
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Everett W. HOWE & Kristin E. LAUTER

Improved upper bounds for the number of points on curves over finite fields
Tome 53, no 6 (2003), p. 1677-1737.

<http://aif.cedram.org/item?id=AIF_2003__53_6_1677_0>

© Association des Annales de l’institut Fourier, 2003, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2003__53_6_1677_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


1677-

IMPROVED UPPER BOUNDS FOR THE NUMBER

OF POINTS ON CURVES OVER FINITE FIELDS

by E. W. HOWE and K. E. LAUTER

1. Introduction.

The number N of points on a smooth, absolutely irreducible curve of
genus g over a finite field Fq is bounded by

an estimate given by Andr6 Weil in the 1940s. In 1983, Serre improved this
bound to

Serre also introduced the explicit formulae method, which uses numerical
conditions on the number of points on a curve over extensions of the ground
field to obtain improved bounds on N, at least when g is large compared to q
(specifically, when g &#x3E; (q-vq)/2). Oesterl6 optimized the explicit formulae
method, and the resulting bounds on N are the best possible bounds that
can be obtained formally using only Weil’s "Riemann hypothesis" for curves
and the fact that for every d &#x3E; 0 the number of places of degree d on a
curve is non-negative. But the method does not take the geometry of the
curves into account, and for this reason it is natural to suspect that the
Weil-Serre-Oesterlé bounds may not be optimal. Indeed, Serre [22] and
others [5], [9], [11], [12], [13], [14], [15], [18], [19], [20], [21], [25], [27], [30]
have shown that in certain cases these bounds are not attained. However,

Keywords: Curve - Rational point - zeta function - Weil bound - Serre bound - Oesterl6
bound.
Math. classification: 11G20 - 14G05 - 14G10 - 14G15.
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in many other cases the bounds provided by the explicit formulae method
remain the best known, and significant effort has been made to determine
whether or not they are met - see the tables of van der Geer and van
der Vlugt [6], which summarize the work of many authors. The purpose of
this paper is to provide some new techniques that show that in many cases
the current upper bounds cannot be met. In particular, we list in Tables 1
and 2 the improvements we obtain to the tables in [6]. In Table 3 we list
the values of q and g for which our improved upper bound meets the known
lower bound. (The tables in [6] are updated frequently; the latest version
can be found at

http://www.science.uva.nl/~geer/
The version of the tables that we will refer to in this paper is dated

18 January 2002, and is available at the URL mentioned below in the

acknowledgments.)
Our improved bounds are due to the fact that some zeta functions

that satisfy the numerical conditions of the explicit formulae method are
forbidden by a combination of geometrical and numerical conditions. Our
approach is in the spirit of [11], [12], [13], [14], [15], [18], [22] where lists
of possible zeta functions were compiled and geometric arguments were
applied for the purpose of improving the bounds.

The main theorem that we use to improve the known upper bounds
deals with a numerical invariant of pairs of abelian varieties. Suppose A1
and A2 are abelian varieties over Fq . Let F and V denote, respectively, the
Frobenius and Verschiebung endomorphisms of A1 x A2. Given an element
a of the subring Z[F, V] of End(Al x A2), we let gl and 92 be the minimal
polynomials of a restricted to Al and A2, respectively, and we define 
to be the resultant of gl and g2. Define s(A1, A2) to be the greatest common
divisor of the set ~r(~x) : 0152 E Z [F, VI 1. Note that if Al and A2 have an

isogeny factor in common then r(a) = 0 for every a, so that A2) = oo.
On the other hand, if A1 and A2 share no common isogeny factors then

r (F) ~ 0 by the Honda-Tate theorem [29], so that S(A1’ A2 )  oo. In other

words, Hom(A1, A2) = if and only if s(Al, A2)  00. Also note that

the value of depends only on the isogeny classes of Al and A2.

THEOREM 1. - Let A1 and A2 be nonzero abelian varieties over Fq .
(a) If s (Al , A2 ) = 1 then there is no curve C over IFq whose Jacobian is

isogenous to A1 x A2.

(b) Suppose s(A1, A2) = 2. If C is a curve over IFq whose Jacobian is
isogenous to A1 x A2, then there is a degree-2 map from C to another
curve D over Fq whose Jacobian is isogenous to either A1 or A2.
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TABLE 2. Improved upper bounds on the number of points on curves of certain genera
over small finite fields IFq of characteristic 3. The symbol m is an abbreviation for 

TABLE 3. New values of Nq (g) obtained in this paper.

One can get upper and lower bounds on by using the

following result. (Recall that the radical of a nonzero integer is the product
of its prime divisors.)
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THEOREM 2. - Suppose Al and A2 are abelian varieties over Fq
with s(A1, A2) i=- 0. Then s(A1, A2) divides r(F + V) and is divisible by
the radical of r(F + V).

Theorem 2 shows that Theorem 1 (a) is equivalent to a result of
Serre [12], [22] that states that the Jacobian of a curve is never isogenous
to a product A1 x A2 of nonzero abelian varieties for which r(F+V) == ± 1.

It is not clear whether there are any similarly strong conclusions
to be drawn from other values of s (A1, A2). However, if we make some

assumptions about A1 and A2, we can prove that certain other values
of prohibit the existence of a curve with Jacobian isogenous to
A1 x A2 - see Propositions 11 and 13 and Corollaries 12 and 14.

Theorem 1, combined with previously known results and some

straightforward facts about degree-2 maps of curves, allows us to greatly
restrict the possible zeta functions of curves having a large number N of
points. For some values of q and g these restrictions are strong enough to
allow us to immediately eliminate certain values of N from consideration.
For other combinations of q, g, and N, we can quickly eliminate most pos-
sible zeta functions and are left with a few special cases to consider. For
some of these special cases we can use Theorem 1 (b) to restrict the form of
the curves in question to such an extent that a computer search for curves
with the desired number of points becomes feasible. For one such case, de-
tailed in Section 5, we manage to avoid significant computer calculations
by extending a Galois descent argument used in [22].

The defect of a genus-g curve C over Fq is the difference between

the Weil-Serre upper bound for genus-g curves over Fq and the number of
rational points on C; in other words, a curve C has defect k if it has exactly
(q + 1 + g[2@] ) - k rational points. Theorem 1 allows us to prove some
general results about curves with small defect. For example, we have the
following theorem for square q.

THEOREM 3. - Suppose q is a square.

(a) If q ~ 4 and g &#x3E; 2 then there are no defect-2 curves of genus g over

IFq .

(b) If q ~ 9 and g &#x3E; 3 then there are no defect-3 curves of genus g over

lFq .

(c) If g &#x3E; (3q + 4m - 9)/m, where m = 2~/~ then there are no defect-4
curves of genus g over Fq.
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(d) If q = 22e with e &#x3E; 2, and if g &#x3E; 2e-1 + 2, then there are no defect-4
curves of genus g over Fq.

For certain nonsquare q the Weil-Serre bound can be improved via
a different method. Suppose q is a prime power. We define the defect-
0 dimension of q to be the smallest positive integer 6 for which there is

a 6-dimensional abelian variety over IFq with characteristic polynomial of
Frobenius equal to We say that q is exceptional if its defect-0
dimension is greater than 1.

THEOREM 4. - Suppose q is a prime power and let 6 be the defect-
0 dimension of q. If C is a curve of genus g over IFq, then the defect of C is
at least r/2, where r E [0, 6) is the remainder when g is divided by 6.

Theorem 4 says something nontrivial about q only if q is exceptional,
so we would like to be able to find the exceptional prime powers. In fact,
there is an easy way to calculate the defect-0 dimension of a power q of a

prime p. Let v be an additive p-adic valuation on Q and let m = [2~/~].

PROPOSITION 5. - If q is a square or if q  4 then the defect-0

dimension of q is 1. If q &#x3E; 4 is not a square, then the defect-0 dimension of

q is the smallest positive integer 6 such that Sv(m)/v(q) is an integer.

We will prove Theorem 4 and Proposition 5 in Section 3. The proofs
will foreshadow the arguments that produce the entries in Table 1 for

q = 128.

It is easy to show that there are infinitely many q of the form 22e+1
whose defect-0 dimension is 2e + 1; we will provide a proof of this fact in
Section 3. For such a q we see that a curve of genus g x 2e must have defect
at least g/2. The existence of these q allows us to prove an interesting fact
about the function Nq (g) defined by

Nq (g) - C is a genus-g curve over 

COROLLARY 6. - There are infinitely many powers q of 2 such that
for every g with 0  9  1092 q we have (

In particular, this implies that there is a sequence of pairs (q, g) where
g is small with respect to q and for which the Weil-Serre bound becomes

arbitrarily far from the true value of Nq (g) . Zieve [30] has already shown
that there is a sequence of pairs (q, g) where g/q - 1 /2 and for which all
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previously-known bounds on Nq (g) become arbitrarily far from the true
value of Nq (g).

Savitt [18] recently showed, through extensive computer calculation,
that there is no genus-4 curve over F8 having exactly 27 rational points. We
prove this same result in Section 8 with an argument much less dependent
on the computer. In [14] it was shown that there are only two possibilities
for the zeta function of such a curve. We can show that the first zeta

function cannot occur by using Theorem 1 (b) . For the second zeta function,
we introduce a new argument that generalizes the Hermitian form argument
used in [15]. We are able to eliminate the second zeta function by showing
that if A is an abelian variety whose characteristic polynomial of Frobenius
is f 2 , where

then every principal polarization on A is decomposable. To prove this, we
show that there are no indecomposable unimodular Hermitian forms of
rank 2 over the ring of integers of the quartic number field defined by f.

In Section 2 we prove Theorems 1, 2, and 3, and we provide a number
of useful corollaries. In Section 3 we prove Theorem 4, Proposition 5, and

Corollary 6. In Section 4 we prove the results mentioned in Tables 1 and 2,
although we postpone the consideration of some cases to later sections.
In Section 5 we use a Galois descent argument to show that there is no

genus-5 curve over IF8 with 31 points. In Section 6 we check by exhaustion
that there is no genus-4 curve over F27 with 66 points, that there is no

genus-4 curve over IF32 with 75 points, and that there is no genus-6 curve
over IF3 with a certain Weil polynomial; these calculations are feasible only
because Theorem 1 allows us to considerably reduce the spaces we must
search over. In Section 7 we show that there is no genus-6 curve over IF3
with a certain Weil polynomial and that there is no genus-4 curve over

F27 with 65 points; the arguments in this section depend on our ability to

easily parameterize degree-3 covers of elliptic curves in characteristic 3. In
Section 8 we use the Hermitian form argument mentioned above to prove
Savitt’s result that there is no genus-4 curve over IFg with 27 points.

Notation. - Throughout this paper a curve over IFq will mean a
smooth, projective, absolutely irreducible curve. We will denote by Nq(g)
the largest N such that there is a curve of genus g over IFq with exactly
N rational points. The Weil polynomial of an abelian variety over a finite
field is the characteristic polynomial of the Frobenius endomorphism of
the variety. The Weil polynomial of a curve over a finite field is the Weil
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polynomial of its Jacobian. Note that if f E Z[x] is the Weil polynomial of
a genus-g curve C over Fg, then the numerator of the zeta function of C
is equal to If f is the Weil polynomial of a curve or an abelian
variety, say with deg f = 2g, then there is a degree-g polynomial h 
all of whose roots are real, such that f (x) = We will refer to

h as the real Weil polynomial of the curve or the abelian variety.

Acknowledgments. - We thank Jean-Pierre Serre for his helpful
comments. In the course of doing the work described in this paper we
used the computer algebra systems Pari/GP and Magma [1]. Several of
our Magma programs are available on the web: start at

http://www.alumni.caltech.edu/~however/biblio.html

and follow the links related to this paper. We have also placed a copy of
the 18 January 2002 version of the van der Geer-van der Vlugt tables on
this site.

2. Proofs of Theorems 1, 2 and 3.

In this section we will prove Theorems 1, 2, and 3, as well as some
useful corollaries. We begin with a lemma.

LEMMA 7. - Suppose B is an abelian variety over Fq isogenous to
a product Al x A2, where s(A1, A2)  oo. Then there exist abelian varieties

Ai and A2, isogenous to Al and A2, respectively, and an exact sequence

such that the projection maps Ai x A’ 2 --&#x3E; A1 and A’ 1 x A’ 2 --4 A2 give
monomorphisms from 0’ to A’[s] and to A2 ~s~ , where s = s (A1, A2 ) .

Suppose in addition that B has a principal polarization /-t. Then the

pullback to Ai x A2 is a product polarization À1 x A2, and the projection
maps A1 x A2 -~ Al and A’ 1 x A2 ~ A2 give isomorphisms of 0’ with ker À1
and kerA2. In particular, 0’ is isomorphic to its own Cartier dual.

