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1819-

TORIC EMBEDDED RESOLUTIONS
OF QUASI-ORDINARY HYPERSURFACE

SINGULARITIES

by Pedro D. GONZÁLEZ PÉREZ

Introduction.

A germ of complex analytic variety is quasi-ordinary if there exists a
finite projection, called quasi-ordinary, to the complex affine space 0)
with discriminant locus contained in a normal crossing divisor (for instance,
the singularities of complex analytic curves are quasi-ordinary). These sin-
gularities appear classically in Jung’s strategy to obtain the resolution of
singularities of surfaces from the embedded resolution of plane curves (see
[J], [W] and [L2]). Some properties of complex analytic curve singularities
generalize to quasi-ordinary hypersurface singularities: for instance, Jung-
Abhyankar’s theorem guarantees the existence of fractional power series
parametrizations generalizing the classical Newton-Puiseux parametriza-
tions of the plane curve case; by comparing these parametrizations we ob-
tain a finite set of distinguished or characteristic monomials which gener-
alize the notion of characteristic exponents in the plane branch case.

The results on quasi-ordinary hypersurface singularities concern

mainly the analytically irreducible case: Lipman builds a non embedded
resolution procedure of a quasi-ordinary surface where only quasi-ordinary
singularities occurs and uses it to prove the analytical invariance properties

Keywords : Singularities - Embedded resolution - Discriminant - Topological type.
Math. classification: 14M25 - 32S25.
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of the characteristic monomials (see [L1], and [L3]); another proof of this
result was given by Luengo in [Lu] ; more generally Gau proved that the
characteristic monomials, suitably normalized by an inversion formulae of
Lipman [L1], define a complete invariant of the embedded topological type
of the quasi-ordinary hypersurface singularity (see [Gau]) ; Gau’s proof in-
volves Lipman’s description of the divisor class group of the singularity in
terms of the characteristic monomials (see [L4]).

An important step to establish the relations between the topological
type and the embedded resolutions of a hypersurface singularity, which are
well-known in the case of plane curve singularities (see [Z4], [Z3] and [Re]),
is to determine if the characteristic monomials of a hypersurface quasi-
ordinary singularity determine a procedure of embedded resolution. This
is the content of Lipman’s open problem 5.1 (see [L5]) which is stated in
the context of the generalizations of equisingularity, in particular by using
Zariski’s work on the dirrLensionality type with respect to the classification
by equiresolution. In the case of an analytically irreducible quasi-ordinary
surface germ Ban and McEwan (see ~B-M~ ) have found a such a procedure
following the algorithm of resolution of Bierstone and Milman, developed
from the work of Hironaka. Villamayor has given a solution to Lipman’s
problem for any quasi-ordinary hypersurface singularity (see [V2]). Villa-
mayor’s approach studies the abelian branch covering of the afhne space
obtained by taking suitable roots of the regular parameters defining the
components of the discriminant locus. By the Jung-Abhankar’s Theorem
the equation of the quasi-ordinary hypersurface under this extension splits
in a product of Weierstrass polynomials of degree one. The singularity
obtained is a non transversal intersection of smooth hypersurfaces, whose
embedded resolution requires the simplest combinatorial part of Hironaka’s
method. The important point that he proves is that this resolution proce-
dure is Galois equivariant, in such a way that when taking the quotients by
the Galois action the local constructions glue up together defining a mod-
ification of the embedded quasi-ordinary hypersurface. The ambient space
obtained in this way has only toric quotient singularities and a canonical
resolution of these singularities (see ~V1~) provides an embedded desingular-
ization of the quasi-ordinary hypersurface. The desingularization obtained
is not necessarily an isomorphism outside the singular locus of the quasi-
ordinary hypersurface.

In this paper we give another solution to Lipman’s problem in two
different ways.
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In the first one we build an embedded resolution of a reduced quasi-
ordinary hypersurface germ (S’, 0) C 0) as a composition of toric
morphisms which depend only on the characteristic monomials (see The-
orem 1). The first toric morphism we build is defined by the dual Newton
diagram of a suitable Weierstrass polynomial f E C~ ~ X 1, ... , Xd ~ [Y] defin-
ing the embedding (S, 0) C 0). Suitable here means that Y is a good
coordinate: the Newton polyhedron of f, have compact faces of dimension
at most one, and it is canonically determined by the characteristic mono-
mials. We study the strict transform S’ of S by this modification: we show
that the restriction 7r1 : S’’ - S is a finite map. The germ of S’ at any of

the finitely many points of the fiber 7rl1 (0) is a toric quasi-ordinary sin-
gularity, defined as finite branched covering of a normal affine toric variety
unramified over its torus (see [GP1]). It follows that it is more natural to
build the resolutions for toric quasi-ordinary hypersurfaces by generaliz-
ing to this case the notions of characteristic monomials and many of their
properties in the classical quasi-ordinary case. At any point of 7r~(0), the
strict transform S’ has less characteristic monomials, with respect to a

projection canonically determined from the fixed quasi-ordinary projection
of S’, and we determine them from the given characteristic monomials of

(S, 0). By iterating we obtain, in a canonical manner from the fixed quasi-
ordinary projection of S, a partial embedded resolution: a normal variety
of dimension d + 1 with only toric singularities (not necessarily quotient
singularities) and a modification 7r = o 7rk such that the strict trans-

form of S is a d-dimensional section transversal to the exceptional fiber

7r- 1(0) (which is of dimension one). This implies that any toric resolution
of the ambient space is an embedded resolution of the strict transform and

provides a fortiori an embedded resolution of S. It follows also that the
restriction of 7r to the the strict transform of ,S’ is the normalization map
of S. This implies that the restriction of any of these embedded resolu-
tions to the strict transform of S is an isomorphism outside the singular
locus of S. In the case of a plane curve germ we show that our procedure,
with respect to a transversal projection, leads to the minimal resolution of
the curve and we compare our method with those given by L6, Oka and
A’Campo (see [Le-Ok], [Ok], and ~A’C-Ok~ ) .

The second method builds embedded resolutions of an analytically
irreducible quasi-ordinary hypersurface germ (S, 0) by generalizing the
method of Goldin and Teissier for plane branches (see [G-T]). The approach
and results of this part are also inspired those obtained by Lejeune and

Reguera in the case of sandwiched surface singularities (see [LJ-R]) and
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sketched for plane branches in [LJ-R2]. If g &#x3E; 1 denotes the number of

characteristic exponents we re-embed the germ (S, 0) in the affine space
0), by using certain approximate roots of a suitable Weierstrass

polynomial defining the embedding (S, 0) C 0). These approximate
roots have maximal contact in the sense that, at each step of the partial
resolution there is one approximate root whose strict transform defines a

good coordinate for the strict transform of S. We define a toric modification
p : Z - depending only on a rank d semigroup r, which is a

partial errtbedded resolution of the irreducible germ (S, 0) C 0), and
of an affine toric variety Zr C obtained from (6’,0) C 0)
by specialization and defined by the semigroup F (see Theorem 2). This
semigroup, which generalizes the classical semigroup of a plane branch,
does not depend on the quasi-ordinary projection and defines a complete
invariant of the embedded topological type of S, as characterized by
Gau (see [GP2] or [GP3]). As in the first method any toric resolution of
singularities of the ambient space Z provides an embedded resolution of S.

We compare the partial resolutions 7r and p: we prove in Theorem 3
that 7r is the restriction of p to a (d -~- 1)-dimensional smooth variety of Z
containing the strict transform of S.

One of the technical tools common to both methods is the construc-

tion of toric embedded resolutions of non necessarily normal afhne toric
varieties equivariantly embedded, a result obtained in collaboration with
Teissier (see Proposition 6, Proposition 6.4 of [T2], and [GP-T]).

One important contribution of our approach is a better understanding
of the structure of the exceptional divisor of these resolutions. The ambient

space of the partial resolution 7r, which is canonical and factors any of

these embeded resolutions, is built with a toroidal embedding structure
such that the associated conic polyhedral complex with integral structure

(see [KKMS]) is built explicitly from the characteristic monomials. This
description allows us to re-embed this complex as a fan in an affine space
of bigger dimension, a technical lemma which is essential to compare
the partial resolutions p and 7r (see Propositions 42 and 45). The toric
resolutions of the ambient space are defined by certain regular subdivisions
of this fan (which always exists, see [Co] and [KKMS]). These regular
subdivisions determine many features of the geometry of the exceptional
divisor which are very useful for the applications:

9 In collaboration with N6methi and McEwan we have shown that

the zeta function of the geometric monodromy of the germ (S, 0) coincides
with the zeta function of the plane curve germ obtained from (S, 0) by
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intersection with d - 1 coordinate hyperplanes, which are determined by
the quasi-ordinary projection (see [M-N] and [GP-M-N]).

~ In collaboration with Garcia Barroso we analyse in [GB-GP] the
strict transform of the polar hypersurfaces of (S, 0) under the partial
resolution of (S, 0) and we obtain a decomposition theorem which provides
in the case of plane curve germs a simple algebraic proof of a Theorem of
L6, Michel and Weber ([L-M-W]).

The proofs are written in the analytic case. They provide also two
embedded resolutions of quasi-ordinary hypersurface singularities in the
algebroid case (over an algebraically closed field of zero characteristic).

Acknowledgements. I am grateful to B. Teissier, M. Lejeune-Jalabert,
A. N6methi for their suggestions and to Universidad de La Laguna and
Institut de Mathématiques de Jussieu for their hospitality. The author
has been supported by a grant of DG UI del Gobierno de Canarias and
by a Marie Curie Fellowship of the European Community Programm
"Improving Human Research Potential and the Socio-economic Knowlegde
Base" under contract number HPMF-CT-2000-00877.

1. Toric maps, Newton polyhedra
and partial resolution of singularities.

We introduce the notations and basic definitions of toric geometry
and we build embedded resolutions of non necessarily normal affine toric
varieties.

1.1. A reminder of toric geometry.

We give some definitions and notations (see [F], [Ew] and [Od] for
proofs). If N ^--’ a lattice we denote by NR the real vector space
N 0z R spanned by N and by M the dual lattice. A rational convex

polyhedral cone a in NR is the set non negative linear combinations of
vectors al, ..., as E N. In what follows a cone will mean a rational convex
polyhedral cone. The cone a is strictly convex if a contains no linear

subspace of dimension &#x3E; 0; the cone a is regular if the primitive integral
vectors defining the 1-dimensional faces belong to a basis of the lattice N.
We denote by 00, the relative interior of a cone a-. The dual cone av (resp.
orthogonal cone a1-) of a is the set fw E u) &#x3E; 0, (resp. (w, u) = 0)
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VU C 07 I. A fan E is a family of strictly convex cones in NR such that any
face of such a cone is in the family and the intersection of any two of them
is a face of each. The support of the fan E is the set NR. The i-
skeleton M(i) is the subset of i-dimensional cones of E. The fan E is regular
if all its cones are regular.

Any non necessarily normal affine toric variety over the field C of
complex numbers is of the form Z~ = Spec where A is a monoid,
i.e., a sub-semigroup of finite type of a lattice -A + A which generates
it as a group. The closed points of ZA correspond to homomorphisms of
semigroups A 2013~ C where C is considered as a semigroup with respect to
multiplication. The torus embedded in ZA is the group of homomorphisms
of semigroups A 2013~ C 2013 101 and acts naturally on the closed points
of Z~ . The normalization of ZA is obtained from the inclusion A -

(-A + A) where is the cone spanned by the elements of
A (see [KKMS]). The action of the torus has a fixed point if and only if
the cone is strictly convex, then this point is defined by the ideal

(Xu/u E A - 101) of C[A] and coincides with the 0-dimensional orbit; the
analytic algebra C{A} of Z~ at this point can be viewed as a subring of the
ring C[[A]] of formal complex power series with exponents in the semigroup
A (see [GP1] lemme 1.1).

In particular, if a is a cone in the fan E the semigroup ol r1 M is of
finite type, it spans the lattice M and the variety which we denote
also by or by Za when the lattice is clear from the context, is normal.

c a’ are cones in the fan E we have an open immersion Zcr C Za, ;
the affine varieties Za corresponding to cones in a fan E glue up to define
the toric variety Z~. The torus, ((~* ) d+1, is embedded as an open dense

subset Zlol of Zr , which acts on each chart these actions paste to an
action on Z~ which extends the product on the torus. General toric varieties
are defined by this property, the toric varieties which can be defined using
fans are precisely the normal ones (see [KKMS]). The toric variety ZE is
non singular if and only if the fan E is regular.

We describe the orbits of the action of the torus on the variety Z~ .
The orbit 0,,N (which we denote also by is the Zariski closed subset of

Zcr defined by the ideal E (aV - f1 M) of n M]. This orbit
is a torus for 0  dim a  rk N, since the associated coordinate ring is the
C-algebra of the sub-lattice := M n a -L of M of codimension equal
to dim a. On the closed orbit Ocr we consider the special point Ocr defined
by 1 for all u E M(a~) . If dim a = rk N the orbit is reduced
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to the special point. If dim a  rk N we have an exact sequence of lattices:

If 0 - ~(cr) -~ 0 is the dual exact sequence the lattice

Na spanned by a n N is of dimension equal to dim a and the semigroup
associated to the cone (7 with respect to the lattice N~ is isomorphic to

j (a v n M). If we choose a splitting M ~ we obtain a semigroup
isomorphism inducing an isomorphism of
C-algebras which defines (non
canonically) the product structure

The map that sends a cone a in E to the orbit Oa C ZE is a bijection
between the fan E and the set of orbits. If a is a face of T then Z~ is an

open subset of Z, and the orbit Or is contained in the closure of Oa in
Z, since T-L C a-L, thus the closure of the orbit of c~ in ZE is Oa = U Or
where T runs through the cones of E which have a as a face.

