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1. Introduction.

In this paper we study the endomorphism algebras of motives attached
to elliptic modular cusp forms.

Let f = ~ anqn be a primitive cusp form of weight k &#x3E; 2, level N &#x3E; 1

and nebentypus e. Here primitive means that f is a normalized newform
that is a common eigenform of all the Hecke operators of level N.

Keywords : Endomorphism algebras - Modular motives - Tate conjecture - Filtered
(0, N)-modules - Newton polygons - Symbols.
Math. classification : 11 G 18.
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When k &#x3E; 2 let us denote by Mj the Grothendieck motive attached
to f constructed by Scholl in [Sch90]. It is a pure motive defined over Q of
rank 2 and weight k - 1. Let denote the endomorphisms of M f
which are defined over Q and which are defined using the ’cohomological
equivalence’ equivalence relation. Set

Our first result concerns the structure To state it we need some

notation. Assume that k &#x3E; 2. Let E = Q(an) denote the Hecke field of f.
It is well-known that E is either a totally real or a CM number field. Now
assume that f does not have complex multiplication. A pair (’1, X’Y) where
’1 E Aut(E) and X’Y is an E-valued Dirichlet character is said to be an extra
twist for f if a~ = ap ~ X’Y (p) for all but finitely many primes p. Since f does
not have complex multiplication the primitive character associated to x.y is

uniquely determined by ’1. Let r denote the set of q E Aut(E) such that f
has a twist by (’1, xq) for some E-valued Dirichlet character xq. It turns
out that r is an abelian subgroup of Aut (E) .

For a Dirichlet character X let

denote the Gauss sum of the primitive Dirichlet character xo, of conductor

say r, associated to x. For q, 6 E F set

where :- (X6 Then c E Z2 (r, Ex) is a 2-cocycle which turns out
to be Ex -valued. Let X denote the associated crossed product algebra
defined as follows. For each ’1 E r let zq denote a formal symbol. Then as
an E-vector space X is finite dimensional with basis the symbols zq

and has algebra structure given by the relations

where e E E and q, 6 E r. The first result of this paper is the following
theorem (Theorem 2.3.8 in the text).



1617

THEOREM 1.0.1. - If f does not have complex multiplication and has
weight k &#x3E; 2 then X f contains an algebra isomorphic to X.

Let us recall some history. Assume now that I~ = 2. Then Shimura has
constructed an abelian variety A f defined over Q associated to f. It is a

quotient of the Jacobian of the modular curve over Q which parameterizes
elliptic curves with a point of order N. Let X f - 0 Q where

denotes the endomorphisms of A f defined over Q. Then, if f does
not have complex multiplication, Ribet [Rib80] and Momose [Mom81] have
shown that X f is isomorphic to the crossed product algebra X. In fact it
was the original work of Ribet and Momose in the weight two case that has
inspired us to investigate the situation in higher weights. We remark here
that the paper [Mom81] also concerns the case 1~ &#x3E; 2 but as it was written

before [Sch90] it does not explicitly discuss the endomorphism algebra of
the motive M f . Instead in [Mom81] Momose shows that X is isomorphic
to a sub-algebra of the endomorphism algebra of the (Betti) realization
of Mf

Here are a few words about the proof of Theorem 1.0.1. Of key
importance are the twisting operators studied by Shimura in [Shi73]. There
are exactly as many such operators as there are extra twists (’1, for f.
The main thrust of the proof is to show that each of these twisting
operators, which lives a priori in the world of linear algebra, actually arises
as a realization of an endomorphism of M f . We then show that the finite set
of endomorphisms of M f one so obtains, along with the Hecke operators,
generates a sub-algebra of X f isomorphic to X.

The proof of Theorem 1.0.1 follows the strategy used in the weight two
abelian variety case by Ribet in [Rib80]. As in that paper it seems necessary
to introduce an auxiliary eigenform g of level N2 which is constructed from f
by stripping away all the Fourier coefficients which meet N. We prove that
the endomorphism algebra of Mg, the motive attached to g, contains the
crossed product algebra X. When ap = 0 for each p dividing N then f = g
and Theorem 1.0.1 follows in this case. When we show M9 and
M f still have isomorphic endomorphism algebras (see Proposition 2.3.9)
thereby proving Theorem 1.0.1 in general. The proof of Theorem 1.0.1
occupies most of Section 2.

Shimura has shown [Shi71] that if f has complex multiplication
and k = 2 then the abelian variety A f is isogenous to a self-product of an
elliptic curve with complex multiplication by an imaginary quadratic field,
say L. It follows that in this case X f is isomorphic to a matrix algebra
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over L. We have not investigated the structure of X f when f has complex
multiplication and k &#x3E; 2.

