew-Hermitian forms ([4], p. 173) that one
can assume the universal cover of F to be contained in G, so that the
spinor norm on r is the restriction of the spinor norm on G. By weak
approximation, Jk. It follows that and

therefore = k.

Now, assume dimD W 1 = 1. Then, W 1 = Ds, for some s E V. Let
a = h(s, s), and let K = k(a). Then, any element of hv is of the form (s; o,),
where 0- E Kv and a - 3 = a. Any b E Kv is of the form b = where

A and a - 3 = a (ex. 3). It follows that Since

is a quadratic extension, we have [Jk : 2. It follows

from (6) that either In

either case is a group and is contained in the quadratic
extension K. D

PROPOSITION 4.1.2. - Assume that at every dyadic place v E S, at
least one of the following conditions hold:

Then GÁXAIM is a group. In particular, the spinor class field is defined.

Recall that A == M 1 L means that A = M EB L and h(m, l ) = 0 for
mEMandIEL.

Proof. We need is a group. It suffices to work

locally. At those places at which the quaternion algebra splits, we can use
the isomorphisms given in [4] (Lemma 6, p. 175, and Theorem 7, p. 181) to
reduce the problem to the quadratic forms case, which was already solved
in [10] (p. 131). Therefore, we can assume that the quaternion algebra does
not split at v.
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By (6), it suffices to prove that either [k* : 2 or ~l~v :
H, (M)] - 2. It follows from the paragraph preceding (6) that if Av = Al 1

then Hv (A) :2 It is proved in [2] that we can always find such a
decomposition where either A1 = Ð8, for s C V, or Al is an indecomposable
lattice of rank 2. If Al = Ð8, for s E V, then = (E*), where
E = kv (a) and a = h(s, s). If Al is indecomposable of rank 2, and 2 is a
prime in the ring of local integers Ow, it is proved in [2] that = 

A similar argument holds for M. D

COROLLARY 4.1.2.1. Let D be a quaternion division algebra over
Q, and let (V, h) be a skew-Hermitian space over D. Let 0 be a maximal
order of D, A a 0-lattice in V, M a 0-sublattice of A. Then, the spinor
class field is defined.

Proof of Theorem 2. - By Proposition 4.1.1 we can assume that
dimD V = dimD W, i.e., V = W. We can assume also that we are not in
the case mentioned in the last sentence of Theorem 2. This implies that at
least one of the conditions in Proposition 4.1.2 holds and the spinor class
field is defined. By the definition of the relative spinor class field (§3) the
number of spinor genera representing M divided by the total number of
spinor genera is I~~ -1. Since C ~~ is an Abelian extension of
exponent 2, then kl-’ = 2-t for some non-negative integer t. D

4.2. Maximal S-orders and S-suborders.

In the rest of this paper, D is a central simple algebra over k, 0
is a maximal S-order in D, and - ED is the spinor class field for

maximal S-orders of D as defined in the last paragraph of §2. Let £ be
an arbitrary S-suborder of Ð, not necessarily commutative yet, and let
L = M. The group of automorphisms of D is G = PGLi(D) = D* /k ,
where D* acts on D by conjugation. The G-class of 0 is its conjugacy
class. The Conjugacy classes of maximal S-orders of D are classified by

This equals unless Dv is a quaternion division
algebra at every infinite place v, since in any other case Gv is not compact
at these places (§2). Except for the case mentioned above, the words spinor
genus can be replaced by conjugacy class in all the results in below.

We apply the preceding theory to the lattices A = 0 and M = C. Let
X = Xolp. Let F = CD(L), the centralizer of L in D, and let F = 
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By Lemma 3.2, Hence,

A sufficient condition for every spinor genus of maximal S-orders to

represent £ is Jk. Since 1 E X, we have 
Note that is a group, even though might not be a group.
Since h is the point-wise stabilizer of ,~, we obtain the following result:

PROPOSITION 4.2.1. Assume that for every v V S and for every
embedding ~ : ,~v -~ 0, there exists an automorphism p of Ðv, whose
restriction to ,~v is cp. Then X = and the relative spinor class field
is defined.

