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TORIC EMBEDDED RESOLUTIONS
OF QUASI-ORDINARY HYPERSURFACE
SINGULARITIES

by Pedro D. GONZALEZ PEREZ

Introduction.

A germ of complex analytic variety is quasi-ordinary if there exists a
finite projection, called quasi-ordinary, to the complex affine space (C%,0)
with discriminant locus contained in a normal crossing divisor (for instance,
the singularities of complex analytic curves are quasi-ordinary). These sin-
gularities appear classically in Jung’s strategy to obtain the resolution of
singularities of surfaces from the embedded resolution of plane curves (see
[J], [W] and [L2]). Some properties of complex analytic curve singularities
generalize to quasi-ordinary hypersurface singularities: for instance, Jung-
Abhyankar’s theorem guarantees the existence of fractional power series
parametrizations generalizing the classical Newton-Puiseux parametriza-
tions of the plane curve case; by comparing these parametrizations we ob-
tain a finite set of distinguished or characteristic monomials which gener-
alize the notion of characteristic exponents in the plane branch case.

The results on quasi-ordinary hypersurface singularities concern
mainly the analytically irreducible case: Lipman builds a non embedded
resolution procedure of a quasi-ordinary surface where only quasi-ordinary
singularities occurs and uses it to prove the analytical invariance properties

Keywords: Singularities — Embedded resolution — Discriminant — Topological type.
Math. classification: 14M25 — 32525.



1820 PEDRO D. GONZALEZ PEREZ

of the characteristic monomials (see [L1], and [L3]); another proof of this
result was given by Luengo in [Lu]; more generally Gau proved that the
characteristic monomials, suitably normalized by an inversion formulae of
Lipman [L1], define a complete invariant of the embedded topological type
of the quasi-ordinary hypersurface singularity (see [Gaul); Gau’s proof in-
volves Lipman’s description of the divisor class group of the singularity in
terms of the characteristic monomials (see [L4]).

An important step to establish the relations between the topological
type and the embedded resolutions of a hypersurface singularity, which are
well-known in the case of plane curve singularities (see [Z4], [Z3] and [Re]),
is to determine if the characteristic monomials of a hypersurface quasi-
ordinary singularity determine a procedure of embedded resolution. This
is the content of Lipman’s open problem 5.1 (see [L5]) which is stated in
the context of the generalizations of equisingularity, in particular by using
Zariski’s work on the dimensionality type with respect to the classification
by equiresolution. In the case of an analytically irreducible quasi-ordinary
surface germ Ban and McEwan (see [B-M]) have found a such a procedure
following the algorithm of resolution of Bierstone and Milman, developed
from the work of Hironaka. Villamayor has given a solution to Lipman’s
problem for any quasi-ordinary hypersurface singularity (see [V2]). Villa-
mayor’s approach studies the abelian branch covering of the affine space
obtained by taking suitable roots of the regular parameters defining the
components of the discriminant locus. By the Jung-Abhankar’s Theorem
the equation of the quasi-ordinary hypersurface under this extension splits
in a product of Weierstrass polynomials of degree one. The singularity
obtained is a non transversal intersection of smooth hypersurfaces, whose
embedded resolution requires the simplest combinatorial part of Hironaka’s
method. The important point that he proves is that this resolution proce-
dure is Galois equivariant, in such a way that when taking the quotients by
the Galois action the local constructions glue up together defining a mod-
ification of the embedded quasi-ordinary hypersurface. The ambient space
obtained in this way has only toric quotient singularities and a canonical
resolution of these singularities (see [V1]) provides an embedded desingular-
ization of the quasi-ordinary hypersurface. The desingularization obtained
is not necessarily an isomorphism outside the singular locus of the quasi-
ordinary hypersurface.

In this paper we give another solution to Lipman’s problem in two
different ways.
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EMBEDDED RESOLUTIONS OF QUASI-ORDINARY HYPERSURFACES 1821

In the first one we build an embedded resolution of a reduced quasi-
ordinary hypersurface germ (S,0) C (C%*1,0) as a composition of toric
morphisms which depend only on the characteristic monomials (see The-
orem 1). The first toric morphism we build is defined by the dual Newton
diagram of a suitable Weierstrass polynomial f € C{Xj,..., X4}[Y] defin-
ing the embedding (5,0) C (C4*+1,0). Suitable here means that Y is a good
coordinate: the Newton polyhedron of f, have compact faces of dimension
at most one, and it is canonically determined by the characteristic mono-
mials. We study the strict transform S’ of S by this modification: we show
that the restriction 7y : S’ — S is a finite map. The germ of S’ at any of
the finitely many points of the fiber m; 1(0) is a toric quasi-ordinary sin-
gularity, defined as finite branched covering of a normal affine toric variety
unramified over its torus (see [GP1]). It follows that it is more natural to
build the resolutions for toric quasi-ordinary hypersurfaces by generaliz-
ing to this case the notions of characteristic monomials and many of their
properties in the classical quasi-ordinary case. At any point of 7 1(0), the
strict transform S’ has less characteristic monomials, with respect to a
projection canonically determined from the fixed quasi-ordinary projection
of S, and we determine them from the given characteristic monomials of
(S,0). By iterating we obtain, in a canonical manner from the fixed quasi-
ordinary projection of S, a partial embedded resolution: a normal variety
of dimension d + 1 with only toric singularities (not necessarily quotient
singularities) and a modification 7 = 7; 0...om such that the strict trans-
form of S is a d-dimensional section transversal to the exceptional fiber
7n~1(0) (which is of dimension one). This implies that any toric resolution
of the ambient space is an embedded resolution of the strict transform and
provides a fortiori an embedded resolution of S. It follows also that the
restriction of m to the the strict transform of S is the normalization map
of S. This implies that the restriction of any of these embedded resolu-
tions to the strict transform of S is an isomorphism outside the singular
locus of S. In the case of a plane curve germ we show that our procedure,
with respect to a transversal projection, leads to the minimal resolution of
the curve and we compare our method with those given by Lé, Oka and
A’Campo (see [Le-Ok], [Ok], and [A’C-OK]).

The second method builds embedded resolutions of an analytically
irreducible quasi-ordinary hypersurface germ (S,0) by generalizing the
method of Goldin and Teissier for plane branches (see [G-T]). The approach
and results of this part are also inspired those obtained by Lejeune and
Reguera in the case of sandwiched surface singularities (see [LJ-R]) and

TOME 53 (2003), FASCICULE 6



1822 PEDRO D. GONZALEZ PEREZ

sketched for plane branches in [LJ-R2]. If ¢ > 1 denotes the number of
characteristic exponents we re-embed the germ (S,0) in the affine space
(C4+9,0), by using certain approzimate roots of a suitable Weierstrass
polynomial defining the embedding (S,0) C (C4*1,0). These approximate
roots have maximal contact in the sense that, at each step of the partial
resolution there is one approximate root whose strict transform defines a
good coordinate for the strict transform of S. We define a toric modification
p : Z — C%9 depending only on a rank d semigroup I', which is a
partial embedded resolution of the irreducible germ (S,0) C (C%*9,0), and
of an affine toric variety Z' C C?%t9 obtained from (S,0) C (C4+9,0)
by specialization and defined by the semigroup I' (see Theorem 2). This
semigroup, which generalizes the classical semigroup of a plane branch,
does not depend on the quasi-ordinary projection and defines a complete
invariant of the embedded topological type of S, as characterized by
Gau (see [GP2] or [GP3]). As in the first method any toric resolution of
singularities of the ambient space Z provides an embedded resolution of S.

We compare the partial resolutions m and p: we prove in Theorem 3
that 7 is the restriction of p to a (d + 1)-dimensional smooth variety of Z
containing the strict transform of S.

One of the technical tools common to both methods is the construc-
tion of toric embedded resolutions of non necessarily normal affine toric
varieties equivariantly embedded, a result obtained in collaboration with
Teissier (see Proposition 6, Proposition 6.4 of [T2], and [GP-T]).

One important contribution of our approach is a better understanding
of the structure of the exceptional divisor of these resolutions. The ambient
space of the partial resolution m, which is canonical and factors any of
these embeded resolutions, is built with a toroidal embedding structure
such that the associated conic polyhedral complex with integral structure
(see [KKMS]) is built explicitly from the characteristic monomials. This
description allows us to re-embed this complex as a fan in an affine space
of bigger dimension, a technical lemma which is essential to compare
the partial resolutions p and 7 (see Propositions 42 and 45). The toric
resolutions of the ambient space are defined by certain regular subdivisions
of this fan (which always exists, see [Co] and [KKMS]). These regular
subdivisions determine many features of the geometry of the exceptional
divisor which are very useful for the applications:

e In collaboration with Némethi and McEwan we have shown that
the zeta function of the geometric monodromy of the germ (S, 0) coincides
with the zeta function of the plane curve germ obtained from (S,0) by
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EMBEDDED RESOLUTIONS OF QUASI-ORDINARY HYPERSURFACES 1823

intersection with d — 1 coordinate hyperplanes, which are determined by
the quasi-ordinary projection (see [M-N] and [GP-M-N]).

e In collaboration with Garcia Barroso we analyse in [GB-GP] the
strict transform of the polar hypersurfaces of (S,0) under the partial
resolution of (S,0) and we obtain a decomposition theorem which provides
in the case of plane curve germs a simple algebraic proof of a Theorem of
Lé, Michel and Weber ([L-M-W]).

The proofs are written in the analytic case. They provide also two
embedded resolutions of quasi-ordinary hypersurface singularities in the
algebroid case (over an algebraically closed field of zero characteristic).

Acknowledgements. I am grateful to B. Teissier, M. Lejeune-Jalabert,
A. Némethi for their suggestions and to Universidad de La Laguna and
Institut de Mathématiques de Jussieu for their hospitality. The author
has been supported by a grant of DGUI del Gobierno de Canarias and
by a Marie Curie Fellowship of the European Community Programm
“Improving Human Research Potential and the Socio-economic Knowlegde
Base” under contract number HPMF-CT-2000-00877.

1. Toric maps, Newton polyhedra
and partial resolution of singularities.

We introduce the notations and basic definitions of toric geometry
and we build embedded resolutions of non necessarily normal affine toric
varieties.

1.1. A reminder of toric geometry.

We give some definitions and notations (see [F|, [Ew] and [Od] for
proofs). If N = Z*! is a lattice we denote by Ng the real vector space
N ®z R spanned by N and by M the dual lattice. A rational convex
polyhedral cone o in N is the set non negative linear combinations of
vectors a!,...,a® € N. In what follows a cone will mean a rational convex
polyhedral cone. The cone o is strictly convex if o contains no linear
subspace of dimension > 0; the cone o is regular if the primitive integral
vectors defining the 1-dimensional faces belong to a basis of the lattice N.
We denote by o the relative interior of a cone o. The dual cone oV (resp.
orthogonal cone o) of o is the set {w € Mg/{w,u) > 0, (resp. (w,u) = 0)
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1824 PEDRO D. GONZALEZ PEREZ

Yu € 6}. A fan ¥ is a family of strictly convez cones in Ny such that any
face of such a cone is in the family and the intersection of any two of them
is a face of each. The support of the fan ¥ is the set | J,c5; 0 C Ng. The 4-
skeleton ©(9) is the subset of i-dimensional cones of ¥. The fan ¥ is regular
if all its cones are regular.

Any non necessarily normal affine toric variety over the field C of
complex numbers is of the form Z* = SpecC[A] where A is a monoid,
i.e., a sub-semigroup of finite type of a lattice —A + A which generates
it as a group. The closed points of Z* correspond to homomorphisms of
semigroups A — C where C is considered as a semigroup with respect to
multiplication. The torus embedded in Z* is the group of homomorphisms
of semigroups A — C — {0} and acts naturally on the closed points
of ZA. The normalization of Z® is obtained from the inclusion A —
RyoA N (—A + A) where Ry oA is the cone spanned by the elements of
A (see [KKMS]). The action of the torus has a fixed point if and only if
the cone R. oA is strictly convex, then this point is defined by the ideal
(X“/u € A —{0}) of C[A] and coincides with the 0-dimensional orbit; the
analytic algebra C{A} of Z* at this point can be viewed as a subring of the
ring C[[A]] of formal complex power series with exponents in the semigroup
A (see [GP1] lemme 1.1).

In particular, if o is a cone in the fan ¥ the semigroup ov N M is of
finite type, it spans the lattice M and the variety zo'nM , which we denote
also by Z, n or by Z, when the lattice is clear from the context, is normal.

If 0 C o’ are cones in the fan ¥ we have an open immersion Z, C Z,;
the affine varieties Z, corresponding to cones in a fan ¥ glue up to define
the toric variety Zs,. The torus, (C*)¢t1, is embedded as an open dense
subset Zyoy of Zx, which acts on each chart Z,; these actions paste to an
action on Zx, which extends the product on the torus. General toric varieties
are defined by this property, the toric varieties which can be defined using
fans are precisely the normal ones (see [KKMS]). The toric variety Zy is
non singular if and only if the fan ¥ is regular.

We describe the orbits of the action of the torus on the variety Zs.
The orbit O,y (which we denote also by Q) is the Zariski closed subset of
Z, defined by the ideal (X% /w € (¢ — o) N M) of C[oV N M]. This orbit
is a torus for 0 < dimo < rk N, since the associated coordinate ring is the
C-algebra of the sub-lattice M (o) := M N o+ of M of codimension equal
to dimo. On the closed orbit @, we consider the special point o, defined
by X%(0,) =1 for all u € M (o). If dimo = rk N the orbit Q, is reduced
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to the special point. If dim o < rk N we have an exact sequence of lattices:

0— M(o) MM, —o0.

Ifo — NUL»N — N(o) — 0 is the dual exact sequence the lattice
N, spanned by o N N is of dimension equal to dimo and the semigroup
UX,U associated to the cone o with respect to the lattice IV, is isomorphic to
j(aV N M). If we choose a splitting M = M (o) ® M, we obtain a semigroup
isomorphism 0¥ N M = M(o) ® (o), N M,) inducing an isomorphism of
C-algebras CloV N M] = C[M(0)] ®c C[oy, N M,] which defines (non
canonically) the product structure

(1) Zcr,N = @a,N X ZU,N(,-

The map that sends a cone o in ¥ to the orbit O, C Zy is a bijection
between the fan ¥ and the set of orbits. If ¢ is a face of 7 then Z, is an
open subset of Z, and the orbit O, is contained in the closure of Q, in
Z, since 71 C o, thus the closure of the orbit of o in Zy is O, = |JO-
where 7 runs through the cones of ¥ which have o as a face.

The orbit closures are normal toric varieties by themselves with
respect to the lattice N (o). The cones of the fan associated to Q, are
of the form 7 + (N, )gr C Ngr/(Ny )R for 7 € ¥ containing o as a face.

Remark 1.— The singular locus of Zy is the union of those orbits
O, for o a non regular cone.

This follows from formula (1) by noticing that the orbit O, is contained in
the singular locus of Z, if and only if o, n, is a singular point of Z, , if
and only if the cone ¢ is not a regular cone.

DEFINITION 1.— A fan ¥’ is a subdivision of the fan ¥ if both fans
have the same support and if any cone of ¥’ is contained in a cone of .. The
fan ' is regular subdivision if ¥’ is a regular fan. A regular subdivision ¥’
is a resolution of the fan ¥ if any regular cone of ¥ belongs to ¥'.

Associated to a subdivision of fans there is a modification 7y : Zyy — Zy,

inducing an isomorphism between their tori.

Example 1.— Let ¥ be a regular subdivision of the cone o := Rggl
with lattice N := Z%t1. This subdivision defines a modification 75 : Zs, —
Zy = C%*1 which we describe in detail:

TOME 53 (2003), FASCICULE 6



1826 PEDRO D. GONZALEZ PEREZ

The variety Zyx, is non singular, for each cone o of maximal dimension the
variety Z, is isomorphic to C4*! and the restriction 7, : Z, — C%+! of the
morphism 7y is induced by the semigroup inclusion Rggl NM—oVNM.
The set of primitive vectors in the 1l-skeleton ¢ is a basis of N and its
dual basis is a minimal set of generators of the semigroup o¥ N M. These
generators give us coordinates to describe the map 7, : Z, — C%! in the
form:

X =vttugt g

1 2 d+1
7927792 ay
X2 — []1 PERER Ud+1

a111+1 a§+1 agii
Xay1 = Uy U, "'Ud+1

where (ai,ab, ..., ag +1) is the coordinate of the primitive vector a’ in the
1-skeleton of o, for i = 1,...,d + 1. Since the fan ¥ is regular, it is easy to
see directly from formula (2) that the map 7y is an isomorphism over the
torus X1 --- Xg41 # 0 of CatL,

A resolution of singularities of a variety Z is a smooth variety Z’ with
a modification Z’ — Z which is an isomorphism outside the singular locus
of Z. The resolution of singularities of normal toric varieties is reduced to
a combinatorial property of faces (see [KKMS]). More precisely we have
that: Given any fan ¥ there is a resolution ¥’ of ¥ (see definition 1). The
associated toric morphism Zy, — Zy is a resolution of singularities of the
variety Zy, (see [Co], Theorem 5.1).