The orbit closures are normal toric varieties by themselves with
respect to the lattice N((). The cones of the fan associated to are

of the form T + (N,)R C for T E E containing a as a face.

Remark l. The singular locus of ZE is the union of those orbits

Oa for a a non regular cone.

This follows from formula (1) by noticing that the orbit ®~ is contained in
the singular locus of Z~ if and only if 0,,N, is a singular point of Z,,N, if

and only if the cone a is not a regular cone.

DEFINITION 1. - A fan E’ is a subdivision of the fan £ if both fans

have the same support and if any cone of £’ is contained in a cone of £ . The
fan E’ is regular subdivision if ~’ is a regular fan. A regular subdivision E’
is a resolution of the fan E if any regular cone of £ belongs to E~.

Associated to a subdivision of fans there is a modification Zr, - ZE
inducing an isomorphism between their tori.

Example 1. - Let E be a regular subdivision of the cone a = 
with lattice N := This subdivision defines a modification 7rE : 

Cd+1 which we describe in detail:
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The variety ZE is non singular, for each cone (7 of maximal dimension the
variety Z a is isomorphic to (Cd+1 and the restriction 1r a : Za - of the

morphism 7rE is induced by the semigroup inclusion 
The set of primitive vectors in the I-skeleton a is a basis of N and its

dual basis is a minimal set of generators of the semigroup a’ n M. These
generators give us coordinates to describe the map 1ra : Za - Cd+1 in the
form:

where (al, is the coordinate of the primitive vector a’ in the
1-skeleton of a, for i = 1,..., d -+- 1. Since the fan E is regular, it is easy to
see directly from formula (2) that the map is an isomorphism over the
torus Xi ... 0 of CCd+1.

A resolution of singularities of a variety Z is a smooth variety Z’ with
a modification Z’ ~ Z which is an isomorphism outside the singular locus
of Z. The resolution of singularities of normal toric varieties is reduced to
a combinatorial property of faces (see [KKMS]). More precisely we have
that: Given any fan E there is a resolution E’ of E (see definition 1). The
associated toric morphism Zr, - ZE is a resolution of singularities of the
variety Z~ (see [Co], Theorem 5.1).

We describe now the exceptional locus associated to a subdivision
E’ of a fan E. Taking away the cone a from the fan of the cone a means

geometrically to take away the orbit Oa from the variety Za. It follows that
(see [GS-LJ] Proposition page 199):

It follows from (3) that the exceptional fibers, i.e., the union of subvarieties
of dimension &#x3E; 1 which are mapped to points, are given by
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and that the exceptional locus, i.e., the subvarieties that are mapped on a
variety of smaller dimension, is

The discriminant locus, i.e., the image of the exceptional locus, is equal to

1.2. Newton polyhedra and partial resolution of singularities.

The Newton polyhedron M(o) of a non zero series 0 = 1: caxa E
C{X} with X = (X 1, ... , Xd+1 ) is the convex hull of the set 

More generally the Newton polyhedron of any non-zero germ
of holomorphic function at the special point op of a normal affine

toric variety ZP - SpecC[pV n M] (for a strictly convex cone pV) is the

convex hull of the subset MR . We denote it by jVp(0) or
by if the cone p is clearly determined by the context. Many of the
properties associated with classical Newton polyhedra hold in this case; for
instance, if 0 ~ (~ = ~i - - - §s we have that is the Minkowski sum

,N(~1 ) ~ ... since the series Oi have coefficients in a domain. It
follows from this property that:

Remark 2. - If 0 7~ (~ = ~i - - - §s and has only one vertex the
same holds for each of the Minkowski terms for i = 1,..., s.

The face 0u of the polyhedron jVp(0) defined by a vector in u E p is the set
of vectors v E Mp (0) such that (u, v) = All faces of the

polyhedron Arp(0) can be recovered in this way. The face of Mp(0) defined
0

by u is compact if and only if u E p.

The cone ~(,~’) C p associated to the face .~ of the polyhedron is

The cones a(0), for T running through the set of faces of the polyhedron
define a of the fan of the cone p called

the dual Newton diagram. The relative interiors of the cones in the fan
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E(A/p((~)) are equal to the equivalence classes of vectors in p by the relation:
u - ul 0u = 0u, . We say that a fan 2: supported on the cone p is
cornpatible with a set of series ~l, ... , §s E n M} if it subdivides

the with 0 = 0,. A cone in the is

intersection of cones of the therefore is compatible with
all the polyhedra If 2: is compatible with all vectors in o
define the same face of jVp(0), for a E 2:.

DEFINITION 2. - Let C’he symbolic
restriction of 0 to the compact face 0 of the polyhedron jVp(0) is the
polynomial The Newton principal part
01,v of 0 is the sum of those terms of 0 having exponents lying on the
compact faces of the Nevvton polyhedron 

We follow here the terminology of [Kou] and [Ok]. The Newton
principal part OIM C C[pl n M] does not change if we change the ring
C[[pl n M]] by extending the lattice M.

Let :E be any fan supported on p defining the modification 

Zp. Let V be a subvariety of Zp such that the intersection of the
discriminant locus of 7rE with each irreducible component Vi of V is nowhere
dense on Vi. For instance if V is irreducible this condition holds if the torus
is an open dense subset of V. The strict transforms VE C ZE is the subvariety
of such that the restriction Vr - V is a modification.

If the fan E is regular, the toric map 7F, : Zr - Zp is a (toric)
embedded pseudo-resolution of V if the restriction Vr - V is a modification
such that the strict transform VE is non singular and transversal to the
orbit stratification of the exceptional locus of Z~ . The modification 7rE is

a (toric) embedded resolution of V if in addition the restriction to the strict
transform Vr - V is an isomorphism outside the singular locus of V (see
[G-T]). If 7rE is only a pseudo-resolution we can only guarantee that the
map Vr - V is an isomorphism outside the intersection of V with the
discriminant locus of In this case, this set contains the singular locus
of V but it is not necessarily equal to it.

DEFINITION 3. - (non necessarily regular) subdivision of p
the toric morphism 7rE : partial (toric) embedded resolution
of V if for any resolution ~’ of the fan £ the map o vrs is an embedded

resolution of V.
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Let V C ZP an irreducible subvariety such that the intersection with
the torus is an open dense subset. Let E be a subdivision p compatible with
a set of generators CP1, ... , 0, of the ideal of V c Zp. We give a combinatorial
condition on the Newton polyhedra of CP1, ... , §s for the intersection of the
strict transform with the exceptional fiber being non empty.

o 0

LEMMA 3. - Let a a cone in E such that C p. If n Vr = 0
then the face Fix of the Newton polyhedron of Oi defined by a is of
dimension &#x3E;- 1 for i ~ s.

Proof. We have that Oi - OilF_ belongs to the ideal generated by
Since E is compatible with the Oi the cone

av contains the cone spanned by elements in the polyhedron -uo 
for any uo c 01. Let ui be a vertex then we can factor in the ring

in such a way that the exponent of a term appearing in (oi o 7r a -
o 7r a) belongs to (a v - n M and thus this term vanishes on the

orbit By definition the elements for 1  i  s belong to the
ideal defining the strict transform of V. If the face Fix is a vertex for some

i the ideal of c, n VE in Za is equal to (1) thus vE n c, is empty. D

The following lemma is an easy consequence of the implicit function
theorem. 

Let p C NR be a rational strictly convex cone of dimension equal
to rk N. We denote by A the cone p e3 where No is the

lattice N with dual lattice MA. The semigroup A, n M~ is of the
form (p v rl M) e3 The monomial corresponding to (a, v) n M~,. n

is denoted by .

LEMMA 4. - If CP1, ... , CPg E clav n MA ) verify that 
Ui, for i = 1, ... , g then there exist series Ei E cfpv n M ~ for i =

1,..., g such that the idealsofcfav n malgenerated by CP1, ... , Og and
Ul - 61,..., Ug - eg coincide.

Proof. An homomorphism of semigroups extends

to an homomorphism 1
. ... ,

if o is surjective it defines an
. . ,....

equivariant embedding Zp C (L which extends (by using the homomor-

phism o x Id) to an equivariant embedding Zo - Zp x C9 C C’+-9. If
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cpl, ... , cp9 are power series defining holomorphic functions at 0)
representing the implicit function theorem guarantees the ex-
istence of power series Ei i in s variables such that the ideals (~pl, ... , 
and ( Ul - E 1, ... , coincide. The result follows by passing to the
quotient by the binomial ideal defining the embedding ZA C D

1.3. Embedded resolution of non necessarily
normal toric varieties.

We build an embedded resolution of non necessarily normal affine
toric variety ZA equivariantly embedded in a normal affine toric variety Zp
(for p" a strictly convex cone). We build first a partial embedded resolution
which is a toric morphism providing an embedded normalization inside a
normal toric ambient space. Then any toric resolution of the singularities of
the ambient space, which always exists, provides an embedded resolution.
The advantage of this method is that the partial resolution is completely
determined by the embedding Z" C Zp. This result is the fruit of

discussions with Professor B. Teissier (see [T2], §6, Proposition 6.4 and

~GP-T~ ) .
Let A be a monoid. An equivariant embedding of ZA in the normal

affine toric variety Zp is given by a surjective homomorphism of semigroups
A which extends to a lattice homomorphism cp : M - -A+A and

a vector space homomorphism WR : (-A + The torus of ZA is

equivariantly embedded in the torus of Zp, the embedding is obtained from
the homomorphism ’P. The linear subspace C NR, denoted by
I in what follows, is of dimension equal to rk A and the same holds for the
cone ago :_ .~ n p. The ideal of the embedding Z‘~ C Zp is generated by the
binomials

(see [St], Chapter 4).
LEMMA 5. - With the above notations suppose that the cone pv is

strictly convex. Let E be any fan compatible with a finite set of binomial
equations X ui - X v2 = 0 for i C I defining the embedding ZA C Zp. Then

o 0

the fan E is compatible with the linear subspace .l.If 6 c E C P
then O~. n 0 implies that a C .~. Moreover, and dim a = dim f

the intersection Z~ f1 (G, as schemes is the simple point o~ and Z~ n Z~
is isomorphic to If E is regular the morphism 7r~ is an embedded

pseudo-resolution of singularities C Zp’
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Proof. The cone ago = p is associated to the Minkowski sum of

compact edges X~) for i C I since (w, ui) - (w, vi), Vi E I if
and only if w C .~. Since the fan E is compatible with the binomial equations
of ZA it follows that a subdivision of a~o is contained in E, i.e., this fan is

compatible with the linear subspace .~.

We deduce by duality from the equality ago = p that

Since the cone p’ is strictly convex, formula (6) implies that

and thus

o o

Let 6 G E with a c P, since M is compatible with the binomials
the ideal generated by 12013X~’~ (up to relabeling) is contained

in the ideal defining the strict transform Z~ in the chart Za. Thus the
variety Z’, defined by X~’~ - 1 = 0 for z E I, contains Z~ f1 Za. Then we
have

The chart Za is isomorphic to x by formula (1).
and dim a = dim l we have that ~1 - at coincides with

by (7). We deduce an isomorphism

from (1) since the lattice 0-1.. n M = Ker(w) is generated by tui - 
Therefore the variety Z’ is irreducible and of dimension equal to rk A. We
deduce from (9) that ZA intersects the orbit ®~ transversally since the
coordinate ring of ZA n is C. Since ZA n Z~ is a subvariety of the
irreducible variety Z’ and both are of the same dimension they coincide.

If 2: is regular we deduce that ZA is smooth and intersects transver-
sally the orbit stratification of the exceptional locus of ZE thus 7rE is an

embedded pseudo-resolution of Z~ . D
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With the notations of Lemma 5 we have:

PROPOSITION 6. - Suppose that the cone p’ is strictly convex. Let
E be a subdivision of p containing the cone ao.

1. The strict transform ZAM of ZA by the morphism,7rM, is isomorphic
to and the restriction 7A __~ ZA is the normalization map.

2. The morphism 7rE is a partial embedded resolution of Z~ C ZP.

Proof. We keep notations of Lemma 5. If we choose a splitting
M!2--- Im(cp) we obtain using (8) a semigroup isomorphism

which corresponds geometrically to the isomorphism x 

of (1).
We deduce from (6) that r~ = and it follows that the

semigroup

is the saturated semigroup (-A + A) of A in the lattice it spans;
therefore the variety Za-o,Nao is isomorphic to the normalization of ZA

(see [KKMS]).
Let ~’ be a subdivision of E compatible with the equations of Z~ .

By Lemma 5 if a E C P and ®6 n ZAM =0, then we have a C .l. A

fortiori the same property holds replacing E’ by E as a consequence of (3).
It follows that the strict transform of the germ (Z~, op) is contained in the
chart corresponding to the cone ao. This implies that ZA C since the

morphism 7rE is equivariant and ZA is equivariantly embedded. It follows
also from the proof of Lemma 5 that the restriction of to Z~ 2013~ ZA
corresponds algebraically to the inclusion of C [A] in its integral closure thus
it is the normalization map.