Example. - Let £ = Do be an S-order of a central simple subalgebra
Do of D. Let n2 = dimk D, m2 = dimk Do. Let Nl be the reduced norm on
the central simple algebra F = If x E F, then N (x) = 
It follows that at any local place v, N(F~* ) _ (k*)’. Therefore, £~ (T )£)
is a subextension of E of exponent m. In particular, if the degree of the
extension is relatively prime to m, any spinor genus of maximal S-
orders in D represents Do. On the other hand, if D and Do are unramified
outside of Sand 00 is a maximal S-order of Do, then the sufficient

condition of Proposition 4.2.1 is satisfied. We conclude then that the

relative spinor class field is defined and equals the largest subextension
of E of exponent m.

4.3. Rings of S-integers of maximal subfields.

Assume henceforth that L is a maximal subfield of D. Recall that

L - so that ,~ is an S-order (not necessarily maximal) in L. Let
n = [L : k], so that n2.

In this case the centralizer F of L equals L. Hence 1
and by (7) it follows that From this and

Proposition 4.2.1, we obtain the following result:

PROPOSITION 4.3.1. - For any S-order £ C the upper relative

spinor class held ~- (~ ~,~) is contained Furthermore, assume that
at every v rt S, any local embedding of ,~v in 0, can be extended to an
automorphism of Ðv. Then, the relative spinor class field is defined and

equals E f1 L.
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COROLLARY 4.3.1.1. If E n L = k, then Ezlp is defined and

eq u als k.

Remark 4.3.2. - Note that is Galois and Abelian. Hence, the
k-extension E n L is independent of the embedding of L into an algebraic
closure of k.

Next we study some conditions that guarantee the assumption of
Proposition 4.3.1. Notice that we can work locally.

LEMMA 4.3.3. - Assume that £ is the maximal S-order of L. If Dv
is a division algebra or the matrix algebra then the assumption in

Proposition 4.3.1 is satisfied at v.

Proof. - If D, is a division algebra, then GO = G,, and there
is nothing to prove. Assume Dv is a matrix algebra. Replacing Ðv by
a conjugate, we can assume Ov - Let 7r be a uniformizing
parameter of Take u E D~, such that ,~v C It suffices to

prove that u E L*Z*. As £ is maximal, ,~v = Lv n Ov Lv n 
Let I = Lv n uZv. Then I is a £_-module of maximal rank in Lv. Hence,
I = for some A E L~. Replacing u by A-’u, we can assume I = In

particular, u-1 E Ðv, and (1TU)-I í:- Ðv. We claim that u E ~v.
By elementary divisors theory, we have u = xzy, where x, y E 0 *V

and z is the diagonal matrix diagl for some

rn = 0. Replacing u by z, and Lv by x-lZ,x, we can assume u -
diag(1T-r, ... , 1T-rn). Assume rt =1= 0 and rt+1 - rt+2 =... = rn = 0.
The condition ,~v = L, f1 shows that all elements of ~ = 
are of the form 

I . -.,

where A E and D E Mn-t(Ov/1rOv). Now, let 1 E ,~v, I E £v
the image of l. Assume 1 = t(A, B, 0) with A or B not equal to 0. Then,

E uD,, but 7r-’l V Ðv. This contradicts the assumption I = £v’ We
conclude that D = 0 implies A = B = 0 and the map sending t(A, B, D)
to D is injective on Z,. It follows that ~ is isomorphic to a subalgebra of
Mn-t(Ov/1TOv). However, £v = 0,(a) for some a E C~, and the minimal
polynomial of a, the image of a in ~, has degree n. This proves that
n = n - t. Therefore, u E 0* v as claimed. D

We say that D has partial ramification at a place v if Dv is neither
a division algebra nor a matrix algebra. The following result is now

immediate.
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PROPOSITION 4.3.4. - Assume D has no partial ramification outside
of ,S’. Assume that £ is the maximal S-order of a field L, and £ Then,
the relative spinor class field is defined and Eolp - E n L.

COROLLARY 4.3.4.1. - Assume that ,~ is the maximal S-order of L.
Assume also that n is square-free, and L. Then the spinor class
held is defined and equals L.

Proof. Let v ti S. Then, Lv - EÐw Lw, where the sum extends
over all places w of L dividing v, and each Lw is a field. As L C E is a

Galois extension of k, all the extensions have the same degree lv .