Proof. Let p be an arbitrary isogeny from Al x A2 to B and let A
be the kernel of cp. Let G1 and G2 be the largest closed subgroup-schemes
of Al and A2 such that G1 x G2 is a closed subgroup-scheme of A, let
0’ - 0/ (Gl x G2 ) , and let A’ 1 = and A2 = A2 /G2 . Then we have
an exact sequence
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such that the projection maps give monomorphisms of d’ to Ai and A2.
We will show that in fact the projection maps take 0’ to A’[s] and 

Let a be an arbitrary endomorphism of Ai x A2 that lies in Z[F, V].
(Here we use the fact that Z[F, V] is contained in the endomorphism ring
of every abelian variety isogenous to A1 x A2.) For i = 1, 2 let gi be the
minimal polynomial of a acting on Ai. Then 91 ( 0152) and 92 ( 0152) both act as
0 on 0’, because 0’ can be viewed as a subgroup-scheme of both Ai and
A2. But then r(a) must act as 0 on 0’ as well. Since this is true for every
cx, we see that s(A1, A2 ) must kill 0’; this shows that the projection maps
embed 0’ into A’[s] and A’[s].

Now suppose B has a principal polarization J-L. Let A be the pullback
of ti to Ai x A’. Since A2) and Hom(A2, A1) are both trivial,
A must be a product polarization À1 x A2. The degree of A is equal to
the degree of p (which is 1) times the square of the degree of the isogeny
Ai x ~2 ~ ~ so we have

where we use # to denote the rank of a finite group-scheme. Since the
projection maps give monomorphisms from A’ to A1 and A2, we see that

for i - 1 and i = 2. This means that we must have

for each z, and it follows that 0’ ^--’ ker ai for each i. Since
kernels of polarizations are isomorphic to their own duals, we obtain the
final statement of the lemma. 0

Proof of Theorem 1. - Suppose s (A1, A2 ) - 1. Then Lemma 7

shows that every abelian variety isogenous to A1 x A2 is a product Ai x A2.
Since s(A~, A2) = s(A1, A2)  oc we see that Hom(A’, A2) _ f 01, so every
polarization on A1 x A2 is a product polarization. In particular, we see that
every principal polarization of an abelian variety isogenous to A1 x A2 is
decomposable, so there can be no Jacobians isogenous to A1 x A2. This is
the first statement of the theorem.

Now suppose that A2 ) = 2. Apply Lemma 7 and replace Ai and
A2 with the resulting Ai and A2, so that we have an exact sequence

where A can be viewed as a subscheme of Al [21 and A2 [2].

Let p be the canonical polarization on Jac C and let A be the

polarization on x A2 obtained by pulling back p via cp. Lemma 7 shows
that A is the product of a polarization À1 on A1 and a polarization A2 of
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A2. Let (1, -1) denote the involution of A1 x A2 that acts as 1 on Ai and
as -Ion A2. Clearly (1, -1 ) respects the polarization A, because 1 respects
À1 and -1 respects ~2 . Furthermore, (1, -1 ) acts as the identity on A, so it
gives rise to an involution Q on Jac C that respects the polarization A. By
Torelli’s theorem, there exists an involution a of C such that either Q 
or ~= -a*.

Let D be the quotient of C by the involution 0152, so that there is

a degree-2 map 0 from C to D with 0 - 0 o a. Then the morphism
: Jac D -~ Jac C gives an isogeny from Jac D to the connected

component of the subvariety of Jac C on which (3 acts as the identity. This
subvariety is isogenous to Al if (3 = a* and to A2 if (3 = -a* . 0

We will use Theorem 1 (b) in conjunction with some obvious facts
about degree-2 covers of curves, which we state here for convenience.

LEMMA 8. - Suppose C and D are curves over Fq of genus gc and
gD, respectively, and suppose there is a degree-2 map C ~ D. For every
integer d &#x3E; 0 let ad denote the number of degree-d places on C and let bd
denote the number of degree-d places on D.

(a) For every odd d we have ad  2bd.

(b) We have 2gD - 1, with equality if and only if C - D is
unramified.

(c) Let dl ...  dn be odd positive integers such that ad2 is odd for

every i, and let r = di + - - - y- dn. Then 2gD - 1 + r/2, and
equality holds if and only if (C -&#x3E; D is ramified at exactly n places
p 1, ... , where each pi has degree di and where the ramification at
each pi is tame.

Proof. Suppose d is odd. Every degree-d place of D has at most
2 degree-d places of C lying over it, and every degree-d place of C lies over
a degree-d place of D. Statement (a) follows immediately.

Statement (b) is the special case n = 0 of statement (c).
Let ¿ be the involution of C corresponding to the cover C ~ D.

Suppose d is an odd number such that ad is odd. Then there is a degree-d
place p of C that is taken to itself by ~. Since p consists of an odd number of
geometric points of C, there must be a geometric point P in p that is fixed

by t, and since all of the geometric points in p are conjugate to each other,
all of the points in p must be fixed by ~. These d points must be ramification
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points of the cover C --~ D. Thus, the hypothesis of statement (c) implies
that there are at least r ramification points in the cover C - D. The
conclusion of the statement then follows by applying the Riemann-Hurwitz
formula to the cover C ~ D. D

Suppose A is a g-dimensional abelian variety over Fq and let

be the multiset of complex roots of the Weil polynomial of A. For each 1
let +0152i). We will say that A is of type ~xl , ... , If A is the

Jacobian of a curve C we will also say that C and its zeta function are of

type [xl, - ..., xg]. Note that the zeta function of a curve of type ~xl, ... , xg]
is given by

where

Also, if F is the Frobenius morphism of A and if V == q/F is the

Verschiebung, then the characteristic polynomial of F + V is equal to h2 (t),
where 

-

is the real Weil polynomial of A.

COROLLARY 9. - There are no genus-g curves of type
I m, m-2] overfq ifg &#x3E; (q-1+2m)/m and g &#x3E; 3, where m = [2v/"q-].

Proof. We will prove the contrapositive statement. Suppose C is
a curve of genus g over IFq with zeta function ~m, ... , m, m - 2]. Then
Jac C is isogenous to a product A x E of abelian varieties, where E is an
elliptic curve over Fq of type 2] and where A is a (g - 1 )-dimensional
abelian variety over Fug of type [777,..., 777]. We see that r (F + V) = 2, so
s(A, E) = 2. According to Theorem 1, the curve C is a degree-2 cover of a
curve D whose Jacobian is isogenous to either A or E. If Jac D N A then
D has genus g - 1, and Lemma 8(b) shows 3. If Jac D - E then

D is an elliptic curve with q + m - 1 points, and applying Lemma 8(a) with
d = 1 shows that
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which gives g  (q - 1 + 2m)/m. 0

Recall that the defect of a genus-g curve C over IFq is the difference

between the Weil-Serre upper bound and the number of rational points
on C.

COROLLARY 10. - There are no defect-2 curves of genus g over IFq
if g &#x3E; (q - 1 + 4m)/m and g &#x3E; 5, where m = [2~].

Proof. If C has defect 2, then its zeta function must be of one
of the seven types listed in [14]. For g &#x3E; 5, all but two of these types are
eliminated by Theorem 1 (a). The two remaining types are [m,..., m, m20132]
and ~m, ... , m, m + V3 - 1, m - V3 - 1]. Since we are assuming that

g &#x3E; (q - 1 + 4m)/m, Corollary 9 eliminates the former possibility, so C
must have the latter type. In this case Jac C is isogenous to the product
of a (g - 2)-dimensional abelian variety A1 of type [m,..., m] and a 2-
dimensional abelian variety A2 of type [m + V3 -1, m - V3 -1]. Applying
Theorem 1 (b), we find that C is a double cover of a curve D that is either
of type [m,..., m] or of type [m + V3 - 1, m - V3 - 1]. In the first case
D would have genus g - 2, and Lemma 8(b) shows that then g x 5. In the
second case, Lemma 8(a) with d = 1 gives us

which leads (q - 1 + 4m)/m. D

We have mentioned that we do not know any strong conclusions one
can draw in general when &#x3E; 2. However, with a little more

information about A1 and A2 we can indeed say something.

PROPOSITION 11. - Let Ai and A2 be abelian varieties over Fq
and let s - ~(~4~~2)’ Suppose that for every A1 isogenous to A1 and
every A2 isogenous to A2, the only self-dual finite group-scheme that can
be embedded in both and A2 ~s~ as the kernel of a polarization is
the trivial group-scheme. Then there is no curve over Fq with Jacobian
isogenous to Al x A2.

Proof. Suppose there were such a curve. Then Lemma 7 shows
that we can find a group-scheme A that fits in an exact sequence

and that can be embedded in both and A2 [s]. Furthermore, since
Jac C has a principal polarization, for each i - 1, 2 we have that A is
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isomorphic to the kernel of the polarization of Ai obtained by pulling back
the principal polarization of Jac C. The hypotheses of the proposition show
that A must be the trivial group-scheme, so Jac C is isomorphic to the
product of two abelian varieties that share no isogeny factor. As we have
seen, this is a contradiction. 0

The next corollary describes a situation in which the hypotheses of
Proposition 11 are met.

COROLLARY 12. - Suppose q is a square prime power and n is a
squarefree integer coprime to q. Let m = 2y1Q. Then there is no curve over
Fq of type [m, ... , m, m - n].

Proof. Let A1 be any abelian variety over IFq isogenous to the
product of (g -1 ) copies of a supersingular elliptic curve over 1Fq with Weil
polynomial x2 + mx + q == (x + and let A2 be any ordinary elliptic
curve over IFq with Weil polynomial Clearly s(A1, A2) = n.
Suppose A is a nontrivial self-dual finite group scheme that embeds in both
Al [n] and A2 [n] as the kernel of a polarization. Since the only polarizations
on A2 are the multiplication-by-£ maps for positive integers .~, we must have

A2 ~.~~ for some divisor £ &#x3E; 1 of n. Since A embeds in as well, and
since the Frobenius F on A1 satisfies F = 0, we know that Frobenius
must act as the integer -@ on A, and hence on A2 ~.~~ . This means that
F + = 0 on A2 ~.~~ , which means that (F ~- is an endomorphism
of A2. But from the characteristic polynomial of F on A2 we can calculate
that the characteristic polynomial of (F + yIQ) / R on A2 is

which is not integral. This contradiction shows that no nontrivial self-

dual finite group-scheme can be embedded in both and A2 ~n~ . By
Proposition 11, there is no curve over IFq of type [m, ... , m, m - n]. D

There is another situation in which we can draw conclusions from

values of A2 ) greater than 2.

PROPOSITION 13. - Suppose C is a curve over Fq whose Jacobian
is isogenous to the product A x E of an abelian variety A with an elliptic
curve E, and suppose that s(A, E)  oo. Then there is an elliptic curve
E’ isogenous to E for which there is map from C to E’ of degree dividing
s(A, E), and we have s(A, E) . 

Proof. By applying Lemma 7 we find that there are abelian
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varieties A’ and E’, isogenous to A and E, respectively, and an exact
sequence

such that the projection maps A’ x E’ --+ A’ and A’ x E’ ~ E’ give
monomorphisms from 0’ to A’[s] and E’ ~s~ , where s = s (A, E). This implies
that the composition E’ - A’ x E’ -~ Jac C is a monomorphism. Let A and

p be the canonical principal polarizations on E’ and Jac C, respectively.
Then the pullback of p to E’ is nA for some integer n &#x3E; 0, and Lemma 7

says that the kernel of the pullback is isomorphic to 0’ . In particular we
see that n must divide s. Thus we have a diagram

where the vertical arrow on the right is the dual morphism of the vertical
monomorphism E’ - Jac C on the left. From this we see that the

composition C ~ Jac C - E’ is a map of degree n. In particular,

COROLLARY 14. - Let q be a prime power and let n be a positive
integer. Let m = l2ýQJ. If C is a curve over Fq of type [m, ..., m, m - n],
then the genus g of C satisfies

.... -

Proof. According to Proposition 13, there is an elliptic curve E’
of defect n and a divisor d of n for which there is a degree-d map from C
to E’, and the number of points on C, which is q + 1 + gm - n, is at most
n times the number of points on E’, which is q + I + rn - n. It follows from
this inequality that

Now we turn to the proof of Theorem 2. Our proof relies on two facts:
First, a prime p divides the resultant of two monic polynomials in Z[x] if

and only if the reductions of the polynomials modulo p have a common
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root in the algebraic closure of Fp, and second, the ring Z[F, V] contains no
nilpotent elements, so that V] has minimal polynomial m E 
then the subring Z[Q] of Z[F, V] is isomorphic 

Proof of Theorem 2. - Clearly s(A1, A2 ) divides r(F + V ), because
A2 ) is defined to be the greatest common divisor of a set of numbers

that includes r (F ~ V ) . What we must now prove is that if a prime p divides
r(F + V) then it also divides s (A1, A2 ) . To do this, we must show that for
every a in Z[F, V] the prime p divides 

Consider an a in Z[F, V], say 0152 = u(F, V) for some polynomial
u Let Fl and VI (resp. F2 and V2) be the Frobenius and
Verschiebung endomorphisms of A1 (resp. A2). The fact that p divides
r (F + V ) shows that there are homomorphisms + - Fp
and -~- V2] - IFP such that Vi) = -~ V2). Let
T = y1 (Fl +Vi ) and let a be an element of Fp such that 0. Then

the homomorphisms y1 and y2 can be extended to give homomorphisms
and - I such that

and ). But then , so

the minimal polynomials of u(Fi , Vi) and u(F2, V2) have a common root
in IFP. It follows that is divisible by p. 0

Using Theorem 1 and the corollaries established so far, we can now
prove Theorem 3.