We describe now the exceptional locus associated to a subdivision
Y’ of a fan ¥. Taking away the cone o from the fan of the cone o means
geometrically to take away the orbit O, from the variety Z,. It follows that
(see [GS-LJ] Proposition page 199):

(3) m0,)= |J 0.

TEY ,orCoo

It follows from (3) that the exceptional fibers, i.e., the union of subvarieties
of dimension > 1 which are mapped to points, are given by

U 77_1(©a)

dim o=rkN,o¢ ¥
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and that the exceptional locus, i.e., the subvarieties that are mapped on a
variety of smaller dimension, is

U 7T_1(©0) = U @:

ogxy’ + minimal ex’—-%

The discriminant locus, i.e., the image of the exceptional locus, is equal to

(4) U o

o minimal ex-3’

1.2. Newton polyhedra and partial resolution of singularities.

The Newton polyhedron N ($) of a non zero series ¢ = > c, X* €
C{X} with X = (Xi,...,Xq441) is the convex hull of the set |, ., a+
]R‘;E,Ll. More generally the Newton polyhedron of any non-zero germ ¢ =
>~ ca X of holomorphic function at the special point o, of a normal affine
toric variety Z, = SpecC[p¥ N M] (for a strictly convex cone pV) is the
convex hull of the subset |, ., a+ p" of Mg. We denote it by N,(¢) or
by N(¢) if the cone p is clearly determined by the context. Many of the
properties associated with classical Newton polyhedra hold in this case; for
instance, if 0 # ¢ = ¢1---¢s we have that N (@) is the Minkowski sum
N(¢1) + ...+ N(¢1) since the series ¢; have coefficients in a domain. It
follows from this property that:

Remark 2. — If 0 # ¢ = ¢1 - - - ¢s and N (@) has only one vertex the
same holds for each of the Minkowski terms N'(¢;), for i =1,...,s.

The face F, of the polyhedron N,(¢) defined by a vector in u € p is the set
of vectors v € N,(¢) such that (u,v) = infyep, () (u,v'). All faces of the
polyhedron N,(¢) can be recovered in this way. The face of N,(¢) defined

by w is compact if and only if u € ;)

The cone o(F) C p associated to the face F of the polyhedron N,(¢) is

o(F):={uep/YveF, wehave (u,v) = /eijl\l[f(d))<u,vl>}.

The cones o(F), for F running through the set of faces of the polyhedron
N,(¢), define a subdivision X(N,(¢)) of the fan of the cone p called
the dual Newton diagram. The relative interiors of the cones in the fan
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1828 PEDRO D. GONZALEZ PEREZ

Y(N,(¢)) are equal to the equivalence classes of vectors in p by the relation:
u~u & F, = F,. We say that a fan ¥ supported on the cone p is
compatible with a set of series ¢1,...,¢s € C{p¥ N M} if it subdivides
the fan X(N,(¢)) with ¢ = ¢1--- ¢s. A cone in the fan Z(N,(¢1 - - ¢s)) is
intersection of cones of the fans Y(N,(¢;)) therefore ¥ is compatible with
all the polyhedra N,(¢;). If ¥ is compatible with N,(¢) all vectors in o
define the same face F, of N,(¢), for o € X.

DEFINITION 2. — Let 0 # ¢ = Y ¢, X* € C{p¥ N M}. The symbolic
restriction ¢z of ¢ to the compact face F of the polyhedron N,(¢) is the
polynomial |z := Y, rcaX® € C[pY N M]. The Newton principal part
¢\n of ¢ is the sum of those terms of ¢ having exponents lying on the
compact faces of the Newton polyhedron N,(¢)

We follow here the terminology of [Kou] and [Ok]. The Newton
principal part ¢jar € C[p¥ N M] does not change if we change the ring
Cl[[p¥ N M]] by extending the lattice M.

Let ¥ be any fan supported on p defining the modification 7x :
Zs, — Z,. Let V be a subvariety of Z, such that the intersection of the
discriminant locus of 7y, with each irreducible component V; of V is nowhere
dense on V;. For instance if V is irreducible this condition holds if the torus
is an open dense subset of V. The strict transform Vs, C Zy, is the subvariety
of 75! (V) such that the restriction Vx — V is a modification.

If the fan ¥ is regular, the toric map ny : Zyx — Z, is a (toric)
embedded pseudo-resolution of V if the restriction Vs — V is a modification
such that the strict transform Vs is non singular and transversal to the
orbit stratification of the exceptional locus of Zs;. The modification 7y is
a (toric) embedded resolution of V if in addition the restriction to the strict
transform Vs — V is an isomorphism outside the singular locus of V (see
[G-T)). If 75 is only a pseudo-resolution we can only guarantee that the
map Vs — V is an isomorphism outside the intersection of V with the
discriminant locus of 7y. In this case, this set contains the singular locus
of V but it is not necessarily equal to it.

DEeFINITION 3. — If ¥ is a (non necessarily regular) subdivision of p
the toric morphism 7y, : Zs, — Z, is a partial (toric) embedded resolution
of V if for any resolution ¥/ of the fan ¥ the map 7sy o 1, is an embedded
resolution of V.
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Let V C Z, an irreducible subvariety such that the intersection with
the torus is an open dense subset. Let ¥ be a subdivision p compatible with
a set of generators ¢y, ..., ¢s of the ideal of V C Z,. We give a combinatorial
condition on the Newton polyhedra of ¢4, ..., ¢ for the intersection of the
strict transform with the exceptional fiber being non empty.

LEMMA 3.— Let o a cone in ¥ such that ¢ C ,?’ IfO, NVs # 0
then the face F; of the Newton polyhedron N(¢;) of ¢; defined by o is of
dimension > 1 for 1 <i < s.

Proof. — We have that ¢; — ¢; = belongs to the ideal generated by
{X¥/u € (N(¢:) — F;) N M}. Since ¥ is compatible with the ¢; the cone
oV contains the cone spanned by elements in the polyhedron —ug + N(¢;)
for any ug € F;. Let u; € F; be a vertex then we can factor in the ring
CloY N M]:

¢iomo = X" ¢p; and @y x, 0 My = Xty with ¢,z € Clo N M]

in such a way that the exponent of a term appearing in X =% (¢; o m, —
¢i|7, o T,) belongs to (o — o1) N M and thus this term vanishes on the
orbit Q,. By definition the elements X ~**¢om, for 1 < ¢ < s belong to the
ideal defining the strict transform of V. If the face F; is a vertex for some
i the ideal of O, N Vg in Z, is equal to (1) thus Vs N O, is empty. O

The following lemma is an easy consequence of the implicit function
theorem.

Let p C Ngr be a rational strictly convex cone of dimension equal
to rk N. We denote by A the cone p ® R%; C (Na)g where Na is the
lattice N @ Z9 with dual lattice Ma. The semigroup AY N My is of the
form (p¥ N M) & ZZ,. The monomial corresponding to (a,v) € AY N Ma
is denoted by X*U" or by XU} ... Ug”.

LeEMMA 4.— If ¢1,...,¢4 € C{AY N Ma} verify that ¢1(0,,U) =
U;, fori = 1,...,g then there exist series ¢, € C{p¥ N M} for i =
1,...,g such that the ideals of C{AY N Ma} generated by ¢1,...,¢, and
Ui —e1,...,Uy — €4 coincide.

Proof. — An homomorphism of semigroups Z3$, va N M extends
to an homomorphism Z;ﬁ’“ DAV AM, A- If 9 is surjective it defines an
equivariant embedding Z, C C° which extends (by using the homomor-
phism ) x Id) to an equivariant embedding Zn = Z, x C9 c C**9. If
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1830 PEDRO D. GONZALEZ PEREZ

©1,...,pg are power series defining holomorphic functions at (C5t9,0)
representing ¢1,...,¢, the implicit function theorem guarantees the ex-
istence of power series ¢; in s variables such that the ideals (¢1,...,¥q)
and (U; —ey,...,Uy — €4) coincide. The result follows by passing to the
quotient by the binomial ideal defining the embedding Zx C C*19. O

1.3. Embedded resolution of non necessarily
normal toric varieties.

We build an embedded resolution of non necessarily normal affine
toric variety Z* equivariantly embedded in a normal affine toric variety Z,
(for p¥ a strictly convex cone). We build first a partial embedded resolution
which is a toric morphism providing an embedded normalization inside a
normal toric ambient space. Then any toric resolution of the singularities of
the ambient space, which always exists, provides an embedded resolution.
The advantage of this method is that the partial resolution is completely
determined by the embedding Z' C Z,. This result is the fruit of
discussions with Professor B. Teissier (see [T2], §6, Proposition 6.4 and
[GP-T]).

Let A be a monoid. An equivariant embedding of Z™ in the normal
affine toric variety Z, is given by a surjective homomorphism of semigroups
pYNM — A which extends to a lattice homomorphism ¢ : M — —A+A and
a vector space homomorphism ¢ : Mg — (—A + A)g. The torus of Z* is
equivariantly embedded in the torus of Z,, the embedding is obtained from
the homomorphism . The linear subspace (Ker(¢g))* C Ng, denoted by
¢ in what follows, is of dimension equal to rk A and the same holds for the
cone ag := £ p. The ideal of the embedding Z* C Z, is generated by the
binomials

(5) X" — X" € C[p¥ N M] such that p(u) = p(v)

(see [St], Chapter 4).

LemMA 5.— With the above notations suppose that the cone pV is
strictly convex. Let ¥ be any fan compatible with a finite set of binomial
equations X" — X = 0 for i € I defining the embedding Z* C Z,. Then
the fan X is compatible with the linear subspace £. If o0 € ¥ and o C ;)
then O, N Z4 # 0 implies that o C . Moreover, if o C ¢ and dim ¢ = dim ¢
the intersection Z)’j\ N O, as schemes is the simple point o, and Z& N Z,
is isomorphic to Zs n,. If ¥ is regular the morphism 7s, is an embedded
pseudo-resolution of singularities of Z* C Zy.
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Proof. — The cone gg = pN ¥ is associated to the Minkowski sum of
compact edges of N (X% — X") for i € I since (w,u;) = (w,v;), Vi € I if
and only if w € £. Since the fan ¥ is compatible with the binomial equations
of ZM it follows that a subdivision of oy is contained in ¥, i.e., this fan is
compatible with the linear subspace £.

We deduce by duality from the equality oo = p N £ that
(6) oy =p" +£" =p" + £ = p¥ + Ker(pp).

Since the cone pV is strictly convex, formula (6) implies that

(7 oy = Ker(¢r)
and thus
(8) Ker(p) C oy N M.

Let 0 € ¥ with ¢ C ;), since ¥ is compatible with the binomials
X% — X the ideal generated by 1 — X"~ (up to relabeling) is contained
in the ideal defining the strict transform Z2 in the chart Z,. Thus the
variety Z’, defined by X* =% —1 = 0 for ¢ € I, contains Zfz\ N Z,. Then we
have

Z’N0, #0 & pe Z, : X " (p)=1Vie I,X"(p) =0
Vue (o —ot)n M
Su—v,cotNMViele Ker (p) Co¥ oo Cpnk.

The chart Z, is isomorphic to @, X Z, n, by formula (1).

If o C ¢ and dimo = dim/ we have that 0% = oF coincides with

Ker(pr) by (7). We deduce an isomorphism
(9) 7' 2{0s} X Zg N, C Zy

from (1) since the lattice ot N M = Ker(yp) is generated by {u; — v;}ier.
Therefore the variety Z’ is irreducible and of dimension equal to rk A. We
deduce from (9) that Z2 intersects the orbit O, transversally since the
coordinate ring of Zé N O, is C. Since Zé N Z, is a subvariety of the
irreducible variety Z’ and both are of the same dimension they coincide.

If ¥ is regular we deduce that Z{E\ is smooth and intersects transver-
sally the orbit stratification of the exceptional locus of Zx thus 7y is an
embedded pseudo-resolution of ZA. O
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With the notations of Lemma 5 we have:

PRrROPOSITION 6.— Suppose that the cone p" is strictly convex. Let
3 be a subdivision of p containing the cone oy.

1. The strict transform Z8 of Z A by the morphism Ty, is isomorphic
to Zsy,N,, and the restriction 75| Z8 : Z& — ZA is the normalization map.

2. The morphism 7y, is a partial embedded resolution of Z C Z,.

Proof.— We keep notations of Lemma 5. If we choose a splitting
M =~ Ker(p) ® Im(p) we obtain using (8) a semigroup isomorphism

og N M = Ker(p) @ p(og N M),

which corresponds geometrically to the isomorphism Z,, = Q,, X Zs,,N,,
of (1).

We deduce from (6) that oy = cpﬂ_kl(ch(pV)) and it follows that the
semigroup

(10) p(og N M) = pr(p") Np(M)

is the saturated semigroup RsoA N (—A + A) of A in the lattice it spans;
therefore the variety Z,, n, is isomorphic to the normalization of zA
(see [KKMS]).

Let ¥’ be a subdivision of ¥ compatible with the equations of Z*.
By Lemma 5 if 0 € ¥/, ¢ C p and 0, N ZA, # 0 then we have 0 C £. A
fortiori the same property holds replacing ¥’ by ¥ as a consequence of (3).
It follows that the strict transform of the germ (Z*,0,) is contained in the
chart corresponding to the cone oo. This implies that Z3 C Z,, since the
morphism 7y is equivariant and Z? is equivariantly embedded. It follows
also from the proof of Lemma 5 that the restriction of s, to Z& — ZA
corresponds algebraically to the inclusion of C[A] in its integral closure thus
it is the normalization map.

A resolution ¥’ of the fan ¥ is subdivided by a regular fan X" which
is compatible with the equations of Z*. By Lemma 5 the map 75y omsy o7rs;
is a pseudo-resolution of ZA. A fortiori the same holds for s/ o s by (3).
By definition if ¢’ € ¥ is a regular cone then o’ € ¥/, thus Zsy — Zyx is an
isomorphism over the points of the orbit Q,/. By Remark 1 the singular
locus of Z& is defined by the intersection of those orbits @, for those
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cones ¢’ running through the set of non regular faces of oy. This shows
that Z8, — Z4 is a resolution of singularities of the normalization Z& of
ZA. A fortiori the map Z& — ZA is a resolution of singularities. O

1.4. Equivariant branched coverings of normal toric varieties.

Some branched coverings of normal toric varieties are equivariant.
Typically, if o is a rational cone for the lattice N it is also rational for
a sub-lattice of the same rank N’ C N and we have a homomorphism
of semigroups ¢V N M — oV N M’ where M C M’ is the inclusion of
lattices corresponding to N’ C N by duality. This homomorphism defines
an equivariant morphism

(11) ZU,N’ i Za,N

extending the homomorphism of tori 77 — T defined by the lattice
extension M C M’, which has kernel a finite subgroup H of 7’. Each w € H
corresponds to a morphism Z, y+ — Z, n given by the homomorphism
Cle¥ N M'] = C[oV N M'] mapping X* — w(u)X*. The ring Clo¥ N M] is
the set of invariants of C[¢¥ N M’] by the action of the group H and the
morphism (11) coincides with canonical projection of the quotient of Z
with respect to the action of the group H by Corollary 1.16 of [Od]. If ¢ is of
maximal dimension the 0-orbit o}, of Z, n projects to the 0-orbit o, of Z, N
and we have that (Z, n+,0.) — (Zs,n,0,) is a morphism of analytically
irreducible germs. The corresponding homomorphism of analytic algebras
C{o¥ N M} — C{o¥V N M'} extends to a homomorphism L — L’ of their
fields of fractions of degree equal to the cardinality of H, i.e., the index
of M as a subgroup of M’. This field extension is Galois and the Galois
group is obtained from the automorphisms of C{oc" N M’} defined by the
elements of H (see [GP1]).