A resolution E’ of the fan E is subdivided by a regular fan E" which
is compatible with the equations of ZA . By Lemma 5 the map 07M

is a pseudo-resolution of Z~. A fortiori the same holds for o by (3).
By definition if o~’ E E is a regular cone then ~’ E E’, thus 2~/ 2013~ ZE is an
isomorphism over the points of the orbit By Remark 1 the singular
locus of ZA is defined by the intersection of those orbits for those
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cones a’ running through the set of non regular faces of This shows

that Z~ 2013~ Z~ is a resolution of singularities of the normalization Z~ of
Z~ . A fortiori the map Z~ -~- ZA is a resolution of singularities. 0

1.4. Equivariant branched coverings of normal toric varieties.

Some branched coverings of normal toric varieties are equivariant.
Typically, if a is a rational cone for the lattice N it is also rational for

a sub-lattice of the same rank N’ C N and we have a homomorphism
of semigroups a v f1 m --+ or, n M’ where M C M’ is the inclusion of

lattices corresponding to N’ C N by duality. This homomorphism defines
an equivariant morphism

extending the homomorphism of tori T’ - T defined by the lattice

extension M C M’, which has kernel a finite subgroup H of T’. Each w E H
corresponds to a morphism - Za, N, given by the homomorphism

mapping The ring c[al U M] is
the set of invariants of c[al n M’] ] by the action of the group H and the
morphism (11) coincides with canonical projection of the quotient of Z~
with respect to the action of the group H by Corollary 1.16 of [Od]. If a is of
maximal dimension the 0-orbit o~ of projects to the 0-orbit oa of Za,N
and we have that - is a morphism of analytically
irreducible germs. The corresponding homomorphism of analytic algebras

n M ~ ~ n M’ ~ extends to a homomorphism L - L’ of their
fields of fractions of degree equal to the cardinality of H, i.e., the index
of M as a subgroup of M’. This field extension is Galois and the Galois
group is obtained from the automorphisms of n M’l defined by the
elements of H (see [GP1]).

Let vl , ... , and define from them a sequence of lattices and

integers:

The lattices Mi are all sub-lattices of finite index of M’. We have the

inclusions of lattices N’ C Ng C... C N1 C No = N where Ni denotes the
dual lattice of Mi .
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LEMMA 7. - The field of fractions of «

If A n M’ then X~ E Fix(Gal( if and only if

Proof. The homomorphism of analytic algebras n M} 2013&#x3E;
Cf pl r1 Mj I is finite and defines an extension of the corresponding fields of
fractions of degree nl ... nj equal to the order of the finite group 
We prove the first assertion by induction on j : for j = 1 the roots of the
minimal polynomial of X" over L are the different conjugates of by
the action of the elements of the Galois group of L/L’. We deduce from this
that the minimal polynomial is where n1 = is

also the degree of the extension Since is contained in the

field of fractions of n and both fields define extensions of L of the

same degree they are equal. By induction hypothesis the field of fractions
of Cf pl n is L[X", ..., X"3-1 ] and we can replace L, vl and n 1
in the previous argument by L [X"1,..., X"3-1], vj and nj respectively to
obtain the assertion for j.

If v E p~ n M. it is clear that v is fixed by any element of the Galois
group of the extension L’ /L ~X vl , ... , X"3 ] . The converse follows by the first
assertion and Corollary 1.16 of [Od] applied to the inclusion of semigroups

1.5. A reminder on toroidal embeddings.

Let X be a normal variety of dimension d + 1, and let Ei be a finite
set of normal hypersurfaces with complement Ll in X. A toroidal embedding
without self intersection is defined by requiring the triple (X, U, x) at any
point x E x to be formally isomorphic to (Za, T = ((~*)d+1, z) for z a point
in some toric variety This means that there is a formal isomorphism
between the completions of the local rings at respective points which sends
the ideal of x - Ll into the ideal of Z, - T; (see [KKMS]). The variety x
is naturally stratified, with strata niEK Ei - Ui~K Ei and the open stra-
tum U.

The star of a stratum 6, star 6, is the union of the strata containing
6 in their closure. We associate to the stratum 6 the set M6 of Cartier
divisors supported on star 6 - U. We denote by N6 the dual group
Hom(M , Z). The semigroup of effective divisors defines in the real vector
space M~ a rational convex polyhedral cone and we denote its
dual cone in N6 :- N~ ~ II~ by p~ . If 6’ is a stratum in star 6, we have a
group homomorphism defined by restriction of Cartier divisors M6 ---+ M6’
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which is onto; by duality we obtain an inclusion N~~ -~ N~ and the cone
P6’ is mapped onto a face of p~ (see [KKMS]). We can associate in this
way to a toroidal embedding without self-intersection a conic polyhedral
complex with integral structures (c.p.c. in what follows) see [KKMS]. This
generalizes the way of recovering from a normal toric variety the associated
fan. This complex is combinatorially isomorphic to the cone over the dual

graph of intersection of the divisors Ei. We have that the strata of the
stratification are in one-to-one correspondence with the faces of the conic
polyhedral complex. For instance, the conic polyhedral complex associated
to the toroidal embedding defined by ZE and the normal hypersurfaces

&#x3E; is isomorphic to the conic polyhedral complex (with integral
structure) (E, N) defined by the fan E and the lattice N.

We can define, in an analogous manner to the case of a fan, a regular
subdivision of a conic polyhedral complex. Associated to a subdivision we
have an induced toroidal modificatzon (see [KKMS] Th. 6* and 8*), i.e., a
normal variety X’ with a toroidal embedding U C x’ and a modification

provided with a commutative diagram:

The notion of toric partial embedded resolution generalize easily in the
toroidal case.

2. Toric quasi-ordinary singularities.

We introduce toric quasi-ordinary singularities and we extend to this
case many notions and properties of quasi-ordinary singularities.

Let (8,0) be a germ of analytically irreducible complex variety of
dimension d. We denote by R the associated analytic algebra. A sufficiently
small representative 8 ~ S’ of a finite map germ (8,0) ~ (5~, o’ ) has finite
fibers, its image is an open neighborhood of o’ and the maximal cardinality
of the fibers is equal to to the degree of the map. The dzscr2minant locus,
i.e., the set of points of having fibers of cardinality less than the degree,
is an analytical subvariety of S’. Outside the discriminant locus, the map
is an unramified covering. We can think of the discriminant locus as an

analytic space or as a germ at o’.
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DEFINITION 4. - A germ of complex analytic variety (S, o) is a quasi-
ordinary singularity if there exist a finite morphism (S, o) - (C , 0) (called
a quasi-ordinary projection) and some analytical coordinates (Xl, ... , Xd)
at 0, such that the morphism is unramified over the torus Xl ... Xd ~ 0 in
a neighborhood of the origin.

The class of quasi-ordinary singularities contains all curve singulari-
ties. The Jung-Abhyankar Theorem guarantees that R can be viewed as a
subring of ... , for some suitable integer m (see [J] for a
topological proof in the surface case and ~A1~, Th. 3 for an algebraic proof).

The finite map germ (S, o) --t (S’, o’) corresponds algebraically to
a local homomorphism R’ - R of their analytic algebras which gives R
the structure of finite module over R’. In particular if R is generated over
R’ by one element there is a surjection R’ ~Y~ ~ R which corresponds
geometrically to an embedding (8,0) C (S’’ x C, (o’, 0)). We say that (S, o)
is an hypersurface relative to the base (S’, o’). We define toric quasi-ordinary
singularities by replacing the base (C, 0) by the germ (Zp,op) of an affine
toric variety at its zero orbit (for a strictly convex cone p~ ) .

DEFINITION 5 (see [GP1]). - The germ (S, o) is a toric quasi-ordinary
singularity if there exists a finite morphism (S, o) - (Zp, op) unramified
over the torus in a neighborhood of the zero-orbit op of a suitable normal
afhne toric variety Zp.

Remark 8. - The classical quasi-ordinary singularities are obtained
when (p, M) = 

By definition the analytic algebra R of a toric quasi-ordinary singular-
ity is a nM}-algebra of finite type. The germ (S, o) is an hypersurface
relative to the toric base if there exists x E R such that R = n M~ [x].
Then the cfpv n M}-algebra homomorphism cfpv n M~ [Y] ~ R that
maps Y H x is surjective. Its kernel is a principal ideal generated by a
monic polynomial f such that f(op, Y) = Ydeg f and deg f is equal to the
degree of the map (S, o) - (ZP, op). The polynomial f is a quasi-ordinary,
polynomial, i.e., the discriminant Ayf of f with respect to Y is of the form

Conversely each monic quasi-ordinary polynomial f E cip, n M~ [Y] such
that /(on, Y) = Ydeg f defines a germ of toric quasi-ordinary hypersurface.
The cip, n M}-algebra homomorphism n M ~ [Y] ~ R defines
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an embedding S C Zp x C that maps o ~ (op, 0). The quasi-ordinary
projection of (,5’, o) is induced by the first projection of the product Zp x C.

The product Zp x C is the toric variety Z~ defined by the cone
o = p x 1R?() with respect to the lattice N’ dual to the lattice M’ := 
Then we have We denote the monomial

corresponding to 1

If f is an irreducible quasi-ordinary polynomial the associated an-
alytic algebra R is the domain R = cfpv n There exists a

fractional power series ( n 1 M} which is a root of f where n is the
degree of f (see Theoreme 1.1 and Remarque 1 of The inclusion

Cfpv n M ~ c n n M} corresponds to a branched covering of a normal
affine toric variety and defines a Galois extension L C Ln of their corre-

sponding fields of fractions (see subsection 1.4).The minimal polynomial of
the root ( over the field L is equal to f, we have R!2--- Cfpv n M~ [~] and
the field of fractions of R is L ~~~ since ( is finite over L. The conjugates
(~~ of ( by the action of the Galois group of L C Ln define all the roots of
f since the extension L[(] C Ln is Galois.

We call (toric) quasi-ordinary branches the roots of (toric) quasi-
ordinary polynomials.

If f is a reduced quasi-ordinary polynomial of degree n then it splits
on Cfpv n !-MI. The difference S(s) - ((t) of two different roots of- fn!

divides the discriminant of f on the ring C f pv n By Remarkn!

2, the Newton polyhedron of (C(s)2013 ((t) has only one vertex therefore
C(s) _ C(t) is of the form where Hst is a unit in Cfpv n n, M}.n!

It follows that the irreducible factors of f are quasi ordinary polynomials.
The monomials so obtained are called characteristic monomials and

the exponents Ast E p~ are called the characteristic exponents. If
rkM = 1 and if f is irreducible the characteristic exponents correspond to
the classical Puiseux characteristic exponents in arbitrary coordinates. We
do not need the classical argument to define the characteristic monomials
which uses the factoriality of the Xd I (see [L3]), a property
which does not hold for the rings of the form ~l M} in general.
The notion of characteristic monomials in the classical quasi-ordinary
case is already present in Zariski’s work (see [Z5]) ; in the analytically
irreducible hypersurface case many geometrical and topological features of
these singularities are determined in terms of the characteristic monomials

by Lipman, Luengo, Gau and others (see [L1] , [L3], [L4], [Lu] and [Gau]).
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We define a partial order xp (or  for short) on the cone p~ :

We can extend this partial ordering to a total one on the subset p v ~l M
by taking an irrational vector q E p, i.e., the coordinates of yy with respect
to any base of the lattice N are linearly independent over Q, and defining
then xq ~rl~~-~’~ 0.

LEMMA 9 (see [Z5] and [L4] in the classical case) . - Let f 1 be

an irreducible factor of the reduced toric quasi-ordinary polynomial f. If
f 1 (~~s°~ ) = 0 then we have

and this set is totally ordered by P.

Proof - The equality above follows since the extension L ~~(S° ) ~ C
Lni is Galois and the elements of the Galois group act on a series in

rl n, M~ by changing the coefficients of its terms. Then, if ((t) :~ 
are roots of f different to ((sO) we have that

Therefore At,t = minp f At, so I Atso I and the assertion follows. 0

DEFINITION 6 (see [GP2]) . - Two irreducible quasi-ordinary polyno-
mials f (t) and f(3 ) have order of coincidence if their product f ~i~ 
is a quasi-ordinary polynomial and A(i,j) is the largest exponent of the set

We say that the order of coincidence of with itself is :== +00.

We deduce from the proof of Lemma 9 and Definition 6 the following
property:

LEMMA 10. - If f = f ~1~ - - - is the factorization of a quasi-
ordinary polynomial with monic irreducible factors uTe have that:

min{ with equality if
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In particular when f is irreducible it follows that the set of char-

acteristic exponents is totally ordered by  P (see [L3]). In this case we
relabel the characteristic exponents by À1 p A 2 p ... * p Ag and we
denote Àg+1 == +oo. Following Lipman (see [L4], page 61) we associate to
the characteristic exponents sequences of lattices and integers. In the plane
branch case the sequence of integers coincide with the first component of
the characteristic pairs in arbitrary coordinates.

DEFINITION 7. - The lattices Mi and the integers n., associated to the

sequence of characteristic exponents À1, ..., Ag for i = 0, ... , g by formulae
(12) are called characteristic.

We denote by = ni... ng, for i = 1,...,g and we set no . := 1.

We denote by Ng G -’ - C N1 C No = N the sequence of dual lattices of

If f is reduced the set of characteristic exponents is not totally
ordered by for example the characteristic exponents (1, 0), 1 ( ~ 0), (1, ~)
of I are not totally ordered for

LEMMA 11 (see [L3]). - If f is an irreducible toric quasi-ordinary
polynomial and if ( is a root of f we have

1. The characteristic integers ni verify that ni &#x3E; 1 for i = l, ... , g
and nl ~ ~ ~ ng = deg f.

2. The field of fractions of R is equal to L[(] = L[X)’1 , ... , X~~]. ’ 

Proof. Let (’ be a conjugate of ( by an element of the Galois
group of the field extension Ln D If ~’ ~ ~ we have
(’ - ( for a unit Hk and k &#x3E; j (since X~~,..., XA3 are fixed for
this Galois group). In particular for j = g the only possibility is (’ == ( thus
( E L ~X ~1, ... , ] since the extension Ln D L ~X ~l , ... , X ~‘~ ~ ] is Galois.

