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1925-

MAXIMAL HAMILTONIAN TORI
FOR POLYGON SPACES

by J.-C. HAUSMANN and S. TOLMAN

1. Introduction.

Let M be a symplectic manifold and let S(M) be the group of
symplectomorphisms of M. A sub-torus of S(M) is called a symplectic
torus; these tori are partially ordered by inclusions. In this paper, we study
the maximal symplectic tori of polygon spaces with a particular emphasis
on bending tori (see the definitions below). Since polygon spaces are simply
connected, symplectic tori act on M in a Hamiltonian fashion so we refer
to them as Hamiltonian tori.

Let E be a finite set together with a function A : E - R+. Define the
space Pol (E, A) by

The polygon space Pol (E, A) is the quotient Pol (E, A) : = Pol (E, A) / S’03.
By choosing a bijection between E and ~ 1, ... , the space Pol (E, A) is
regarded as the space of configurations in R3 of a polygon with m edges
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The second author is partially supported by a Sloan Fellowship and a National Science
Foundation Grant.
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Math. classification: 53D20 - 53E12 - 57S25.
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of length Ai,..., modulo rotation, whence the name "polygon space" .
Also, we call an element of E an edge and A the length function.

A length function A is called generic if there is no map E : E -~ ~ ~ 1 ~
so that ¿eEE £(e)A(e) = 0. This guarantees that the polygon cannot
collapse to a line. In this paper, we always assume that A is generic and
that Pol (E, A) is not empty. In this case, Pol (E, A) is a closed smooth

symplectic manifold of dimension 3) &#x3E; 0. The polygon spaces are
better known as the moduli spaces of (weighted) ordered points on P , and
also arise via other symplectic reductions (see [Kl], [KM], [HK1] and the
proof of Proposition 2.4 below).

A subset I of E is called lopsided if there exists eo E I such that
The empty set is not lopsided, while a singleton

{e} is always lopsided since the length function takes strictly positive
values. The total set E is not lopsided since Pol (E, A) is assumed to be

non-empty.

For I C E define pI : Pol (E, À) -~ 1R3 by PI :== The

continuous function and f I : Pol (E, A) ~ R by :== descends
to a function on Pol (E, A), still called fI. When I is lopsided, this function
does not vanish and is therefore smooth. Its Hamiltonian flow ~I is called
the bending flow associated to I. Bending flows have been introduced in

[Kl] and [KM]. They are periodic (see [Kl, ~2. l~ or [KM, Corollary 3.9]):
4l) rotates at constant speed the set of vectors {p(e) e E I ~ around the
axis pI.

A bending torus is a Hamiltonian torus in S(Pol (E, A)) generated by
bending flows. Since the dimension of Pol (E, A) is 2(~-3), the dimension
of any Hamiltonian torus is at most lEI - 3.

In this paper, we study the poset of bending tori and compare it with
that of Hamiltonian ones. For instance, the following result is proved in
Section 3 (see Corollary 3.2):

THEOREM A. - Let N(A) be the minimal number of lopsided subsets
which are necessary for a partition of E. Then the maximal dimension of
a bending torus for Pol (E, A) is I E I - max{3, N (A) 1.

We also give a more general statement that allows us to characterize
maximal bending tori. In some cases, these coincide with maximal Hamil-
tonian tori:
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THEOREM B. - Let T be a bending torus of Pol (E, A) of dimension
&#x3E; lEI - 5. Then T is a maximal Hamiltonian torus if and only if it is a

maximal bending torus.

In Section 5, we give several examples where maximal Hamiltonian
tori are not all of the same dimension. Using the work of Y. Karshon [Ka],
we show the existence of Hamiltonian tori which are not conjugate to a

bending torus (Proposition 5.5). Finally, the relationship with maximal
tori in the contactomorphism group of pre-quantum circle bundles, due to
E. Lerman [Le], is mentioned in 5.6.

2. Preliminaries - Bending sets.

LEMMA 2.1. Let I be a family of lopsided subsets of E. The
following conditions are equivalent:

a) The bending flows f -4~’ I E I) generate a bending torus.

b) For each pair A, B C I, either A n B = 0 or one is contained
into the other.