Let v1,...,vy € M’ and define from them a sequence of lattices and
integers:

(12)

MO ::M,Mi = Mi—l +l/iZ, for 1 = 1,...,9
) Z:]_,ni = #Mi/Mi—l fOI‘ Z = 1, ey g,

The lattices M; are all sub-lattices of finite index of M’. We have the
inclusions of lattices N’ C Ny C ... C Ny C No = N where N; denotes the
dual lattice of M;.
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LeMMA 7.— The field of fractions of C{p¥ N M;} is L[X",..., X*].
IfA € p¥ N M’ then X* € Fix(Gal(L'/L[X",...,X*))) if and only if
AE p\/ N Mj.

Proof. — The homomorphism of analytic algebras C{p¥ N M} —
C{pY N M;} is finite and defines an extension of the corresponding fields of
fractions of degree m; ---n; equal to the order of the finite group M;/M.
We prove the first assertion by induction on j: for j = 1 the roots of the
minimal polynomial of X** over L are the different conjugates of X** by
the action of the elements of the Galois group of L/L’. We deduce from this
that the minimal polynomial of X is Y — X™"1 where ny = #M, /My is
also the degree of the extension L[X*!]/L. Since L[X "] is contained in the
field of fractions of C{p¥ NM;} and both fields define extensions of L of the
same degree they are equal. By induction hypothesis the field of fractions
of C{p¥ N M;_1} is L[X**,..., X" '] and we can replace L, v; and n,
in the previous argument by L[X**,..., X* 1], v; and n; respectively to
obtain the assertion for j.

If v € p¥ N M, it is clear that v is fixed by any element of the Galois
group of the extension L'/L[X", ..., X*7]. The converse follows by the first
assertion and Corollary 1.16 of [Od] applied to the inclusion of semigroups
pYNM; Cp¥NnM'.

1.5. A reminder on toroidal embeddings.

Let X be a normal variety of dimension d + 1, and let E; be a finite
set of normal hypersurfaces with complement U in X. A toroidal embedding
without self intersection is defined by requiring the triple (X,U,x) at any
point z € X to be formally isomorphic to (Z,,T = (C*)4*!, 2) for 2 a point
in some toric variety Z,. This means that there is a formal isomorphism
between the completions of the local rings at respective points which sends
the ideal of X — U into the ideal of Z, — T'; (see [KKMS]). The variety X
is naturally stratified, with strata (,c g £s — U;¢x Ei and the open stra-
tum U.

The star of a stratum &, star G, is the union of the strata containing
S in their closure. We associate to the stratum & the set M of Cartier
divisors supported on star& — Y. We denote by N® the dual group
Hom(M®,Z). The semigroup of effective divisors defines in the real vector
space MH% := M® ®R a rational convex polyhedral cone and we denote its
dual cone in N := N® @R by p®. If & is a stratum in star &, we have a
group homomorphism defined by restriction of Cartier divisors M® — M &’
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which is onto; by duality we obtain an inclusion NV 6" _, NS and the cone
p® is mapped onto a face of p® (see [KKMS]). We can associate in this
way to a toroidal embedding without self-intersection a conic polyhedral
complex with integral structure (c.p.c. in what follows) see [KKMS]. This
generalizes the way of recovering from a normal toric variety the associated
fan. This complex is combinatorially isomorphic to the cone over the dual
graph of intersection of the divisors F;. We have that the strata of the
stratification are in one-to-one correspondence with the faces of the conic
polyhedral complex. For instance, the conic polyhedral complex associated
to the toroidal embedding defined by Zy and the normal hypersurfaces
{Os}yes) is isomorphic to the conic polyhedral complex (with integral
structure) (X, N) defined by the fan ¥ and the lattice N.

We can define, in an analogous manner to the case of a fan, a regular
subdivision of a conic polyhedral complex. Associated to a subdivision we
have an induced toroidal modification (see [KKMS] Th. 6* and 8*), i.e., a
normal variety X’ with a toroidal embedding &/ C X’ and a modification
X’ — X provided with a commutative diagram:

u X

/!

<

l
X

The notion of toric partial embedded resolution generalize easily in the
toroidal case.

2. Toric quasi-ordinary singularities.

We introduce toric quasi-ordinary singularities and we extend to this
case many notions and properties of quasi-ordinary singularities.

Let (S,0) be a germ of analytically irreducible complex variety of
dimension d. We denote by R the associated analytic algebra. A sufficiently
small representative S — S’ of a finite map germ (S, 0) — (S’, 0') has finite
fibers, its image is an open neighborhood of o’ and the maximal cardinality
of the fibers is equal to to the degree of the map. The discriminant locus,
i.e., the set of points of having fibers of cardinality less than the degree,
is an analytical subvariety of S’. Outside the discriminant locus, the map
is an unramified covering. We can think of the discriminant locus as an
analytic space or as a germ at o’.
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DEFINITION 4. — A germ of complex analytic variety (S, 0) is a quasi-
ordinary singularity if there exist a finite morphism (S, 0) — (C%,0) (called
a quasi-ordinary projection) and some analytical coordinates (X, ..., Xq4)
at 0, such that the morphism is unramified over the torus X; ... X4 # 0 in
a neighborhood of the origin.

The class of quasi-ordinary singularities contains all curve singulari-
ties. The Jung-Abhyankar Theorem guarantees that R can be viewed as a
subring of C{X,/™,..., X5/™} for some suitable integer m (see [J] for a
topological proof in the surface case and [A1], Th. 3 for an algebraic proof).

The finite map germ (S,0) — (5’,0") corresponds algebraically to
a local homomorphism R’ — R of their analytic algebras which gives R
the structure of finite module over R’. In particular if R is generated over
R’ by one element there is a surjection R'[Y] — R which corresponds
geometrically to an embedding (S, 0) C (S’ x C, (¢/,0)). We say that (.5, 0)
is an hypersurface relative to the base (S’,0'). We define toric quasi-ordinary
singularities by replacing the base (C%,0) by the germ (Z,,0,) of an affine
toric variety at its zero orbit (for a strictly convex cone pV).

DEeFINITION 5 (see [GP1]). — The germ (S, o) is a toric quasi-ordinary
singularity if there exists a finite morphism (S,0) — (Z,,0,) unramified
over the torus in a neighborhood of the zero-orbit o, of a suitable normal
affine toric variety Z,.

Remark 8. — The classical quasi-ordinary singularities are obtained
when (p, M) = (R, Z%).

By definition the analytic algebra R of a toric quasi-ordinary singular-
ity is a C{p¥ N M }-algebra of finite type. The germ (S, o) is an hypersurface
relative to the toric base if there exists x € R such that R = C{p¥ N M }[z].
Then the C{p¥ N M }-algebra homomorphism C{p¥ N M}[Y] — R that
maps Y +— x is surjective. Its kernel is a principal ideal generated by a
monic polynomial f such that f(o,,Y) = Ydesf and deg f is equal to the
degree of the map (S,0) — (Z,,0,). The polynomial f is a quasi-ordinary
polynomial, i.e., the discriminant Ay f of f with respect to Y is of the form

Ay f = X"H with H(o,) # 0.

Conversely each monic quasi-ordinary polynomial f € C{p¥ N M }[Y] such
that f(0,,Y) = Ydeef defines a germ of toric quasi-ordinary hypersurface.
The C{p¥ N M}-algebra homomorphism C{p¥ N M}[Y] — R defines
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an embedding S C Z, x C that maps o — (0,,0). The quasi-ordinary
projection of (S, 0) is induced by the first projection of the product Z, x C.

The product Z, x C is the toric variety Z, defined by the cone
0 = px R, with respect to the lattice N’ dual to the lattice M’ := M &yZ.
Then we have ¥ N M’ = (p¥ N M) & yZso. We denote the monomial
corresponding to u + sy € (p¥ N M) @ yZso by XY,

If f is an irreducible quasi-ordinary polynomial the associated an-
alytic algebra R is the domain R = C{p¥ N M}[Y]/(f). There exists a
fractional power series ¢ € C{p¥ N 1 M} which is a root of f where n is the
degree of f (see Théoreme 1.1 and Remarque 1 of [GP1]). The inclusion
C{p"NM?} C C{p¥N 2 M} corresponds to a branched covering of a normal
affine toric variety and defines a Galois extension L C L, of their corre-
sponding fields of fractions (see subsection 1.4).The minimal polynomial of
the root ¢ over the field L is equal to f, we have R = C{p¥ N M }[(] and
the field of fractions of R is L[(] since ( is finite over L. The conjugates
¢ of ¢ by the action of the Galois group of L C L,, define all the roots of
f since the extension L[¢] C L, is Galois.

We call (toric) quasi-ordinary branches the roots of (toric) quasi-
ordinary polynomials.

If f is a reduced quasi-ordinary polynomial of degree n then it splits
on C{p¥ N 5 M}. The difference ¢ — ¢® of two different roots of- f
divides the discriminant of f on the ring C{p¥ N % M}. By Remark
2, the Newton polyhedron of ¢(*) — ¢ has only one vertex therefore
¢ — ¢® is of the form X*+t Hy, where Hy, is a unit in C{p¥ N 1 M}.
It follows that the irreducible factors of f are quasi ordinary polynomials.
The monomials X*st so obtained are called characteristic monomials and
the exponents Ay € p¥ N %M are called the characteristic exponents. If
rkM =1 and if f is irreducible the characteristic exponents correspond to
the classical Puiseux characteristic exponents in arbitrary coordinates. We
do not need the classical argument to define the characteristic monomials
which uses the factoriality of the ring C{X1,..., X4} (see [L3]), a property
which does not hold for the rings of the form C{p¥ N M} in general.
The notion of characteristic monomials in the classical quasi-ordinary
case is already present in Zariski’s work (see [Z5]); in the analytically
irreducible hypersurface case many geometrical and topological features of
these singularities are determined in terms of the characteristic monomials
by Lipman, Luengo, Gau and others (see [L1], [L3], [L4], [Lu] and [Gau]).
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We define a partial order <, (or < for short) on the cone p¥:
u<,u U eutp’ S Vwep: (W —uw) >0.

We can extend this partial ordering to a total one on the subset p¥ N M
by taking an irrational vector i € p, i.e., the coordinates of 17 with respect
to any base of the lattice NV are linearly independent over @, and defining
then <, by u <, v/ & (n,u—u’) <0.

LEmMMA 9 (see [Z5] and [L4] in the classical case) .— Let fi be
an irreducible factor of the reduced toric quasi-ordinary polynomial f. If
f1(¢(30)) = 0 then we have

{soe /€ £ CO, F(CW) =0}
= {A/¢) # ¢, £(¢) = 0 and fi(¢™) = 0}

and this set is totally ordered by <,.

Proof. — The equality above follows since the extension L[¢(%0)] C
L, is Galois and the elements of the Galois group act on a series in
C{p" N X M} by changing the coefficients of its terms. Then, if ((*) ¢)
are roots of f different to ¢(*0) we have that

XM Hyy = ()¢ = ((t')_C(Su)_(c(t)_c(m)) = X0 Hy gy — X 0 Hy, .
Therefore Ay = min,{ Ay, Ats, } and the assertion follows. O

DEFINITION 6 (see [GP2]) . — Two irreducible quasi-ordinary polyno-
mials f*) and f\9) have order of coincidence \; ;) if their product f® f(1)
is a quasi-ordinary polynomial and A ;) is the largest exponent of the set
{Aat/ () = 0, FD (W) = 0}

We say that the order of coincidence of f(¥) with itself is Ai,i) = +00.
We deduce from the proof of Lemma 9 and Definition 6 the following
property:

LemMA 10.— If f = f ... f(") js the factorization of a quasi-
ordinary polynomial with monic irreducible factors we have that:
min{)\(i,j),)\(jyl)} > )\(i,l) with equality if )\(i,j) #* )‘(j,l) for i,j,1 €
{1,...,r}.
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In particular when f is irreducible it follows that the set of char-
acteristic exponents is totally ordered by <, (see [L3]). In this case we
relabel the characteristic exponents by Ay <, A2 <, ... <, Ay and we
denote \g41 = +00. Following Lipman (see [L4], page 61) we associate to
the characteristic exponents sequences of lattices and integers. In the plane
branch case the sequence of integers coincide with the first component of
the characteristic pairs in arbitrary coordinates.

DEFINITION 7. — The lattices M; and the integers n; associated to the
sequence of characteristic exponents Ay, ..., A\ fort =0, ..., g by formulae
(12) are called characteristic.

We denote by ;1 = n;---ng, for ¢ = 1,...,9 and we set ng := 1.
We denote by Ny, C --- C Ny C Ny = N the sequence of dual lattices of
M=DMyC---CM,.

If f is reduced the set of characteristic exponents is not totally
ordered by <, for example the characteristic exponents (1,0), % ,0), (1, %)
of f= (Y —X;)? - X)) ((Y + X1)? — X2X3)) are not totally ordered for

<R§0 :

LemMA 11 (see [L3]).— If f is an irreducible toric quasi-ordinary
polynomial and if ¢ is a root of f we have

1. The characteristic integers n; verify that n; > 1 fori =1,...,9
and ny ---ng = deg f.

2. The field of fractions of R is equal to L[¢] = L[X*1,..., X?s]. -

Proof.— Let ¢’ be a conjugate of ( by an element of the Galois
group of the field extension L, D L[X*,..., X%]. If ¢’ # ¢ we have
¢’ — ¢ = X Hy, for a unit Hy and k > j (since X*t,..., X? are fixed for
this Galois group). In particular for j = g the only possibility is ¢’ = ¢ thus
¢ € L[X™,..., X" since the extension L, D L[X*,..., X"] is Galois.
Conversely any element of the Galois group of the extension L,, D L[(] fix
¢ and therefore all the terms appearing in ¢, in particular X*, ... X*s,
belong to L[(] since the extension L,, D L[(] is Galois. It follows that n; > 1
fori =1,...,g, and that the degree n of the extension L[¢] D L is equal
to ny - nyg. O

We have the following conditions for a power series ¢ € C{p¥ N %M }
to be a quasi-ordinary branch (see [L3], prop. 1.5 or [Gau], prop 1.3 in the
classical case).
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LEMMA 12. — Let ¢ = Y ¢y X* be a non unit in C{p¥ N L M}. Then
the minimal polynomial of { over C{p"¥ N M} is quasi-ordinary if and only
if there exist elements \; € p¥ N ;:1— M, for 1 < i < g such that

LA <p,A<,...<pAg,andcy, #0 for1 <i<g.
2. If ¢y # 0 then X is the sub-lattice M + Z/\,g,,,\ Z)\; of My.
3. A; is not in the sub-lattice M+Z/\l<p)v ZXi, of Mg forj =1,...,g.

If such elements exist they are uniquely determined by ( and they are the
characteristic exponents of (.

Proof. — 1If the minimal polynomial of ¢ over C{p¥Y N M} is quasi-
ordinary then the result follows from Lemmas 9, 11 and 7 applied to
sequence of characteristic exponents. Conversely, if (' is the conjugate of ¢
by an element of the Galois group of L, D L and if ¢ # ¢’ let us consider
the sequence of lattices M; and integers n; associated to A, ..., Ag by (12).
There is some j > 1 such that the monomials X" are fixed for v € M;_;
and X% is not fixed by this element by Lemma 7 and Hypothesis 3.
Then Hypothesis 1 and 2 imply that the difference ¢’ — ¢ is of the form
¢’ — ¢ =X H; for a unit Hj. O

Remark 13. — The characteristic lattices associated to f provide a
canonical way of writing the terms of its roots:

(=po+p1+...+pg,

where pg € C{p¥ N M} and the monomial X A appears in the summand Dj
implies that A; <, Aand A\j4q1 £, Aforj=1,...,9.

It is shown by Lipman (see [L4], remark 7.3.2) that an analytically
irreducible quasi-ordinary hypersurface germ of dimension d is normal if
and only if it is isomorphic to a germ of the form Y" — X;... X, =0
for some 1 < ¢ < d; otherwise it is well-known that its normalization is a
quotient singularity (see [L4]); in the two dimensional case it is the germ of
an affine toric surface (see [B-P-V], Chapter III, Theorem 5.2). In [GP2] is
proved that the normalization of an irreducible quasi-ordinary hypersurface
germ is isomorphic to the germ of an affine normal toric variety at its zero
orbit and that this singularity is determined from the set of characteristic
exponents. The following proposition generalizes this fact for toric quasi-
ordinary hypersurface germs.
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ProrosiTion 14. — The integral closure of the ring R in its field of
fractions is equal to C{p" N M,}.