Proof of Theorem 3. - Suppose q is a square prime power, say
q = p2e for a prime p. Of the types of defect-2 zeta-functions listed in [14],
only two are possible when q is a square: namely [m,..., m, m - 1, m - 1] I
and [m,...,m,?7Z 2013 2]. The first of these is impossible when g &#x3E; 2 by
Theorem 1 (a), so the only possible defect-2 zeta function for g &#x3E; 2 is

[m,..., m, m - 2~ . To prove part (a), first assume that 2. Then it follows

from Corollary 12 that this zeta function is not possible. If p = 2, then m - 2
is not the trace of an elliptic curve 4, so [m,..., m, m - 2] is not

possible in that case either.

The proof of part (b) is essentially the same. From [18] we see that
the only possible zeta function for a defect 3 curve when q is a square and
g &#x3E; 3 is [m,..., m, m 2013 3]. (If g = 3, then [77~2013 1, m - 1, m - 1] may be
possible; see [15].) If p ~ 3 then it again follows from Corollary 12 that this
zeta function is not possible. If p = 3, then m - 3 is not the trace of an
elliptic curve 9, so [m,..., m, m - 3] is not possible in that case
either.
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Now we prove parts (c) and (d). Using the methods of [22] (see
also [14], §2) and the tables from [24], we see that for square q there are
exactly eight possible types for a curve of genus g and defect 4 over Fq . For
each type, we list in Table 4 the associated real Weil polynomial h evaluated
at x - m (where m = and the associated Weil polynomial f.

TABLE 4. The possible types of defect-4 curves over square fields, together with

the associated real Weil polynomial h evaluated at x - m and the associated Weil

polynomial f.

Suppose that g &#x3E; (3q+4m-9)/m, where m = 2ýQ. Then Corollary 14
shows that the first entry in the table cannot occur. Also, since the

inequality we are assuming implies that g &#x3E; (q + 4m - 3)/m as well,
Theorem l(b) and Lemma 8(a) can be used to show that the second and
fourth entries cannot occur. We also see that g &#x3E; (q + 2m + 3)/m, so
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Theorem 1 (b) and Lemma 8(a) show that the eighth entry cannot occur.
Finally, Theorem 1 (a) shows that the remaining entries cannot occur when
g &#x3E; 4. This proves part (c).

Finally, suppose q = 22e with e &#x3E; 2, and suppose g &#x3E; 21-1 + 2 &#x3E; 5.

Then the first four entries listed in Table 4 cannot occur because the

Honda-Tate theorem [29] shows the final factor of each of the putative
Weil polynomials is not in fact a Weil polynomial. (A simple way to check
this is to use [4], Lem. 3.1.2.) The next three entries cannot occur when
g &#x3E; 4 because of Theorem 1 (a), as we have noted already. That leaves us
with the final entry. Once again Theorem 1 (b) and Lemma 8(a) can be
used to eliminate this possibility, because we have g &#x3E; 2e-1 + 2. 0

3. Exceptional prime powers.

In this section we will prove Theorem 4, Proposition 5, and Corol-
lary 6. Before we begin, let us define the trace of a monic degree-n polyno-
mial in Q[x] to be -1 times the coefficient of xn-1, and the deficiency of
such a polynomial to be its trace minus its degree.

Proof of Theorem 4. - Let C be a curve of genus g over Fq and let
h be its real Weil polynomial. We know that all of the roots of h are
real numbers in the interval [20132~/g,2~], and the number of points on C
is equal to q + 1- t, where t is the trace of h. Write h = (x + where

h2 has no factors of (x + m). The factor (x + m)e of h corresponds to the
largest isogeny factor of Jac C on which Frobenius acts as -m, and up to
isogeny this factor must be a power of the smallest abelian variety over Fq
whose real Weil polynomial is a power of x + m. Thus, the exponent e is a
multiple of the defect-0 dimension 6 of Fg, and we see that the degree g2
of h2 is congruent to g modulo 6.

Define H E Z[x] by H(x) - h(x - m - 1), so that H = (x - 1)’H2
for a polynomial H2 of degree g2 that has no factors of x - l. All of the
roots of H are positive real numbers, and the number of points on C is
q ~-1 - T + gm + g, where T is the trace of H. The trace T2 of H2 is equal
to T - e, and the degree of h2 is equal to 9 - e, so we have

In other words, the defect of the curve C is T2 - g2, which is the deficiency
of the polynomial H2.
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Now, all of the roots of H2 are positive real numbers, and H2 has no
factors of x -1, so a result of Siegel [23] says that the trace of H2 is at least
3/2 times its degree. It follows that the deficiency of H2 is at least half its
degree. Thus, the defect of C is at least g2/2. We already noted that g2 is
congruent to g modulo 6, so the defect of C is at least r/2, where r E [0, 6)
is the remainder obtained when dividing g by 6. 0

Proof of Proposition 5. - If f is a monic irreducible polynomial
in whose roots in the complex plane all have magnitude y0., then
there is an exponent e such that f e is the Weil polynomial of a simple
abelian variety over Fq . The Honda-Tate theorem [29] includes a recipe for
calculating this exponent. Proposition 5 is obtained by applying this recipe
to either the polynomial x2 (if q is not a square) or the polynomial
x + y0. (if q is a square). We leave the details to the reader. D

The essence of the following argument appears in [22].

Proof of Corollary 6. - Consider the expression for V2 in base 2:
L L L

where each b2 is either 0 or 1. Suppose e &#x3E; 0 is an integer such that be = 1
and be+1 = 0. Let q = 22e+1. Then the base-2 expression for 2v7J is

so the base-2 expression

Clearly m is even but not a multiple of 4, so if v is the usual additive

2-adic valuation of Q we have v(m) = 1 and v(q) = 2e + 1. It follows from
Proposition 5 that the defect-0 dimension of q is equal to 2e + 1. If we take

2e, then Theorem 4 shows that the defect of a genus-g curve over IFq
is at least g/2.

Thus, to prove Corollary 6 we need only show that there are infinitely
many e with be = I and be+1 = 0. But there are only two ways in which
there could not be infinitely many such e: either bi = 0 for all sufficiently
large i, or bi = 1 for all sufficiently large z. Neither of these can occur,
because V2 is irrational. D

If p is a prime for which the real number qfi is normal in base p
- a condition one expects every prime to satisfy - then a similar argument
shows that there are infinitely many exceptional powers of p.
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4. Improved bounds.

In this section we will explain how we obtained the improvements
listed in Tables 1 and 2. Some of the entries in the table are immediate

consequence of the corollaries in Section 2, but other entries require a more
detailed analysis. We have written a Magma program that carries out some
of this analysis for us; let us begin by explaining what the program does.

Given a prime power q and two positive integers g and N, we want
to determine, if we can, whether there exists a curve of genus g over Fq
with N rational points. Our program enumerates all of the polynomials
that might possibly be the real Weil polynomial h of such a curve, where
by "might possibly" we mean that

~ all of the roots of h are real numbers in the interval [-2~, 2~/~], and
~ the number of places of degree d (for d = 1,..., g) predicted by h are

non-negative and in accord with the Weil-Serre bounds.

The enumeration is carried out in one of two ways: If the value of N

corresponds to a defect of 6 or less, the program uses precomputed tables of

totally positive polynomials of deficiency at most 6 (calculated as in [24])
to list all of the appropriate polynomials. Otherwise, the program uses the
algorithm from [13] to compute the appropriate h’s. For each candidate h,
the program then uses the criterion of [29] to determine whether h actually
is the real Weil polynomial of an isogeny class of abelian varieties over Fq .
For each h that is a real Weil polynomial, the program uses the factorization
of h to loop through all of the splittings of the associated isogeny class into
a product of lower-dimensional isogeny classes. It then computes the value
of r(F + V) for each such splitting. If r(F + V) == 1 then we know from
Theorem 1 (a) that there is no curve with h as its real Weil polynomial. If
r(F + V) = 2 then the program tries to use Theorem l(b) and Lemma 8
to show that there is no curve with the given real Weil polynomial. (The
program only uses Lemma 8(a) with d = 1, and it only uses Lemma 8(c)
with all of the di less than or equal to g.) If one of the isogeny classes in
the splitting is an isogeny class of elliptic curves and if the conclusion of
Proposition 13 is not satisfied, then again we know that there is no curve
with the given real Weil polynomial. If a polynomial h is not eliminated by
these filters, the program flags it as such and prints out three items:

(1) The number of places of degree d (for d = 1,..., g) that a curve would
have to have in order to have h for its real Weil polynomial,
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(2) the factorization of h, and

(3) a matrix giving the resultants of each pair of prime factors of h.

Likewise, if a polynomial h is eliminated, the program will print out
item (2) above, together with an explanation of why it eliminated the

polynomial. The program will also print out item (1) if it had to calculate

that information in order to eliminate the polynomial.

For some specific choices of q, g, and N, our program eliminates all
possible real Weil polynomials. For other choices there are only a few real
Weil polynomials left to consider, and sometimes we can eliminate these
by other methods; see Sections 5, 6, 7, and 8 for examples of some of these
methods.

Throughout this section, the symbol m will always stand for the
integer [2~], where q is the prime power currently under discussion.

It was proven in [22] (see also [14], Prop. 2) that defect-1 curves are
never possible when the genus is bigger than 2. We will frequently use this
fact without comment.

4.1. Improvements for q = 4.

The case q = 4, g = 5, N = 18. - We ran our Magma program for
the case q = 4, g = 5, N = 18. The output is reproduced in the Appendix.
The program finds eight polynomials h that might possibly be real Weil
polynomials for a genus-5 curve over F4 with 18 points. The first of the
eight possibilities turns out not to be a real Weil polynomial; it fails the

local criterion given in [29].
The second, fourth, fifth, seventh, and eighth possibilities are elimi-

nated by Theorem l(a). For example, for the fifth possibility, the program
finds that h factors as (x + 2)2 (x -f- 4) (x2 + 5x + 5). If we let hi be the

product of the first and second of these factors (as the line

Splitting = [ 1, 2 ]

in the output indicates we should do) and if we let h2 be the third factor,
then the resultant of the radical of hl and the radical of h2 is 1.

The third and sixth possibilities are eliminated by Theorem 1 (b)
and Lemma 8. For example, the polynomial h for the third possibility is

(~+l)(~+2)(.r+3)~(~+4). We can factor this as hl h2 where hl = (x + 2)
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and h2 - (x + 1) (~ -+- 3)2 (x + 4), and then the resultant of the radicals
of hi and h2 is 2. Thus Theorem l(b) shows that any curve with h as
its real Weil polynomial would have to be a double cover of a curve D
whose real Weil polynomial is either hl or h2. But if D had hl as its real
Weil polynomial then it would have 7 points, and this would contradict
Lemma 8(a) with d = 1; while if D had h2 as its real Weil polynomial
then it would have genus 4, and this would contradict Lemma 8(b). This
argument is summarized in the lines

Splitting = [ 2 ]
Reasons: point counts, Riemann-Hurwitz

of the output.

So we see that there is no genus 5 curve over IF4 with 18 points. A
curve with 17 points is known, so we obtain the first entry in Table 3.

The improvements listed in Table 1
for q = 4 and g ~ {10,11} come from running our program. Note that a
curve over F4 of genus 10 with 27 points is known, so we get the second
entry in Table 3.

4.2. Improvements for q = 8.

The cases q = 8, g = 5, N = 32 and 31. - Our program shows that

no genus-5 curve over F8 can have exactly 32 points.

The case N = 31 is more interesting. Our program shows that if C is
a genus-5 curve over F8 with 31 points, then its real Weil polynomial must
be

The resultant of x + 5 and x 2+ 7x + 8 is 2, so C is a double cover of a
curve D whose real Weil polynomial is either (x + 5)3 or x2 -I- 7x + 8. If D
had (x + 5)3 for its real Weil polynomial then D would have genus 3, and
this would contradict Lemma 8(c) since C has an odd number of rational
points. Thus the real Weil polynomial of D must be x2 + 7x + 8.

We see that the Weil polynomial of C must be
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and the Weil polynomial of D must be

In Section 5 we will use a Galois descent argument to show that this cannot
occur.

The cases q = 8, g = 9, N = 47 and 46. - Our program shows

that a genus-9 curve over F8 cannot have exactly 47 points, and that if

such a curve has exactly 46 points then its real Weil polynomial is either

(x + 3) (x + 4)3 (x -~ 5)3 (~2 ~ 7x + 9) or (x + 3)4 (~ + 5)~. We will consider
each of these two possibilities in turn.