Proof - By [Kl, 32.1] or [KM, Corollary 3.9], the bending flows are
periodic. Therefore, a) is equivalent to the fact that ~ f A, f B ~ - 0 for all
A, B C T, where ~~, ~~ denotes the Poisson bracket. Proposition 2.1.2 of [Kl]
shows 0 if and only if the pair A, B satisfies Condition b).
Since f A and f B never vanish, the formula

implies = 0 if and only if f fA, f B ~ = 0. 0

A set Z of lopsided subsets of E is called a bending set if it contains
every singleton {e} and satisfies the following "absorption condition" : for
each pair A, B C I, either A n B = 0 or one is contained in the other.

Bending sets are technically convenient to parametrize bending tori.
Indeed, let Z be a bending set. By 2.1, the bending flows {I&#x3E;} I I E T}
generate a bending torus Tz. Conversely, if T is a bending torus, there is at
least one set Z of lopsided subsets satisfying the absorption condition such
that T = Tz, and one can add singletons to Z~ to make it a bending set.

The elements of Z are partially ordered by inclusions, so one can
associate to Z the family of its maximal elements. A direct consequence
of the definition is that MI is a partition of E.
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A bending set I is called full if, for each I G T which is not a singleton,
there exist I’, I" E I so that I is the disjoint union of I’ and I". It is easy
to check that this condition is equivalent to either of the following:

a) Given I and I’ in I such that I’ C I, the union Z- U ~I’ ~ is not a
bending set. This justifies the term "full" : one can no longer add elements
to Z and keep the latter a bending set.

b) For all I c I the set E I : I’ C If contains 2 111 - I elements.

Remark. - Let Z be a bending set. The reader might find it helpful
to consider the graph of this poset. It is a union of disjoint trees, each of
which contains a unique maximal element. The bending set Z is full iff these
trees are binary: each vertex has one edge leaving it (except the maximal
ones which have none) and 2 edges pointing into it (except the singletons
which have none).

LEMMA 2.2. - Let I be a bending set. Then there exists a (non-
unique) bending set i such that the following conditions hold:

Proof. If I is full we are done. Otherwise, we proceed by induction
on the number of "non-full" elements of Z: those I E I which are not

singletons and are not the disjoint union of 2 elements of Z. Let I E Z be
a minimal "non-full" element.

Let I,, ... , Ir be the maximal proper subsets of I which are elements
of I. One of them, say 7i, contains the longest edge of I. For t = 2,..., r -1,
define Ri : = h U ... U Ii and let flf := Z U ~ R2 ~ U ... One has

I = U Ir, U Ir-1 etc. As I was minimal, it is no longer
non-full in i. This gives the inductive step. D

We shall now compute the dimension of a bending tori. We need
some knowledge about the critical points of the maps f I and its symplectic
reduction. The following lemma comes from [Ha, Theorem 3.2].

LEMMA 2.3. - Let I be a lopsided subset of E. An element p E
Pol (E, A) is a critical point for fI if and only if either the set lp(e-) e E I)
or the set ~ p(e) ( e ~ If lies in a line.

PROPOSITION 2.4. - Let A C E. Define A := Au{A} and A
R by ÀA,t(e) := A(e) for e E A and ÀA,t(A) := t. Then, if A is lopsided, the
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symplectic reduction of Pol (E, A) at t, for the action of the bending circle
TA, is symplectomorphic to the product of the two polygon spaces

Remark 2.5. - a) Proposition 2.4 holds true even if t is not a regular
value. If it is, the two right hand polygon spaces of the formula are generic
by Lemma 2.3.

b) The following is clear from the proof below: if TI is a bending torus
and A E Z, then the action of Tz descends to the reduced space, giving rise
to a product of two bending tori: one for the bending set {7 E T ~ I c ~4}
and the other for {7 I / .4}

c) In this paper, Proposition 2.4 is used only for 2. In this case,
the reduction of Pol (E, A) at t is symplectomorphic to a polygon space
with 1 edges, since Pol (A, ÀA,t) is a point. However, the hypothesis

2 does not simplify the proof.

Proof of Proposition 2.4. - First recall the precise definition for
the symplectic structure on Pol (E, A) (for details, see [HK1, ~1]). For
s E R, let the coadjoint orbit of SO(3) with symplectic volume
2s. With the usual identification of so(3)* with R~, is the 2-sphere
centered in 0 of radius r. For A C E, let PA : 
the partial sum JLA((Ze)) := ¿eEA Ze. This is the moment map for the

diagonal action of SO(3) on the component indexed by e E A. The space
Pol (E, A) = JLE1(0)/80(3) is then the symplectic reduction

for the diagonal action of SO (3) . This determines the symplectic structure
on Pol (E, A).