Conversely any element of the Galois group of the extension Ln D L[(] fix
( and therefore all the terms appearing in (, in particular X ~‘1, ... , X ~‘g ,
belong to L[(] since the extension Ln D L[(] is Galois. It follows that ni &#x3E; 1

for i = 1,..., g, and that the degree n of the extension L is equal
to n1 ... ng. D

We have the following conditions for a power series ( E 
to be a quasi-ordinary branch (see [L3], prop. 1.5 or [Gau], prop 1.3 in the
classical case).
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LEMMA 12. - Let ( = £ be a non unit in n -L M}. Then
the minimal polynomial of ( over n M I is quasi-ordinary if and only
if there exist elements, such that

g, and o

2. then A is the sub-lattice ~

3. Aj is not in the sub-lattice M+~~Z ZÀi, of MQ for j = 1, ... , g.
If such elements exist they are uniquely determined by ( and they are the
characteristic exponents of (.

Proof. If the minimal polynomial of ( over cf p, f1 M) is quasi-
ordinary then the result follows from Lemmas 9, 11 and 7 applied to
sequence of characteristic exponents. Conversely, if ~’ is the conjugate of (
by an element of the Galois group of Ln D L and if ( # ~’ let us consider
the sequence of lattices Mi and integers ni associated to ~1, ... , Ag by (12).
There is some j &#x3E; 1 such that the monomials X v are fixed for v C 

and is not fixed by this element by Lemma 7 and Hypothesis 3.

Then Hypothesis 1 and 2 imply that the difference (’ - ( is of the form

1’ - ( = for a unit Hj. D

Remark 13. - The characteristic lattices associated to f provide a
canonical way of writing the terms of its roots:

where po E cf pv r1 and the monomial XA appears in the summand pj
implies that Aj xp A and for j = 1,..., g.

It is shown by Lipman (see [L4], remark 7.3.2) that an analytically
irreducible quasi-ordinary hypersurface germ of dimension d is normal if

and only if it is isomorphic to a germ of the form Yn - X, ... 0

for some 1 ~ c x d; otherwise it is well-known that its normalization is a

quotient singularity (see [L4]); in the two dimensional case it is the germ of
an affine toric surface (see [B-P-V], Chapter III, Theorem 5.2). In [GP2] is
proved that the normalization of an irreducible quasi-ordinary hypersurface
germ is isomorphic to the germ of an affine normal toric variety at its zero
orbit and that this singularity is determined from the set of characteristic
exponents. The following proposition generalizes this fact for toric quasi-
ordinary hypersurface germs.
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PROPOSITION 14. - The integral closure of the ring R in its field of
fractions is equal to Cfpv n 

Proof. The analytic algebra of the quasi-ordinary hypersurface is
of the form R = Cfpv n Ml[(]. By Lemma 12 we have a ring extension

which is integral since n is integral over
n M}. By Lemmas 7 and 11 the rings n have the

same field of fractions. These two conditions imply that both rings have the
same integral closure over their field of fractions. The ring n is

integrally closed since it is the analytic algebra of the normal variety Z p,N 9
at the point op. 0

2.1. The Eggers-Wall tree of a reduced

quasi-ordinary polynomial.

We structure the partially ordered set of characteristic monomials
of a reduced toric quasi-ordinary polynomial in a labeled tree. When

rkM = 1 the germ S defined by a reduced quasi-ordinary polynomial
f E c f pv n at the origin is just a germ of complex plane curve. It
is well-known that the intersection multiplicities of the different branches
of the curve at the origin and the semigroups associated to each of them
define a complete invariant of the embedded topological type of the plane
curve germ (S, 0) (see [Re]). Eggers shows that this information can be
encoded by structuring in a labeled tree the characteristic exponents of
each irreducible factor and the orders of coincidence between any two of

them (see [Eg]). Wall (see [Wa]) gives a different definition of Egger’s
tree to give a new proof of theorem of Garcia Barroso in ~GB 1~ on the
structure of polar curves (see [GB2]). Wall’s definition encodes the same
amount of information as Egger’s definition does and involves the use
of a simplicial 1-chain on the tree which is defined from the sequence
of characteristic integers of the irreducible factors (see Definition 7). In
the case of a classical quasi-ordinary hypersurface, Zariski’s result stated
in Lemma 9 can be reformulated as follows: If f = 0 defines a classical
quasi-ordinary hypersurface and if f 1 is an irreducible factor of f the set
of characteristic exponents of f 1 union the set of orders of coincidence
of f 1 with the factors of f is totally ordered with respect to the partial
order defined by the divisibility of the corresponding monomials. Zariski’s
observation and the sequences of characteristic integers are exactly what is
necessary to extend Wall’s definition to the quasi-ordinary case in terms of
a fixed quasi-ordinary projection (X, Y) - X. This is done more generally
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by Popescu-Pampu (see ~PP2~ ) for a Laurent quasi-ordinary polynomial f,
obtaining a result on the structure of aY in terms of the tree of f when
aY is quasi-ordinary.

The definition of the tree in our case runs as follows: Let f -
~(i) ... f (r) be the factorization in monic irreducible polynomials of f. Each
factor of f is quasi-ordinary and the subset 
whose elements are 0, the characteristic exponents A1(i) P...  p Aq(i)i9( )
of (if they exist) and the orders of coincidence of with the

irreducible factors of f is totally ordered by Lemma 9; we denote by 7~
and for k = 1,..., g(i), the sequences of integers associated to f (i) by
Definition 7 for i = 1,..., r.

The elementary branch associated to is the abstract

simplicial complex of dimension one with vertices running through the
elements of the totally ordered subset B ( f (i) ) (°) and edges running through
the segments joining consecutive vertices for the partial order . The
underlying topological space is homeomorphic to the segment [0, We

denote the vertex of corresponding to A C by P~2) . The
simplicial complex 8( f ) obtained from the disjoint union by
identifying in and the sub-simplicial complex corresponding
to and

, 1 1 1 V

) 
for tree. We give to a vertex

P~2~ of the valuation A. This defines a 0-chain Co ( f ) on which

attaches the value A to each vertex pli) in the Eggers tree (counting each
vertex only once).

For i = 1, ... , r we define an integral 1-chain whose segments are
obtained by by subdividing the segments of the chain

with the points corresponding to the orders of coincidence of f(í), the
coefficient of an oriented segment in the subdivision is the same as the

coefficient of the oriented segment of (13) containing it. It follows from

Definition 7 that these 1-chains paste on and define a 1-chain Ci(/)
with coefficients in Z.

DEFINITION 8. - The Eggers-Wall tree is the simplicial complex 8( f )
with the chains Cl ( f ) and Co ( f ) .
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The chains Ci( f) and Co(f) determine the number of factors of f, the
characteristic exponents of each factor and the orders of coincidence. The
vertex if A # 0, +oo is not a characteristic exponents of if and only
if the coefficients of the two segments of containing coincide.

3. Embedded resolution procedure.

In this section we build an embedded resolution of a reduced quasi-
ordinary polynomial which is a composition of toric morphism determined
by the characteristic monomials.

3.1. Definition of good coordinates.

We introduce the notion of Y being a good coordznate in terms of the
coincidence of the parametrizations of f. In the following section we build
the toric morphisms of the resolution using this notion. Different choices of

good coordinates provide isomorphic morphisms.

We keep the notations of Section 2.1. We suppose that f is a

quasi-ordinary polynomial with r irreducible factors fCr). Define
- for 1  r. By Lemma 9, if the set 

is non empty it is totally ordered by p.

Then we can define

.. , , , ....

LEMMA 15.

1. M the term X ~ does not appear in the expansions of
the roots In particular if XA appears in the expansions of the roots

then A is &#x3E; and the that _ ~1~ ) .
2. The case ~,~(2) = happens if and only is the only factor

of f without characteristic exponents and À(i,j) = for all i.

3. M then ~,~(io) &#x3E; is &#x3E; ~,~(~) for io.

4. The set ~a,~(1), ... , ~,~(r) ~ is totally ordered by .

Proof. If has no characteristic exponent the terms in the

expansion of its root have exponents in pl n M. Otherwise, ~,~(i) ~ ~ ~ M
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implies that ~i2~ ~ ~ ~ M thus the term XA does not appear in the
expansion of the roots of by Lemma 12. If XA appears in the expansion
of the roots of then it appears in any difference of roots of and &#x3E;

thus A &#x3E; Moreover, A(i,j) then A ~ M implies that A(i,j) ~&#x3E;- Àij)
by Lemma 12. Since A,(’) ~ we have that ÀK,(i) i and

and the equality A(i,j) follows.

For the second assertion notice that if f ~2~ and &#x3E; are two different

factors without characteristic exponents then belongs to M thus

a,~(i), ~,~(~) ~ If A,(i) = +00 then is not in M for all j i=- i;
thus the exponent appears on a term of the parametrization of 

and therefore we A(j) by Lemma 12. The first assertion for
~ _ ~ 1~ ~ implies and equality follows.

Now suppose that A,(io) E M. the exponents A,(io) and 
are comparable by Lemma 9. We distinguish two cases:

(a) Notice that assertion 1 implies that if has some

characteristic exponent then &#x3E; A,(I,). If A,(io)  there is

7~ io such that = = 

by Lemma 10; hence the exponents À(j,l) and are comparable by
Lemma 9. If = set lo = j.

If we deduce from Lemma 10 that

A(3,1) = ~~~(h(3,lol ’ A(3,1)) ~ A(1,1,) = 

and does not belong to M buy definition of This shows that

(b)  By definition of we have that M and

then assertion 1 implies == Àlj). If  A(j) we deduce using
Lemma 10 that - is equal to and  ÀK(io)’
It follows that M, thus ~,~(~) _ Àlj)  

For the last assertion we only have to prove that if A,,(i) = Àli) and
~,~ (~ ) _ ~ 1~ ) they are comparable by . By Lemma 9, ~ (i,~ ) is comparable
with A( 1 i) and A (j) - 1 The case À(i,j)  implies that À(i,j) E M by
Lemma 12, thus contradiction. Therefore we can assume

that ~i2)  replacing i by j if necessary. It follows from the definition

of order of coincidence that if Àli)  then Àli) = A(j). If Àli) _ A(i,i)
then the result follows from Lemma 9. D
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We relabel the factors f (’) of f in order to have: ~,~~2~  ... 
~,~~r~ . If A E p n M, the monomial XA appears in all the roots of with

the same coefficient c~r~ . Then we define

Generic here means that if Ak(r) = C M then c - cA(L) (l) = 0.,B , (1)

LEMMA 16. - The polynomial Y’ has order of coincidence equal to
f ~i~ for i = 1,..., r.

Proof. It follows from Lemma 15 that if A,(i)  A,(,) then 
is the order of coincidence of and fer) (remark that M by
assertion 3 of Lemma 15, thus a,~(2) - ~12~ is &#x3E; A(i,,) by assertion 1 of

Lemma 15; it follows from this fact that À(i,r) t/:. M thus ~12~  by
Lemma 15). This implies that the order of coincidence of Y’ I with is

well defined and equal to ~,~(i) . The generic choice of c guarantees in the
case ~,~(r) E M that the order of coincidence of Y’ with those factors 
of f with ~,~(i) = A~(~) is D

DEFINITION 9. - We say that Y is a good coordinate for the reduced
quasi-ordinary polynomial f E cfpl n M~ [Y] if the order of coincidence of
Y with f( i) is well defined and equal to A,(i), for i = 1, ..., r.

If Y is not a good coordinate for f then the cf p, n MI-automorphism
of n that maps Y - Y’, for Y’ defined in Lemma 16, trans-
forms The polynomial f’ is quasi-ordinary, f’
and f have the same Eggers-Wall tree and Y’ is a good coordinate for f’.

In Section 3.2.2 we show that if Y is a good coordinate for f the
characteristic monomials determine its Newton polyhedron.

3.2. The first toric morphism of the embedded resolution.

We build the first toric morphism of the embedded resolution and
we prove that it simplifies the singularity preserving at the same time the
quasi-ordinary structure.
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3.2.1. The case of a Newton polyhedron with only one compact edge.

We deal first with the case when all the irreducible factors of f are
parametrized by series of the form XAE with E(oP) = c.

We denote by Mx the lattice M + AZ for A E n M (resp. NA for the
dual lattice), by M~ the lattice yZ (resp. N~ for the dual lattice)
and by nx the integer Let E be a subdivision of p containing
cone a :== ~ where is the linear subspace of N~ orthogonal to the
compact face [nA, ny] of the polyhedron .N( f ) (where n = deg f ) . The
subdivision E of o is rational for the lattices N~ and N’. We have the
following commutative diagram of equivariant maps:

where the vertical arrows are defined by lattice extension and the horizontal
arrows are defined by the subdivision E. Often we do not precise the lattice
if it is corresponds to the below line of the diagram 16.

LEMMA 17. - The lattice homomorphism cp : M’ --4 M).. that maps
y - A and fixes u E M induces an isomorphism

If we choose an splitting M’ ’~’ Mcr 0 Ker(cp) vve have a semigroup
isomorphism

which corresponds to an isomorphism X Zp,NÀ’
Proof. We use the combinatorial arguments in the proofs of

Lemma 5 and Proposition 6 to prove (17) using that = by
(7); then (18) holds by (10). 0

We denote by S(’) the strict transform of the germ defined by
the irreducible factor of f for i = 1,..., r.

LEMMA 18. - The intersection is the point ol =

E 0(7 counted := (deg f (’)) - x times, where c’ = and c1B /n
is the coefficient of in any root of the polynomial f (i) defining ,S’(i) . In
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particular, the intersection 5~) n 00- is transversal if and only if c(i) = 1.
The strict transform 5~ of s is a germ at the point ol.