When f does not have complex multiplication and k &#x3E; 2, the question
as to whether X f is isomorphic to X is closely related to the Tate conjecture
for the motive Mf - To explain this more precisely we need some notation.
Let be a fixed prime and let Mz denote the £-asdic realization of M f . It is
a free E 0 Qz-module of rank 2 equipped with an action of the absolute
Galois group of Q. For an arbitrary number field K let us denote by GK
the absolute Galois group of K. Then there is a natural map

where the subscript I~ on the left of the arrow means that we only consider
those endomorphisms that are defined over K and the subscript Gx on the

right is meant to denote those endomorphisms of the Qt-vector space Mz
that commute with the action of GK. The Tate conjecture for M f is the

statement that aK is an isomorphism for every number field K. We prove
this subject to an injectivity constraint (see Corollary 2.4.2 in the text).

COROLLARY 1.0.2 (Tate conjecture). - Assume that is injective
for some sufficiently large number field K. Then 0152K is an isomorphism for
all number fields K. Moreover, in this case, X f is isomorphic to X.

The Tate conjecture for the abelian variety A f was proved by Ribet
when 1~ = 2 and f does not have complex multiplication in [Rib80]. As
Ribet points out there, if f has complex multiplication and 1~ = 2 then the
Tate conjecture for A f follows from the result of Shimura alluded to above.
It is now known that the Tate conjecture holds for any abelian variety
defined over a number field by the work of Faltings 

From now on we will think of the abelian variety A f as the motive
attached to f in the case k = 2. Thus we set M f = A f in this case. Then
X f denotes the endomorphism algebra of the motive attached to f in all
weights k &#x3E; 2. We shall also assume from now on that f does not have
complex multiplication.

Let F be the number field contained in E which is the fixed field of F.

Then X is a central simple algebra over F and is easily seen to be 2-torsion
when considered as an element of the Brauer group of F. As a result X

is either a matrix algebra over F or a matrix algebra over a quaternion
division algebra over F. Ribet has remarked that it seems difficult to

distinguish these cases by pure thought. Ribet’s remark pertains to the case
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A; == 2 (in which case X is isomorphic to X f ) but after our work in higher
weight it is also relevant when k &#x3E; 2.

One of the chief motivations for writing this paper was to prove new
results that allow us to distinguish these cases. Our initial goal was to
generalize Ribet’s weight 2 results in [Rib81] concerning the structure of X
to higher weight. Some of these generalizations turned out to be routine
and others have yielded some surprises. On the other hand along the way
we were able to prove results that are new even for k = 2. Here is a more

detailed description of these results.

Recall that by global class field theory there is an injection
Br(F) ~ (D, Br(Fv) where v runs through the places of F and Fv is

the completion of F at v. Thus to study the Brauer class of X it suffices to

study its image X 0~ Fv for each place v of F under the above map.
Since X is 2-torsion in the Brauer group of F, the algebra Xv is a fortiori
either a matrix algebra over Fv or a matrix algebra over a quaternion
division algebra over Fv.

Momose [Mom81] has already determined the structure of Xv when v
is an infinite place of F. In fact all such places must be real (F is a totally
real number field since if E is a CM field then complex conjugation is

always an element of IF) - Momose proves that Xv is a matrix algebra over R
if and only if k is even. So let us assume for the rest of the introduction

that v is a finite place of F, say of residue characteristic p. For convenience
of exposition we shall say that v is ’good’ if p is prime to N and that v
is ’bad’ otherwise.

Assume that v is good. Then a short computation shows that

a2 E(p)-1 E F. Ribet has shown that if 1~ = 2 then Xv is a matrix algebra
over Fv if v(ap E(p)-1) = 0. We generalize this as follows (see Theorems 3.3.1
and 3.3.2 in the text).

THEOREM 1.0.3. - Assume v is good. If k &#x3E; 2 then Xv is a matrix

algebra over Fv if

. w(ap) has odd denominator is any place of E.

Note that the second condition is automatically satisfied if
= 0, so this is indeed a generalization of Ribet’s result.

The above theorem yields, at least in principle, new information even
when k = 2.
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The proof of Theorem 1.0.3 is based on a study of the filtered

(~, N)-module associated, by the theory of Fontaine, to the restriction to
a decomposition group at p of the w-adic Galois representations attached
to f (see Section 3). The underlying principle of the proof is simple and can
be stated roughly as follows. Under hypotheses such as the above on the
valuations of ap the slopes of the crystalline Frobenius naturally break the
filtered (~, N)-module into two pieces. Since the relevant endomorphism
algebra must preserve these individual pieces it is forced to split, that is it
is forced to be a matrix algebra over Fv.

A shortcoming of Theorem 1.0.3 is that it does not tell us when Xv
is not a matrix algebra over Fv. With this in mind we now restrict our
attention to a class of cusp forms Q whose members have endomorphism
algebras that are more amenable to computation (see Section 4). We take Q
to be the class of primitive non-CM forms for which all the extra twists xq
are quadratic characters. It is not hard to see that Q consists exactly of the
primitive non-CM forms whose nebentypus character E is real.