The codimension 2-embedding

gives rise to a diffeomorphism
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As the embedding (1) is the restriction of the obvious symplectomorphism

and as all group actions preserve the symplectic forms, the diffeomorphism
(2) is a symplectomorphism. 0

PROPOSITION 2.6. - Let I be a bending set for Pol (E, A). Then

with equality if and only is full.

Proof. By Lemma 2.2, it is enough to prove the formula when Z is
full. We proceed by induction on the number of elements of I which are not

singletons. If there are none, then dim Tz = 0 = ~ and the formula

holds true (recall that 3 since we suppose that Pol (E, A) fl 0).
Otherwise, as I is full, there is A C Z with 2.

If I E I = 3, the formula holds true (the 0-torus, being a quotient of
is of dimension 0). We may then assume that 
The map fA : Pol (E, A) -~ R is a moment map for the bending

circle TA. As 4, it is not constant. Let s be a regular value of fA
(s &#x3E; 0 since A is lopsided). By Proposition 2.4, the symplectic reduction
of Pol (E, A) at s is a generic polygon space with )E) - 1 edges. By Part b)
of Remark 2.5, the bending set I coinduces a bending set I for A which is
full. The number of non-singletons elements of i is one less than that of I.
By induction hypothesis, one has

As dim Tz = dim TT + 1 and A4_T - A4-T, one gets the required expression
for dim Tz . 0

3. Maximal bending tori.

In this section, we study the poset of bending tori. Let IC and 1: be
two partitions of E. We say that L is coarser than IC if each element of L
is a union of elements of K.
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THEOREM 3.1. - Let I be a bending set for Pol (E, A). Let N (A, I) be
the minimal number of lopsided subsets which are necessary for a partition
of E which is coarser than A4-T. Then, the maximal dimension n(A, 1) of a
bending torus for Pol (E, A) containing Tz is

Proof. Let T be a bending torus containing Tz. By Section 2,
T = Ty for a bending set :1. By Lemma 2.1, the partition A4 j is coarser
than By 2.6, one has

and therefore

Conversely, let ~o be a partition of E into lopsided subsets, coarser
than A4z, with N (A, 1) elements. Let ,7 :_ One check easily that J
is a bending set. Let ~ be a full bending set associated to j as in Lemma
2.2. One has M j = ,7o and, by Proposition 2.6, one has,

L.......I

As a corollary, we obtain Theorem A of the introduction:

THEOREM 3.2 (Theorem A). - Let N(A) be the minimal number of
lopsided subsets which are necessary for a partition of E. Then the maximal
dimension of a bending torus for Pol (E, A) is E) - maxf3, N(A)I.

Proof. Set I be the sets of singletons of E in the statement of
Theorem 3.1. D

We now give a characterization of the maximal bending tori which
will be used later. We can restrict our attention to those Tz, for I a full

bending set, whose dimension is less than lEI - 3 (the maximal possible
dimension of a Hamiltonian torus of Pol (E, A)).

PROPOSITION 3.3. - Let T be a full bending set so that dim Tz 
3. Then, Tz is a maximal bending torus iff
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Proof. Observe that Tz is a maximal bending torus if and only if
for each pair I, J E one has n ( I U J is not
lopsided). The condition of Proposition 3.1 is a priori stronger than that
but in fact equivalent, thanks to the following lemma.

LEMMA 3.4. - Let Ao, ..., An be intervals of the real line. If Ai 
0 for all i, j, then A1 rl ~ ~ ~ f1 0.

Proof - By induction on n, starting with n = 2. The condition

Ai 0 for all i, j implies that A := ~4i U ... U An is connected and
hence is an interval. The set ,,4 := ..., is an acyclic covering of A
and therefore its nerve N(A) can be used to compute the cohomology of

, , - -....-

I. By induction hypothesis, the simplicial set 
contains the n - 1 skeleton of the simplex An. As Hn-1 (A) - 0, 
must contain On which is to say A1 n ... n 0. 0

4. Maximal Hamiltonian tori.

We start with an important special case which illustrate the tech-

nique : the almost regular pentagon. A function A : {!,...,5} 2013~ R+ is

called the length function of an almost regular pentagon if = 1 for

i = 1, ... , 4 and 1  A(5)  2. In this case, dim Pol (E, A) = 4.