Proof. To simplify the proof we drop the super-index (i). If T E ~
with T C 09 then n Or i- 0 implies that T = ~ since the face of 
defined by is of dimension &#x3E; 1 (by Lemma 3). The strict transform SE
is defined on Za by = 0 and it follows that the ideal of 00- n 5’E
is generated by (xn&#x3E;,(Y-A) - where c is the coefficient of XA in any
root of f. This implies that the intersection of the strict transform 6s with

1f;; 1 (00) is reduced to the point ol = (c’, op) counted ex times. In particular,
the intersection is transversal if and only if ea = 1. This shows also that
the strict transform 6s is a germ at the point 01 since this is the only point
of intersection with the exceptional fiber. D

PROPOSITION 19. - The restriction of the projection 00- x 
- to 01) is quasi-ordinary. The germ (SE, 01 ) is de-

fined by a quasi-ordinary polynomial f~ E r1 (where W =
yn,X-n,-B _ with characteristic exponents A’ - A for those character-
istic exponents A’ &#x3E; A off. the order of coincidence between the

irreducible components and f(j) &#x3E; of f then the order of coincidence of

ffi) and is ~(i,j) - A. If (S’, o) is irreducible the same holds for 01).

Proof. We deal first with the case A E M, i.e., n x = 1 and N.

By Lemma 18 the chart Za contains the strict transform By hypothesis
the roots Ci&#x3E; of f are of the form i.e., the
coefficient of the monomial X~ is the same for all of them. By Lemma 18
the strict transform of Y - ((i) = 0 by the morphism ~ Zg,Nf is

defined by

where the terms X~,’-A vanish on the orbit Qa for all Y &#x3E; A. By Lemma
17 the chart (resp. Za,N) is isomorphic to (B,,N’ X Zp,NÀ (resp. to

0,,Nl X Zp , N). Since nx = 1 the toric morphism Z,,N’ ----&#x3E; restricts to

an isomorphism of the orbits 0,,N’ - Qa by (18), the coordinate
ring of the orbit Qa being equal to We study the strict transform
of Y - ~~i~ = 0 (resp. of ,S’) at the point of intersection with the orbit

Qa by replacing the invertible term xy-).. by the unit c + W on (19)
(resp. on 0). We obtain a polynomial n ]
from which splits in cip, n~=i(~ - ~~~)~ where
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It follows from Lemma 12 that the series T~i~
are quasi-ordinary branches and that their characteristic exponents are
obtained from those of ~~i&#x3E; by subtracting A. If f is irreducible the same
thing happens for fL-. Otherwise, we have T(?) - T(3) = X~~ (((?) - ((3) ) and
this implies the assertion about the orders of coincidence.

If n~ &#x3E; 1 we reduce to the previous case by passing through the
diagram (16):

Each irreducible factor of f splits into nx irreducible factors in

having order of coincidence equal to A. We factor f as a
product F1 ... Fn~ in , the Fi being defined by the properties:
the order of coincidence of Fj (resp. of any two factors of Fi ) is = A

(resp. is &#x3E; A). The Eggers-Wall tree of Fi is obtained from the Eggers-
Wall tree of f by deleting the vertex Px and dividing by n x the coefficients
of the chain between Pa and the extreme points of the tree

(this follows from Lemma 11 and Definition 7). Then the strict transforms
of Fi = 0 by HE are disjoint germs at the na points of intersection with

0,,N, by Lemma 18.

By Lemma 17 the toric morphism Z,,N’ -* corresponds to the
semigroup inclusion

This map is an unramified covering of degree nx and it commutes with

the projections onto the factor of and This provides
an isomorphism between the strict transform of Fi by HE and 8E which
commutes with the projection onto factor Zp, N~ for i = 1, ... , n),. A fortiori
the restriction of the projection to 8E is quasi-ordinary and
the result follows. D

With the same hypothesis of Proposition 19 we have:

COROLLARY 20. - If (,5’, o) is analytically irreducible and if A = A,
is the only characteristic exponent of ( the strict transform 8E of S is
isomorphic to the germ Zp,Nl and the restriction of 7rE to 8E ~ S is the
normalization map. The morphism is a partial embedded resolution of

resolution of the fan E the map 7rE, o 7rr is an embedded

resolution of 8 C Zg.
Proof. It follows from Lemma 18 that 8E is isomorphic to the germ

(Zp,N,, op) and to the normalization of (S, o) by Proposition 14. We argue
as in Proposition 6 and Lemma 5 to extend the result in this case. 0
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The following remark is a consequence of the proof of Proposition 19.

Remark 21. - If f is irreducible, A = Ai and if f 1 n ]
defines a good coordinate for fE then the image of fi = 0 by 7rE is defined
by an irreducible quasi-ordinary polynomial in cip, n M~ [Y] with only
one characteristic exponent À1 and with maximal order of coincidence
with f.

The following result has been suggested by N6methi and McEwan see
([M-N] and [GP-M-N]).

LEMMA 22. - The morphism,7rE of Proposition 19 is an isomorphism
over Z~ - S.

The discriminant of the morphism liE is described by (4). It follows
from this formula that the functions X ~ and Y vanishes on those orbits
of which are contained in the discriminant locus of The image
of these orbits by the map Z~,N~ -~ Z. is the discriminant of 7rE and it
is contained in ,S’ since all the roots of f are of the form Y = A~ up to
multiplication by a unit. D

3.2.2. The general case.

We build the first toric morphism of the embedded resolution in the
general case.

We suppose from now on that Y is a good coordinate for f . The New-
ton polyhedron of each irreducible factor f (’) with ~,~(i) ~ +00 has only
one compact edge vertices and where X~N2&#x3E;
is the initial monomial of any root of f (’). Since the set of is com-

pletely ordered by p the set of compact faces of Np ( f ) defines a monotone
polygonal path with inclinations running through ~~,~(1), ... , a,~(~.) ~ - 
independently of the choice of good coordinate (see [GP1] for the terminol-
ogy). This fact is a special feature of quasi-ordinary singularities and it is
a generalization of the plane curve case.

The dual fan ~1 of the polyhedron N(f) is obtained by intersecting 0
with the linear hyperplanes :== (~/2013A~),~) = 0 for those ~,~ (~ ) ~ +00.
Since we have that IA,(j) I is totally ordered by p we find that the cones
o n belong to ~1 since they cannot intersect in the interior of Y.

Geometrically, this implies that the exceptional locus of 7rrl is a bamboo

of Pt, each one of them being the closure of the orbit (we say
that a curve is a bamboo if the dual graph of intersection of its irreducible
components is isomorphic to the subdivision of a segment).
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PROPOSITION 23. - If A,(Z) =,4 then we have:

1. The strict transform of by 7rE, is a germ at the point
of intersection with the exceptional curve 7r;;: 

2. The Eggers- Wall tree of a polynomial defining the strict transform
at the point is obtained from by removing the segment

(Po(j), from the sub-tree of 0(f ) given by U 0(f (3)), for with0 1 

order of coincidence &#x3E; A,(i) with f (’). The coefficients of the vertices of
the resulting tree are obtained by subtracting A,(i). The coefhcients of the
associated 1-chain are obtained by dividing by 7~...

Proof. The first assertion follows from Lemma 18. It follows from

Proposition 19 that = if and only if the irreducible factors of the

symbolic restrictions of and to the compact edges of their Newton
polyhedra coincide

This is equivalent and have order of coincidence &#x3E; A,(i) _

~,~(~). The second assertion follows from Proposition 19 since the character-
istic exponents and the order of coincidence of and are obtained

from those corresponding to f(i) and by subtracting À1. The strict
transform ,5’~2~ is a toric quasi-ordinary hypersurface relative to the base

by Proposition 19 and the statement about the coefficients of the
associated 1-chain follows from this change of lattice by Lemma 7. 0

Remark 24. - If A,(?) - the strict transform of is the germ
of the closure of the orbit associated to the edge at the point of
intersection with the exceptional curve 7r-
The assertion follows from the description of the exceptional locus and the
discriminant locus of a toric modification given in Section 1.1 once it is

noticed that the point of intersection of with 7rj/ (og) is the orbit
associated to the (d + I)-dimensional cone of ~1 which contains the cone
ylR)o.

3.3. The toric embedded resolution.

We show the way to iterate the procedure of the previous section
to build an embedded resolution of S C Ze by first eliminating the
characteristic exponents and then by resolving the toric singularities of
the ambient space.
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By Proposition 23, the germs defined by the strict transform at each
of the points of intersection with the exceptional curve are simpler toric

quasi-ordinary hypersurface singularities. In a finite number of iterations
of this procedure the strict transform becomes a union of r toric quasi-
ordinary hypersurface germs with no characteristic exponents at all, i.e.,
is collection of r germs of affine toric varieties at the special points. It

follows from Propositions 19 and 14 that the strict transform of (S, o) is its
normalization. Thus this method provides an embedded normalization (in a
normal environment) of the germ (S, o) C (Zg, o.). We keep the information
of the toric singularities of the ambient space by defining at each stage a
toroidal embedding without self-intersection:

First, we associate to the toric quasi-ordinary hypersurface (S, o) C
embedded with a good coordinate the toroidal embedding defined

by (Zg, N6). Its conic polyhedral complex 00 is equal to (g, N6). Then,
we associate to each point of intersection of the strict transform SE,
with the exceptional fiber a normal hypersurface S(’) defined by taking a
good coordinate for the quasi-ordinary projection of of Proposition 19.

Obviously, if oii) = we have S(j) (see Remark 21).
LEMMA 25. - The c.p.c. 81 associated to the toroidal embedding

defined by the variety and the set normal hypersurfaces U
’ 

1

is obtained from the c.p.c. Ei by adding for each

point in the set -
I 

the c.p.c. (g, N,’X",,,) and pasting it to ~ 1
by identifying ) with by the lattice

isomorphism corresponding to (17) by duality. The c.p.c. O1 is independent
of the choice of good coordinates.

Proof. To simplify the proof we drop the index i, we denote A,(i)
by A and we keep notations of Proposition 19 and Lemmas 17 and 18.
The germ (5’i,oi) is defined by the vanishing of a monic polynomial

of degree one where W = xnÀ(y-À) - c. We deduce
from Lemma 17 that the analytic algebra of the germ (Z~, ol ) is isomorphic
to n M.1 by the isomorphism that maps f 1 H and X" - X u

for all u E p n Ma. Since the c.p.c. associated to the torus embedding of
is (g, N1) the same holds for the toroidal embedding corresponding
and the set of normal The

sub-c.p.c. associated to the toroidal embedding corresponding to ?-~ - 
is (g it is isomorphic to (p, N1), the pasting isomorphism being
obtained from (17) by duality. 0
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Then we continue as follows:

If the quasi-ordinary polynomial defining the germ of the strict

transform (S’~1, oi2~ ) has some characteristic exponent we put it in good
coordinates; then its Newton polyhedron defines a subdivision of ( o, N~~~2~ ),
for 1  i ~ r. These subdivisions glue up to define a subdivision E2 of the
c.p.c. 81 since the pasting cones (p x 101, Na,~~2~ ) are not subdivided, for

The corresponding toric modifications, defined locally, paste into
a toroidal modification 7r2 : 22 - Zi; (we denote the variety Z~1
by Zl, the morphism 1 by 7r1, and SE, 1 by ,S’i ) . By iterating this

procedure we obtain: A modification 7rk : Zk - Zk-1, where the variety
Zk is given with the structure of toroidal embedding denoting its

associated c.p.c.). The strict transform of ,5’ by 7rk o ... o 7r1 at the

points of intersection with the exceptional fiber is given with a quasi-
ordinary projection and the associated Eggers-Wall tree is obtained from
the eventually non connected tree of as indicated by Proposition 23. If
the quasi-ordinary polynomial defining the germ S’ k at any of these points
has some characteristic monomial we define a finer toroidal embedding for
Zk (with c.p.c. 8k defined by using Lemma 25) and a subdivision of

8k with associated modification 7Fk+l : finite number ko
of steps the quasi-ordinary polynomials defining the germ at the points
of intersection with the exceptional fiber have no characteristic monomials.
Then it follows from Corollary 20 that

THEOREM 1. - The proper morphism 7r = o ... o 7r1 is a partial
embedded resolution of the quasi-ordinary hypersurface germ (S, o) C

The restriction Sf - S of 7r to the strict transform Sf of S is
the normalization map.

An embedded resolution of ,S’ C Zg is obtained by composing 7r with
any toric resolution of the toroidal embedding Z ko with the c.p.c. Eko (or
also with the c.p.c. @k ) .

Remark 26. - The irreducible components of the exceptional fiber
of the partial resolution are projective lines Pfl . The dual intersec-

tion graph of the components of 7r-1(o{}) is obtained from the Eggers-Wall
tree by deleting the extremal segments.

One of this segment joins the base vertex Po to one defined by the
first characteristic exponent of the reduced f and the others corresponds
to the segment containing the point P(’) for z = 1,..., r.
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3.4. The case of plane curve germs.

The case of plane curve germs corresponds to rk N = 1. We keep
the same notations. The partial resolution procedure depends only on
the Eggers-Wall tree of f C C(X)[Y] with respect to the projection
(X, Y) H X or more precisely on the choice of the curve X = 0. If f
is irreducible then our construction is closely related to the construction
of the "Tschirnhausen good resolution tower’ of A’Campo and Oka (see
[A’C-Ok], Theorem 4.5). In particular if the curve X = 0 is not contained
in the tangent cone of ,S’ we show that this procedure leads to a minimal
embedded resolution of the curve.