Proof.— The analytic algebra of the quasi-ordinary hypersurface is
of the form R = C{p¥ N M}[¢]. By Lemma 12 we have a ring extension
R C C{pY N My} which is integral since C{p¥ N M,} is integral over
C{pY N M}. By Lemmas 7 and 11 the rings R and C{p¥ N M,} have the
same field of fractions. These two conditions imply that both rings have the
same integral closure over their field of fractions. The ring C{p¥ N M,} is
integrally closed since it is the analytic algebra of the normal variety Z, n,
at the point o0,. O

2.1. The Eggers-Wall tree of a reduced
quasi-ordinary polynomial.

We structure the partially ordered set of characteristic monomials
of a reduced toric quasi-ordinary polynomial in a labeled tree. When
rkM = 1 the germ S defined by a reduced quasi-ordinary polynomial
f € C{p¥ N M}[Y] at the origin is just a germ of complex plane curve. It
is well-known that the intersection multiplicities of the different branches
of the curve at the origin and the semigroups associated to each of them
define a complete invariant of the embedded topological type of the plane
curve germ (5,0) (see [Re]). Eggers shows that this information can be
encoded by structuring in a labeled tree the characteristic exponents of
each irreducible factor and the orders of coincidence between any two of
them (see [Eg]). Wall (see [Wa]) gives a different definition of Egger’s
tree to give a new proof of theorem of Garcia Barroso in [GB1] on the
structure of polar curves (see [GB2]). Wall’s definition encodes the same
amount of information as Egger’s definition does and involves the use
of a simplicial 1-chain on the tree which is defined from the sequence
of characteristic integers of the irreducible factors (see Definition 7). In
the case of a classical quasi-ordinary hypersurface, Zariski’s result stated
in Lemma 9 can be reformulated as follows: If f = 0 defines a classical
quasi-ordinary hypersurface and if f; is an irreducible factor of f the set
of characteristic exponents of f; union the set of orders of coincidence
of fi with the factors of f is totally ordered with respect to the partial
order defined by the divisibility of the corresponding monomials. Zariski’s
observation and the sequences of characteristic integers are exactly what is
necessary to extend Wall’s definition to the quasi-ordinary case in terms of
a fixed quasi-ordinary projection (X,Y) — X. This is done more generally

TOME 53 (2003), FASCICULE 6



1842 PEDRO D. GONZALEZ PEREZ

by Popescu-Pampu (see [PP2]) for a Laurent quasi-ordinary polynomial f,
obtaining a result on the structure of g}é in terms of the tree of f when
gié is quasi-ordinary.

The definition of the tree in our case runs as follows: Let f =
fM ... £ be the factorization in monic irreducible polynomials of f. Each
factor f() of f is quasi-ordinary and the subset 8( f())(©) ofp NMgU{+o0}
whose elements are 0, +00, the characteristic exponents /\ - <, A;( )

of f() (if they exist) and the orders of coincidence of f( with the
irreducible factors of f is totally ordered by Lemma 9; we denote by ng)

and e,(:) for k = 1,...,g(i), the sequences of integers associated to f(*) by
Definition 7 for i =1,...,r

The elementary branch 6(f(*)) associated to f() is the abstract
simplicial complex of dimension one with vertices running through the
elements of the totally ordered subset 6(f®)(© and edges running through
the segments joining consecutive vertices for the partial order <. The
underlying topological space is homeomorphic to the segment [0, +00]. We
denote the vertex of 8(f(*)) corresponding to A € 8(f*)(©) by Pii). The
simplicial complex 6(f) obtained from the disjoint union | |5_, 8(f®) by
identifying in 6(f(*) and 6(f)) the sub-simplicial complex corresponding
to P()(i)P;\f) and P(J Pij) for 1 < i< j<risatree. We give to a vertex
P of 65(f) the valuation ,\. This defines a 0-chain Co(f) on 6;(f) which
attaches the value X\ to each vertex Pii)
vertex only once).

in the Eggers tree (counting each

For ¢ = 1,...,r we define an integral 1-chain whose segments are
obtained by by subdividing the segments of the chain

(13)  ROP +nlPO P+ g PP

with the points corresponding to the orders of coincidence of f(®), the
coefficient of an oriented segment in the subdivision is the same as the
coefficient of the oriented segment of (13) containing it. It follows from
Definition 7 that these 1-chains paste on 6¢(f) and define a 1-chain C;(f)
with coeflicients in Z.

DEeFINITION 8. — The Eggers-Wall tree is the simplicial complex 6( f)
with the chains C1(f) and Cy(f).
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The chains C;(f) and Cy(f) determine the number of factors of f, the
characteristic exponents of each factor and the orders of coincidence. The
vertex P)(\i), if A # 0, +oo0 is not a characteristic exponents of f(9) if and only
if the coefficients of the two segments of #(f(*)) containing P)(‘i) coincide.

3. Embedded resolution procedure.

In this section we build an embedded resolution of a reduced quasi-
ordinary polynomial which is a composition of toric morphism determined
by the characteristic monomials.

3.1. Definition of good coordinates.

We introduce the notion of Y being a good coordinate in terms of the
coincidence of the parametrizations of f. In the following section we build
the toric morphisms of the resolution using this notion. Different choices of
good coordinates provide isomorphic morphisms.

We keep the notations of Section 2.1. We suppose that f is a
quasi-ordinary polynomial with 7 irreducible factors f(*) ..., f("). Define
A(d) :== (M 0 {Xi ;)15 U {)\gi)} for 1 <i < r. By Lemma 9, if the set .A(%)
is non empty it is totally ordered by <,.

Then we can define
(14) Aw(i) 1= {mlnA(z) if A(Z) 7 0} fori=1,...,r
+00 otherwise

LEmMMA 15.

L If Xy £ A ¢ M the term X A does not appear in the expansions of
the roots of f). In particular if X appears in the expansions of the roots
of fU9) then X is > A(i,j) and the equality A = A(; jyimplies that \(; j) = )\g]).

2. The case \(;) = +oo happens if and only if f® is the only factor
of f without characteristic exponents and A; j) = ,\53' ) for all Jj#i.

3. If Ag(ip) € M then Ay (i) is = Ag(j) for all j # 1.
4. The set {Ax(1),- -+, A(r)} Is totally ordered by <.

Proof. — If f® has no characteristic exponent the terms in the
expansion of its root have exponents in p¥ N M. Otherwise, Ay € A ¢ M
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implies that )\gi) £ A ¢ M thus the term X A does not appear in the
expansion of the roots of f(*) by Lemma, 12. If X* appears in the expansion
of the roots of f(4) then it appears in any difference of roots of f () and f@)

thus A > \; j). Moreover, if A = A(; ;) then A ¢ M implies that A ;) > )\(])
by Lemma 12. Since Ay;) £ Aqy) we have that Mgy £ AY) ¢ M and
N

therefore > A(;,j), and the equality A(; ;) = )\(lj) follows.

For the second assertion notice that if f(* and fU) are two different
factors without characteristic exponents then A(; ;) belongs to M thus
Aw(i)s Ar(j) 7 +00. If Agi) = +oo then A j) is not in M for all j # i;
thus the exponent A(; ;) appears on a term of the parametrization of f @)
and therefore we have \; jy > /\(j by Lemma 12. The first assertion for
A= )\(] ) implies that A(; j) < )\( ) and equality follows.

Now suppose that A.(;,) € M. If j # i the exponents A.(;y) and A, j)
are comparable by Lemma 9. We distinguish two cases:

a) Ae(i) < Ao ). Notice that assertion 1 implies that if f() has some
(i0) (40,3)

characteristic exponent then )\(j) > )\N(ZO) If Aigio) < A(io,j) there is

J # lo # o such that ) = Agig,10) = min{Agg,10), Adio, Nt = AGio)
by Lemma 10; hence the exponents A(;;) and A.(;,) are comparable by
Lemma 9. If A\;(55) = A5 set lo = J.

If Aj1) < Ax(io) We deduce from Lemma 10 that

AGy = min{AG i), AGn} = Aate) = min{Agig 10), Aoy} = Agio )

and A(;;) does not belong to M by definition of A.(,). This shows that
Aw(5) = Anlio)-

(b) Atio,j) < An(io)- By definition of A.(;,) we have that A, ;) ¢ M and
then assertion 1 implies that A(;, ;) = )\(j) If Ay < )\(j) we deduce using
Lemma 10 that A¢; ;) = min{Ag; 1), A¢io,j) } is equal to A(ip,1) and < Ag(ip)-
It follows that A, ;) ¢ M, thus A.;) = A} @) < Ak(io)-

For the last assertion we only have to prove that if A\, = )\gi) and
Ar() = /\(lj) they are comparable by <. By Lemma 9, A ;) is comparable
with A" and AY). The case A ;) < A?, AP implies that A ;) € M by
Lemma 12, thus A.;) < A(;,;) a contradiction. Therefore we can assume
that /\gi) < A(i,j)» replacing 7 by j if necessary. It follows from the definition
of order of coincidence that if A{”) < A ;) then A = AP 1E AP = &,
then the result follows from Lemma 9. O
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We relabel the factors f(*) of f in order to have: Ak(l) € Ag(2) - <
Au(r)- If A € pN M, the monomial X* appears in all the roots of f(") with

the same coefficient cg\T). Then we define

go= > X}

An(ryEAEPYNM

(15) Y .= Y + ¢o if )‘n(r) ¢ M
’ Y + ¢o + cX* =, for ¢ € C* generic, if Ar(r) € M.

Generic here means that if A,y = M) € M then ¢ — Cf\lzu) # 0.

LEMMA 16.— The polynomial Y’ has order of coincidence equal to
Awi) With fO) fori=1,...,r.

Proof. — 1t follows from Lemma 15 that if A,y < Ay then A
is the order of coincidence of f(* and f(") (remark that Ae(iy € M by
assertion 3 of Lemma 15, thus A, = )\(li) is > A, by assertion 1 of
Lemma 15; it follows from this fact that A,y ¢ M thus )\gi) < A, by
Lemma 15). This implies that the order of coincidence of Y’ with f(® is
well defined and equal to A.(;). The generic choice of ¢ guarantees in the
case A ;) € M that the order of coincidence of Y’ with those factors f (#)
of f with )‘n(i) = )\,{(T) is )‘n(r)' O

DEeFINITION 9. — We say that Y is a good coordinate for the reduced

quasi-ordinary polynomial f € C{p¥ N M }[Y] if the order of coincidence of
Y with f) is well defined and equal to Ax(i), fori=1,...,7.

If Y is not a good coordinate for f then the C{p¥ N M }-automorphism
of C{p¥ N M}[Y] that maps Y — Y’ for Y’ defined in Lemma 16, trans-
forms f — f" € C{p¥ N M}[Y’']. The polynomial f’ is quasi-ordinary, f’
and f have the same Eggers-Wall tree and Y’ is a good coordinate for f’.

In Section 3.2.2 we show that if Y is a good coordinate for f the
characteristic monomials determine its Newton polyhedron.

3.2. The first toric morphism of the embedded resolution.

We build the first toric morphism of the embedded resolution and
we prove that it simplifies the singularity preserving at the same time the
quasi-ordinary structure.
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3.2.1. The case of a Newton polyhedron with only one compact edge.

We deal first with the case when all the irreducible factors of f are
parametrized by series of the form X*e with £(0,) = c.

We denote by M) the lattice M + A\Z for A € £ M (resp. Ny for the
dual lattice), by M} the lattice My & yZ (resp. Nj for the dual lattice)
and by ny the integer |My/M]|. Let ¥ be a subdivision of ¢ containing
cone o := o M { where £ is the linear subspace of N orthogonal to the
compact face [nA,ny] of the polyhedron N(f) (where n = deg f). The
subdivision ¥ of p is rational for the lattices N§ and N’. We have the
following commutative diagram of equivariant maps:

855}
Zy, N, —— ZgN|

(16) ! l

™
ZE,N' —E> Z[_),N’

where the vertical arrows are defined by lattice extension and the horizontal
arrows are defined by the subdivision ¥. Often we do not precise the lattice
if it is corresponds to the below line of the diagram 16.

LeEMMA 17.— The lattice homomorphism ¢ : M' — M) that maps
y — A and fixes u € M induces an isomorphism

(17) M, = M,.

If we choose an splitting M' = M, @ Ker(p) we have a semigroup
isomorphism

(18) UVOM'%’n,\(y—/\l)Z@(pvﬁM)\)

which corresponds to an isomorphism Zs N+ = Qg N/ X Zp N, -

Proof. — We use the combinatorial arguments in the proofs of
Lemma 5 and Proposition 6 to prove (17) using that ¢+ = Ker(¢g) by
(7); then (18) holds by (10). a

We denote by S(Ei) the strict transform of the germ S defined by
the irreducible factor f(®) of f fori=1,...,r.

LEmMA 18.— The intersection Sg) N 75" (0,) is the point o; =
(c',0,) € Oy counted ef\l) = (deg f®))/ny times, where ¢ = ¢™ and ¢

is the coefficient of X' in any root of the polynomial f® defining S®. In
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particular, the intersection Sg 'n Q. is transversal if and only if eg\i) =1.
The strict transform Sy, of S is a germ at the point o;.

Proof. — To simplify the proof we drop the super-index (7). If 7 € £

with 7 C © then Sy, N Q, # 0 implies that 7 = o since the face of N,(f)
defined by o is of dimension > 1 (by Lemma 3). The strict transform Sy
is defined on Z, by X "*f = 0 and it follows that the ideal of O, N Sx
is generated by (X™(¥=2) — c"r)ex where c is the coefficient of X* in any
root of f. This implies that the intersection of the strict transform Sy, with
75 ' (0,) is reduced to the point 01 = (¢’,0,) counted e, times. In particular,
the intersection is transversal if and only if ey = 1. This shows also that
the strict transform Sy, is a germ at the point o; since this is the only point
of intersection with the exceptional fiber. O

ProposITION 19. — The restriction of the projection O, X Z, n, =
ZoN' — Zpn, to (Sg,01) Is quasi-ordinary. The germ (Sx,01) is de-
fined by a quasi-ordinary polynomial fs € C{p¥ N M)}[W] (where W =
Y™ X ™A _ ¢™) with characteristic exponents X' — \ for those character-
istic exponents X' > X of f. If \(; ;) is the order of coincidence between the
irreducible components f and f) of f then the order of coincidence of
fg) and fg) is A(; j) — A If (S, 0) is irreducible the same holds for (S, 01).

Proof. — We deal first with the case A € M, i.e.,ny = 1and Ny = N.
By Lemma 18 the chart Z, contains the strict transform Sy.. By hypothesis
the roots ¢ of f are of the form ¢ = cX* + D ovsa cgf,)XX, i.e., the
coefficient of the monomial X* is the same for all of them. By Lemma 18
the strict transform of Y — ¢ = 0 by the morphism Zo N — Zo N 18
defined by

(19) 0=XY"*—c+ Z cE\i,)X)‘/_’\
A>A

where the terms X* =* vanish on the orbit Q, for all X > \. By Lemma
17 the chart Z, vy (resp. Z, n) is isomorphic to Qg Ny X Zp N, (resp. to
Og, N X Zp N)- Since ny = 1 the toric morphism Zg, N — Zq, N Testricts to
an isomorphism of the orbits (O)a’N; >~ O, n = O, by (18), the coordinate
ring of the orbit O, being equal to C[Y X ~*]. We study the strict transform
of Y — ¢ = 0 (resp. of S) at the point of intersection with the orbit
0, by replacing the invertible term XY~* by the unit ¢ + W on (19)
(resp. on X~ ™ f = 0). We obtain a polynomial f5; € C{p¥ N M}[W]
from X~ f which splits in C{p¥ N M\}[W]: fs = [[1n, (W — 7()); where

1=
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7 = donsa cf\i,)X)"_’\. It follows from Lemma 12 that the series 7(*)
are quasi-ordinary branches and that their characteristic exponents are
obtained from those of ¢(9) by subtracting \. If f is irreducible the same
thing happens for fs. Otherwise, we have 7(?) —7() = X=*(¢() —¢()) and
this implies the assertion about the orders of coincidence.