PROPOSITION 4.1. - Let ~ : ~ 1, ... , 5} --~ R+ be a length function of
an almost regular pentagon. Then, the maximal bending tori of Pol (E, A),
which are 1-dimensional, are maximal Hamiltonian tori.

Proof. The maximal lopsided subset of E are of the form f k, 5
Therefore, all maximal bending tori are of dimension 1. Since they are all
of the same form, it is enough to prove Proposition 4.1 for one of them, say
TZ with 2* := {{!}, {2}, {3}, {4, 5}}. This gives a Hamiltonian circle action
with moment map f : := /{4,5} = p(4) ~- p(5) ~ . By Lemma 2.3, this map has
three critical values:

a) The two ext remals z = A(5) - 1 and z = A(5) + 1 are of course
critical values. In both cases, the critical set is a 2-sphere, the configuration
spaces of the quadrilateral with side length (1, l,1, z).

b) The value 1 for which the critical set consists of three points,
namely the configurations p : (1, ... , 5} --&#x3E; R3given by one of the line of
equations below:

B /0.B /0B /,...B
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The proof then follows from the lemma below.

LEMMA 4.2. - Let J-l : M ~ JRm-1 be the moment map for a

Hamiltonian action of of T’n-1 on a compact symplectic manifold M2m.
Denote by Crit p C M the set of critical points of p. Suppose that there
is a point 6 in the interior of the moment polytope J-l(M) such that

/-I- 1 (6) n Crit U has at least 3 connected components. Then the action does
not extend to an effective Hamiltonian action of a m-torus.

Proof. Suppose that T extends to a Hamiltonian action of T x ,S’1
with moment Pol (E, À) - R’. Then the moment map f is the
composition with the projection R onto the last coordinate.

Additionally, this action, being effective, would make Pol (A) a symplectic
toric manifold. are distinct points on the boundary of the
moment polytope Q(Pol (E, A)) (see [De]), which all project to 1. As at

most two points of this boundary can project onto one point of R, we get
a contradiction. 0

The rest of this section is devoted to the proof of our second main
result:

THEOREM 4.3 (Theorem B). - Let T be a bending torus of Pol (E, A)
of dimension ~ I E I - 5. Then T is a maximal Hamiltonian torus if and only
if it is a maximal bending torus.

We only need to prove Theorem B in the cases dim T = ~ I E 4 and
~ E ~ - 5, since it is obvious for dim T == lEI - 3.

Proof for dim T = ~ I E 4 . - Let I be a bending set so that Tz is
a maximal bending torus of dimension 4. We suppose that there is a

Hamiltonian circle ,S’1 commuting with Tz; we shall prove that the resulting
action of T x ,S’1 is not effective.

Let fz : Pol (E, A) --~ JRI be the product map fz := TIAEI fA. This
is a moment map for the action of Tz. Its image A is a convex polytope of

dimension lEI - 4. Let p be the composition of fI with the projection to
the affine space spaned by A (the "essential" moment map).

By Proposition 2.6, Z is full and has 4 maximal elements: 

fl, J, K, Ll. By Proposition 3.3, there exists a point c in the intersection
of the images of f I , f J, fK and fL. The proof divides into 3 cases :

Case a) : Suppose that c is in the interior of each image. Then F:= (c, c, c, c)
belongs to the interior of the image of the product map f := fI x f J x

fK x fL : Pol (E, A) - This product map is the composition of J-l with
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the projection to Hence, there exists 6 in the interior of A which

projects to c

For any p E Pol (E, A) such that = 6, there exist RI, RJ, RK, RL E
SO(3) such that

Then the configuration p’ defined by

also satisfies &#x3E;(p’) = 6 and moreover p’ = -P’ = -pL . This implies
that p’ is a critical point for the function h := f I + f J - f K - f L and hence
for p. Indeed, the Hamiltonian flow of h would be a global rotation around
the axis pI, and therefore induces the identity on Pol (E, A).

Similarly, one constructs critical configurations in ~c-1 (S) with pI =
2013pj = and pi = - pJ = - pK = pL. By Lemma 4.2, this
completes the first case.

Case b) : the argument of Case a) works as well if c is in the interior of
the image fA for each A C A4_T which is not a singleton (by genericity of
A, there exists at least one such element).

Case c) : in the general case, there may be some set A C M_T, such that
c is in the boundary of the image of fA. Let A4’ c A4_E be the set of such
A’s and let be the partition of E generated by A4’ (formed by the
elements of fl4’ and the singletons). Call I’ the largest sub-poset of I so
that A4z, = A4’; this is a full bending set.