Suppose C is a genus-9 curve over F 8 with real Weil polynomial

Since the resultant of x + 5 and (x + 3) (x + 4)(X2 + 7x + 9) is 2, the curve
C must be a double cover of a curve D over F8 whose real Weil polynomial
is either (x + 5)3 or (x + 3) (x + 4)3 (x2 + 7x + 9). The second option would
require D to have larger genus than is allowed by Lemma 8(b), so D must
have real Weil polynomial (x + 5)3. In particular, D must have exactly 24
places of degree 1.

We see from the real Weil polynomial of C that C has no places of
degree 2. In particular, no rational places of D can be inert in the double
cover C ~ D. Since C has 46 rational places, it must be the case that 22
of the 24 rational places of D split in the cover C ~ D and the other 2
rational places ramify.

We also see from the real Weil polynomial of C that C has 109 places
of degree 3. As we argued in the proof of Lemma 8, the fact that C has an
odd number of degree-3 places implies that at least one degree-3 place of D
ramifies. Thus, at least 5 geometric points of D ramify in the double cover
C ~ D. Since the ramification is necessarily wild, each ramification point
contributes at least 2 to the degree of the different of the cover, which means
that the degree of the different is at least 10. But the Riemann-Hurwitz

formula shows that the degree of the different of the double cover C - D
is equal to 8. This contradiction shows that there is no genus-9 curve over
F8 with (x + 3) (x + 4) 3 (X + 5)3 (x2 + 7x + 9) for its real Weil polynomial.

Suppose C is a genus-9 curve over F8 with real Weil polynomial
(x + 3)4 (x +5 )5. Since the resultant of x + 3 and x + 5 is 2, the curve C
must be a double cover of a curve D whose real Weil polynomial is either

(x -~- 3)4 or (x -~- 5)5. But the first option is impossible, because in that case
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D would have only 21 rational points, which contradicts Lemma 8(a). The
second option is impossible as well, because in that case the genus-5 curve
D would have 34 rational points, whereas we know that Ng (5)  30.

Thus there are no genus-9 curves over F8 with 46 points. A curve with
45 points is known, so we get the third entry in Table 3.

The cases q = 8, g G {7,8,10,11,15}. - The improvements we get
when q = 8 and g E {7, 8,10,11,15} can all be obtained by running our
program.

4.3. Improvements for q = 16.

The cases q = 16, g E {4, 5, 71. - These improvements come directly
from Theorem 3(b). Since a genus-4 curve over IF16 with 45 points is known,
we obtain the fourth entry in Table 3.

The cases q = 16, g E {8,11,13,14}. - The improvements we list
in these cases are all obtained by running our program.

4.4. Improvements for q = 32.

The case q = 32, g = 4, N = 75. - Suppose C is a genus-4 curve
over F32 with exactly 75 rational points. Then C has defect 2, so it must
be of one of the seven types listed in [14]. The type is

forbidden by Theorem 1 (a), and the fractional part of 2 32 is small enough
to eliminate five of the others. Thus C must have type 2],
where m = [2J32] = 11. Theorem 1 tells us that C must be a double cover
of either a genus-3 curve (which is impossible, by Lemma 8(b)) or of an
elliptic curve whose Weil polynomial is x2 + (m - 2)x + 32 = X2 -f- 9x + 32.
In Section 6.2 we will show how the set of all genus-4 double covers of such

elliptic curves can be enumerated. We will see that none of the curves has
75 points.

The cases q = 32, 5  g  15. - For q = 32 and g &#x3E; 3, a Galois
descent argument [14] shows that the Weil-Serre upper bound cannot be
met, and the previously-known best upper bound for 15 was
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q + I + gm - 2. As we saw above, the only possible defect-2 zeta function is
of type [m,..., m, m - 2]. However, Corollary 9 rules out this type of zeta
function when g &#x3E; 5, so defect 2 is impossible when g &#x3E; 5.

Likewise, the arguments from the appendix of [18] show that for

g &#x3E; 9 the only possible defect-3 zeta function for q = 32 is of type
[m,..., m, m - 3]. (This also depends on the fact that the fractional part of
2 32 is relatively small.) But Corollary 14 shows that then g x 8, so defect
3 is impossible when g &#x3E; 9. Thus our new upper bound is q + 1 ~ gm - 3

4.5. Improvements for q = 64.

The cases q = 64, 11  g  27, g ~ 12. - If g = 11, then a
curve meeting the Weil-Serre bound is not possible due to the results of
Korchmaros-Torres [9]. Defect 2 is also impossible, by Corollary 10.

We know from [5] that there is also no defect-0 curve when 13 x g x
27, and it was shown in [14] that defect 2 is ruled out by the Honda-Tate
theorem. But Theorem 3 shows that defects 3 and 4 are not possible either,
so we get an upper bound of q -f- 1 + gm - 5.

4.6. Improvements for q = 128.

Apart from the case g = 9 and N = 324 (explained below), all of our
improved bounds for q - 128 can be obtained by running our program.
However, we will take some time here to indicate how the structure

apparent in the q = 128 results is a consequence of the fact that 128 is

exceptional (in the terminology of Section 3). To simplify our discussion,
let us introduce some terminology.

Suppose h is a monic irreducible polynomial in Z[x], all of whose

roots in C are real and have magnitude at most 2vfQ. By the Honda-Tate
theorem there is an integer e &#x3E; 0 such that a power hn of h is the real Weil

polynomial of an abelian variety over Fq if and only if n is divisible by e.
We will say that he is an elementary real Weil polynomial. For example,
the polynomial (x + 22) 7 is an elementary real Weil polynomial over Fi28.

We define the defect of a real Weil polynomial h over 1Fq to be

m deg h + trace h, where the trace of a polynomial is as defined in Section 3.
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Note that if C is a curve over Fq of defect d then its real Weil polynomial
has defect d. Also, the defect of a product of real Weil polynomials is the
sum of the defects.

Suppose h E is the real Weil polynomial of a curve C over 1Fq .
Let H(x) = h(x - m - 1), so that all of the roots of H are positive real
numbers. One checks that the defect of h is the deficiency of H, as defined in
Section 3. Smyth [24] has written down all irreducible monic polynomials H
in with totally positive roots and with deficiency at most 6, and using
Smyth’s work and the Honda-Tate theorem it is not hard to write down a
list of all of the elementary real Weil polynomials h over Fq with defect at
most 6. (A Magma program to reproduce Smyth’s work is available at the
URL mentioned in the acknowledgments.)

There is only one elementary real Weil polynomial of defect 0, namely
(x + m) 6, where 6 is the defect-0 dimension of q. Let us say that a real Weil
polynomial over Fq is minimal if it is coprime to x + m. Given the list of
elementary real Weil polynomials over Fq of defect at most 6, it is a simple
matter to make a list of all of the minimal real Weil polynomials over Fq
of defect at most 6.

Now suppose one is interested in genus-g curves C over Fq with
defect d x 6. The real Weil polynomial of C must be of the form 
where h is a minimal real Weil polynomial of defect d. As we just noted,
one can easily list these polynomials; the task is made even simpler by the
fact that only h of certain degrees can occur, since n = g - deg h must
be a multiple of the defect-0 dimension of q. Furthermore, one can use
Theorem 1(a) to exclude certain polynomials (x + m)nh.

For instance, consider the case where q - 128 and 9 == 2 mod 7,
with g &#x3E; 2. There can be no defect-0 curves of genus g because the defect-0

dimension of q is 7. There are no defect-1 real Weil polynomials because
we took g &#x3E; 2. The only possible defect-2 polynomials are yg-2(y - 1)2
and yg-2(y2 - 2y - 1), where y = x + m, but these are eliminated by
Theorem 1 (a) . The possible defect-3 polynomials are g9-2 (g2 - 3g ~ 1 ) and
~g-2(~2 - 3g _ 1) and yg-2 (y2 - 3y - 2). The first two are eliminated by
Theorem 1 (a), and when g &#x3E; 9 the third is eliminated by Theorem 1 (b)
and Lemma 8. The possible defect-4 polynomials are 2~9-2 (2~2 - 4y -1 ) and
yg-2(y2 - 4g + 1) and g9-2 (y - 1) (g - 3). The first two are eliminated by
Theorem 1 (a), and when g &#x3E; 9 the third is eliminated by Theorem 1 (b)
and Lemma 8. For defect 5 there are several possible polynomials that we
cannot eliminate using our theorems. Combining all of the above, we see
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that when g &#x3E; 9 is congruent to 2 mod 7, we have q + 1 + mg - 5.
A similar analysis can be done for the other congruence classes modulo 7.

There is a known curve of genus 4 over F128 with 215 rational points,
so we obtain the fifth entry in Table 3.

The case q = 128, g = 9, 323  327. - The defect-0 dimension

of q is 7, so there is no defect-0 curve of genus 9. Defect 1 is impossible
because g &#x3E; 2. The cases N = 325 and N = 323 are eliminated by our
program. The only case remaining is N = 324.

Our program shows that a genus-9 curve C over F128 with 324 points
would have to have real Weil polynomial (x ~ 22) 7 (x2 -i-41x-~416) and would
have to be a double cover of a genus-2 curve D with real Weil polynomial
x 2+41x+416. From their real Weil polynomials, we see that C and D each
have 2-rank 1; that is, the F2-dimension of the geometric 2-torsion of their
Jacobians is 1. But then the Deuring-Shafarevich formula (see [28] and the
references listed in [2], §3) shows that the double cover C - D must be
unramified, which is clearly impossible.

4.7. Improvements for q = 3.

The case q = 3, g = 6, N = 15. - Running our program on this
case leaves us with three real Weil polynomials to consider.

The first is (.r+2)~(.r+3)(~+4~+.r-3). Factoring this as (x + 3)
times (x + 2)2(x3 + 4x2 + x - 3) and applying Proposition 13, we find that
a curve with this real Weil polynomial must be a triple cover of an elliptic
curve with Weil polynomial x 2+ 3x + 3. We will show in Section 7.3 that
no such triple cover can have 15 points.

The second real Weil polynomial we must consider is (x + 2) 2 (x2 --3x -
1)(x2+4x2). Factoring this as (X2 +4x+2) times (x+2)2(x2+3x-1) and
applying Theorem 1 (b), we find that a curve with this real Weil polynomial
must be a double cover of a genus-2 curve with real Weil polynomial
(X 2+ 4x + 2). Searching through the genus-2 curves over we find that

there is exactly one curve with that real Weil polynomial; it is given by the
equation y 2 - x6 + x 5 + x 4+ x 2 - x + 1. In Section 6.3 we will show that
there is no genus-6 double cover of this curve with 15 points.

The third real Weil polynomial we are left to consider is (x + 1)2(X +
3) 2 (x2 ~ 3x - 1). Writing this polynomial as the product of (x + 3) 2 and
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(x + 1)2 (x2 + 3x - 1) and applying Theorem 1 (b), we find that a curve C
with this real Weil polynomial must be a double cover of a genus-2 curve
with real Weil polynomial (x + 3)2. Such a genus-2 curve would have 10
rational points - but this is impossible, because N3 (2) = 8.

Thus there is no genus-6 curve over F3 with 15 rational points. A
curve with 14 points is known, so we obtain the sixth entry in Table 3.

4.8. Improvements for q = 9.

, The case q = 9, g = 13, N = 66. - Running our program shows
that the only possible real Weil polynomial in this case is (~ -~- 2) (x -~ 4) 6 (x -f-
5)6. Writing this polynomial as the product of (x + 4) 6 with (x ~- 2) (x -~- 5)6
and applying Theorem 1 (b), we see that a genus-13 curve C over Fg with
66 points must be a double cover of a curve D such that either

(1) the curve D has 34 rational points and has genus 6, and the double
cover C ~ D is ramified at 4 geometric points, or

(2) the curve D has 42 rational points and has genus 7, and the double
cover C - D is unramified.

We note that the real Weil polynomial of C shows that it has no places
of degree 2, so that no rational point of D can be inert in the double cover
C ~ D, and so that every degree-2 place of D must be inert in C ~ D.

Suppose D has genus 6. Since D has 34 rational points and none of
them are inert in C ~ D, and since C has 66 rational points, we see that

exactly 2 rational points of D are ramified. Since there are 4 geometric
ramification points, a degree-2 place of D must ramify as well - but we
have just seen that every degree-2 place of D must be inert, a contradiction.

Suppose D has genus 7. Since no rational point of D can be inert or
ramified in the double cover C ~ D, each of the 42 rational points of D
must split. But then C would have to have 84 rational points, contradicting
the fact that it has only 66.

Thus neither of the two possibilities listed above can hold, and there
can be no genus-13 curve over Fg with 66 points.

The cases q - 9, g E {9,10,11,12,14,15,16,17,18}. - The im-

provements listed in Table 2 for q = 9 and g E ~9, 10, 11, 12, 14, 15, 16, 17,
18} can all be obtained simply by running our program. Note that there
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is a known genus-10 curve over Fg with 54 points, so we get the seventh
entry in Table 3.