If ny > 1 we reduce to the previous case by passing through the
diagram (16):

Each irreducible factor of f splits into ny irreducible factors in
C{pY N M,}[Y] having order of coincidence equal to \. We factor f as a
product F - - - Fy,, in C{p¥NM,}[Y], the F; being defined by the properties:
the order of coincidence of F; # Fj (resp. of any two factors of F;) is = A
(resp. is > A). The Eggers-Wall tree of F; is obtained from the Eggers-
Wall tree of f by deleting the vertex Py and dividing by n) the coefficients
of the chain C;(f) between Py and the extreme points Pfgo of the tree
(this follows from Lemma 11 and Definition 7). Then the strict transforms
of F; = 0 by IIy are disjoint germs at the ny points of intersection with
Qp, N by Lemma 18.

By Lemma 17 the toric morphism Z,, N, = Zg,N corresponds to the

semigroup inclusion

na(y = NZ@ (p N My) = (y = NZ® (p" N My).

This map is an unramified covering of degree ny and it commutes with
the projections onto the factor Z, n, of Z, N and Z, n. This provides
an isomorphism between the strict transform of F; by IIx, and Sy which

commutes with the projection onto factor Z,, n, fori =1,...,n,. A fortiori
the restriction of the projection Z, y» — Z, n, to Sy is quasi-ordinary and
the result follows. O

With the same hypothesis of Proposition 19 we have:

CoroLLARY 20.— If (S, 0) is analytically irreducible and if A = A
is the only characteristic exponent of ( the strict transform Sy of S is
isomorphic to the germ Z, n, and the restriction of ms to Sy, — S is the
normalization map. The morphism Ty, is a partial embedded resolution of
S C Z,. If ¥ is a resolution of the fan ¥ the map wsy o wy is an embedded
resolution of S C Z,.

Proof. — It follows from Lemma 18 that Sy is isomorphic to the germ
(Z,,n,,0p) and to the normalization of (S, 0) by Proposition 14. We argue
as in Proposition 6 and Lemma 5 to extend the result in this case. O
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The following remark is a consequence of the proof of Proposition 19.

Remark 21. — If f is irreducible, A = A\; and if f; € C{p¥ N M) }[W]
defines a good coordinate for fs, then the image of f; = 0 by ny is defined
by an irreducible quasi-ordinary polynomial in C{p¥ N M}[Y] with only

one characteristic exponent A; and with maximal order of coincidence
with f.

The following result has been suggested by Némethi and McEwan see
([M-N] and [GP-M-N]).

LeEMMA 22. — The morphism s, of Proposition 19 is an isomorphism
over Z, — S.

The discriminant of the morphism IIy is described by (4). It follows
from this formula that the functions X* and Y vanishes on those orbits
of Z, N which are contained in the discriminant locus of IIy. The image
of these orbits by the map Z, n; — Z, is the discriminant of s and it
is contained in S since all the roots of f are of the form Y = X* up to
multiplication by a unit. O

3.2.2. The general case.

We build the first toric morphism of the embedded resolution in the
general case.

We suppose from now on that Y is a good coordinate for f . The New-
ton polyhedron of each irreducible factor f() with Ax(i) # +oo has only
one compact edge vertices (deg f(*,0) and (0,deg f()\,(;)) where X*=
is the initial monomial of any root of f(). Since the set of {Ae@@)} is com-
pletely ordered by <, the set of compact faces of N,(f) defines a monotone
polygonal path with inclinations running through {Xc(1), ..., Axr) } — {400}
independently of the choice of good coordinate (see [GP1] for the terminol-
ogy). This fact is a special feature of quasi-ordinary singularities and it is
a generalization of the plane curve case.

The dual fan ¥; of the polyhedron N(f) is obtained by intersecting o
with the linear hyperplanes £,;(;y := (y—Ax(j), u) = 0 for those A(;y # +00.
Since we have that {A.;)} is totally ordered by <, we find that the cones
0 N £,.;) belong to ¥, since they cannot intersect in the interior of p.
Geometrically, this implies that the exceptional locus of mx, is a bamboo
of P(}:, each one of them being the closure of the orbit Qyne,,, (we say
that a curve is a bamboo if the dual graph of intersection of its irreducible
components is isomorphic to the subdivision of a segment).
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PROPOSITION 23.— If A.(;y # +00 then we have:

1. The strict transform of S®) by 7y, is a germ (‘S’(Eil)7 ogi)) at the point

of intersection with the exceptional curve ngl (0p)-

2. The Eggers-Wall tree of a polynomial defining the strict transform
Sy, at the point ogi) is obtained from 6(f) by removing the segment
[Péj),P/{i)m[ from the sub-tree of O(f) given by |JO(f\Y9), for fU) with
order of coincidence > A.;) with f (©), The coefficients of the vertices of
the resulting tree are obtained by subtracting A, (;y. The coefficients of the
associated 1-chain are obtained by dividing by n,,, -

Proof. — The first assertion follows from Lemma 18. It follows from
Proposition 19 that o&i) = ogj ) if and only if the irreducible factors of the
symbolic restrictions of f and fU) to the compact edges of their Newton

polyhedra coincide

This is equivalent f(9 and fU) have order of coincidence > Ar(s) =
Ax(j)- The second assertion follows from Proposition 19 since the character-
istic exponents and the order of coincidence of f)(zz) and fg ) are obtained
from those corresponding to f(* and fU) by subtracting A;. The strict
transform Sg ) is a toric quasi-ordinary hypersurface relative to the base
Z,, L by Proposition 19 and the statement about the coefficients of the

associated 1-chain follows from this change of lattice by Lemma 7. O

Remark 24. — If A\, ;) = 400 the strict transform of S is the germ
of the closure of the orbit associated to the edge yRyo at the point of
intersection with the exceptional curve 7r£11 (0p)-

The assertion follows from the description of the exceptional locus and the
discriminant locus of a toric modification given in Section 1.1 once it is
noticed that the point of intersection o(f) of S® with 7r>511 (0p) is the orbit
associated to the (d + 1)-dimensional cone of ¥; which contains the cone
yR>o.

3.3. The toric embedded resolution.

We show the way to iterate the procedure of the previous section
to build an embedded resolution of S C Z, by first eliminating the
characteristic exponents and then by resolving the toric singularities of
the ambient space.
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By Prop081t10n 23, the germs defined by the strict transform at each
of the points o1 ) of intersection with the exceptional curve are simpler toric
quasi-ordinary hypersurface singularities. In a finite number of iterations
of this procedure the strict transform becomes a union of r toric quasi-
ordinary hypersurface germs with no characteristic exponents at all, i.e.,
is collection of r germs of affine toric varieties at the special points. It
follows from Propositions 19 and 14 that the strict transform of (S, o) is its
normalization. Thus this method provides an embedded normalization (in a
normal environment) of the germ (S, 0) C (Z,,0,). We keep the information
of the toric singularities of the ambient space by defining at each stage a
toroidal embedding without self-intersection:

First, we associate to the toric quasi-ordinary hypersurface (S,0) C
(Z,,0,) embedded with a good coordinate the toroidal embedding defined
by (Z,, N{). Its conic polyhedral complex ©g is equal to (g, Nj). Then,
we associate to each point of intersection ogi) of the strict transform Sy,
with the exceptional fiber a normal hypersurface SY—) defined by taking a
good coordinate for the quasi-ordinary projection of Sy, of Proposition 19.
Obviously, if og = 0(1]) we have S;i) = S%j) (see Remark 21).

LemMA 25.— The c.p.c. ©1 associated to the toroidal embedding
defined by the variety Zx,, and the set normal hypersurfaces {@U}U es® U

{(Sii),ogi))})\,{(i)¢+w is obtained from the c.p.c. ¥1 by adding for each

point in the set {01 }is “( )#+°° the c.p.c. (p, N/'\N(Z ) and pasting it to ¥;

by identifying (p x {0}, N,\w) x {0}) with (0N €x(), None,.,,) by the lattice
isomorphism corresponding to (17) by duality. The c.p.c. ©1 is independent
of the choice of good coordinates.

Proof. — To simplify the proof we drop the index i, we denote A,
by A and we keep notations of Proposition 19 and Lemmas 17 and 18.
The germ (S1,01) is defined by the vanishing of a monic polynomial
f1 € C{p¥ N My}[W] of degree one where W = X™ =) — ¢, We deduce
from Lemma 17 that the analytic algebra of the germ (Zyx, 01) is isomorphic
to C{oY N M}} by the isomorphism that maps f; — X¥' and X" — X*
for all u € p N M),. Since the c.p.c. associated to the torus embedding of
Zy N, is (0, N1) the same holds for the toroidal embedding corresponding
to ©{" and the set of normal hypersurfaces H = {00} ye(oreyy U{S1}. The
sub-c.p.c. associated to the toroidal embedding corresponding to H — {S;}
is (0N ¥, Nyne); it is isomorphic to (p, N1), the pasting isomorphism being
obtained from (17) by duality. O
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Then we continue as follows:

If the quasi-ordinary polynomial defining the germ of the strict
transform (Sgl,o(li)) has some characteristic exponent we put it in good
coordinates; then its Newton polyhedron defines a subdivision of (g, N ;\m) ),
for 1 < i < 7. These subdivisions glue up to define a subdivision X of the
c.p.c. O since the pasting cones (p x {0}, Ny, ) are not subdivided, for
1<e<r.

The corresponding toric modifications, defined locally, paste into
a toroidal modification m : Zs — Z;; (we denote the variety Zs,
by Zi, the morphism ny, by m, and Sy, by S7). By iterating this
procedure we obtain: A modification 7y : Zy — Zr_1, where the variety
Z), is given with the structure of toroidal embedding (Xj denoting its
associated c.p.c.). The strict transform S} of S by m; o ... o m at the
points of intersection with the exceptional fiber is given with a quasi-
ordinary projection and the associated Eggers-Wall tree is obtained from
the eventually non connected tree of Sj,_; as indicated by Proposition 23. If
the quasi-ordinary polynomial defining the germ .S}, at any of these points
has some characteristic monomial we define a finer toroidal embedding for
Zy. (with c.p.c. O defined by using Lemma 25) and a subdivision ¥z, of
O with associated modification g4y : Zk4+1 — Zk. In a finite number kg
of steps the quasi-ordinary polynomials defining the germ S,’CO at the points
of intersection with the exceptional fiber have no characteristic monomials.
Then it follows from Corollary 20 that

THEOREM 1. — The proper morphism m = m, o ... o m is a partial
embedded resolution of the quasi-ordinary hypersurface germ (S,0) C
(Z,,0,). The restriction S’ — S of 7 to the strict transform S’ of S is
the normalization map.

An embedded resolution of S C Z, is obtained by composing 7 with
any toric resolution of the toroidal embedding Zy, with the c.p.c. ¥, (or
also with the c.p.c. O,).

Remark 26. — The irreducible components of the exceptional fiber
7~ (0,) of the partial resolution are projective lines P}. The dual intersec-
tion graph of the components of 771(0,) is obtained from the Eggers-Wall
tree 0(f) by deleting the extremal segments.

One of this segment joins the base vertex Py to one defined by the
first characteristic exponent of the reduced f and the others corresponds
to the segment containing the point PJ(:(ZO fori=1,...,r
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3.4. The case of plane curve germs.

The case of plane curve germs corresponds to rk N = 1. We keep
the same notations. The partial resolution procedure depends only on
the Eggers-Wall tree of f € C{X}[Y] with respect to the projection
(X,Y) — X or more precisely on the choice of the curve X = 0. If f
is irreducible then our construction is closely related to the construction
of the “Tschirnhausen good resolution tower” of A’Campo and Oka (see
[A’C-0k], Theorem 4.5). In particular if the curve X = 0 is not contained
in the tangent cone of S we show that this procedure leads to a minimal
embedded resolution of the curve.

Let f € C{X}[Y] be a reduced polynomial with Y a good coordinate
for f. We keep notations of Theorem 1 and we give some more definitions
and notations. We denote by ©,°% the minimal regular subdivision of the
c.p.c. Oy, (for the minimal regular subdivision in the toric two dimensional
case see Proposition 1.19 of [Od]). This provides a resolution p : Zgres — C?
where p ;= 7o Ty which is canonically determined from the projection
(X,Y)— X.

Denote by G(p,0) (resp. G(p, f)) the subset of ©;°% whose elements are
the cones corresponding to non empty intersections of pairs of components
of the exceptional divisor of the resolution p, (resp. of the total transform
of S by p). Denote by G(m,0) (resp. by G(m, f)) the subset of O, of those
cones corresponding to non empty intersections of pairs of components
of the exceptional divisor of the partial resolution 7 (resp. of the total
transform of S by ).

Recall that each edge of ©,°% corresponds to an irreducible divisor
in the toroidal embedding and any pair of these divisors intersect if and
only if the corresponding edges belong to the same cone. It follows that
G(p,0) (resp. G(p, f)) is combinatorially isomorphic to the resolution graph
of the resolution (resp. to the total resolution graph of the resolution), we
just drop the dimension of the faces by one. We deduce from Proposition
23, Remark 24 and an easy induction that the Eggers-Wall tree 6(f) is
combinatorially isomorphic to G(m, X f).

The valency of a cone e in a conic polyhedral complex is the number
of cones of the complex containing e as a facet. We denote by #1 the edge
of G(p,0) (resp. G(p, f)) which corresponds to the first blow up and we

define
5e) = valency of e if e#+#1
1+ valency of e if e = #1.
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The valency of e and the integer (e) depends on the complex containing
e. The following lemma implies that the set of non extremal vertices of
6(f) correspond bijectively with the rupture vertices of G(p, f) (which are
defined by those e with d(e) > 3).

LEmMA 27.— Let f € C{X}[Y] be a reduced polynomial of degree
> 1, such that Y is a good coordinate for f. For any edge e in G(m,0) we
have

1. The integer 6(e) in G(p, X f) is > 3
2. If A 1 ¢ Z~1 then §(e) in G(p, f) is = 3.

Proof. — Recall that we have relabeled the factors of f in order to
have A1) < ... < Ag(r). We show first the assertion for the exceptional
divisors appearing in the first toric modification 7s;,. The extremal edges
of the fan ¥y, which are defined by the vectors uj,us of the canonical
basis, correspond to the divisors X = 0 and Y = 0 respectively. If

Ax(y) # +00, there is an exceptional divisor D), of ms, corresponding to
dx..,, € G(m, f). We denote by the same letter the edge dy_,, of ¥; and
the primitive vector (n,\m) s T,y Ak(y)) On this edge for the lattice Nj. We
say that a two dimensional cone o is on the left (resp. on the right) of the

vector dy, , € o if o C (dx,,,u2) (vesp. o C (u1,dy_,)))-

By Proposition 23, the divisor D), meets the strict transform of S
by 7, .

If Aegry > Awgy) (resp. if Mgy > Agq)) then there exists a two
dimensional cone on the left (resp. right) of dy_,, in G(p, f), obtained
from the minimal regular subdivision of the cone o € G(m, f), on the right
(resp. on the left) of dy . Therefore if A(ry > Mgy > A1) we have
6(dx,,,) = 3.

If Ai(ry = +oo then Y divides f and Y = 0 is a component of the
strict transform of S by 7y,. If Ay # 400 two cases may occur: a) if
the cone o = (dy,,,, u2) is not regular we have a two dimensional cone in
G(m, f) on the left of dy,_, ; b) the cone o is regular thus A,y € M. By
the proof of Lemma 15 there exists ¢ # r such that A.;) = Ay = Ae(r)
By Proposition 23 this implies that the strict transforms of f(! = 0 and
™ = 0 meet the divisor Dy, in two different points so that we have

6(dx.,) = 3.
Now we deal with the divisor Dy, ,,. The cone (uq,dy

G(m, X f) and we deduce from this that §(dy

~1y) belongs to

cy) = 3 in G(m, X f). If the
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cone (ui,dy,,,) is not regular we can argue as before to show the existence
of a two dimensional cone of G(m, f) on the right of dy_, . Otherwise we
have ny, ) A1) = Land if A}, ¢ Z>1 the only possibility is da,,, = (1, 1).
Then we have A1) € M and thus A,y = A1) by Lemma 15. This case
has already been solved.

These facts give the assertion for e corresponding to an exceptional
divisor of myx,. When we iterate, the curve X = 0 corresponds to the
equation of the exceptional divisor meeting the strict transform, thus after
the first step we are always in the case 1 and proposition follows. O

An exceptional divisor D of the resolution p is collapsible if it has self-
intersection number equal to —1 and the corresponding edge d € G(p,0) has
6(d) < 2in G(p, f). If the divisor D is collapsible, the modification obtained
by blowing down D is still a resolution and the corresponding resolution
graph is obtained from G(p,0) by deleting the point corresponding to D.
The self intersection of the divisors which are images of compact divisors
meeting D is increased by one. In a finite number of steps we obtain a
minimal resolution, i.e., a resolution in which no exceptional divisor is
collapsible. The minimal resolution is unique up to isomorphism (see [Lau]).