Let f E C(X) [Y] be a reduced polynomial with Y a good coordinate
for f. We keep notations of Theorem 1 and we give some more definitions
and notations. We denote by the minimal regular subdivision of the

c.p.c. e ko (for the minimal regular subdivision in the toric two dimensional
case see Proposition 1.19 of [Od]). This provides a resolution p : -&#x3E; C2

ko
where p =r o 7rereg which is canonically determined from the projectionko

Denote 0) f ) ) the subset of whose elements are

the cones corresponding to non empty intersections of pairs of components
of the exceptional divisor of the resolution p, (resp. of the total transform
of ,S’ by p). Denote by Q(7r, 0) (resp. by Q(7r, f ) ) the subset of 8ko of those
cones corresponding to non empty intersections of pairs of components
of the exceptional divisor of the partial resolution 7r (resp. of the total
transform of ,S’ by 7r).

Recall that each edge of corresponds to an irreducible divisor
in the toroidal embedding and any pair of these divisors intersect if and

only if the corresponding edges belong to the same cone. It follows that

9 (p, 0) (resp. ~(p, f)) is combinatorially isomorphic to the resolution graph
of the resolutions (resp. to the total resolution graph of the resolution), we
just drop the dimension of the faces by one. We deduce from Proposition
23, Remark 24 and an easy induction that the Eggers-Wall tree is

combinatorially isomorphic 

The valency of a cone e in a conic polyhedral complex is the number
of cones of the complex containing e as a facet. We denote by #1 the edge

which corresponds to the first blow up and we
define
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The valency of e and the integer 6(e) depends on the complex containing
e. The following lemma implies that the set of non extremal vertices of
0(f) correspond bijectively with the rupture vertices (which are
defined by those e with ~(e) &#x3E; 3).

LEMMA 27. - Let f C be a reduced polynomial of degree
&#x3E; 1, such that Y is a good coordinate for f . For any edge e in 9 (7r, 0) we
have

1. The integer 6(e) in X f ) is &#x3E; 3.

2. Z&#x3E;l then 6(e) in 3.

Proof. Recall that we have relabeled the factors of f in order to
have ...  ~,~(r) . We show first the assertion for the exceptional
divisors appearing in the first toric modification The extremal edges
of the fan Ei, which are defined by the vectors Ul, U2 of the canonical
basis, correspond to the divisors X - 0 and Y = 0 respectively. If

A,(3) there is an exceptional divisor D)..K-(J) of corresponding to

dA,(3) 9(7r,f). We denote by the same letter the edge d)..K-(J) of m1 and
the primitive vector (~A~ )?~A~( )~~0)) on this edge for the lattice No . We
say that a two dimensional cone a is on the left (resp. on the right) of the
. ’7 B / , ’7 B ’B

By Proposition 23, the divisor DA,(,) meets the strict transform of S
by 

If A,(3 -) (resp. if A,(3) &#x3E; ~,~~1)) then there exists a two

dimensional cone on the left (resp. right) of d,B,(.,) in obtained

from the minimal regular subdivision of the cone a E f), on the right
(resp. on the left) of 6~B... Therefore if A,(,) &#x3E; A,(3) &#x3E; we have

~(d~~c~&#x3E; ) ~ 3.
If ÀK(r) _ then Y divides f and Y = 0 is a component of the

strict transform of ,S’ by 7r~1’ If a,~~r) ~ +00 two cases may occur: a) if

the cone o7 - (d~,,~cr) , ~c2~ is not regular we have a two dimensional cone in

g(27, f ) on the left of dA,(r) ; b) the cone a is regular thus ÀK(r) E M. By
the proof of Lemma 15 there exists i = r such that AK(i) = A(i,r) 
By Proposition 23 this implies that the strict transforms of = 0 and

fer) - 0 meet the divisor in two different points so that we have

V ((.G~~~r) ) ~ 3.
Now we deal with the divisor D,B,(,). The cone (U1, d,B,(,)) belongs to

and we deduce from this that ~(d~,~cl) ) &#x3E; 3 in If the
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cone (u1, d,B,(,)) is not regular we can argue as before to show the existence
of a two dimensional cone on the right of d~,,~ ~ 1 ~ . Otherwise we
have n~,~~l~ ~,~~1) = 1 and the only possibility is = (1,1).
Then we have M and thus ÀK(r) - A,(,) by Lemma 15. This case
has already been solved.

These facts give the assertion for e corresponding to an exceptional
divisor of When we iterate, the curve X = 0 corresponds to the
equation of the exceptional divisor meeting the strict transform, thus after
the first step we are always in the case 1 and proposition follows. 0

An exceptional divisor D of the resolution p is collapsible if it has self-
intersection number equal to -1 and the corresponding edge d G C (p, 0) has
6(d) x 2 f). If the divisor D is collapsible, the modification obtained
by blowing down D is still a resolution and the corresponding resolution
graph is obtained by deleting the point corresponding to D.
The self intersection of the divisors which are images of compact divisors

meeting D is increased by one. In a finite number of steps we obtain a
minimal resolution, i.e., a resolution in which no exceptional divisor is

collapsible. The minimal resolution is unique up to isomorphism (see [Lau]).
COROLLARY 28. - If ~~(i) ~ in particular if the projection

(X, Y) - X is transversal for all the components of f then the morphism
p is the minimal resolution.

Proof. The self intersection numbers of the exceptional divisors of
the minimal resolution of a toric surface singularity are  -2 (see Proposi-
tion 1.19 of [Od]). This implies that the exceptional divisors corresponding
to edges in ~ (p, f ) - ~ (~r, f ) are not collapsible. Then the corollary follows
from Lemma 27. D

Remark 29. - The number of local toroidal morphisms used in the
partial resolution 7r is not necessarily equal to the complexity of the
resolution (as defined by ~Le-Ok~ ) .

For instance f = ( (Y - X ) 2 - X 3 ) ) ( (Y --~ X ) 2 - X 5 ) ) has characteristic
exponents ~1, 2 , 2 ~. The projection (X, Y) ~ X is transversal for the
two irreducible components. It follows easily that the number of local
toroidal morphisms used to define our partial resolution is three; our good
coordinates (15) are generic. On the other hand, the resolution graph is a
bamboo so that the resolution complexity is equal to ones the curve can
be resolved with one toric morphism, with respect to a special choice of
coordinates.
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4. The semigroup associated
to a toric quasi-ordinary branch.

We associate to the quasi-ordinary branch ( a semigroup r which
is determined from the characteristic exponents; the construction of r
involves also a generalization of the notion of the plane curves with maximal
contact with a given branch given by Lejeune [LJ] and this relation can be
described by using the approximate roots of the polynomial f. The main
part of the results and the proofs of this section is given in [GP3].

4.1. Definition of the semigroup.

In the following sections we study a fixed toric quasi-ordinary singu-
larity ,5’ parametrized by a toric quasi-ordinary branch ( 
with g &#x3E; 1 characteristic and with minimal poly-
nomial f C Cfpl n If rk M = 1 then the singularity ,S’ is a plane
branch and the set of intersection multiplicities (6’, S’)o of S, such as plane
curve germs S’’ do not contain ,S’ as a component, forms a sub-semigroup
of +) which is an invariant of the germ S and which is generated by
the following elements (see [Z6]):

We denote -1 - for i = 1,..., g and we have

DEFINITION 10. - We associate to the quasi-ordinary branch ( the
sequence of semigroups r j = p~ n +... for j = 0, ..., g.

We denote r9 by rand nrj by Fj for j = 0, ... , g. The classical semigroup
of a plane branch is r9.
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If ( is a classical quasi-ordinary branch suitably normalized ( 1 ) . Lip-
man proved that the sequence of characteristic exponents is an analytical
invariant of the germ it parametrizes when dim S = 2, by building a (non
embedded) resolution of the germ (see [Ll], [L3]) which determines the
characteristic exponents. Luengo gives another proof also using resolutions

(see [Lu]). If the germ is analytically irreducible the characteristic expo-
nents define a complete invariant of the embedded topological type of the
hypersurface S c Cd+1 it parametrizes (see [Gau] and [L4]). We proved
in [GP2] that if T and ( are quasi-ordinary branches parametrizing S then
the semigroups associated to them are isomorphic and moreover that the
minimal set of generators of this semigroup defines the sequence of charac-
teristic exponents of any normalized quasi-ordinary branch parametrizing
S. By Gau’s characterization it follows that the semigroup r defined above
is a complete topological invariant of the embedded topological type of

germ (S, 0).
The following lemma generalizes the properties of the semigroups of

plane branches (see [Tl], Chapitre I, Lemma 2.2.1) to the quasi-ordinary
hypersurface case (see [GP2]).

LEMMA 30 (See [GP3]).
1. The sub-lattice of M generated by Fj is equal to Mj, for g.

2. The order of the image of qj in the group is equal to n

3. We have that ’1j &#x3E; ford - 2,..., g.

4. If a vector uj E pv n M~ then we have uj + nj’1j E Fj .
5. The vector nj’1j belongs to the semigroup for j - 1, ... , g,

moreover we have a unique relation:

such anda(i) G Mo, = 1,...,g.

In the plane branch case several authors have studied the properties
of those curves such that the intersection multiplicity with ,S’ at the

~ In the case of a plane branch this condition means that X = 0 is not contained
in the tangent cone of the curve.
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origin belongs to the unique minimal set of generators of the semigroup of
the branch (see [Z6]). Lejeune introduced the notion of curves of maximal
contact with a given plane curve germ for curves defined over a field

of arbitrary characteristic in terms of the resolution (see [LJ]). If the

characteristic is zero it turns out that both notions are equivalent (see [Ca]).
If the projection (X, Y) is transversal we can study these curves by means
of the minimal polynomials of suitable truncations of the roots of f. When
we do this with respect to an arbitrary projection, the curves we obtain

provide a non necessarily minimal set of generators of the semigroup of
the branch S. These curves can be represented by some of the approximate
roots of the polynomial f (see [A-M]) and we call them semi-roots. following
the terminology of [A3]. See Popescu-Pampu’s survey [PP1] for more on
the notion of semi-root.

DEFINITION 11. - A jth-semi-root of f is an irreducible quasi-
ordinary polynomial in n M~ [Y] of degree no ... nj which has order
of coincidence equal to Àj+1 with f, for j = 0,..., g.

The minimal polynomials of the quasi-ordinary branches po -+- ... + p3
obtained by truncating ( in Remark 13 are j th-semi-roots of f for j =
0,...,g.

PROPOSITION 31 (see [GP2] and [GP3]). - Let
monic polynomial of degree no ... I Then q is a j-semi-root of f’ if and

only if q (() = for a unit é j. *

The notion of semi-root extends the properties of maximal contact
with respect to the resolution to the quasi-ordinary case (see Proof of
Theorem 1 and Remark 21).

Remark 32. - The polynomial qj is a j-semi-root of f is and only
if the strict transform of qj = 0 by the morphism 7r j o ... o 7r1 is a germ

defined by a good coordinate and conversely.

This follows from Proof of Theorem 1 and Remark 21.

Let A a ring containing Q as a subring. Approximate roots are defined
by Abhyankar and Moh, (see [A-M], [G-P], and [PP1]). If p is any monic
polynomial and k divides the degree of p there is a unique monic polynomial
r in A [Y] of degree deg(p) such that deg(p -  deg(p) - deg(p) We say
that r is a k-semi-root of p. We can use Proposition 31 to prove that the

ej-approximate roots of a quasi-ordinary polynomial f are semi-roots, and
therefore are irreducible quasi-ordinary polynomials with a prescribed order
of coincidence with the polynomial f (see [GP2] and [GP3]).
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4.2. Expansion in terms of semi-roots.

The expansions in terms of semi-roots are introduced by Abhyankar
in the plane curve case (see [A3]) and used by Popescu-Pampu in the case
of a quasi-ordinary hypersurface singularity (see [PP2]).

We fix from now on a complete set of semi-roots of f
(deg qi = no ... ni for t = 0,..., g). We assume that the coefficient of
the term appearing in qj (() by Proposition 31 is equal to one for
j = 0,..., g - 1 in order to simplify some computations.

We recall now the classical q-adic expansion of a polynomial po c A [Y]
with coefficients on a domain A in terms of a polynomial q E A ~Y~ having
invertible leading term (see [Z6]). The sequence of Euclidean divisions:

(where s is the first integer for which p s+ 1 = 0) provides a unique
decomposition of the form

LEMMA 33 (see [PP2]). - Any polynomial h E n M~ [Y] can be
written in a unique way as

with E 0  for k = 1, ... , g and lg+l E 

If and cll q are two different coefficients of the expansion

the Newton principal parts of (()... (() and
... - ~ ~(() (viewed in the ring cfpv n have no term in common.

Proof. The qg-adic expansion of h is of the form: i
We build the qg_1-adic expansions of the coefficients:

where 0  no’" and 0  ng -1
since a is of degree  no ... n. An expansion satisfying the
required properties is obtained by iterating this procedure. The unicity
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follows from the unicity of Euclidean division. For the last assertion,
remark that by Lemma 31 the Newton principal part of (viewed
in n is equal to 1, ... , g . It follows from 2 in

Lemma 30 that the Newton principal parts of 

and of do not have any term in common if

(ll, ... , Z9) ~ (Ll, ... , l9). a

The following proposition (see [GP2]) generalizes [Z6], Chapitre II,
Th. 3.9. in the plane branch case.

PROPOSITION 34. - If ~ is of degree  nOn1 ... nj
then the Newton principal part of h(() belongs to C[Fj], for j = 1, ... , g.

Proof. The result is trivial if deg h = 0. If deg h  n, ... nj then

the (qo, ... , qg )-expansion of h is of the form:
By Lemma 33 the Newton principal parts of (() ... qjJ-1 (() and of

do not have terms in common, thus the polynomial

h(~) ~N is a sum of some of the terms in the Newton principal parts of

the summands ( ~ ) ~ ~ ~ q~’ 1 ( ~ ) and therefore it belongs to C [rj] by
Proposition 31, for j = 1,..., g. D

We call the expansion (24) above the (qo,..., of h.