4.9. Improvements for q = 27.

Suppose C is a
genus-4 curve over F27 with exactly 66 rational points. Then C has defect
2, and of the seven types of zeta function from [14] one is eliminated by
Theorem l(a) and five more are forbidden by the size of the fractional
part of 2m. The only possibility remaining is 2], where
m = [2v~2-7] - 10. Theorem l(b) tells us that C must be a double cover
of either a genus-3 curve (which is impossible, by Lemma 8(b)) or of an
elliptic curve whose Weil polynomial is x 2 + (m - 2)x + 27 - X2 + 8x + 27.
In Section 6.1 we will show how the set of all genus-4 double covers of such
elliptic curves can be enumerated. We will see that none of the curves has
66 points.

Suppose C is a genus-4 curve over F27 with exactly 65 rational points.
Then C has defect 3, and using the results of the appendix to [18] we find
that C must be of type m, m - 3]. Then Proposition 13 shows that
C must be a triple cover of an elliptic curve whose Weil polynomial is

x2 + 7x + 27. In Section 7.4 we will show how the set of all genus-4 triple
covers of such elliptic curves can be enumerated. We will see that none of
the curves has 65 points.

A genus-4 curve over F27 with 64 points is known, so we obtain the
eighth entry in Table 3.

The cases q = 27, 5 ~ g  13. - First we note that [14], Thm. 1,
shows that the Weil-Serre bound cannot be met when g &#x3E; 3.

Now we show that defect 2 is impossible for g &#x3E; 5. For g &#x3E; 5

this follows from Corollary 10. When g = 5 Corollary 9 shows that
m, m, m, m - 2] is not a possible type, and the proof of Corollary 10

shows that the only other possible type is [m, m, m, m+ J3 -1, m - J3 -1].
But this last type is also impossible, because the fractional part of 2m is
less than J3 - 1.

Finally we note that the Appendix to [18] shows that the only defect-3
curves over IF27 when g &#x3E; 9 are of type [m,..., m, m - 3], and Corollary 14
shows that this type is impossible for g &#x3E; 9.
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The case q = 27, g = 14, N = 164. - Our program eliminates this

possibility.

4.10. Improvements for q = 81.

The cases q = 81, 13 x g x 35, g :~ 16. - From [5] and [9], we know
that no defect-0 curves are possible for 13  g  35, g # 16. But defect 2
and 3 are not possible either by Theorem 3, so the upper bound for these
cases is at most q -f- 1 + gm - 4. When g &#x3E; 18 we see from Theorem 3(c)
that defect 4 is impossible as well, so our new upper bound for 18  g  35
is q +1+gm -5

4.11. Cases where few Weil polynomials are possible.

We have tried to use our program to obtain further improvements
to the upper bounds listed in the van der Geer-van der Vlugt tables, but
it appears that we have already picked most of the low-hanging fruit. For
example, for every q listed in the tables, and for every g x 10, we have
taken the best current upper bound N for Nq (g) and run our program on
the triple (q, g, N). In each such case, our program indicates that there are
real Weil polynomials that are not eliminated by the criteria that we built
into the program. This is not to say, however, that our methods cannot

give further improvements in these cases: For instance, for q = 27 and
5  g  8, a curve meeting the best current upper bound would have to
be a triple cover of a defect-3 elliptic curve, and by using methods as in
Section 7 it should be possible to enumerate all such triple covers.

We mention just two more interesting cases. The smallest genus g for
which N2 (g) is not known is g = 12; it is known that N2 (12) is either 14 or
15. Running our program on the case q = 2, g = 12, N = 15 took almost
18 hours using Magma 2.8 on a 2 GHz Pentium 4, and we found that there
are eight possible real Weil polynomials to consider. We were unable to
eliminate all of these polynomials, and we were not able to use them to
direct a search for a genus-12 curve with 15 points.

On the other hand, running our program on the case q = 4, g = 7,
N = 22 produces six candidate real Weil polynomials, and by a number
of ad hoc arguments we were able to eliminate all but one of them from
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consideration. We find that if a genus-7 curve over F4 has 22 points, then
its real Weil polynomial must be .r(.r + 2)~(.r + 3)~(.r + 4). We have not yet
been able to eliminate this possibility.

5. A Galois descent argument.

In Section 4.2 we showed that a genus-5 curve C over F8 having
exactly 31 points must be a double cover of a genus-2 curve D. In this
section we will use a Galois descent argument to show that the curves C
and D and the degree-2 map C -~ D can all be defined over IF2, and we
will show how this leads to a contradiction.

Let f2 = ~4 +- ~3 --~ 2~ -+ 4 and let g2 = X2 -x+2. Let 7r be a root of
f 2 in Q and p be a root of g2 in Q. Let

Note that 7r~ is a root of f8 and that p3 is a root of 98. The arguments
from Section 4.2 show that it will suffice for us to prove the following:

PROPOSITION 15. - There is no genus-5 curve over F8 with Weil

polynomial 

Proof. We know from Section 4.2 that any such curve must be a

double cover of a genus-2 curve D with Weil polynomial f8. Let us first
identify the curve D.

CLAIM. - There is exactly one principally polarized abelian surface
over F8 with Weil polynomial equal to fg. It is the polarized Jacobian of
the curve y 2 + :r~ = x5 + x.

Proof. Every such principally-polarized variety is a Jacobian,
because the varieties in the isogeny class determined by f8 are absolutely
simple (see [8], Thm. 6). By explicitly enumerating the genus-2 curves over
F8 one finds that the curve given above is the only curve whose Jacobian
has Weil polynomial f8. 0

Suppose, to get a contradiction, that C is a genus-5 curve over F8
with Weil polynomial Since the resultant of the real Weil polynomials
associated with f8 and 98 is 2, Lemma 7 shows that there is an exact

sequence
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where A and B are abelian varieties over F8 with Weil polynomials f8 and

98 3, respectively, and where the projections A x B ~ A and A x B - B
induce monomorphisms A - A ~2~ and A - B [2]. Since Jac C is a Jacobian
and hence has a principal polarization, Lemma 7 shows that A is self-dual.
Furthermore, A is nontrivial, because the principal polarization on Jac C
is indecomposable.

Every finite group-scheme G in characteristic p can be written as a
product of four sub-group-schemes:

where Gred,red is a reduced group-scheme whose Cartier dual is reduced,
where Gred,loc is a reduced group-scheme whose Cartier dual is local, and
so on. (See [17], §1.2.) A group-scheme of p-power rank in characteristic
p can have no reduced-reduced part. Furthermore, if G is self-dual - for

example, if G is the kernel of a polarization - then Gred,loc and Gloc,red
are dual to one another.

Now, B is an ordinary abelian variety, and the kernel of multiplication-
by-p on an ordinary abelian variety in characteristic p has no local-local
part. Thus B ~2~ consists of a reduced-local factor of rank 8 and a local-
reduced factor of rank 8.

The variety A is not ordinary, so A[2] has a local-local component.
However, A has positive 2-rank, so A[2] has a reduced-local component as
well. The only possibility is that A ~2~ has a reduced-local component of
rank 2, a local-reduced component of rank 2, and a local-local component
of rank 4.

There are supposed to be monic maps from A to A[2] and to B[2].
Since A can be viewed as a subscheme of B ~2~ it can have no local-local

part. Thus, the monomorphism A - A~2~ must take A onto the product of
the reduced-local and the local-reduced part of A[2]. Since A is self-dual,
it follows that A has rank 4 and is the product of a rank-2 reduced-local
group and a rank-2 local-reduced group.

As in the proof of Lemma 7, let p A and 1-tB be the degree-4 polariza-
tions on A and B that we get by pulling back the canonical polarization of
Jac C via the map A x B -~ Jac C. We know that A is isomorphic to ker p A
and to ker PB. The local-reduced subgroup of ker /-LA is maximal isotropic,
so the polarization p A on A gives rise to a principal polarization on the
quotient of A by this subgroup. It follows from the claim we made above
that this quotient variety is the Jacobian of the curve D.
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We can make a diagram

where the left arrow is the degree-2 isogeny -A 2013~ Jac D, the right arrow is
the dual of this isogeny, and the bottom arrow is the canonical polarization
on Jac D.

Now, Jac D has exactly one reduced-local subgroup of order 2, and
it is defined over I~2. It is in fact the kernel of multiplication by 1 + 1f,

so Jac D divided by this subgroup is geometrically isomorphic to Jac D.
Now, the composition of the bottom and right arrows gives an isogeny
Jac D - A whose kernel is reduced-local and of order 2. So geometrically,
A is isomorphic to Jac D, which means that A is a twist of Jac D. But
A is isogenous to Jac D over F8, and the quadratic twist of Jac D is not

isogenous to Jac D (as we can see by checking Weil polynomials), so A must
be isomorphic to Jac D over F8 . It follows that A is isomorphic to Jac D as
well. Thus A, and the polarization MA, can be defined over 1F 2.

On the other hand, B and the polarization 1-tB can be defined over F2
simply because = ~~p3, p3~. (This is essentially the Galois descent
argument that Serre gives in [221 and in the appendix to ~14~.) This means
that the whole diagram

can be descended down to IF2.

Now we want to know whether we can have a curve C over F2 with
Weil polynomial equal to f2g’2. Again we find that C must be a double cover
of a genus-2 curve D with Weil polynomial f2. But then we find that C
has 13 points over F4 and D has 4 points over F4, and this is impossible,. D

6. Exhaustive searches over small spaces.

In this section we will give three examples that show how Theorem 1
can give us enough information about a curve with a certain number of
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points for us to have a computer look at every such curve and bound its
number of rational points.

6.1. The case q = 27, g = 4, N = 66.

We showed in Section 4.9 that a genus-4 curve over IF27 with exactly
66 rational points must be a double cover of an elliptic curve with Weil
polynomial x2 + 8x + 27. There are exactly 4 elliptic curves over IF27 with
this Weil polynomial; one of them is defined over F3, and the other three
are Galois conjugates of one another. Given such an elliptic curve E, we
will show how the genus-4 double covers C of E can be enumerated by
computer.

The function field of C must be obtained from that of E by adjoining
a root of z2 = f, where f is a function on E. By the Riemann-Hurwitz
formula, in order for C to have genus 4 the divisor of f must be of the form

where the Pi are distinct geometric points on E and where D is a divisor
of degree -3. There is a function g on E such that

where oo is the infinite point on E and where Q is a rational point on E.

Replacing f with f g2 does not change the double cover of E. Thus, we may
assume that C is given by adjoining a root of z2 = f, where f is a function
on E whose divisor is of the form

We can also change the map C --~ E by following it with a translation
map on E. Translating E by a rational point R has the effect of replacing
f with a function whose divisor is

(where the sums in parentheses take place in the algebraic group E). By
modifying this new f by the square of a function we can get the divisor of
f to be

If we choose representatives of the classes of E(F27) modulo 3E (IF27 ) , then
we may assume that Q is one of these representatives. It turns out that for
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each of the possible curves E the group E(F27) /3E(F27) has order 3, so
for each E we need consider only 3 possible Q’s. We can choose our Q’s so
that they do not lie in E[2].

Let us write E in standard Weierstrass form y 2 = ~3 ~ ax2 + bx + c
and try to write down all of the functions f as above in a standard form.
There are two cases to consider, depending on whether or not any of the
Pi is oo.

Suppose that one of the Pi is oo. Then f has degree 7 and its only
pole is at oo, and f has a double zero at Q. Since Q is not a 2-torsion point
by assumption, we may write Q = (xo, yo) with Yo i=- 0. Note that then

x - xo is a uniformizing parameter at Q. Let fo be a linear polynomial that
defines the tangent line to E at Q. Then up to squares f can be written as

where f 1 is a function of the form

(x - ~o)~ ’ (polynomial in x of degree  1)
+ (x - xo ) (y - Yo) . (monic linear in x).

Likewise, if no Pi is oo, then we may write f = +( fi + co fo ) where f1 1 is a

function of the form

(x - xo)2 ~ (monic quadratic in x)
+ (x - yo) - (polynomial in x of degree ~ 1 ) .

It is not hard at all to have a computer algebra system write down all of
these possible f ’s for a given E.

Now our problem is to count the points on the extension of E defined

by z2 = f. It is easy to get an overestimate: If P is a rational point on E
for which f (P) is a nonzero square, then there are two rational points of C
lying above P. If f (P) is not a square, then there are no rational points of
C above P. If P is a simple or a triple zero of f, then there is one rational
point of C above P. And if P is a double zero of f, then there are at most
2 rational points of C lying above P.

What we actually did in practice for each candidate f was to:

( 1 ) Eliminate f from consideration if we could find more than three points
P on E with f (P) nonsquare.

(2) Calculate the overestimate for ~C(F27) described above.

(3) Discard f if the overestimate was less than 66.
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(4) Check to see that the divisor of f was of the proper form, and discard
f if it was not.