COROLLARY 28.— If A7} Z~1, in particular if the projection

k(1) J
(X,Y) — X is transversal for all the components of f then the morphism
p is the minimal resolution.

Proof. — The self intersection numbers of the exceptional divisors of
the minimal resolution of a toric surface singularity are < —2 (see Proposi-
tion 1.19 of [Od]}). This implies that the exceptional divisors corresponding
to edges in G(p, f) — G(m, f) are not collapsible. Then the corollary follows
from Lemma 27. O

Remark 29. — The number of local toroidal morphisms used in the
partial resolution 7 is not necessarily equal to the complexity of the
resolution (as defined by [Le-OXk]).

For instance f = (Y —X)2—X3))((Y 4+ X)? — X®)) has characteristic
exponents {1, 2, 2}. The projection (X,Y) — X is transversal for the
two irreducible components. It follows easily that the number of local
toroidal morphisms used to define our partial resolution is three; our good
coordinates (15) are generic. On the other hand, the resolution graph is a
bamboo so that the resolution complexity is equal to ones the curve can
be resolved with one toric morphism, with respect to a special choice of

coordinates.
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4. The semigroup associated
to a toric quasi-ordinary branch.

We associate to the quasi-ordinary branch ¢ a semigroup I' which
is determined from the characteristic exponents; the construction of I'
involves also a generalization of the notion of the plane curves with maximal
contact with a given branch given by Lejeune [LJ] and this relation can be
described by using the approximate roots of the polynomial f. The main
part of the results and the proofs of this section is given in [GP3].

4.1. Definition of the semigroup.

In the following sections we study a fixed toric quasi-ordinary singu-
larity S parametrized by a toric quasi-ordinary branch ¢ € C{p¥ N 1 M}
with g > 1 characteristic exponents {\1,..., s} and with minimal poly-
nomial f € C{p¥ N M}[Y]. If tk M = 1 then the singularity S is a plane
branch and the set of intersection multiplicities (S, S")g of S, such as plane
curve germs S’ do not contain S as a component, forms a sub-semigroup
of (Z>o,+) which is an invariant of the germ S and which is generated by
the following elements (see [Z6]):

(20) Y1 =nli, Yi+1 = Ny, +’Il)\j+1 —n)\j, foryj=1,...,9—1.

For j=0,...,9 — 1, we expand

Fi+1 = n((n1 — 1)ng---njA + (ng — L)ng - njde
+~--+(nj —1)/\j+)\j+1
= ni...n; ((60 - 81)/\1 + (61 - 62))\2
+ ...+ (6]‘_1 - ej))\j + 6]')\]‘4_1.

We denote %’_yi by v; for i =1,...,g and we have
(22) Y1 = /\1,’7j+1 =n;v; + )\j+1 - )\j, forj=1,...,9—1.

DEerINITION 10. — We associate to the quasi-ordinary branch { the
sequence of semigroups I'; = p¥ NM +v1Zso+- - - +74Zso for j =0,...,g.

We denote I'y by I' and nI'; by [ for j=0,...,g. The classical semigroup
of a plane branch is I_‘g.
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If ¢ is a classical quasi-ordinary branch suitably normalized(!). Lip-
man proved that the sequence of characteristic exponents is an analytical
invariant of the germ it parametrizes when dim S = 2, by building a (non
embedded) resolution of the germ (see [L1}, [L3]) which determines the
characteristic exponents. Luengo gives another proof also using resolutions
(see [Lu]). If the germ is analytically irreducible the characteristic expo-
nents define a complete invariant of the embedded topological type of the
hypersurface S C C*! it parametrizes (see [Gau] and [L4]). We proved
in [GP2] that if 7 and ¢ are quasi-ordinary branches parametrizing S then
the semigroups associated to them are isomorphic and moreover that the
minimal set of generators of this semigroup defines the sequence of charac-
teristic exponents of any normalized quasi-ordinary branch parametrizing
S. By Gau’s characterization it follows that the semigroup I" defined above
is a complete topological invariant of the embedded topological type of
germ (S,0).

The following lemma generalizes the properties of the semigroups of
plane branches (see [T1], Chapitre I, Lemma 2.2.1) to the quasi-ordinary
hypersurface case (see [GP2]).

LeMmMA 30 (See [GP3)).

1. The sub-lattice of M generated by I'; is equal to M, for0 < j < g.

2. The order of the image of y; in the group M;/M;_; is equal to n;
forj=1,...,g.

3. We have that v; > nj_1yj—1 forj =2,...,g.
4. If a vector u; € p¥ N M; then we have u; + n;vy; € I';.

5. The vector n;v; belongs to the semigroup I';_; for j = 1,...,g,
moreover we have a unique relation:

(23) njy =@ 410+ 41754

such that 0 < lij) <ni—1and o) e My, forj=1,...,g.

In the plane branch case several authors have studied the properties
of those curves S’ such that the intersection multiplicity with S at the

(1) In the case of a plane branch this condition means that X = 0 is not contained
in the tangent cone of the curve.
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origin belongs to the unique minimal set of generators of the semigroup of
the branch (see [Z6]). Lejeune introduced the notion of curves of maximal
contact with a given plane curve germ for curves defined over a field
of arbitrary characteristic in terms of the resolution (see [LJ]). If the
characteristic is zero it turns out that both notions are equivalent (see [Ca]).
If the projection (X,Y) is transversal we can study these curves by means
of the minimal polynomials of suitable truncations of the roots of f. When
we do this with respect to an arbitrary projection, the curves we obtain
provide a non necessarily minimal set of generators of the semigroup of
the branch S. These curves can be represented by some of the approximate
roots of the polynomial f (see [A-M]) and we call them semi-roots. following
the terminology of [A3]. See Popescu-Pampu’s survey [PP1] for more on
the notion of semi-root.

DEFINITION 11.— A jt*-semi-root of f is an irreducible quasi-
ordinary polynomial in C{p¥ N M }[Y] of degree ng ...n; which has order
of coincidence equal to \j.q with f, for j =0,...,g.

The minimal polynomials of the quasi-ordinary branches pg+...+p,
obtained by truncating ¢ in Remark 13 are j**-semi-roots of f for j =
0,...,9

ProprosITION 31 (see [GP2] and [GP3]). — Let g € C{p¥ N M}[Y] a
monic polynomial of degree ng...n,. Then q is a j-semi-root of f if and
only if ¢(¢) = X"+, for a unit ¢;.

The notion of semi-root extends the properties of maximal contact
with respect to the resolution to the quasi-ordinary case (see Proof of
Theorem 1 and Remark 21).

Remark 32. — The polynomial g; is a j-semi-root of f is and only
if the strict transform of g; = 0 by the morphism m; 0...0m is a germ
defined by a good coordinate and conversely.

This follows from Proof of Theorem 1 and Remark 21.

Let A a ring containing Q as a subring. Approzimate roots are defined
by Abhyankar and Moh, (see [A-M], [G-P], and [PP1]). If p is any monic
polynomial and k divides the degree of p there is a unique monic polynomial
r in A[Y] of degree ie—gk-(p—) such that deg(p — r¥) < deg(p) — 51%(”). We say
that r is a k-semi-root of p. We can use Proposition 31 to prove that the
ej-approximate roots of a quasi-ordinary polynomial f are semi-roots, and
therefore are irreducible quasi-ordinary polynomials with a prescribed order

of coincidence with the polynomial f (see [GP2] and [GP3]).
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4.2. Expansion in terms of semi-roots.

The expansions in terms of semi-roots are introduced by Abhyankar
in the plane curve case (see [A3]) and used by Popescu-Pampu in the case
of a quasi-ordinary hypersurface singularity (see [PP2]).

We fix from now on a complete set qo,...,qy of semi-roots of f
(deggq; = ng---m; for i = 0,...,g9). We assume that the coefficient of
the term X%+ appearing in ¢;({) by Proposition 31 is equal to one for
j =0,...,9 — 1 in order to simplify some computations.

We recall now the classical g-adic expansion of a polynomial py € A[Y]
with coeflicients on a domain A in terms of a polynomial ¢ € A[Y] having
invertible leading term (see [Z6]). The sequence of Euclidean divisions:

Po =p19+ ap, p1 =p29+ai, ..., Ds =DPst+1q+ as,

(where s is the first integer for which ps1+1 = 0) provides a unique
decomposition of the form

H:a0+a1q+a2q2+~--+asqj, for 0 < dega; < degq — 1.

LemMA 33 (see [PP2]). — Any polynomial h € C{p¥ N M }[Y] can be
written in a unique way as

(24) h= chl ----- ngrlqulqll2 "'qf?gﬂ

with ¢, ... e C{p"NM},0<ly <ng—1fork=1,...,g9andlg41 € Zso.

g1

Ifcll,...,lg,O and lel

.....

1,0 are two different coefficients of the expansion
o ! I
the Newton principal parts ofcll,...’lgyoqél (€)-+-ag1(C) and cyy .1y 04q' (€)

1y .
-+qg1(C) (viewed in the ring C{p" N My}) have no term in common.

Proof. — The g4-adic expansion of h is of the form: A = ay )+a(lg)qg+

-+ a( qg We build the g,_;-adic expansions of the coefficients:

o9 — a(()«zj 1) + afjl)qg—l U

(9—1) sg-1
3 +a g

Sg—laj g—1

where 0 < deg al(f’j_l)

(9)

since a;” is of degree < np---ng = m. An expansion satisfying the

required properties is obtained by iterating this procedure. The unicity

<ng--ng_1—1for0 <l <syg_3and0<sg-1 <ng—1
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follows from the unicity of Euclidean division. For the last assertion,
remark that by Lemma 31 the Newton principal part of gx_1({) (viewed
in C{p¥ N M,}) is equal to X7 for k = 1,...,g. It follows from 2 in

Lemma 30 that the Newton principal parts of clh.“,lg,oqlol ©- --q‘ffﬁl(C)

and of cl;,...,z;,oqé; (C)---qﬁf_l(C) do not have any term in common if
(lyeeslg) # (7,05 15). O

The following proposition (see [GP2]) generalizes [Z6], Chapitre II,
Th. 3.9. in the plane branch case.

ProposITION 34. — If h € C{p¥ N M}[Y] is of degree < non; ...n;
then the Newton principal part of h(¢) belongs to C[I';], for j =1,...,g.

Proof. — The result is trivial if degh = 0. If degh < n;...n; then

the (qo, - . ., qy)-expansion of h is of the form: h =) ¢, ., q(l)1 q? ""1;]71-

,,,,,

' v . .
c L q(l)‘ ¢ --- Qf_l(C) do not have terms in common, thus the polynomial
sl :
h(¢)n is a sum of some of the terms in the Newton principal parts of

the summands ¢, .., g5 () -+ - q;]_l(C) and therefore it belongs to C[I';] by
Proposition 31, for j =1,...,g. 0O

We call the expansion (24) above the (qo, ..., qq)-expansion of h.

T

LemMA 35.— The (qo, ..., qy)-expansion of q;2, is of the following
form, for 1 < j < g:

* j Lol !
(25) q;lil =cjq + ch(f,).“,l,qol‘lf g

where c; € C*, the other coefficients belong to C{p" N M}, we have

0<ly <ngy1—1fork=0,...,5 —1. The coefficient cg(j])) appears
W

L9 0
g
and it is of the form Xam - unit, where the integers l(J), e ,1(7) and the

g 1 j—2

exponent o) are given by formula (23). Moreover, if X o' appears on the

coefficient cl(f ,)---,l, then

(26) njv; <o+l + -+ 1y

and equality holds if and only if (I1,...,l;) = (I D9 0) and o/ =
o).
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Proof. — Since deg q?i 1 = ni---n; the algorithm to calculate the

(qo, - - -, gq)-expansion begins by dividing q;i 1 by g;. This gives q;li 1=
Cj+19j+1 + 15, where ¢, € C* since both polynomials have the same
degree. The g that may appear in the expansion of r; are those of degree
< degr; < ny---nj. We deduce from the second assertion of Lemma 33
that

j 1 L

N a8 Q) a7 Q) € nyys + 0¥ = N (g2, (0))-

This implies that if X' appears on the coefficient cff )”_ L, then formula
(26) holds. If equality in (26) holds for a term the term X o' appearing
on the series c(](])) o (€) it follows that the series is the form X - unit.

ERSTe
’ ()
a’—l—s(lj)vl 4 .+As§])'y]-. Then it follows that (I1,...,lj_2) = (lgj), . ,l;-]_)2)
and that o/ = o9) by unicity in (23). O

Assertion 2 of Lemma 30 implies that s;”/ = 0 in the relation n;y; =

5. Partial embedded resolution with one toric morphism.

In this section we build a partial embedded resolution of the toric
quasi-ordinary germ embedded in an affine toric variety by using the semi-
roots. We follow the approach of [G-T] for irreducible germs of plane curves.

We denote by A the cone p @RS, C (Na)r where Na is the lattice
N @ Z9 with dual lattice Ma. We denote by uy,...,u, the canonical basis
of {0} ®Z9. An element of AV N Mp is of the form (o, v) where a € p¥ N M
and v = viuj + - vguy where uj,...,uy is the dual basis of uy,...,u,
and v; € Zso. We denote the monomial corresponding to (o, v) by X*U",

XOUY . UL or X*+22"" depending on the context.

The embedding S C Za which is studied in this section corresponds
algebraically to the homomorphism of C{p¥ N M }-algebras:

(27) {‘IJOZ(C{pVﬂM}[Ul,...,Ug]—eR

Uj—qj—1(¢), for j=1,...,9

(which is surjective since in particular R = C{p" N M }[go(¢)]).

In the plane branch case Teissier shows that this embedding special-
izes to the monomial curve, an affine curve monomially embedded with
the same semigroup (see [T1]). In the general case the generalization of
monomial curve is given by an equivariant embedding Z' C Za which is
defined from the restriction of the lattice homomorphism
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(28) @ : Ma — My that maps a +v— a+viy +... + g7y
to the semigroup AY N M and its image I'.

5.1. Specialization through graded rings.

In the plane branch case the embedding of the monomial curve is
determined by a system of generators the graded ring(?) associated to the
filtration of R induced by the powers of the maximal ideal of its integral
closure (see [T1]). In our case we show that the homomorphism ¥y can
be filtered in such a way that the homomorphism of the associated graded
rings, forgetting the graded structure, defines the embedding Z' C Za
above.

The filtration of the ring C{p¥ N M} (resp. of C[[p¥ N M]]) defined
by a vector n € p is given by the ideals:

IJ:{ Z cuX“/;?;iér(l)m,u);j}forjEn(pVﬂM).

u€pVNM

Since the ring C{p¥ N M} is Noetherian the ordered sub-semigroup n(p¥ N
M) of Ry is isomorphic to Zso (see the proof of Lemma 1.4 of [GP1]).
The vector 1 defines a weighted filtration of C{p¥ N M}Uy,...,U,| (resp.
of C{AYNMa} or C[[AYNMal]) given by the ideals 7, generated by those
series having only terms X *U" of weights w := p(«, v) such that (n, w) > j,
for j running through the semigroup n(p¥ N My). The homomorphism ¥g
is filtered since Wo(Jy) C Iy, for all k € n(pY N M,), and then it defines an
homomorphism of the associated graded rings.

ProprosiTION 36.— The sequence of graded ring homomorphisms
associated to the filtered sequence of homomorphisms (with the filtrations

defined by n € ?7)
(29) C{pY N M}U,...,U,]¥o—R — C{p¥ N M,}
is isomorphic to

Clp¥ N M][Uy,...,U,] — C[I] < Clp¥ N M,]

(2) See [Bbk] for the definitions and properties of commutative algebra used in the
following sections.
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where the first homomorphism is defined by X*U? — X#?(®v)  and the
graduations are defined by 7. If the vector n is irrational the semigroup I’
is determined by the graduation.