In this case, P := f -1 (c ) is a symplectic submanifold of Pol (E, A)
on which TI, acts trivially. As P coincides with the result of successive

symplectic reductions at c for the various f A with A E it is, by
Proposition 2.4, symplectomorphic to the polygon space Pol (A4 ’ , A), where

The bending torus TI acts on P, giving rise to a bending torus Tx
isomorphic to TI /TI, . Observe that I has 4 maximal elements and that
we are in Case b). Therefore, Tx is a maximal Hamiltonian torus and the
induced action of T on P has a kernel of dimension strictly larger than that
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of TIt. Therefore, as

there is a circle in T acting trivially on a tubular neighborhood of P. Hence,
by the generic orbit type theorem [Au, §2.2], the action of T on Pol (E, A)
is not effective. 0

Proof for dim T - I E 5 . - Let I be a bending set so that TZ is
a maximal bending torus of dimension lEI - 5. We suppose that there is
a Hamiltonian circle ,S’1 commuting with Tz and we shall prove that the

resulting action of T := Tz x ,S’1 is not effective.

Let &#x3E; : Pol (E, A) be the essential moment map, defined as

in the proof for dim T 4, and let and A be the image of p. Let

~ : Pol (E, A) --~ 0 x R be a moment map for the action of T with first
component equal to p and let Lie be the image of ~.

By Proposition 2.6, Mz has 5 elements. By Proposition 3.3, there
exists a point c in the intersection of the images of fA for A C A4_T. The
proof divides into several cases :

Suppose that JEJ = 5. Then T, is of dimension 0 and we have

to know that a maximal Hamiltonian torus for a regular pentagon space is
also of dimension 0. This is the contents of [HK2, Theorem 3.2].

Case 2) : Suppose that each A E A4_T contains exactly 2 elements (hence
JEJ = 10) and c is in the interior of the image of fA. This implies that
~*:= (c, c, c, c, c) is a regular value of p. The reduction Q of Pol (E, A) at c
is then symplectomorphic to a regular pentagon space (apply Proposition
2.4 five times). The induced Hamiltonian action of T on Q is then trivial
by Case 1). This implies that the image of the differential D~ at any point
of ~c-1 (c ) is parallel to A x 101. By convexity, we deduce that Lie and A
have the same dimension and therefore the action of T is not effective.

Case 3) : The argument of Case 2) works as well if each A E A4z has  2
elements and c is in the interior of the image of f A 2. Also,
if there are sets A E A4-T with IAI = 2 and c is in the boundary of the
image of fA, one proceeds as in Case c) of the proof for dim Tz == I E I - 4
to deduce that the action of T is not effective. Thus, we are able to prove
our result when all the elements of A4_T are either singletons or doubletons.
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General case) : For A E let kA :== 2} 
kA. The proof goes by induction on k, the case k = 0 being

established in Case 3). If k &#x3E; 0, let A E A4I such that 3. If c lies in

the boundary of the image of fA, one proceeds as in Case c) of the proof
for dim T T == to deduce that the action of T is not effective (using
the induction hypothesis). Otherwise, as I is full, there exists B E Z such
that B ~ = 2, B C A and is an interval of positive length. It
contains an open interval J of regular values of fB. For t C J, the reduction
of Pol (E, A) for the action of the Hamiltonian circle with moment map fB
is, by Proposition 2.4, symplectomorphic to an (IEI- l)-gon space P. The
bending torus T, descends to a bending torus Tz for P. One has A4z = A4_T
and k = I~ -1. By induction hypothesis, Tz is a maximal Hamiltonian torus.
This implies that each point of fB 1 (t) has a stabilizer of positive dimension
for the action of T. This holds true for all t E J, therefore for an open set of
Pol (E, A). By the generic orbit type theorem [Au, §2.2], this implies that
the action of T on Pol (E, A) is not effective. 0

5. Examples.

NOTATIONS : When E = ( I , ... , we describe Pol (E, A) by writing
the values of A. For instance, Pol (1,1,1, 2) stands for Pol (~l, 2, 3,4}, A)

= A(2) = A(3) = 1 and A(4) = 2. A bending set is described by
listing its elements which are not singletons and labeling the edges by their
length.