No candidate f ’s made it through these filters, so we never had to
worry about resolving the singularities of our model for C to get an exact
point count.

It took a little more than twelve hours using Magma 2.9 on a 400 MHz
PowerPC G4 processor to search through all of the (E, f ) pairs that we had
to consider. (Our Magma program is available at the URL mentioned in
the acknowledgments.) Note that we need only consider two E’s; if one of
the E’s that is defined only over F27 has a double cover with 66 points,
then so do all of its conjugates.

6.2. The case

We showed in Section 4.4 that a genus-4 curve over IF32 with exactly
75 rational points must be a double cover of an elliptic curve with Weil
polynomial x 2+ 9x + 32. There are exactly 5 elliptic curves over F32 with
this Weil polynomial, and they are all conjugate to one another over F2.
(If a E F32 satisfies a5 + a 2+ 1 = 0 then the elliptic curve E defined
by y 2 + x3 + x 2 + a7 has the correct Weil polynomial.) As in the
preceding section, we can easily program a computer to enumerate the
genus-4 double covers of such an elliptic curve and check to see whether
any of these double covers has 75 points. The only complication is that a
double cover in characteristic 2 is given by an Artin-Schreier extension of
function fields instead of a Kummer extension.

Suppose C is a double cover of the curve E given above. Then the
function field of C is obtained from that of E by adjoining a root of
z2 -I- z = f, where f is a function on E. The points of E that ramify in the
cover C - E are contained in the set of poles of f ; to determine whether
a pole P of f is a ramification point, and to determine the contribution of
P to the different of the extension C -~ E, we look at the expansion of f
in the local ring of E at P. According to [26], Prop. 111.7.10, if there is a

function gP such that + gp has no pole at P, then P is unramified.
If there is no such function, then we can at least find a function gp so that

f+g2 + gP has a pole of odd order at P. If the pole has order m, then the
differential exponent of P in the extension C -~ E is m + 1.

Suppose for each pole P of f we find a function gp as above. Then
by Riemann-Roch we can find a function g on E that has poles only at 00
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and at the poles P of f and such that g - gp has no pole at P for every
P # oo. Replacing f by f + g2 + g does not change the extension C - E,
but it allows us to assume that f has only odd-order poles, except perhaps
at infinity. By modifying f in this same way by functions with poles only
at oo, we may also assume that if f has an even order pole at infinity, then
the order of the pole is at most 2.

Now suppose that C has genus 4 and has 75 rational points. Then
the Riemann-Hurwitz formula shows that there are three possible configu-
rations for the different of C - E: There are either

( 1 ) three points with differential exponent 2,

(2) one point with differential exponent 2 and one with differential

exponent 4, or

(3) one point with differential exponent 6.

The second possibility cannot occur, because each of the ramification
points would have to be rational over F32, and this would force C to have
an even number of rational points.

Suppose we are in case (3). Then the one ramification point P is
rational, and by following the map C - E with a translation by -P, we
may assume that the point P is the infinite point o0 on E. Modifying the
corresponding f as above, we find that we may assume that f is a function
of degree 5 whose only pole is at oo. Thus we may assume that f has the
shape

where a # 0. Furthermore, by modifying f by constants of the form e2 + e,
we may assume that d is either 0 or 1.

Suppose we are in case (1), with ramification at Pl , P2, and P3. Since
C has an odd number of rational points, at least one of the Pi is rational.
If we label this point P3 and then translate by -P3, we find that we may
assume that P3 - oo . We may also assume that neither Pl nor P2 is the

unique 2-torsion point on E (that is, the unique point with x = 0), because
if (say) P, is the 2-torsion point on E, we can translate by -P2 so that
the ramification locus becomes {jp~ 2013 P2, 00, -P2 1. Thus we may write
Pi = (xl, yl) and P2 - (X2, Y2) with x, =,4 0 and x2 # 0. Then we may
write f in the form
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where b and c are nonzero, where d is either 0 or 1, and where a is nonzero
if and only if f has a pole of order 2 at oo. Note that if Pl and P2 are not
defined over IF32 then they are quadratic conjugates of one another, and so
b and c must be quadratic conjugates of one another in order for f to be
defined over JF 32.

It is a simple matter to count points on the curve C defined by
z2 + z == f, where f is as above, because we are assuming that every
pole of f ramifies. So if P is a rational point on E that is a pole of f, then
there is one point on C lying above P. If P is a rational point that is not
a pole of f, then there are either two or zero rational points on C over P,
depending on whether the trace of f (P) to F2 is 0 or 1.

We used Magma to enumerate all of the possible f ’s for one of the
elliptic curves E given above. (Our Magma program is available at the URL
mentioned in the acknowledgments.) For each f we counted points on the

= f. No f gave us 75 points. Thus we verified that there is no
genus-4 curve over F32 having exactly 75 rational points.

6.3. The case q = 3, g = 6, N = 15.

In Section 4.7 we showed that there were two possible real Weil
polynomials for a genus-6 curve over F3 having 15 points. One of the two
polynomials was (x + 2)2 (~2 -+- 3~ - 1) (~2 + 4x + 2), and we showed that
any curve C with this real Weil polynomial must be a double cover of the
genus-2 curve D defined by y 2 = x 6 + X5 + X4 + x2 - x + 1. We note that
C has 15 places of degree 1 and 53 places of degree 5, and the proof of
Lemma 8 shows that therefore a degree-1 place and a degree-5 place of D
must ramify in the double cover C --~ D. (Since the degree of the different of
the cover is 6 by Riemann-Hurwitz, no other places of D can be ramified.)
In this section we will show how one can make a short list of double covers

of D that contains all of the genus-6 covers ramified only at a degree-1
place and a degree-5 and having 15 rational points. We will find that there
are no such double covers.

Note that the automorphism group of D is cyclic of order 8, generated
by the map (x, ~) H ((l-p~)/(l2013.r), y / (1-x3)). This group acts transitively
on the rational points of D, so we may assume that the rational ramification

point of the double cover C -~ D is our favorite rational point on D. We
will choose this point to be the rational point on D that is a pole of the
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function x and a zero of the function y - x3, which point we will denote
by o+ .

Let K be the function field of D and let L be the function field of

C. Then there is a function ,f on D such that L = K(z) for an element z
with z2 = f. Let P be the degree-5 place at which C --+ D ramifies. Then
the divisor of f is P - 500+ + 2E for some degree-0 divisor E on D. By
Riemann-Roch, there is a function g on D whose divisor is F - 200+ - E
for some effective degree-2 divisor F. Replacing z with zg and f with f g2,
we find that we may assume that the divisor of f is P + 2F - 900+ for
some effective divisor F of degree 2.

The divisor F must have one of four possible shapes, each considered
below. For each possibility, we had Magma check that that there is no

function f on E whose divisor is of the right form and that gives an
extension with 15 points. (Our Magma routines for doing this are available
at the URL mentioned in the acknowledgments.)

Case l: F consists of one place of degree 2. - Since D has 8 rational

points and C has 15, we see that the rational points of D that do not ramify
in the double cover C - D must split. Since f is nonzero at the rational
points of D other than oo+ and since these points all split, f must evaluate
to 1 at these points. It is a simple matter to enumerate all of the elements of
the Riemann-Roch space £(900+) that evaluate to 1 at the other rational
points of D, and to check that none of them has a divisor of the form
P + 2F - 900+ for a degree-5 place P.

Case 2: F consists of two possibly equal places of degree 1, neither
equal to oo+. - To handle this case, we consider all possible pairs of
points F1 and F2 on D. For each pair, we have Magma enumerate the
elements of £(9oo+) that vanish at F1 and F2 and that evaluate to 1 at

the other rational points on D. For each such function, we check that its
divisor is not of the form P + 2F1 ~ 2F2 - 900+ for a degree-5 place P.

Case 3: F consists of oo+ and some other degree-1 place. - Now

we loop over all rational points oo+ of D, and consider the elements
of £(700+ ) that vanish at F1 and that evaluate to 1 at the other rational
points of D. For each such function, we check that its divisor is not of the
form P + 2F1 - 700+ for a degree-5 place P.

Case 4: F consists of two copies of oo+. - For this case we must

consider the elements of C(5oc+) that evaluate to 1 at the other rational



1715

points of D. It turns out that the only such function is the constant

function 1.

Thus we find that there are no curves over F3 having real Weil
polynomial (~

7. Triple covers of elliptic curves in characteristic 3.

7.1. A convenient standard form.

Suppose k is a finite field of characteristic 3, suppose E is an elliptic
curve over k, and suppose C is a curve over k for which there is a degree-
3 map C -&#x3E; E. We will show that C can be given in a convenient

standard form. We will limit ourselves to covers C - E for which a certain

assumption (stated below) holds.

Let L and K be the function fields for C and E, respectively, and
view L as a degree-3 extension of K via the degree-3 map C ~ E. Choose
a generator for L over K whose trace to K is 0. Then there are functions

f and g in K such that z3 - f z - g = 0. Suppose we write the divisor of f
in the form

where the Pi are distinct geometric points of E (and where n is necessarily
even) . Note that since f is (up to squares) the discriminant of the extension

the number n is the number of points of E at which the discriminant
of L/K has odd valuation.

ASSUMPTION. - We will assume that n is coprime to #E(k).

Under this assumption, there is a rational point Q on E such that

nQ = Pl + ... -f- Pn in the group of points of E. By composing the given
map C - E with a translation, we may assume that Q is the infinite point
00 on E. By replacing the divisor D above with D + (n/2)oo, we may write

where the Pi are distinct geometric points on E whose sum is 0 in E. It
follows that D is a degree-0 divisor, and the sum (in E) of the points in D
is a k-rational 2-torsion point on E. But since #E(k) is coprime to the even
number n, the only k-rational 2-torsion point on E is oo. Therefore D is a

principal divisor, because it has degree 0 and the sum (in E) of its points is
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zero. Write D = div h for some function h. Replacing z, f, and g with z/h,
f /h2, and g/h3, respectively, we find that we still have z3 - f z - g = 0,
but now the divisor of f is

If one of the Pi (say Pn ) is equal to oo, replace n by n - 1 and delete the
point Pn from the expression for div f. The integer n may no longer be
even, but now we have that the Pi are all distinct and that none of them
is oo. We do at least know that n is not 1, because there is no function on
E with divisor P - oo.

Now suppose P is a finite place of E at which 9 has a pole. Suppose
ordp g is a multiple of 3, say ordp g = -3m for some positive m. Then
there is a function h on E that has poles only at P and at oo such that

ordp (g - h3 + f h) &#x3E; -3m. Replacing z with z - h and g with g - h3 -+- f h,
we find that we have reduced the order of the pole of g at P. Repeating
this process, we find that we may assume that for every finite pole P of g,
the order of 9 at P is not a multiple of 3.

Suppose g has a pole at oo, and suppose ordoo 9 is less than -3n/2.
If ordoo 9 is a multiple of 3 and is less than -3, then we can find a function
h, with poles only at oo, such that + f h) &#x3E; ordoo g. Again we
may replace z with z - h and g with g - h3 + f h to reduce the order of the
pole of g at oo. Repeating this procedure, we may assume that if ordoo 9 is
less than -3n/2 and less than -3, then ordoo 9 is not a multiple of 3.

7.2. Contributions to the different.

Suppose L/K field extension of the type considered above, given in
the standard = 0 described in the preceding section. Given
a point P on E, we would like to calculate the contribution at P to the
different of the extension L/K. The basic fact we will use is that if 
is a degree-3 Artin-Schreier extension of local fields given by an equation
z3 - z = h, where the valuation of h is n, then the degree of the different is
zero if n &#x3E; 0 and is 2 - 2n if n  0 and n 0 0 mod 3. (This follows from [26],
Prop. III.7.10, for example.) Since the contribution to the different is stable
under base extension, we may assume that the base field k is the algebraic
closure of F3 .

Suppose we are given P on E with ordp f even. Note that by the way
we normalized f and g, either 3 ord p f or 0 mod 3,
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except in the case when P = oo and ord p g = -3 and ord p f = 0. Let us
suppose we are not in this exceptional case. Note that if f is nonconstant
we will not be in the exceptional case.

In the completion of K at P the function f is a square, say f = s2 for
some s E Kp. Locally at P the extension is given by the equation
w3 - w = and the valuation of gls 3 is ordp g - (3/2) ordp f. Since we
are not in the exceptional case, this valuation is either positive or is not a
multiple of 3. Thus the contribution to the different at P is

In particular, note that when ordp f is even the contribution at P to the
different is even, and is at least 4 if it is nonzero.

Suppose we are given P on E with ordp f odd. Again we see

that by the way we normalized f and g, either 3 ord p f or
0 mod 3, except in the case when P = oo and ord p g = -3 and

ord p f = -1. But as we noted before, ordoo f cannot be equal to -1, so
there is no exceptional case when ord p f is odd.