Proof.— Ifn € p the symbolic restriction ¢;  of ¢ € C{p¥ N My} to
the face defined by 7 on the polyhedron N,(¢) belongs to C[p¥ N M,] since
this face is compact. If ¢ € C{p¥ N M,} there exists a unique integer k such
that ¢ € Ty — Zy+1 and then we have ¢ = ¢, mod Zy1. It follows from the
property: ¢|"¢in = (¢¢'), for 0 # ¢,¢" € C{pYNM,}, that the graded ring
associated to this filtration is isomorphic to the graded ring C[p¥ N M)
where the j-homogeneous term of the graduation is P (muy=7 CX* for
Jj €n(p¥ N M,). We deduce analogously that the graded ring associated
to the weighted filtration is isomorphic to C[AY N Ma] where the non
zero elements in the j-homogeneous term are those polynomials such that
(n,w) = j for w running through the weights of the monomials appearing
on them.

Under these identifications we have that

— The graded ring associated to R with the induced filtration is
isomorphic to the graded subring of C[p¥ N M,] generated as a C-algebra
by the symbolic restrictions ¢, of 0 # ¢ € R to the face defined by 7 on
the polyhedron N(¢). We deduce from Proposition 34 and Proposition 31
that this graded subring is isomorphic to C[T'].

— The initial term of ¥y (U;) = ¢;—1(¢) is equal to X7 (the coefficient
has been normalized to be one) thus the homomorphism gr(¥y) corresponds
to the C[p¥ N M]-homomorphism C[p¥ N M][Uy,...,U,] — C[I'] that maps
U— X" fori=1,...,9.

If the vector 7 is irrational we can recover the semigroup p“ N M,
(resp. I') from the graduation of C[p" N M] (resp. of C[I']) since each term
of the graduation is of dimension one (resp. zero or one) over C, the vector

7 defining a total ordering on p¥ N M,. O
Remark 37. — The sequence of homomorphisms (29) extends to the
sequences:

ClavnMs)] —% R < ClpY N M
(30) T T )
c{AVNMx} —25 R — C{p¥NnM,}
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where R denotes the completion of the ring R with respect to the maximal
ideal M. The assertion of Proposition 36 remains true for each line of the
above diagram.

We notice that R coincides with the completion with respect to the
filtration defined by n: we have that sm;z C Z; where s; is the minimal
power of My containing the set of monomials in 7; — Z;4, which is finite

since 1) € ,3
5.2. Equations for the embeddings.

We build equations of the embeddings of Z'' C Zx and S C Za.

PrROPOSITION 38. — The ideal of the embedding Z¥ C Zp is gener-
ated by the binomials

hy = UM - xo
na @ 13
31) hy = UM - xe?ph,
ey
(9) 1(9)
— g a@ rrl 9-1
hy = Uy - XUl Ug,

which correspond to relations (23).

Preuve.— The ideal I of the embedding Z'' C Za is generated by
the binomials X*U* — X' U%" of C[AY N Ma] verifying (see (5)):

(32) pa,w) = p(a,u).

The binomials Ay, ..., hy above verify this condition by Lemma 30. If B is a
binomial in I, we can factor the common term in Uy to obtain a binomial in
I of the form X*U%—X* U*" with w; = 0. Then the integer w, is a multiple
of ng (since ngyy € My_, by Lemma 30 we obtain from the equality (32) a
relation rvy, € Mgy_; where r is the reminder of the Euclidean division of w,
by ng and then Lemma 30 implies that r = 0). We can show by induction
on wy/ng that the reminder of the Euclidean division of X*U* — Xy
by hgy as polynomials in Uy is a binomial B; in ClpY N M][Uy,...,Uy_1].
The binomial By obtained by iterating this procedure belongs to C[p¥ N M]
and to the ideal I. The relation (32) corresponding to By is trivial since
the homomorphism ¢ is injective on M thus By = 0. This implies that the
ideal I is generated by hq,..., hy. O
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ProprosITION 39. — The ideal of the embedding S C Za defined by
(27) is generated by elements of the ring C{p¥ " M }{Uy, ..., U,] which are
of the form:

(33)
( Hy = py™ Xa(l) *
1= Ut - + Uz + r1(U1),
na @ 112
Hy = U, - X Ul1 + c;Ug + r1(Uy,Us),
) SERTERTTINNTTIN o on
ng_1 (g-1) 1 lg_o
Hy_q:= ngl — X« Ull ...Ugg_2 + c;_lUg + rgAl(Ul,Ug,...,Ug,l),
n (9,189 l(g»)l
Hy = Ugg - X Ul1 ...Ugg_1 + rg(Uy,Usg,...,Ug)-

The weight of a term X"‘U{‘Ué2 ~-UJl-] appearing in the expansion of
r;(U1,Us,...,U;) is > n;v; and equality never holds, for j = 1,...,g.
The terms appearing in the expansion of rj(Uy,Us, ..., U;) are determined
explicitly by formula (25).

Proof. — It follows from the definition of the homomorphism ¥, and
formula (25) that the polynomials H; above belong to the kernel of ¥q
(and then to the kernels of ¥ and ¥). By Proposition 38 and Lemma 35

their initial forms with respect to the filtration defined by n € p generate

Ker(gr(¥)). Then we have that gr(Ker(¥)) = Ker(gr(¥)). We deduce

using that the ideal Ker(¥) is complete for the induced filtration, that
the polynomials Hy, ..., H, generate Ker(¥)(®).

Since the inclusion C{AVNMa} — C[[AYNMa]] is an homomorphism
of local rings continuous for the 90t-adic topologies which extends to the
identity homomorphism between the respective completions, we have that
the ring C[[AY N Ma]] is a faithfully flat C{AY N Ma }-module(*). The ideal
J generated by (Hy, ..., Hy) on C{AY N Ma} is contained in Ker(¥) and
we have shown that JC[[AY N Ma]] = Ker(¥). The faithfully flat property
implies that J coincides with the contraction of Ker(¥) in C{AYNMa}(®).

Therefore we obtain that J = Ker(¥).

Let U be the subset of those elements in C{p¥ N M}[U] with non
zero constant term as power series. The image by Wy of a series in U is
a unit. This implies that the localization U~ 1¥q : U1 C{p¥ N M}[U] —

(3) See Proposition 12 No 9, §2, Chapitre III, of [Bbk].
(%) See Proposition 10 No 5, §3, Chapitre III of [Bbk].
(5) Proposition 9 No 5, §3, Chapitre I of [Bbk].
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C{pY N M,} is a well-defined homomorphism. The same argument shows
that Ker(U~1¥,) is generated by Hi,...,H,. Since U N Ker¥y = @ we
deduce from the standard properties of the localization that Hi,..., H,
generate Ker(®). 0O

5.3. Simultaneous partial embedded resolution.

We show that the partial embedded resolution of Z'' C Za built in
Proposition 6 is also a partial embedded resolution of S C Za.

The linear subspace £ C (Na)r orthogonal to Ker(y) is of dimension
d and is also orthogonal to the Minkowski sum of compact edges of N'(h;)
fori=1,...,9.

LEMMA 40.— Let 3o be the smallest subdivision of A compatible
with the Newton polyhedron of Hy ---Hy. The cone oy = A N ¢ belongs
to ¥o. The strict transform Syx, of S is defined on the chart Z,, by
the equations: U ™ H, = 0 for i = 1,...,g. The intersection Sx, N Oy,
as schemes is reduced to the simple point o,,. The germ (Sx,,0s,) is
isomorphic to the germ of toric variety Zs, n, at the distinguished point.
If ¥ is any subdivision of A containing the cone oy and if o € ¥ with
oC 5 then Sy, N Q, # (0 implies that o = og. Moreover, if ¥/ is a regular
subdivision of ¥ then the map my/ o wy is an embedded pseudo-resolution
of S.

Proof.— A vector v € oy vanish on Ker(pg) thus it is of the form
v = 9o for v € Ny belonging to ;) since v vanishes only at the vertex
of the cone p¥ (this follows from ¢g'(p") = AV + Ker(¢r) and 0o C 5)
We deduce from this that the face defined by v on the polyhedron N(H;)
corresponds to the monomials of weight w such that (¥, w) is minimal. By
Proposition 39 the symbolic restriction of H; to this face is equal to h,.
Conversely, if h; is the symbolic restriction of H; to the face defined by v
it follows that v € £ and since these are compact faces we have that v € 3
thus v € aoo.

The common zero locus S’ of the functions U; ™ H; for i = 1,...,¢
on the chart Z,, contains Sx, N Z,,. Then we deduce from the proof of
Lemma 3 that

U ™H; =U"h; + terms vanishing on the orbit O,

(34) fori=1,...,9.
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Since the equations U, "*h; = 0 for i = 1,...,g, define on the chart Z,,
the strict transform Zj;, we deduce from (34) above that S'NQ,, coincides
as schemes intersection with Zgo NQy,, thus it is equal to the simple point
00, by Lemma 5. If the germ (5’,0,,) is analytically irreducible it must
coincide with the sub-germ (S, 04, ) since both are of the same dimension.
We show this fact by proving that (S’, 04,) is isomorphic to (Zg,n,, 000 ):

We notice that the chart Z,, is isomorphic to Qg, X Zs,,n,, by (31).
The binomials W; := U; ™h,; for i = 1,...,g, define a regular system of
parameters at the point oy, of the orbit Oy, therefore we can apply Lemma
4 to the equations (34) to show the existence of ¢1,...,¢, € C{p¥ N My}
such that the germ (5’, 0,,) is given by W; = ¢; fori =1,...,g.

Let X be any subdivision of ¥ containing the cone og. The restriction
m : Sy — S of 7y is a modification and since (S,0a) is analytically
irreducible the exceptional fiber is connected by the Main Theorem of
Zariski (see [Mu] and [Z2]). On the other hand we have that

mHoa)= |J (S2n0y,) (by (3));

o o
c€X,0CA

and we have shown that on the open set Sy N Z,, of Sy the exceptional
fiber is reduced to the point o,,, therefore the exceptional fiber 7=!(oa)
contains no other points (otherwise would not be a connected set).

If ¥’ is a regular subdivision of ¥ it follows that @, N Sy, # 0 if and
only if o C 0g. Thus we can cover the strict transform with those charts
Zs for ¢ C 0p and dimo = dimog. It follows as in the case when oq is
a regular cone, that the strict transform is smooth and transversal to the
canonical stratification of the exceptional divisor therefore msy o 7y is a
pseudo-resolution. O

THEOREM 2. — Let ¥ be any subdivision of A containing the cone
agg.

1. The strict transform Sy, is a germ at the point o,, isomorphic to
(Z54,Nyy»000) and the restriction ms|Sy, : Sz — S is the normalization
map.

2. The morphism 7y, is a partial embedded resolution of S C Za.

Proof. — The first assertion follows from Lemma 40 taking in account
(10) (which implies that (Zs, N, ,00,) i8 isomorphic to (Z, n,,0,)) and
Proposition 14 which implies that the integral closure of R is C{p¥ N My}.
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By Lemma 40 if ¥’ is a regular subdivision of ¥ the map s/ o7y is a
embedded pseudo-resolution of S; we show that if ¥/ is a resolution of the
fan ¥ then the restriction Sy — S is a resolution of singularities.

The germ Sy, is parametrized by W; = ¢; for ¢ = 1,...,g, on the
chart Z, = Qg X Zg,,N,, thus the restriction Sy — Zg, n,, of the second
projection is an isomorphism of germs. It follows that the singular locus of
Sy, lies over the singular locus of the toric variety Z,,, Noy- It is easy to see
that the orbit @, of Z,, is the set lying over the orbit O, Noy of Zy,, Noy
thus the singular locus of Sy is equal to |J(Sx N Q) for 7 running through
the set of non regular faces of 0. If ¥’ is a resolution of the fan ¥ and if
o’ € ¥ is a regular cone then o’ € ¥, thus Zy, — Zyx, is an isomorphism
over the points of the orbit @,/ by (4). Therefore the restriction Sy, — Sy
is an isomorphism outside the singular locus of Sx; and since Sy is smooth
this modification is a resolution of singularities of the normalization Sx. A
fortiori the composed map Sy — Sy is resolution of singularities of S. O

5.4. Relation between the partial
embedded resolution procedures.

We show that the partial embedded resolutions of an analytically
irreducible toric quasi-ordinary germ S defined in Sections 3 and 5 coincide
when the second is suitably chosen.

In Section 3 we have built a partial embedded resolution 7 of a
toric quasi-ordinary hypersurface S C Z, which depends only on the
characteristic exponents of a toric quasi-ordinary polynomial f defining
the embedding. Since the germ S is analytically irreducible, the morphism
7w Z' — Z, = Zy is the composition of g toroidal modifications ; :
Zi — Z;_y fort=1,..., g and g the number of characteristic exponents.
In Section 5 we have built an embedding of (S,0) as a codimension g
sub-germ of the toric variety (Za,oa) and we have proved that if ¥
is a subdivision of A compatible with certain linear subspace, the toric
morphism 7y, : Zs, — Za is partial embedded resolution of S C Za.
Furthermore, the restriction of 7 (resp. of 7s) to the strict transform S’
(resp. Sx) of S is the normalization map (see Theorems 1 and 2).

The embedding S C Zx defined by (27) extends to an embedding of
the pair (S, Z,): the image of (Z,, 0,) under this embedding is the sub-germ
(Z,0n) of (Za,0na) defined by the equations (see (33)):

ANNALES DE L'INSTITUT FOURIER



EMBEDDED RESOLUTIONS OF QUASI-ORDINARY HYPERSURFACES 1869

(35)

—ctUp = UM - xott + r1(U1),

n @ 2
—cyUs = Uy? - D G + r1(U1,Us2),
e ooy -1
ng— (g—-1) I lg_
—c3_Ug = Ugfll - X« Ul ..Ugg_22 + rg_1(U1,Us,...,Ug_1).
Since ¢; € C* we can eliminate the variables Us, ..., U, in the equation:
n a1t 19,

(36) Uge — X* U, U2 4 rg(Un, Uz, ..., Uy) =0

by using (35), and we obtain in this way a quasi-ordinary polynomial
defining the embedding S C Z,.

Remark 41. — If we vanish the r1,...,r4 in (33) we obtain:

ﬁl = U{ll - Xa(l) + C,{UQ,
. @
H = U} - x®yp +  Us,

(37) R e oo o

H, = Un971 S 1)l]ll lg—2 *

g-1 = Vg1 — o 'gg)ﬂ + gl
~ 19
Hy = Uy - Xa(g)Ull LU

We can eliminate recursively from the equations H;=0,fori=1,..., g—1

the variables Us,...,U, in the equation I:Ig = 0 obtaining in this way
a canonical equation of a quasi-ordinary hypersurface with the same
characteristic monomials. The exponents appearing in these polynomials
are completely determined by the characteristic monomials of (S,0). See
[T1] for Teissier’s analogous statement in the case of plane branches.

DEerFINITION 12.— A subdivision ¥ of A is suitable with respect to
the embedding of the pair (Z,S) in Za, if it is the dual Newton diagram
of Hy---Hy.

It follows from Remark 41 that the suitable subdivision ¥ of A is
uniquely determined from the given characteristic monomials of (5,0).
We prove that the strict transform Zy of Z by the toric modification
7y, is a section of the toric variety Zy, transversal to the exceptional
fiber of the modification mx. More generally it is transversal to the orbit
stratification of Zs; and the set of non empty intersections Zy, N O, define
the stratification corresponding to a natural toroidal embedding structure
which is determined by ¥. In particular we obtain that the restriction
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p: 2Zs — Z of mx, to Zyx is a partial embedded resolution of S C Z. The
main result of this section is that the partial embedded resolutions defined
by 7 and by p are isomorphic:

THEOREM 3. — If ¥ is the suitable subdivision of A with respect to
the embedding of the pair (Z,S) in Za, then the strict transform (Zy, Sx;)
of the pair (Z,S) by the toric modification 7y, is equal to an embedding of
the pair (Z',S’) in Zx, such that the following diagram commutes:

(Z',8) — (25,55

Tl pl
(ngs) B (sz)

Therefore the morphism p : Zy, — Z is the composition of g toroidal
modifications.

In the plane branch case an analogous statement (using resolution
instead of partial resolution) has been announced by Goldin and Teissier
without proof in [G-T]; Lejeune and Reguera have sketched in that case
toric resolutions of the monomial curve such that the restrictions to the
strict transform of the smooth surface, which contains the re-embeded plane
branch, are equal to the minimal resolution of the branch (see [LJ-R2]).