5.1. - The "two long edge" case : Suppose that the set of edges E
contains two elements a, b such that

Then E is the disjoint union of Ea and Eb so that Ea is lopsided with longest
edge a and Eb is lopsided with longest edge b. One then has N(A) = 2 and,
by Theorem 3.1, Pol (E, A) admits a bending torus of dimension E) - 3. In
particular, Pol (E, A) is a toric manifold.

5.2. - Almost regular pentagon : The almost regular pentagon
Pol (1,1, 1,1, a) with I  a  2 (or 0  a  1) is a very important special
case, already used in Proposition 4.1. Notice Pol (E, A) is diffeomorphic to

(see ~HK 1, Example 10.4]).
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We used the result of [HK2] that the regular pentagon space admits
no non-trivial circle action. This is not known for regular polygon spaces
with more edges. Nor it is known whether an almost regular neptagon space
is diffeomorphic to a toric manifold.

5.3. - Hamiltonian tori of different dimensions : Consider a generic
pentagon space of the form Pa,b . Pol (1,1,1, a, b) with a ~ 1 i= b
and 0  a - b  I  a + b. The bending circle la, bl is a maximal

Hamiltonian torus by Proposition 3.3 and 4.3. However, Pol (l, l,1, a, b)
is a toric manifold by the bending tori Tz of the form Z :_ ~ ~ 1, a~, ~ l, b~ ~ .
In this example, one sees that maximal bending tori, as well as maximal
Hamiltonian tori, are not all of the same dimension.

The moment polytope for Tz shows that Pa,b is diffeomorphic to

(the case a + b = 3
is not generic). It is known that the other pentagon spaces are 4-manifolds
with second Betti number  3. For them, any Hamiltonian circle action
extends to a toric action by [Ka, Th. 1].

An example with maximal Hamiltonian tori of 3 different dimensions
is provided by the heptagon spaces Pol ( 1,1, 2, 2, 3, 3, 3) (it is generic since
lengths are integral and the perimeter is odd). The 3 bending sets with
maximal (non-singleton) elements of the form

determine maximal Hamiltonian tori of dimension respectively 2, 3 and 4.
Observe that the bending circle {3,2} is contained in two maximal tori of
different dimension.

Examples in higher dimension can be constructed by adding "little

edges" to the previous one, for instance the (7 + m)-gon space

It admit full bending sets with maximal (non-singleton) elements of the
form

which determine maximal Hamiltonian tori of dimension respectively m +
2,m+3 and m--~4.



1938

5.4. - Let T1 and T2 be two Hamiltonian tori of dimension n for
a symplectic manifold M2n. Choose isomorphisms 
Lie(T2)*. The moment polytopes A1 and A2 of the two actions are in

By Delzant’s theorem, T1 is conjugate to T2 in the group S(M)
of sympectomorphism of M if and only if the moment polytopes 
satisfy 0 (T2 ) where 0 is a composition of translations and
transformations in 

Consider the pentagon space P := Pol (1, a, c, c, c), with c &#x3E; a+ 1 &#x3E; 2.

The two bending tori 1 ~ have
moment polytopes

Therefore, T1 and T2 are not conjugate in the group S(P). One can
check that any other bending torus is conjugate to either T1 or T2.

On the other hand, the polytope shows that P is symplecto-
morphic to (S~ x + a(2), where WI and are the pull back of the
standard area form on ,S’2 via the two projection maps. By [Ka, Th. 2], the
number of conjugacy classes of maximal Hamiltonian tori is equal to [a],
the smallest integer greater than or equal to a. This proves the following

PROPOSITION 5.5. - If c &#x3E; a + 1 &#x3E; 3, then Pol (1, a, c, c, c) admits
Hamiltonian tori which are not conjugate to a bending torus.

5.6. - Let (M, be a simply connected symplectic manifold such that
C H2 (M; R) is integral. Then there exists a principal circle bundle

81 ~ Q - M with Euler class and Q carries a natural contact
distribution by a theorem of Boothby and Wang [BW, Th. 3]. In [Le,
Th. 1], E. Lerman recently proved that maximal Hamiltonian tori in M
(of dimension 1~) give rise to maximal tori (of dimension 1~ -~-1 ) in the group
of diffeomorphism of Q preserving the contact distribution.

By [HK1, Prop. 6.5], the symplectic form on Pol (E, À) is integral
when, for example, A takes integral values. Then, our examples in 5.3 give
rise to contact manifolds with maximal tori of different dimensions in their

group of contactomorphisms (see [Le, Example 2~ ) .
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