LEMMA 35. - The (qo,..., qg)-expansion of qJNJ-1 is of the following.
form, for g :

where c~ E (C*, the other coefficients belong to n A~f}~ we have
for k = 0,..., j - 1. The coefficient c ~ (J) appears

~l.-"~~_2~
and it is of the form Xa~~~ ~ unit, where the integers ... , h~~2 and the
exponent 0152(j) are given by formula (23). Moreover, appears on the

coefficient cp 7 then

and equality holds if and only if (l1, ... , lj) = (ll~~, ... ,1~~~2, 0) and 0’ =
C, (j) .
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Proof - Since deg q7’ I = n1’" nj the algorithm to calculate the
begins by dividing by qj. This gives -

rj, where cj+1 E C* since both polynomials have the same
degree. The qk that may appear in the expansion of rj are those of degree
 degré  ni ... nj . We deduce from the second assertion of Lemma 33

that

This implies that if X"’ appears on the coefficient cli’...,~~ then formula
(26) holds. If equality in (26) holds for a term the term appearing
on the series c~~~~ sl ,...,s~ 

~~~ (() it follows that the series is the form X"’ . unit.

Assertion 2 of Lemma 30 implies - 0 in the relation =

.-

Then it follows that (
and that a’ = &#x3E; by unicity in (23). 0

5. Partial embedded resolution with one toric morphism.

In this section we build a partial embedded resolution of the toric
quasi-ordinary germ embedded in an affine toric variety by using the semi-
roots. We follow the approach of [G-T] for irreducible germs of plane curves.

We denote by A the cone p 0 where No is the lattice
N (D 29 with dual lattice MA. We denote by ul , ... , ug the canonical basis
of An element of A’ n MA is of the form (a, v) where a (E pl rl M
and v = viul + ~ ~ ~ v9u9 where u*,...,u* is the dual basis of u1, ... , u9
and vi We denote the monomial corresponding to (a, v) by 

depending on the context.

The embedding S C ZA which is studied in this section corresponds
algebraically to the homomorphism of n M}-algebras:

(which is surjective since in particular R = n MI [qo (()]).
In the plane branch case Teissier shows that this embedding special-

izes to the monomial curve, an affine curve monomially embedded with
the same semigroup (see [Tl]). In the general case the generalization of
monomial curve is given by an equivariant embedding Zr C ZA which is
defined from the restriction of the lattice homomorphism
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to the semigroup A, n MA and its image F.

5.1. Specialization through graded rings.

In the plane branch case the embedding of the monomial curve is

determined by a system of generators the graded associated to the

filtration of R induced by the powers of the maximal ideal of its integral
closure (see [Tl]). In our case we show that the homomorphism To can
be filtered in such a way that the homomorphism of the associated graded
rings, forgetting the graded structure, defines the embedding Zr c ZA
above.

The filtration of the ring Cfpv n M} (resp. of C[[pl n M]]) defined
by a vector il C p is given by the ideals:

Since the ring n At} is Noetherian the ordered sub-semigroup Tl(pv n
M) of is isomorphic to Z~o (see the proof of Lemma 1.4 of [GP1]).
The vector Ti defines a weighted filtration of n [U1, ..., Ug] (resp.
of or C[[A~ n MA]] ) given by the ideals Jj generated by those
series having only terms of weights w := v) such that (TI, w) -&#x3E; j,
for j running through the semigroup n Mg). The homomorphism Who
is filtered since C Ik for all k E n Mg), and then it defines an
homomorphism of the associated graded rings.

PROPOSITION 36. - The sequence of graded ring homomorphisms
associated to the filtered sequence of homomorphisms (ulith the filtrations

0

defined by 71 E p)

is isomorphic to

~ See [Bbk] for the definitions and properties of commutative algebra used in the
following sections.
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where the first homomorphism is defined by and the

graduations are defined by Ti. If the vectorq is irrational the semigroup r
is determined by the graduation.

0 

Proof. If q E p the symbolic restriction Q|N of o E cfpl n to

the face defined by q on the polyhedron jVp (0) belongs to n Mg] since
this face is compact. If 0 E there exists a unique integer 1~ such
that and then we have 0 = It follows from the

property: that the graded ring
associated to this filtration is isomorphic to the graded ring n Mg]
where the j-homogeneous term of the graduation is for

j E We deduce analogously that the graded ring associated
to the weighted filtration is isomorphic to n Mo] where the non
zero elements in the j-homogeneous term are those polynomials such that

(TI, w) = j for w running through the weights of the monomials appearing
on them.

Under these identifications we have that

- The graded ring associated to R with the induced filtration is

isomorphic to the graded subring of c[pv n Mg] generated as a C-algebra
by the symbolic restrictions the face defined by 71 on
the polyhedron We deduce from Proposition 34 and Proposition 31
that this graded subring is isomorphic 

- The initial term of Wo (Ui) = (() is equal to (the coefficient
has been normalized to be one) thus the homomorphism corresponds
to the n M]-homomorphism C[p~ n M] [Ul , ... , C [r] that maps

If the vector q is irrational we can recover the semigroup p, n Mq
(resp. F) from the graduation of C[p~ n M] (resp. of C[r]) since each term
of the graduation is of dimension one (resp. zero or one) over C, the vector
q defining a total ordering on pv n Mg. D

Remark 37. - The sequence of homomorphisms (29) extends to the
sequences:
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where R denotes the completion of the ring R with respect to the maximal
ideal 9RR- The assertion of Proposition 36 remains true for each line of the
above diagram.

We notice that R coincides with the completion with respect to the

filtration defined by q: we have that C Ij where sj is the minimal

power of 9NR containing the set of monomials in Ij - Tj+1 which is finite
~ 

0

since q E p.

5.2. Equations for the embeddings.

We build equations of the embeddings of Z’ c ZA and S’ c 2~ -

PROPOSITION 38. - The ideal of the embedding Z" C ZA is gener-
ated by the binomials

which correspond to relations (23).

Preuve. - The ideal I of the embedding Zr C ZA is generated by
the binomials . verifying (see (5)):

The binomials h1, ... , hg above verify this condition by Lemma 30. If B is a
binomial in I, we can factor the common term in Ug to obtain a binomial in
I of the form with w9 = 0. Then the integer cv9 is a multiple
of ng (since E by Lemma 30 we obtain from the equality (32) a
relation r’1g E Mg-1 where r is the reminder of the Euclidean division of c,~9
by ng and then Lemma 30 implies that r = 0). We can show by induction
on that the reminder of the Euclidean division of 

by hg as polynomials in Ug is a binomial B1 in n M] [Ul , ... , 
The binomial Bg obtained by iterating this procedure belongs to n M~
and to the ideal I. The relation (32) corresponding to Bg is trivial since

the homomorphism w is injective on M thus Bg = 0. This implies that the
ideal I is generated by h 1, ... , hg. I 0
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PROPOSITION 39. - The ideal of the embedding S C ZA defined by
(27) is generated by elements of the ring n ugi which are
of the form:

The weight of a term appearing in the expansion of
is &#x3E; and equality never holds, for 1 = 1,..., g.

The terms appearing in the expansion are determined

explicitly by formula (25).
Proof. It follows from the definition of the homomorphism To and

formula (25) that the polynomials Hi above belong to the kernel of To
(and then to the kernels of wand iil) . By Proposition 38 and Lemma 35

0

their initial forms with respect to the filtration defined by q E p generate
Then we have that = We deduce

using that the ideal is complete for the induced filtration, that
the polynomials He , ... , Hg generate 

Since the inclusion is an homomorphism
of local rings continuous for the M-adic topologies which extends to the

identity homomorphism between the respective completions, we have that
the ring C [ [A is a faithfully flat clav The ideal

J generated by on 1 is contained in Ker(W) and
we have shown that n Ker ( ~ ) . The faithfully flat property
implies that J coincides with the contraction of Ker(~) in cfav 
Therefore we obtain that ~I = Ker(W) .

Let U be the subset of those elements in with non

zero constant term as power series. The image by To of a series in U is

a unit. This implies that the localization ,

~ See Proposition 12 No 9, §2, Chapitre III, of [Bbk].
~ See Proposition 10 No 5, §3, Chapitre III of [Bbk].
~ Proposition 9 No 5, §3, Chapitre I of [Bbk].
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n is a well-defined homomorphism. The same argument shows
that Ker(U-1wo) is generated by H1, ... , Hg. Since Ll n KerTo = 0 we
deduce from the standard properties of the localization that He , ... , Hg
generate Ker(Wo) . 0

5.3. Simultaneous partial embedded resolution.

We show that the partial embedded resolution of Zr C Zo built in
Proposition 6 is also a partial embedded resolution of S c ZA.

The linear subspace £ C (NA )R orthogonal to is of dimension

d and is also orthogonal to the Minkowski sum of compact edges of N(hi)
for i = 1, ... , g.

LEMMA 40. - Let Eo be the smallest subdivision of A compatible
with the Newton polyhedron of Hi ... Hg. The cone ao = A n .~ belongs
to The strict transform of S is defined on the chart by
the equations: 0 for 1 = 1,... ,~. The intersection n 

as schemes is reduced to the simple point The germ is

isomorphic to the germ of toric variety at the distinguished point.
If £ is any subdivision of A containing the cone (To and C E with
0 0

a c A then 5’s n ®6 =0 implies that a = ao. Moreover, if E’ is a regular
subdivision ofE then the map 7r’L.’ o yrs is an embedded pseudo-resolution
of S.

Proof. A vector v E ;0 vanish on thus it is of the form
0

v = K o cp for v E N9 belonging to p since v vanishes only at the vertex
of the cone p~ (this follows from = 0~ ~ and ao c 
We deduce from this that the face defined by v on the polyhedron N(Hi )
corresponds to the monomials of weight w such that (f), w) is minimal. By
Proposition 39 the symbolic restriction of Hi to this face is equal to h2.
Conversely, if hi is the symbolic restriction of Hi to the face defined by v

0

it follows that v and since these are compact faces we have that v E 0
thus v G (700.

The common zero locus 5’ of the functions for 1 = 1, ... , 9
on the chart contains 5’L.o n Then we deduce from the proof of
Lemma 3 that

terms vanishing on the orbit 
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Since the equations Ui-" hi - 0 for i = l, ... , g, define on the chart Zo
the strict transform Z’ we deduce from (34) above that Sf coincides

as schemes intersection with , thus it is equal to the simple point
by Lemma 5. If the germ (S, o,.) is analytically irreducible it must

coincide with the sub-germ (,S’~o , since both are of the same dimension.

We show this fact by proving that (S’, o~o ) is isomorphic to 00-0):
We notice that the chart is isomorphic to by (31).

The binomials Wi := for i == 1, ... , g, define a regular system of
parameters at the point of the orbit therefore we can apply Lemma
4 to the equations (34) to show the existence of S
such that the germ (S’ , o~o ) is given by Wi == CPi for i = 1,..., g.

Let E be any subdivision of Eo containing the cone ao. The restriction
7r : 5~ 2013~ ,S’ of 7rE is a modification and since (S, is analytically
irreducible the exceptional fiber is connected by the Main Theorem of
Zariski (see [Mu] and [Z2]). On the other hand we have that

and we have shown that on the open set 6s rl of 5’s the exceptional
fiber is reduced to the point o,o, therefore the exceptional fiber 
contains no other points (otherwise would not be a connected set).

If ~’ is a regular subdivision of E it follows that rl # 0 if and
only if a C ao. Thus we can cover the strict transform with those charts
Z6 for a C ao and dim o, = dim ao. It follows as in the case when (50 is

a regular cone, that the strict transform is smooth and transversal to the
canonical stratification of the exceptional divisor therefore o is a

pseudo-resolution. D

THEOREM 2. - Let E be any subdivision of A containing the cone
070.

1. The strict transform S’E is a germ at the point oao isomorphic to
and the restriction is the normalization

map.

2. The morphism 7E is a partial embedded resolution of S C ZA -

Proof. The first assertion follows from Lemma 40 taking in account

(10) (which implies that is isomorphic to op)) and
Proposition 14 which implies that the integral closure of R is cfpl 
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By Lemma 40 if E’ is a regular subdivision of E the map o 7rE is a

embedded pseudo-resolution of ,S’; we show that if E’ is a resolution of the
fan E then the restriction --~ ,S’ is a resolution of singularities.

The germ 6’s is parametrized by Wi == CPi for i = 1,..., g, on the
chart Zo !21--- 0~~ x thus the restriction 6s ~ Zao,Nao of the second
projection is an isomorphism of germs. It follows that the singular locus of
6s lies over the singular locus of the toric variety It is easy to see

that the orbit Or of Zao is the set lying over the orbit 0,,No of Zao ’ N ao
thus the singular locus of 6s is equal to U(S’~ nOr) for T running through
the set of non regular faces of ao. If E’ is a resolution of the fan E and if
~’ c E is a regular cone then ~’ E E’, thus ZE ---4 ZEo is an isomorphism
over the points of the orbit ®~~ by (4). Therefore the restriction ~ SE
is an isomorphism outside the singular locus of 6s and since is smooth

this modification is a resolution of singularities of the normalization A

fortiori the composed map ~ 5~ is resolution of singularities of S. D

5.4. Relation between the partial
embedded resolution procedures.

We show that the partial embedded resolutions of an analytically
irreducible toric quasi-ordinary germ ,5’ defined in Sections 3 and 5 coincide
when the second is suitably chosen.

In Section 3 we have built a partial embedded resolution 7r of a

toric quasi-ordinary hypersurface ,S’ c Ze which depends only on the