Our completed extension L p / K p fits into a diagram

where K) and L p are obtained from Kp and L p by adjoining a square
root s of f. The extension L’p / K’p is given by the equation w3 - w = 
Let P’ be the prime of Kp. If the P’-adic valuation of is nonnegative
(that is, if 2 ordp 9 - 3 ordp f ) 0) then there is no ramification in 
and so the ramification in L p /Kp is tame. In this case the contribution at
P to the different of L/K is 1. On the other hand, if 2 ordp 9 - 3 ord p f  0

then the P’-adic valuation of is negative and not a multiple of 3, so
the Galois extension L’p / K’p is totally ramified. In particular, L p is a field.
Let p be the prime of Lp lying over P. Then P’ = p3, the prime of Lp is
p2, and P = p.

Let us calculate the different of Lp/Kp in two different ways. First
of all, we note that the different of Lp/Kp is

where m = 3 ord p f - 2 ord p g. Next, we note that the extension 
is tamely ramified, so its different is P’ - p3. Likewise, the
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different of is = ~ . Thus, if the different of Lp/Kp is
= ~~2~’2, we have

so that ~2n+1 = p3+2+2m. It follows that the contribution n of the different
of L/K at Pis n=2+3ordpf -2ordpg.

Thus, when ord p f is odd the contribution to the different at P is

, 
- ’Co" - ........ 

-- 

_ - 

........

In particular, when ord p f is odd the contribution at P to the different is
odd.

7.3. The case

In Section 4.7 we showed that there were two possible real Weil

polynomials for a genus-6 curve over F3 having 15 points. One of the
polynomials was h = (x + 2)2 (x -+- 3) (x3 + 4x2 + x - 3), and we showed that
a curve with this real Weil polynomial must be a triple cover of an elliptic
curve with Weil polynomial x 2+ 3x + 3. There is one elliptic curve over F3
with this Weil polynomial, namely the curve E defined by y 2 = x3 -x-~ 1. In
this section we will use the theory developed in the preceding two sections
to show that there is no curve over F3 with real Weil polynomial h.

We will argue by contradiction. Suppose that a curve C has the given
Weil polynomial. We compute that C has 15 places of degree 1, no places
of degree 2, and no places of degree 3. Therefore, in the triple cover C - E
every rational point on E either splits completely or is ramified. Note that
a rational point of E that is tamely ramified splits into two rational points
of C, while a rational point that is wildly ramified gives just one rational
point of C. Thus, if we let

a = the number of rational points of E unramified in C - E

b = the number of rational points of E tamely ramified in C -~ E

c = the number of rational points of E wildly ramified in C ~ E

then we have a -f- b + c = #E(F3) = 7 and 3a + 2b + c = #C(F3) = 15.

The Riemann-Hurwitz formula shows that the degree of the different
of C -~ E is 10. Each tamely ramified point contributes 1 to this degree,
and each wildly ramified point contributes at least 3. Thus we also know
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that the number of tamely ramified points plus three times the number of
wildly ramified points is at most 10.

In particular, we note that the number of points of E at which the
discriminant of C - E has odd valuation is an even number that is at most

10, and hence is coprime to 7, the number of rational points on E. Thus,
the cover C -~ E satisfies the assumption of Section 7.1. We may therefore
put the cover C - E in the standard form given in that section, and we

may use the results of Section 7.2.

Keeping in mind the above restrictions on the number of unramified,
tamely ramified, and wildly ramified rational points of E, we find that there
are four situations to consider:

We will consider each of these cases in turn, but there are two facts
that we will use repeatedly. The first is that if P is a place of E that is

wildly ramified, then P must be rational. To see that this is true, note that
if P were not rational it would have to have degree at least 4, because C
has no places of degree 2 or 3. Thus, P would contribute at least 12 to the
degree of the different, contradicting the fact that this degree is 10.

The second fact that we will often use is that if P is a rational point of
E that splits completely and that is a pole of neither f nor g, then we must
have f (P) = 1 and g(P) = 0. This follows from the fact that the splitting
of P corresponds to the splitting of the polynomial z3 - f (P)z - g(P) over
F3, and the only completely split monic degree-3 polynomial over IF3 with
no quadratic term is z3 - z.

First case: a = 1, b = 6, c = 0. - In this case there is no wild

ramification at all, so there must be 10 tamely ramified geometric points
on E. Thus there must be exactly 10 points P of E for which ordp f is

odd. There are two possibilities: either

or

According to the results of Section 7.2, in order for all of the ramification
to be tame, the function g must have a double zero (at least) at each of the
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and its only pole can be at oc. Further, the order of 9 at infinity must
be at least -15 in the first case, and -13 in the second case. Thus either

or

Neither of these possibilities is consistent with the fact that the degree of
the divisor of g is zero.

Second case: a = 2, b = 4, c = 1. - In this case there can be at most

7 tamely ramified geometric points on E, because the single wildly ramified
point contributes at least 3 to the different. But if there were a nonrational

tamely ramified place on E, it would have to have degree at least 4 (because
C has no places of degree 2 or 3); thus this tamely ramified place, plus the
4 rational ones, would give at least 8 tamely ramified geometric points.
This shows that the 4 rational tamely ramified points are the only tamely
ramified places on E, and it follows that the single wildly ramified point
must contribute 6 to the degree of the different.

There are two possibilities for the divisor of f : either

or

Suppose we are in the second case. Let Q be the rational point at
which there is wild ramification. Then Q # oc, and we see from Section 7.2
that g must have a pole of order 2 at Q. Furthermore, to prevent any further
wild ramification, the order of 9 at oo must be at least -4 and the order
of g at each Pi must be at least 2. It follows that

and since the degree of div g is zero, we must have equality in the relation
above. But as we noted above, g must have a zero at every rational point
of E that is not in the support of div f and at which g has no pole, so we
cannot have equality, and we have reached a contradiction.

Now suppose we have div f = Pl -~- P2 -I- P3 -f- P4 - 4oc. Let Q be the
rational point at which there is wild ramification. If Q # oc then we see
from Section 7.2 that g must have a pole of order 2 at Q, and furthermore
the order of 9 at oc must be at least -6. If Q - oc then g must have a
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pole of order 8 at oc. Furthermore, g must have double zeros (at least) at
the points Pi . Thus

Since the degree of div g is zero, in either case we must have equality. But
again we see that equality is impossible because g must also have zeros at

every rational point not in the support of f and not in the polar divisor
of g.

Third case: a = 3, b = 2, c = 2. - As in the preceding case, the

only tamely ramified places are the two tamely ramified rational points.
Thus the two wildly ramified points contribute a total of 8 to the degree of
the different. Either they each contribute 4, in which case the valuation of

f is even at the two points, or one contributes 3 and one contributes 5, in
which case the valuation of f is odd at the two points. We consider these
two cases in turn.

First suppose that the wildly ramified points Q1 and Q2 each con-
tribute 4 to the degree of the different. Then the divisor of f is of the

form

where no Pi is equal to any Qj. We know from Section 7.2 that g must
have a double zero (at least) at each Pi. If neither Qi is oc, then g must
have a simple pole at each Qi, and the order of g at oo must be at least
-3. Thus

But g must have a zero at each of the 2 rational points in

and this is enough to contradict the fact that the degree of div g is zero.

If on the other hand one of the Qz (say Q2) is oc, then g must still
have a simple pole at Q1, but now the order of 9 at oo must be -4. Then
we find that

But we also know that g has a zero at each of the three points in

and again we get a contradiction.
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Now suppose that Q1 contributes 3 to the degree of the different and
Q2 contributes 5. Again we let the tamely ramified points be P, and P2,
but now any one of the Pi and Qi might be oo. Analysis as above shows
that 

- -

In every case, the fact that g must also have zeros at every point in

E(~3) ~ P2, Q1, Q2, 00} provides a contradiction.

Fourth case: a = 4, b = 0, c = 3. - In this case we have three

rational wildly ramified points and no other ramification points at all. Let
the ramification points be Q1, Q2, and Q3. We can order the points so that
the Q1 and Q2 each contribute 3 to the degree of the different, and Q3
contributes 4. Then f must have odd order at Q1 and Q2 and at no other
points. The only possibility is that div f = Q1 + Q2 - 200. From Section 7.2
we see that g must have simple zeros at Q, and Q2.

Suppose Q3 = oo. Then g must have a pole of order 4 at oo and
no other poles. But as we noted earlier, g must also have zeros at every
rational point that is not in the support of f and not in the polar divisor of
g. This means that g must have zeros at all six rational points of E other
than oc, and this is not compatible with the divisor of g having degree 0.

Suppose Q3 # oc. Then g must have a simple pole at Q3, and the
order of g at oo must be at least -3. But then the degree of the polar
divisor of g is at least -4, while the degree of the divisor of zeros of g is at
least 5. Again, this is impossible.

7.4. The case q = 27, g = 4, N = 65.

In Section 4.9 we showed that a genus-4 curve over F27 having exactly
65 points must be a triple cover of an elliptic curve with Weil polynomial
x2 + 7x + 27. There are three such elliptic curves and they are all conjugate
to one another over IF3. If one of these elliptic curves has a triple cover
of the right kind then they all do, so to search for triple covers of the
desired form we may as well choose our favorite E with Weil polynomial
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x2 + 7~ + 27 and look for triple covers of it. We will take E to be the elliptic
curve y 2 = ~3 _ ~2 + ag, where a C IF27 satisfies cx3 - a+ 1 = 0.

Suppose C is genus-4 curve over IF27 with 65 points for which there is
a triple cover C - E. The Riemann-Hurwitz formula shows that the degree
of the different of the cover is 6, so the number of points of E at which
the discriminant of C - E has odd valuation is an even number that is at

most 6. In particular, this number is coprime to ~E (IF27 ) = 35, so the cover
C ~ E meets the assumption of Section 7.1. Thus we may put the cover
C - E into the standard form given in Section 7.1, namely z3 - f z - g = 0,
where f and g are functions on E satisfying certain conditions.

Our argument will depend on the various possible configurations of
wild and tame ramification in the cover C - E. A tame ramification point
contributes 1 to the degree of the different, and a wild ramification point
contributes at least 3, so we will organize our argument according to the
partitions of 6 that do not include 2.

We will require some computer calculations. The Magma program we
use is available at the URL mentioned in the acknowledgments.

The partition 6 = 6. - In this case there is a unique ramification

point, and it contributes 6 to the degree of the different. This can happen
in our standard form only if div f = 0, so f is a constant and the only pole
of g is at oc. As we saw in Section 7.1, we can modify f by squares, so we
may take f to be either 1 or -1.

Suppose f = 1. Then C is given by z3 - z - g. If P is a point
on E other than oo, then P splits in C - E in the same way that the

polynomial z3 - z - g(P) splits over F27 . In particular, P will either have
no rational points of C lying above it, or it will have 3. Thus, the number
of rational points on C lying over finite points of E is a multiple of 3.
Since there is one point on C lying over the infinite point of E, we see
that #C(F27) = 1 mod 3. But C is supposed to have 65 points, so this is a
contradiction.

Suppose f = -1. Then C is given by z3 + z = g, and the splitting
of a finite point P of E is determined by the splitting of the polynomial
z3 + z - g(P). One checks that such a polynomial will have either 0 or 1
root in F27, so every rational point of E has at most one rational point of
C lying over it. In particular we see that #C(F27) -- #E(F27) = 35, and
again this contradicts our assumption that C has 65 points.
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The partition 6 - 5 ~- 1. - In this case we must have div f =

Pi + P2 - 200, where we may assume that Pl is the tamely ramified point
and P2 is the wildly ramified point. (Note that in the group law on E we
have Pl - -P2.) Both Pl and P2 must be rational, and according to our
analysis in Section 7.2 we must have 2 and 0 and

-3.

We see that f must be of the form a(x - xi) for some nonzero a, where
xl is the x-coordinate of a rational point on E. Modifying f by squares of
constants we find that we may assume that a = ±1. Now consider g. Its

degree is at most 3 and it has a double zero at Pl , so the only possibility
is that g is an equation for the tangent line to E at Pl.

We can enumerate the possible f ’s and g’s as follows. We let Pl -
[Xl, y1] run through the set of rational points on E other than oc. We let
a run through the We take f - a(x - xi). We compute an
equation t for the tangent line to E at Pl. We let c run through IF27 and
we set g - ct. Then we check to see whether the cover of E defined by
z3 - f z - g = 0 has 65 rational points.

We have written a Magma program that goes through this procedure.
It finds no triple cover with 65 points.

The partition 6=4+1+1. - In this case we must have div f =

P2 - 2oc, where either Pl and P2 are both rational points, or they are

conjugate points defined over F36 . Note that this means that f must be of
the form f = a(x - b) for a, b E IF27 with a nonzero. Since we can modify
f by squares of constants, we may assume that a = +1.

Now there are two cases to consider, depending on whether or not the
wildly ramified rational point Q is equal to oo. First suppose that Q # oc.
Then the usual analysis shows that div g &#x3E; 2P1 + 2P2 - Q - 3oc, and since
the divisor of g has degree 0 we must have equality. It follows that the

divisor of is Q - oo, but this is impossible. Therefore Q must be oo,
and by the usual methods we see that

In particular, we note that is a constant.