Assume D, - h§f_ (Do), where Do is a division algebra. Let e 2
dimk,, (Do), so that n = fvev. Then,

L implies
On the other

We conclude that lvlfv. As L, embeds in D,, we obtain Hence,
i.e., e2In. We conclude that D does not ramify outside of S, and

so Proposition 4.3.4 applies. D

If L is a sum of fields, L = LI 0... EB Lt, Proposition 4.3.4 still holds,
if we replace L n E by L 1 n ... n Lt 

The hypotheses in Proposition 4.3.4 are trivially satisfied by matrix
algebras and quaternion algebras. The first case was already known to
Chevalley ([6]). For the second case, see [7]. Notice that, since we study
spinor genus, we need not to require that Gs is non-compact (§2). This
is equivalent to the Eichler condition in [7]. Friedman informed us that
Schultze-Pillot has pointed out in [20] that the possible selectivity ratios 0,
1, and 1/2, for the quaternionic case follow from Theorem 2 in [9], which
concerns representations of one quadratic form by another. Such direct
connection will not work in the general case, showing the importance of a
more general theory.

Proof of Theorem 1. By Proposition 4.3.4 the spinor class field
equals E n L. By the definition of the relative spinor class field (§3)

the number of spinor genera representing £ divided by the total number of
spinor genera is 1~~-1. Finally, by Lemma 2.0.1, every spinor genera
contains exactly one class if dimk D &#x3E; 9. The conclusion follows. D

We now exhibit a different condition that guarantees the assumption
of Proposition 4.3.1.
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PROPOSITION 4.3.5. - Assume that L~, is a field, and that is

unramified. Then the assumption in Proposition 4.3.1 is satisfied at v.

Proof. - If Lv is a field, and if Lv / kv is unramified, then ,~v is a field.
Let Do be a division algebra such that Dv - and 

for the maximal order Do of Do. Reasoning as in the proof of Lemma 4.3.3,
we can assume that u = i-’-), for a uniformizing parameter
i of Do. As i E G~, we can assume that, for some t E f 0, ... , n - 1},

and for a

As before, one obtains that the elements of ~ have a block of zeroes in the
lower left corner. As ,~v is a field, this gives a contradiction unless t = 0.
Hence, u E G~ . D

Example. - We now show that some condition must be required on
either Lv or Dv to ensure the equality and therefore

the conclusion of Proposition 4.3.1. In particular, the condition on D cannot
be completely removed from Proposition 4.3.4.

Assume now that LI and L2 are different unramified quadratic
extensions of k. Assume that the uniformizing parameters 7rv and 7r,, at
v, W Í- S, generate Jk/ H, where H is the idele class subgroup corresponding
to L = L1 L2 . Let B be a quaternion algebra that ramifies only at v and
w. Then, it is not hard to show that L C E, and that L embeds into
D = M2(B). Let Z be a maximal order in D such that Dv == M2(S~), for
a maximal order ~v of Bv and the corresponding condition holds for w.
Let Ev be the unique unramified quadratic extension of Then

Let ’cv be the maximal order of Lv . It is not hard to check that the element
u E GA, such that uv - 1) for a uniformizing parameter i, of B_
and up = 1 v, is a generator for As N(u,) = -7r,, it follows
that splits completely at v. Analogously, we have that 
splits completely at w. It follows that is defined and equals k. However,
~nL=L.

Finally, we show the necessity of the condition that ,~ is the maximal
order of L in Propositions 4.3.4 and 4.3.5. For this, we show that E - (0 1 Z)
equals k if £ is small enough. In fact:
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PROPOSITION 4.3.6. - Let £’ be the maximal order of L. Let v be
a finite place, unramified for D, and let 7r, be the uniformizing parameter
at v. Assume that Then v splits completely on

To prove this result one shows, by a computation, that conjugating
by the matrix 1, ... , ,1) defines an element g E Gv, which is a

generator for and whose spinor norm is 7r,.

COROLLARY 4.3.6.1. - Let ,~’ be as in previous proposition. Assume
that the finite places vl, ... , vt are unramified for D, and its images under
the Artin map generates Gal(E n Let p E Ok, be such that 1PIV.  1

for s = 1,..., t. Then, for any order £ of L satisfying the

relative spinor class field is defined and equals k.

Remark 4.3.7. - In case that n = 2, Propositions 4.3.3 and 4.3.6
suffice to compute all relative spinor class fields. Thus we recover the results
in [7].
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