characteristic exponents of a toric quasi-ordinary polynomial f defining
the embedding. Since the germ S’ is analytically irreducible, the morphism
7T : Z’ - Ze = Zo is the composition of 9 toroidal modifications 7ri :
Zi --~ for i = 1,...,g and g the number of characteristic exponents.
In Section 5 we have built an embedding of (S, o) as a codimension g
sub-germ of the toric variety (ZA, oA) and we have proved that if E

is a subdivision of A compatible with certain linear subspace, the toric
morphism -xE : Z~ -~ ZA is partial embedded resolution of S C ZA.
Furthermore, the restriction of 7r (resp. of to the strict transform S’

(resp. 6s) of S is the normalization map (see Theorems 1 and 2).

The embedding ,5’ C ZA defined by (27) extends to an embedding of
the pair (S, Ze ) : the image of oe ) under this embedding is the sub-germ
(.~, oA) of (ZA, oA) defined by the equations (see (33)):
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Since c~ E C* we can eliminate the variables U2,..., Ug in the equation:

by using (35), and we obtain in this way a quasi-ordinary polynomial
defining the embedding ,S’ C 

Remark 41. - If we vanish the rl, ... , rg in (33) we obtain:

We can eliminate recursively from the equations Hi = 0, for i = 1, ... , g -1
the variables U2,..., Ug in the equation 0 obtaining in this way
a canonical equation of a quasi-ordinary hypersurface with the same
characteristic monomials. The exponents appearing in these polynomials
are completely determined by the characteristic monomials of (S, 0). See
[Tl] for Teissier’s analogous statement in the case of plane branches.

DEFINITION 12. - A subdivision £ of A is suitable with respect to
the embedding of the pair (Z, S) in Zo, if it is the dual Newton diagram

It follows from Remark 41 that the suitable subdivision E of A is

uniquely determined from the given characteristic monomials of (S, 0).
We prove that the strict transform Zs of Z by the toric modification
7rE is a section of the toric variety ZE, transversal to the exceptional
fiber of the modification More generally it is transversal to the orbit

stratification of Z&#x3E; and the set of non empty intersections zE n ®~ define
the stratification corresponding to a natural toroidal embedding structure
which is determined by E. In particular we obtain that the restriction
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p : of 7E to .~~ is a partial embedded resolution of ,S’ c Z. The

main result of this section is that the partial embedded resolutions defined
by 7r and by p are isomorphic:

THEOREM 3. - If E is the suitable subdivision of A with respect to
the embedding of the pair (Z, S) in ZA, then the strict transform (ZE, SY-)
of the pair (Z, S) by the toric modification 7r~ is equal to an embedding of
the pair (Z’, ,S‘’) in Z~ such that the following diagram commutes:

Therefore the morphism p : the composition of g toroidal
modifications.

In the plane branch case an analogous statement (using resolution
instead of partial resolution) has been announced by Goldin and Teissier
without proof in [G-T]; Lejeune and Reguera have sketched in that case
toric resolutions of the monomial curve such that the restrictions to the

strict transform of the smooth surface, which contains the re-embeded plane
branch, are equal to the minimal resolution of the branch (see [LJ-R2]).

We introduce first some notations in order to describe the suitable

subdivision E of A. The following subsets of A defined for 0  j  j -+-1~  g:

are the cones which correspond by duality to certain Minkowski sums of
edges of for i = 1,..., k. The cone po coincides with p x ~ 0 ~ C A
for g. We denote by u the (d + I)-dimensional fan whose elements
are the faces of the 2g cones of dimension d + 1:

We will show below that 3 is a subfan of the suitable subdivision (see
Remark 44).

PROPOSITION 42. - Let 1: a suitable subdivision and

then Z~ r1 ®~ ~ ~ implies that a E u. If a E 3(d+1 then .~~ n (Oa
is reduced to a simple point xa and the germ (,ZE, xa) is isomorphic to

The set n is the stratification associated to
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a toroidal embedding structure on ZE which has S as associated conic
polyhedral complex.

In order to prove Proposition 42 we characterize in the lemma below
some convexity properties of the the Newton polyhedra of the polynomials
Hl , ... , defining the embedding Z C ZA. Lemma 43 below is inspired
by a result of Lejeune and Reguera in the case of sandwiched surface
singularities (see Proposition 1.3 of [LJ-R]). We need some useful notations.
The exponents

are the vertices of the two dimensional face T3 of the polyhedron 
by Proposition 39. This face and its edges

play a significant role in what follows. Any other vertex wj of the Newton
polyhedron of Hj corresponds to a monomial of weight &#x3E; nj’1j, i.e., we
have wj == a’ -i- + ....+ and a’ + ~ ....~ lj’1j &#x3E; nj’1j.

We prove the following lemma by using the properties of the semi-
group r (see lemma 30).

LEMMA 43. - Let £i be a compact edge for i = 1,..., g. If

, then we is an edge of Ti, of the form
Si -- for certain s(i) E {I, 2, 3}. The intersection r~cr(~) and the
possibilities for s (i) are described in the following four cases:
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Proof. The compact faces of Newton polyhedra are determined by
elements a + v c A which belong to the relative interior of A; i.e., a -f- v is

0

of the form a E P and v = viui with vi &#x3E; 0. We calculate the values

of a + v on the vertices of the Newton polyhedron of Hj in terms of the
weight of the corresponding monomial. We prove the lemma by induction
on j, for j = 1 we show first that the compact edges are exactly
T1 for i = 1, 2, 3. We have the following:

0

where the inequality on (iv) follows from (26) since a E P. We suppose that
a + v determines a compact edge ei of N(H1). Three cases appear:

The equality (i) = (ii) = (iii) corresponds to the two dimensional face
71 . It follows that

We suppose the result true for j - 1. We consider a vector a -f- v E

ni=1 ~(T ~i) ) determining an edge £j i.e., a + v E ~(~~ ). The
values of a + v on the vertices of 7îj are

We deal first with the case (A) where s(i) = 3 for 1 ~ i ~ ,y 2013 1. Then
a + v E and it follows as before that
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where the inequality is obtained from (26) by adding and subtracting the
term Three cases appear if v3 is = (resp. &#x3E; or ) to (resp. than)
(a, ’1j) and we obtain the result by arguing as in the case j = 1 by replacing
appropriately the index 1 by j.

In any other case by induction hypothesis there exists 1 ~ 1

such that s(i) = 3 for 1  i  jo and s(jo) E {1,2}. It follows that the
vector a + v is of the form

We bound the value of a -i- v on a vertex of the polyhedron 
not lying on T!.

The first inequality is given by (26) and the others are deduced from the
inequality niyI  ’y2+1 in Lemma 30.

In case (B) by induction hypothesis we have that Vjo == 
for some c &#x3E; 0 and vi - ni - 1 (a, ’1jo) for jo  i  j . In case (C) we
have that

and that Vj = nj~ ... for j. In both cases (B) and (C)
when we substitute the vi on (40) we deduce that (iv), (i) &#x3E; (ii) therefore

= and £j = TI.
Finally, when j == 9 the polynomial H9 has no term in In

particular a vector a -I- v e for s(i) in case (B) or (C),
determines the vertex of the polyhedron The only remaining
case is (A) and then the condition on a + v to determine a compact edge
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of N(Hg ) is « the edge is equal to and ~ I

Remark 44. - The cones of the form (T (Tz i)) defined by Lemma
43 when j = g - 1 are

If we subdivide + with pg we obtain the fan E. It follows that
3 its a subfan of the dual Newton diagram of ft, Theorem 3 holds

more generally for any subdivision of A containing E.

Proof of Proposition 42. - Let E’ be any subdivision of E which
is compatible with the Newton polyhedra of and a C E’

o 0

with a’ c A. By Lemma 3 a necessary condition to have n 0)= 0 is
that a determines a face 37i of dimension &#x3E; 1 of each polyhedron 
for i = 1, ... , g - 1. Then we have for Ei
any fixed edge of the face 01. The possible edges that may appear are
determined by Lemma 43 and by duality is contained in the support of
u. By using (3) we deduce that if a c E - 3 then Oa n 0.

The proof of the second assertion is analogous to the proof of Lemma
40. Let o- E 3(d+1), for instance - pg + (the proof in the case
o- = p; -1 + ~ is analogous) for j 

* 

= 1, ... , g. The common zero locus
Z’ C Za of the set functions Hl , ... , Hg-l for

contains Z~ n Z~ . Each series is of the form

X -m2 Hi = Bi + terms vanishing on 0,

where

The edge £i mi] is a face of the polyhedron N(Hi) and by Lemma
43 we have a = thus (J"-1- == ©)I/(a(£1)) since the edges
£i are affinely independent. Moreover, the vector niui - mi is primitive
for the lattice Mó. and it follows that n Mo - mi)Z. It
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follows that the intersection ,~’ n as schemes, defined by the equations
B1 = ... = = 0, is a simple point xa and that Bl , ... , define a

regular system of parameters at the point Xa of Oa. The germ (Z’, xa) is

analytically irreducible since it is isomorphic to (Z~,(No)~, oa) by Lemma
4. It follows that it coincides with (ZE, xa) since this germ is contained in
(Z’ , xa) and both have the same dimension. Moreover, if T is a face of a
then the isomorphism above induces an isomorphism between and

the orbit corresponding to T in Z,,(N,), - We conclude from this that Z&#x3E;
has a toroidal embedding structure with associated c.p.c. E. D

We recall some facts and notations about the partial embedded
resolution of as an hypersurface (see Theorem 1). Denote by the

dual of the pair (p x MI) where Mi denotes the lattice Mi EB 
each yi is of the form p x for i = 0, ... , g - 1. The partial embedded
resolution is a composition of g toroidal modifications 7ri : Zi - Zi-i
for Zo = Zg and i = 1, ... , g. Each variety Zi is given with a toroidal
embedding structure having c.p.c. Ei. The c.p.c. ~1 is isomorphic to the
subdivision of by the linear form nl (yo - À1) E Mo. The c.p.c. Ej
is obtained from by adding the subdivision of the cone gj-i defined
by Aj + Mj-1; this subdivision has (d + I)-dimensional
cones:

It is glued to by identifying the face p x ~0~ of - with a - 1
(see Lemma 25).

Figure 1. A transversal section of the convex polyhedral complex associated
to a quasi-ordinary surface with three characteristic exponents.

PROPOSITION 45. - There is an isomorphism ~9 "’ 2 of conic
polyhedral complex with integral structure.
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Proof - It is sufficient to prove that the pair (o7, (N~ _ 1 ) ~. ) is iso-

morphic to when (9, T) is equal to + or to

In the first case we define an homomorphism ~ : N~ 3- 1 --+ No by

where w (a, v) - v -~ n~ _ 1 (a, -y~ _ 1 ~ . It follows that = since

(a, v) implies that

In the second case we have that = N~ ~ (this follows
from Lemma 17: the inclusion Nj - is dual to the homomorphism

M~ 3 -1 --4 Mj that maps H Aj - and fixes Mj-1). Thus we have
and with this decomposition the cone aj is

also defined by the formula (41) above. Then we argue analogously, the
corresponding lattice homomorphism ~ is defined by (42) when w(a, v) -
v + (a, ’1j). It follows from (22) that + 0

We have all the ingredients to prove Theorem 3.

Proof of Theorem 3. - The intersection of Z with the torus of ZA
is isomorphic with minus the hypersurface defined by qo ... 0. It

follows from their definitions that the morphisms 7r and p are isomorphic
over this set which is the open stratum of the stratification of .~’ and ~~ .

Let 9j- (resp. be 0-dimensional stratum of ,~’ (resp. of 

associated to the cones )(resp. If T corresponds
to T’ by the bijection established in Proposition 45 we can extend the

isomorphism from the open strata to an isomorphism (Z’, oT ) - (ZE, °T’ )
by means of Proposition 45 and inducing isomorphisms between the strata
of dimensions 0  1~  d + 1 associated with corresponding faces of T
and T’. These implies that these local isomorphism paste and provide
an isomorphism I : Z’ ~ Z&#x3E; which preserves the toroidal embedding
structure. Since p o I = 7r it follows that the isomorphism above is in fact
an isomorphism of the pairs (Z’, ,S’‘ ) and Sr,). El

5.5. An example.

We build an example for the quasi-ordinary surface germ ,S’ defined by
f = 0 where f = The polynomial f c 
is quasi-ordinary and irreducible. The characteristic exponents and integers
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The embedding of ,S’ in (C4 is defined by the vanishing of the polyno-
mials

where Ul = Y and U2 - Y2 - We denote the coordinates of a

vector in A with respect to the canonical basis by (the
cone P5 corresponds to w, = w2 - 0 and we have ul = (o, 0, 1, 0) and
u2 = (o, 0, 0,1 ) with the notations of the previous section). We denote by
.~2 the linear subspace orthogonal to the compact edge of N(H2), by 61 the
cone A n .~2 n = v2 = 0} and by 62 the cone A 01.

A suitable subdivision of A has 4-dimensional cones:

Figure 2. The diagram represents the suitable fan ~.

We have (see formula (38)):
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The cone p2 is regular, the normalization of the quasi-ordinary surface
being smooth in this example. If ~’ is any resolution of the fan E it follows
that the cone p2 belongs to E and the strict transform of ,S’ by 7r£, only
intersects the exceptional orbit corresponding to this cone.

We build a regular cone a :D p 2 2of dimension four, which belongs to
some resolution £’ , and we compute the strict transform of ,5’ by the toric
morphism on the chart The strategy to build is to find a basis of the
lattice Z4 and then to use the equation of the hyperplane .~2 to find a
basis of Z4.

We find in this case

cr = M~o(2,0,3,7) + I~,o (0, 2, 0,1) ~ 0, 2, 4) + l, 3, 8),

the first three vectors defining a basis of .~2 n Z4. The toric morphism
(C4 on the chart is given by (see (2)):

The total transform of S is defined by

The strict transform, defined by the vanishing of V4 - 1 - and

V3 - 1, is clearly smooth and transversal to the exceptional divisor.
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