Now we can enumerate all of the possible f ’s and g’s. We consider all
triples (a, b, c) with a = :1::1, bE F27, and c C IF27, and we let f = a(x - b)
and g - c f. Then we can check to see whether any of the covers of E
defined by z3 - f z - g = 0 have 65 points. We carried out this procedure
using Magma, and found no triple cover with 65 points.
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The partition 6 = 3 + 3. - Again we must have div f = PI +P2-200,
where PI and P2 are not necessarily rational. The function g must have
simple zeros at PI and P2, and g can have at most a triple pole at 00. Thus
we either have div g = PI + P2 - 2oc or div 30o for

some point Q # oc. But the latter case cannot occur, because otherwise
g/ f would have divisor Q - oc. Thus we see that g is a nonzero constant
times f.

We enumerate all of the possible f ’s and g’s as follows: We consider all
triples (a, b, c) with a = ~ 1, b E F27, and c E JF;7, and we let f = a(x - b)
and g - c f . Then we can check to see whether any of the covers of E
defined by z3 - f z - g = 0 have 65 points. Our computations show that no
such curve has 65 points.

The partition 6 = 3 + 1 + 1 + 1. - There are two possibilities
for the divisor of f : either div f = Pl -~ P2 + P3 ~ P4 - 4oc or div f =

PI + P2 + P3 - 3oc. We consider each shape in turn.

First suppose that div f = 4oc, and suppose that
the wildly ramified point is P4. Then g must have double zeros at Pi , P2,
and P3, and a simple zero at P4. Furthermore, g can have a pole of order
at most 6 at oc. But then

which is impossible.

Next suppose that div f = Pl ~- P2 -I- P3 - 3oc. We may assume that
the wildly ramified point is at either P3 or at oc. Arguing as in previous
cases, we find that

div g &#x3E; 
j 2Pi + 2P2 + P3 - 4oc if the wild ramification is at P3;
2P1 ~ 2P2 + 2P3 - 5oc if the wild ramification is at oc.

Both possibilities are impossible, since div g has degree 0.

The partition 6=1+1+1+1+1+1. - This time the divisor of

f is either div f = Pl + " - + ~e - 600 or div f = Pi + " - + Ps - 5oo. In
the first case we find that

which is impossible. In the second case we find that

which is also impossible.
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8. An argument on Hermitian forms.

In this section we prove a theorem of Savitt [18]:

THEOREM 16. - There is no genus-4 curve over F8 with exactly
27 rational points.

Proof. Suppose such a curve C existed. It has defect 2 and so we
know that C must be of type [m, m, m, m - 2] or of type

where m = 5. Corollary 9 eliminates the first possibility, so C must be of
the latter type. It follows that the Weil polynomial of C must be f 2, where
f = x4 - 9x3 + 35x2 - 72x + 64. Our proof of Savitt’s theorem is completed
by the following proposition, which shows that every principal polarization
of an abelian variety with Weil polynomial f 2 is decomposable. D

PROPOSITION 17. - There is exactly one abelian variety A over F8
with Weil polynomial f . Up to isomorphism, the variety A has exactly one
principal polarization À. Furthermore, up to isomorphism there is exactly
one principally polarized abelian variety over F8 with Weil polynomial f 2,
and it is isomorphic to (A x A, A x A).

Let K be the quartic number field defined by the polynomial f and
let OK denote the ring of integers of K. Our proof of Proposition 17 will

depend on a result about Hermitian forms over OK. We will state this
result now and use it in the proof of Proposition 17, but we will postpone
its proof until later in this section.

We will see that K is the totally imaginary biquadratic extension

Q( 3, of the totally real field K+ = Q( V5); we refer to the nontrivial
automorphism of K over K+ as complex conjugation, and we denote the
complex conjugate of x E K by x. Let M2(OK) denote the ring of 2-by-
2 matrices over If C is an element of M2 (OK) we let C* denote its
conjugate-transpose.

PROPOSITION 18. - Suppose A is an invertible Hermitian matrix
in that is totally positive (meaning that all of the roots of its
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minimal polynomial are totally positive algebraic numbers). Then there is
an invertible C E M2(OK) such that A = C*C.

Let us assume this result for the time being, and proceed with the
proof of Proposition 17.

Proof of Proposition 17. - We begin by setting some notation
related to the number field K.

Let 7T be a root of f in K, let 1f = 8/7r, and let R = Z[Jv, ~r~. Let
cp = r + r - 4 and let ( == 17 - 627 + 7r2 - 3x. It is easy to check that then
cp2 - cp - 1 == 0 and (2 + ( + 1 = 0, and from these relations we see that K
is isomorphic to Q( 3, V5) and that R is the full ring of integers of K.

It is not hard to show that the Dedekind domain R is a PID [10]; in
fact, Lemma 20 below shows that R is norm-Euclidean.

Note that the middle coefficient of f is coprime to 8, so there is an
isogeny class of ordinary abelian varieties over IF8 with Weil polynomial f.
In fact, according to a result of Deligne [3], the abelian varieties in this
isogeny class correspond to the isomorphism classes of R-modules that can
be embedded in K as lattices. Since R is the full ring of integers of K and
since R has class number 1, there is exactly one such isomorphism class
of R-modules, and therefore there is exactly one abelian variety A over F8
with Weil polynomial f. This proves the first statement of the proposition.

Theorem 1.3 of [7] shows that the abelian variety A has a principal
polarization A. Now suppose p is another principal polarization of A. Then
we know from [16], Application III, pp. 208-210 (see especially the final
paragraph) that there is a totally positive unit u of the maximal real
subfield K+ of K such that p = Au. But every totally positive unit of
K+ _ Q(f) is an even power of the fundamental unit cp, so there is a

unit v of K+ with u = v2 = vv. Then the automorphism v of A gives an

isomorphism of the polarized varieties (A, A) and (A, p). This proves the
second statement of the proposition.

Applying Deligne’s theorem again, we find that the abelian varieties
over F8 with Weil polynomial f 2 correspond to the isomorphism classes of
R-modules that can be embedded as lattices in the K-vector space K x
K. Since R is a Dedekind domain, such modules are determined up to

isomorphism by their Steinitz classes in the class group of R. But the class
group of R is trivial, so there is only one such R-module. Thus, the only
abelian variety with Weil polynomial f2 is A x A.
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Now suppose that p is a principal polarization on A x A. Let a
be the automorphism ~-1 o (A x A) of A x A. Using the results of [16],
Application III, pp. 208-210, again, we see that a is fixed by the Rosati
involution associated to A x A and that cx is totally positive, meaning that
all of the roots (in the algebraic closure of K) of the minimal polynomial
of a are totally positive algebraic numbers. If we identify End(A x A) with
the ring M2 (R) of 2-by-2 matrices over R in the obvious way, then the
Rosati involution is the conjugate-transpose involution, so we see that a
is identified with a totally positive Hermitian matrix A of determinant 1.

Thus, to show that p is isomorphic to A x A, we must show that every such
Hermitian matrix can be written C*C, where C E M2(R) is nonsingular
and where C* is the conjugate transpose of C. But this is exactly the
statement of Proposition 18. 0

Before we prove Proposition 18 we must set some notation and give
a Euclidean algorithm for the ring R.

Let L be the subfield Q(() of K and let OL be the ring of integers
Z[(] of L. Let 0 be the real number (1 + V5-) /2 and let and y2 be two
distinct embeddings of K into C that are not complex conjugates of one
another. If z is a complex number, we let Izl be its magnitude and we let
IIzll be its norm, so that Ilzll _ Izl2 = zz.

LEMMA 19. - For every x in K there is in R such that

and such that

Proof. Let D be the set of elements of L whose norm to Q is at
most 1/3. Then for every x in L there is in OL such that x - y lies in
D. (It is easiest to see this by embedding L in the complex numbers, so
that D becomes the intersection of L with the disk at the origin of radius

1/B/3. The latter disk clearly contains a fundamental region for the lattice
OL.)

Write x = Xl + x2 cp for x2 E L. Choose yi and ~2 in OL such that

xl - yi and x2 - y2 lie in D. Let Y = yl + y2cp and let zl = xl - yi and
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Then

where di = ’Ø1 (zi) and d2 = ’Ø1 (Z2) are complex numbers that lie in the
disk around the origin of radius 1/ J3. But an easy maximization argument
shows that the maximum value of Ild 2 + dl d2 - d 211 ( for d1, d2 in this disk
is 5/9.

Also, is equal to either dl+d2(1+v/-5-)/2 or di+~2(l2013V5)/2,
depending on the image of cp under Since I d1| and |d2| are both at most
1 / ~, we see that

so that

We note that the 5/9 in Lemma 19 could be reduced to 4/9 if we used
a hexagonal fundamental domain for the lattice OL in place of the disk D,
but doing so takes some effort and does not help much in the end.

LEMMA 20. - Suppose n and d are elements with d nonzero.

Then there are elements q and r of OK such that n = qd + r and such that

and

for i = 1, 2.

Proof. Apply Lemma 19 to x = n/d, and let q be the resulting y.
Then let r = n - qd. The lemma follows from the inequalities of Lemma 19.

p

We are now ready to prove Proposition 18.

Proof of Proposition 18. - Write
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for a, ’1 in the ring of integers of the maximal real subfield K+ = of

K and for Q in R. Our strategy will be to modify A by invertible matrices
C (that is, to replace A with C* AC) in order to make the norm of the
upper left hand element of A as small as possible.

The determinant of A is a totally positive unit in K+, and so is an
even power of the fundamental unit By modifying A by a matrix C of
the form 

- . -

we may assume that A has determinant 1. Then by modifying A by a power
of the matrix 

r- ~,r - I

we can ensure that the element 0152 of OK+ has the property that

Another way of expressing this is to say that

Apply Lemma 20 and d = a to get a q and an r with

I and with (5/9) If

we set

then

for some ’1’ in C~K . Replace ,Q with rand ’1 with ’1’, so that now we have

and

Let B = j3(3, so that B is an element of Note that we have

cx-y-B = 1, so
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and

Now let

so that equation (4) becomes

and

Multiplying these last two equalities gives

Note that

(where the final inequality comes from (3)) and

Furthermore, from inequality (1) we see that

and from inequality (2) we see that

If we view b1, b2, cl , and c2 as non-negative real variables subject
only to the conditions expressed in equations (6), (7), (8), and (9), and
if we maximize b1c1 + b2c2 subject to these conditions, we find that the
maximum value occurs when b1 = and C1 = NormK+ /Q(0152). Thus
we have
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Let E = Then by combining the relations (5), (6), (7)
and (10) we find that

If 15 then E  0.07 and  1. Then

we can modify A by

to exchange a and ’1, and this decreases the norm of the upper left hand
element of A.

We repeat this procedure until we reach the point where

14. Up to Galois conjugacy there are 5 possible values
for a: namely, 1, 2, 2 + cp, 3, and 3 + cp. Inserting the appropriate values
of ci and c2 into equation (5) and maximizing over b1 and b2, we find that
we once again get  1 except when a = 1 or a = 2 or

a - 2 +

Note that 1 + is divisible by a. If a = 2 + ~ then there are 6
possible residue classes modulo a that 13 could lie in. By modifying A by a
power of 

.,r . - u

we can arrange that Q = 2. Then A must be the matrix

Modifying A by

gives us the identity.

For a = 2 there are three possible residue classes for /3. By modifying
A by a power of

we can arrange for ,Q to be l. Then ’1 = 1, so again we can reduce the norm
of the upper left hand corner of A by interchanging a and -y.

We finally get to the case a = 1. If a = 1 then we can reduce 0 to be 0.
Then we find ’1 = 1, so that we have reduced A to the identity matrix. 0
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Appendix.

In this appendix we reproduce the output produced by our Magma
program for the case q = 4, g = 5, N = 18.

Magma V2.9-10 Fri Sep 27 2002 17:22:30 [Seed = 729997397]

Type ? for help. Type Ctrl&#x3E;-D to quit.

&#x3E; load "CheckQGN.magma"; ;

Loading "CheckQGN.magma"

Loading "Def icientPolynomialList.magma"

&#x3E; CheckQGN(4,5,18);

ELIMINATED: Not Weil polynomial.

ELIMINATED: resultant=1 method.

Splitting = [ 1 ]
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ELIMINATED: resultant=2 method.

Splitting = [ 2 ]

Reasons: point counts, Riemann-Hurwitz

ELIMINATED: resultant=1 method.

Splitting = [ 1 ]

ELIMINATED: resultant=1 method.

Splitting = [ 1, 2 ]

ELIMINATED: resultant=2 method.

Splitting = [ 1 ]

Reasons: point counts, Riemann-Hurwitz
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ELIMINATED: resultant=1 method.

Splitting = [ 1 ]

ELIMINATED: resultant=1 method.

Splitting = [ 2 ]

&#x3E; quit;

Total time: 4.940 seconds, Total memory usage: 9.22MB
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