We introduce first some notations in order to describe the suitable
subdivision ¥ of A. The following subsets of A defined for0 < j < j+k < ¢:
i+k
P77 = {a+ (@, m)ur + -+ @, )uy + nya, ) ugpn + o

(38)
+ n] .. .n]+k*1<a,’}/j>u‘j+k/a S p}

are the cones which correspond by duality to certain Minkowski sums of
edges of N'(H;) for i = 1,... k. The cone p§ coincides with p x {0} C A
for 1 < k < g. We denote by = the (d 4 1)-dimensional fan whose elements
are the faces of the 2g cones of dimension d + 1:

(39) pl+Roouj, pl+ply forj=1,...g
We will show below that E is a subfan of the suitable subdivision ¥ (see

Remark 44).

PROPOSITION 42. — Let ¥ a suitable subdivision of A. If o € ¥ and
ifo C A then Z5NQ, # () implies that o € Z. If o € 2(4+1) then Z5x N O,
is reduced to a simple point z, and the germ (Zs,x,) is isomorphic to
(Zs,(Na),+0s). The set {Zx N O, }oez is the stratification associated to
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a toroidal embedding structure on Zs; which has E as associated conic
polyhedral complex.

In order to prove Proposition 42 we characterize in the lemma below
some convexity properties of the the Newton polyhedra of the polynomials
H,,...,Hy_; defining the embedding Z C Za. Lemma 43 below is inspired
by a result of Lejeune and Reguera in the case of sandwiched surface
singularities (see Proposition 1.3 of [LJ-R]). We need some useful notations.
The exponents

u;+1’ leu;, wj = a(j) + lgj)u’lf 44 l§'j—)1u;_1
are the vertices of the two dimensional face 77 of the polyhedron N'(H;)

by Proposition 39. This face and its edges
Tl] = [u;-i-l’nju;‘]v sz = [u;+lij]7 7? = [nju;’ij

play a significant role in what follows. Any other vertex w} of the Newton
polyhedron of H; corresponds to a monomial of weight > n;vy;, ie., we
have @} = o/ + liuj + -+ lju] and & +liv1 + -+ - + 1y > nyyj.

We prove the following lemma by using the properties of the semi-
group I' (see lemma 30).

LEMMA 43.— Let & be a compact edge of N'(H;) fori=1,...,g. If
ﬂgzl 8(&-) # () for 1 < j < g, then we have &; is an edge ofTi, of the form
& = ’]’si(i), for certain s(i) € {1,2,3}. The intersection N/_,0(&;) and the
possibilities for s(i) are described in the following four cases:

Case (A) ﬂzzla(&) = p§+1 + R;Ouj_H -+ R;o’dj+2 + ...+ R>0ug,

s(i) =3, for1<i<j<g—1L
( nz:la(gl) = p;jl + R;OUJ'() + R)OUj.}.Q + “e + Rzoug,
Case (B) S(L) =3, for 1 < z§ .]9 -1,
s(i)=1,forjo<i<j<g-1
where 1 < jo<g—1.

N_,o(&) = /7;:1 + Pﬁ-;ill +Rooujtz + ... + Ryoug,
s(i) =3, for 1< < jo,

Case (C) ¢ s(jo) = 2,

s(i)=1, forjo+1<i<j<g—1;

where 1 < jo <g—1.

j Ny — g
Case (D) {miéla(&) Pgr
s(i)=3, for1<i<j=g.
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Proof. — The compact faces of Newton polyhedra are determined by
elements a + v € A which belong to the relative interior of A; i.e., a4 v is
of the form a € ;) and v = le v;u; with v; > 0. We calculate the values
of a + v on the vertices of the Newton polyhedron of H; in terms of the
weight of the corresponding monomial. We prove the lemma by induction
on j, for j =1 we show first that the compact edges of N'(H;) are exactly
T} for i = 1,2,3. We have the following:

(i) = (a+v,m1 = (a,aW) =ny(a,7)
(i) = (a+v,mui) = mwv

(ili) = (a+v,u3) = vy

(iv) = (a+v,@)) = (a+v,0+lui)

= (a,&'+liy1)+li(vi—(a, 1)) >(n1 — l1){a, y1)+livr

where the inequality on (iv) follows from (26) since a € p. We suppose that
a + v determines a compact edge e; of N'(H;). Three cases appear:

~If vy = (@, 1) then (iv) > (i) = (ii) thus va > n1{a,v1) and & = T3.
~If v1 > (a,y1) then (ii), (iv) > (i) thus va = ny{a,v1) and & = T3
- If v; < (a,71) then (i), (iv) > (ii) thus v = njv; and & = T}

The equality (i) = (ii) = (iii) corresponds to the two dimensional face
T1. 1t follows that

p? + Roouz + Roous+ -+ Roouy, if £ = T,
o&1) =4 p? + Roour + Rsouz+ -+ Ryouy, if £ =T}
pf + p% + R>0u3 + -+ R)()ug, if 81 = /Tll.

We suppose the result true for j — 1. We consider a vector a + v €
o (T2 )) determining an edge &; of N(Hj), ie,a+v € 3(5}-). The

j—1
MNizi 0 (7;2(1' ,
values of a + v on the vertices of 7} are

(i) = {(a+ v, njui) = njv;
(111) = {a+v, ’u,;+1> = Vj+1-

We deal first with the case (A) where s(i) = 3 for 1 <i < j—1. Then
a+véE p;_l and it follows as before that

i) = (a+v,@)=n(a,7;) ,
(iv) = (a+wv,w))=(a+v,a;+ > Liuf) > ni{a,v;) +1i(v; — (a,7;))
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where the inequality is obtained from (26) by adding and subtracting the
term [;(a, ;). Three cases appear if v; is = (resp. > or <) to (resp. than)
(@, ;) and we obtain the result by arguing as in the case j = 1 by replacing
appropriately the index 1 by j.

In any other case by induction hypothesis there exists 1 < jo <j—1
such that s(i) = 3 for 1 < i < jo and s(jo) € {1,2}. It follows that the
vector a + v is of the form

a+v—a+z a, Y; ’Uq"‘Z'Uzuz
i>Jo

We bound the value of a + v on a vertex of the polyhedron N (H;)
not lying on 7.

(iv) = (a+v,@}) = {a +, aJJeru
i=1

J J J
= (a,05 + Zli’h’) - Z li{a,v) + Z Liv;

(40) ‘——.70 '—JO
> (n; — l;){a,v;) — Zla72+2lvz
1=Jo 1=jo
j
> (- (nj=l)mya=l1) - g —Lig) (@, i)+ D Lo

i=jo

The first inequality is given by (26) and the others are deduced from the
inequality n;v; < 7i4+1 in Lemma 30.

In case (B) by induction hypothesis we have that v, = (a,~;,) + ¢,
for some ¢ > 0 and v; = nj, - --ni—1(a,v;,) for jo < i < j. In case (C) we
have that

{nj0_1<a,'yj0_1) < vy, < <(l,’)’j0> if jQ >1
0 < vy, < <a,’)/j0> if Jo=1

and that v; = nj, ---ni_1vj, for jo < i < j. In both cases (B) and (C)
when we substitute the v; on (40) we deduce that (iv), (i) > (ii) therefore
Vj4+1 = n;v; and 5]' = ’le.

Finally, when j = ¢ the polynomial Hy; has no term in Ugti. In
particular a vector a + v € (2, 0o(Ty,,) for s(i) in case (B) or (C),
determines the vertex nguy of the polyhedron N (Hy). The only remaining
case is (A) and then the condition on a + v to determine a compact edge
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of N(Hy) is vy = (a,7,); the edge is equal to 7y = [w,nyu}] and M;_,

Remark 44. — The cones of the form NY_; U(’T;( ») defined by Lemma
43 when j =g —1 are

{pZ—HR;Ouk, pr+py_, fork=1,...,9—1
Py_1 + Roouyg.

If we subdivide p?_; + Rsouy with pJ we obtain the fan =. It follows that
Z is a subfan of the dual Newton diagram of H,; ...flg. Theorem 3 holds
more generally for any subdivision of A containing =.

Proof of Proposition 42.— Let ¥’ be any subdivision of ¥ which
is compatible with the Newton polyhedra of Hi,...,Hy_; and o € %'

with & C A. By Lemma 3 a necessary condition to have Zsy N Q, # 0 is
that o determines a face F; of dimension > 1 of each polyhedron N(H;)
for i =1,...,9 — 1. Then we have o C (\_, o(Fi) C Ny — o(&) for &
any fixed edge of the face F;. The possible edges &; that may appear are
determined by Lemma 43 and by duality o is contained in the support of
=. By using (3) we deduce that if ¢ € ¥ — Z then O, N 25 = {.

The proof of the second assertion is analogous to the proof of Lemma
40. Let 0 € E@+D | for instance o = pJ + Rsou, (the proof in the case
o = pj_1 + pJ is analogous) for j = 1,...,9. The common zero locus
Z' C Z, of the set functions X "™ Hy,..., X "™y H,_; for

m; = .
‘ ury, ifi=j,...,9—1

contains Zs. N Z,. Each series X ~™ H; is of the form
X~™ H, = B; + terms vanishing on O,

where .
g o 1o XmeT =1 -1
Tl X ifi=4,...,9— 1

The edge &; := [n;uf, m,,] is a face of the polyhedron N (H;) and by Lemma
43 we have 0 = (] {o(&) thus ot = ®j:1( o(&;))* since the edges
&; are affinely independent. Moreover, the vector n;u; — m; is primitive
for the lattice Ma and it follows that o N Ma = &7} (nsuf — m;)Z. It

(3
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follows that the intersection Z’ N Q, as schemes, defined by the equations
By =:--=By_1 =0, is a simple point 2, and that By,...,By_; define a
regular system of parameters at the point z, of Q,. The germ (2’ z,) is
analytically irreducible since it is isomorphic to (Z, (n,),,0,) by Lemma
4. Tt follows that it coincides with (25, z,) since this germ is contained in
(2',z,) and both have the same dimension. Moreover, if T is a face of o
then the isomorphism above induces an isomorphism between Zsx, MO, and
the orbit corresponding to 7 in Z; (n,),. We conclude from this that Zx
has a toroidal embedding structure with associated c.p.c. Z. O

We recall some facts and notations about the partial embedded
resolution of as an hypersurface (see Theorem 1). Denote by (g;, N}) the
dual of the pair (p x Ryoy;, M) where M/ denotes the lattice M; & y;Z;
each g; is of the form p x Ryq, for ¢ = 0,...,9 — 1. The partial embedded
resolution is a composition of g toroidal modifications m; : Z; — Z;_1
for Zy = Z, and ¢ = 1,...,g9. Each variety Z; is given with a toroidal
embedding structure having c.p.c. ¥;. The c.p.c. ¥; is isomorphic to the
subdivision of (g, Ny) by the linear form nq(yo — A1) € M. The c.p.c. ;
is obtained from ¥;_; by adding the subdivision of the cone g;_; defined
by n;j(yj—1 — Aj + A\j—1) € M;_,; this subdivision has (d 4 1)-dimensional
cones:

o; ={(a,v) € 0j—1/0 < v < (a, ) _)‘J 1)}

(41) and J+ ={(a,v) € 0j—1/v > (a,A; — A\j_1)}.

It is glued to ¥;_1 by identifying the face p x {0} of o with a 1 Noj_
(see Lemma 25).

oy

ot

Figure 1. A transversal section of the convex polyhedral complex associated
to a quasi-ordinary surface with three characteristic exponents.

PropOSITION 45.-— There is an isomorphism ¥, = ZE of conic
polyhedral complex with integral structure.
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Proof.— Tt is sufficient to prove that the pair (o, (Nj_;)s) is iso-
morphic to (7,(Na),) when (o,7) is equal to (aj_,p? + pg_l) or to
(Ujv p? + R?O”j)'

In the first case we define an homomorphism £ : N ]'-_1 — Na by

(42) (a,v |—>a+Zany 1u1+ZnJ ‘ni—w(a, v)u;

Z>_]

where w(a,v) = v+mn;_1(a,vj-1). It follows that {g(0;) = pJ +pJ_, since
(a,v) € o implies that n;_1(a,v;-1) <w(a,v) < (a fy]) by (22).

In the second case we have that Ni_; = N; @ y;_;Z (this follows
from Lemma 17: the inclusion N; — N;_; is dual to the homomorphism
MJ{_l — M that maps y;j_1 +— A; — A\j_; and fixes M;_;). Thus we have
(Nj_1)r = (Nj)r ® yj_;R and with this decomposition the cone o*;’
also defined by the formula (41) above. Then we argue analogously, the
corresponding lattice homomorphism £ is defined by (42) when w(a,v) =

v+ (a,v;). It follows from (22) that f]R(U;—) = p] +Roouy. O

is

We have all the ingredients to prove Theorem 3.

Proof of Theorem 3.— The intersection of Z with the torus of Za
is isomorphic with Z, minus the hypersurface defined by gg...q4—1 = 0. It
follows from their definitions that the morphisms 7 and p are isomorphic
over this set which is the open stratum of the stratification of 2’ and Zs.

Let o, (resp. o,/) be O-dimensional stratum of Z’ (resp. of Zy)
associated to the cones 7 € X(@t1) (resp. 7/ € Z(@+1)) If 7 corresponds
to 7 by the bijection established in Proposition 45 we can extend the
isomorphism from the open strata to an isomorphism (Z’,0,) — (Zx,0,/)
by means of Proposition 45 and inducing isomorphisms between the strata
of dimensions 0 < k < d + 1 associated with corresponding faces of 7
and 7'. These implies that these local isomorphism paste and provide
an isomorphism I : Z' — Zs which preserves the toroidal embedding
structure. Since po I = 7 it follows that the isomorphism above is in fact
an isomorphism of the pairs (Z’,S5’) and (Zg, Sx). a

5.5. An example.

We build an example for the quasi-ordinary surface germ S defined by
f =0 where f = (Y2—X3$)?— X{X5Y?2. The polynomial f € C{Xy, X2}[Y]
is quasi-ordinary and irreducible. The characteristic exponents and integers
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are \; = ( ,0), Ao = (2, 2) and n; = ny = 2. The associated semigroup is
= Z§0 + Y1Zs0 + Y2Zso where 1 = (2,0) and vy, = (;, 5)

The embedding of S in C* is defined by the vanishing of the polyno-
mials

Hy :=U} - X} ~U,, Hy:=UZ—- X{X,U?,

where Uy = Y and Uy = Y2 — X{. We denote the coordinates of a
vector in A with respect to the canonical basis by (vi,ve,wy,ws); (the
cone p§ corresponds to w; = we = 0 and we have u; = (0,0,1,0) and
ug = (0,0,0,1) with the notations of the previous section). We denote by
5 the linear subspace orthogonal to the compact edge of N'(H>), by 6; the
cone A N4y N{v; = vz =0} and by d2 the cone A N4y N {w; = 0}.

A suitable subdivision ¥ of A has 4-dimensional cones:

p3 + 61 + uzRso,

p3 + 82 + usRso,
P+ pi + 01 + ua Ry,
5+ pT + P + 02,
Pt + pg + wiRso.

u,””

Figure 2. The diagram represents the suitable fan X.
We have (see formula (38)):

P2 =R.0(2,0,3,6) + R.0(0,1,0,0)
pa = R>0(2,0,3,7) + R>0(0,2,0,1)
81 = R.0(0,0,1,1)

82 = R»0(1,0,0,2) + R50(0,2,0,1).
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The cone p3 is regular, the normalization of the quasi-ordinary surface
being smooth in this example. If ¥/ is any resolution of the fan ¥ it follows
that the cone p3 belongs to ¥ and the strict transform of S by ms only
intersects the exceptional orbit corresponding to this cone.

We build a regular cone o O p3 of dimension four, which belongs to
some resolution ¥/, and we compute the strict transform of S by the toric
morphism on the chart Z,. The strategy to build o is to find a basis of the
lattice £, N Z* and then to use the equation of the hyperplane ¢ to find a
basis of Z4.

We find in this case
0 =R50(2,0,3,7) + R50(0,2,0,1) + R5(1,0,2,4) + R5(2, 1, 3, 8),

the first three vectors defining a basis of £, N Z*. The toric morphism
Zsy — C* on the chart is given by (see (2)):

X, = V2VAV,
X, = V2V,
(]1 — V13 V33 V4 2
U2 — V13 ‘/27 V38 V44.

The total transform of S is defined by

VEVIVE (Vi — 1 - ViWaV2V,) =0
VHVEVBVE(Vs —1) = 0.

The strict transform, defined by the vanishing of V4 — 1 — V1V2V32V4 and
V3 — 1, is clearly smooth and transversal to the exceptional divisor.
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