For f c Q we prove a formula which expresses the Brauer class of X
in terms of symbols. (See Theorem 4.1.3. After our work was completed, it
was pointed out to us that a similar formula was proved earlier by Quer
[Quer98] in the case k = 2.) The entries of these symbols are built in a
simple way out of the divisors of N and certain Fourier coefficients which
are completely determined by the extra twists of f. The explicit nature of
this formula allows us to determine the structure of Xv at all the places
of F. When v is a good finite place the answer we obtain is surprisingly
simple (see Theorem 4.1.11 in the text).

THEOREM 1.0.4. - Suppose that f c Q and that k &#x3E; 2. Suppose that
v is good. Assume 2. If ap zh 0 then Xv is a matrix algebra over Fv
if and only if the integer

is even, except possibly in the exceptional case that p splits in all the

quadratic fields cut out by the level N, in which case Xv is necessarily a
matrix algebra over Fv.

Roughly speaking Theorem 1.0.4 says that the local behaviour of X
at the good p-adic places is essentially determined by the parity of the
p-adic valuations of the pth Fourier coefficient of f!
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For a more precise explanation of the exceptional case in the statement
of Theorem 1.0.4 we refer the reader to Theorem 4.1.11 in the text. We

remark here that Theorem 1.0.4 is also true when p == 2 if we assume

that F = Q. We have not treated the general case when p = 2 since we have
not yet found a suitable reference for wild symbols for number fields other
than Q. On the other hand Theorem 1.0.4 makes no sense if aP = 0 since in
this case mv blows up. Yet it turns out that a similar result also holds even
when ap = 0: one simply replaces ap in the statement above by any non-
zero Fourier coefficient apt where p~ is a prime satisfying p pt - 1 mod N
(see Proposition 4.2.1).

Let us now turn our attention to the bad places v of F (see Section 3.4).
Let NP denote the exponent of p dividing the level N and let Cp denote
the exponent of p dividing the conductor C of E. Note that Np &#x3E; 1 by
hypothesis and Np &#x3E; Cp. Our results at the bad places are broken down
according to how NP compares with Cp. This roughly corresponds to how
the local factor at p of the automorphic representation attached to f
behaves, namely whether it is in the ramified principal series, is Steinberg,
is supercuspidal, etc.

To give some examples of our results suppose that p ) ) t N and that
p ( C, so that the local automorphic representation at p is in the ramified
principal series. We then have the following theorem (see Theorem 3.4.2).

THEOREM 1.0.5. - Say that k &#x3E; 2. Say that v is bad with

Np = CP = 1. If one of w(ap) or w(ap) vanishes for each place w of E lying
over v then Xv is a matrix algebra over Fv.

On the other hand suppose that but that p ~’ C. Then the local
automorphic factor at p is a twist by an unramified character of the
Steinberg representation. For brevity we shall say that f is Steinberg at p,
or that we are in the Steinberg case. In this case we have the following
generalization of a result of Ribet in weight two (see Theorem 3.4.6).

THEOREM 1.0.6. - Suppose that v is bad with Np = 1 and Cp = 0.
If k &#x3E; 2 is even then Xv is a matrix algebra over Fv. In fact X is a matrix
algebra over F.

We give an example which shows that it is possible for Xv to be
ramified when 1~ is odd. Thus the naive generalization to higher weight of
Ribet’s weight two theorem in the Steinberg case is false! However we show
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(see Theorem 3.4.8) that when k is odd then X is unramified everywhere
except possibly at the places of F lying above p and oo. An amusing
corollary of this is that if k is odd and f is Steinberg at at least two primes
then X is ramified exactly at infinity (see Corollary 3.4.9).

An important part of the proofs of Theorems 1.0.5 and 1.0.6 is based,
like the proof of Theorem 1.0.3, on an analysis of the slopes of the filtered
(0, N)-modules attached to the local Galois representations in the above
cases. These filtered modules have been written down explicitly by Breuil

[Bre01] in the good cases (px’N), and in some bad cases (p I N). In this
context see also the original work of Fontaine and Mazur [FM83], and of
Volkov [Vol01] (for elliptic curves). It seems desirable therefore to have a
complete classification of the filtered (0, N)-modules attached to primitive
cusp forms in all cases. This problem was posed by Breuil in [Bre0l].

We end the paper with some numerical examples to illustrate the
theorems proved in this paper. The computations were done with the help
of our program Endohecke which makes extensive use of the modular

symbols engine from W. Stein’s C++ program Hecke. More detailed output
from this program may appear elsewhere.

2. Endomorphism algebras of modular motives.

Let us keep the notation of the introduction. In particular f is a

primitive form without complex multiplication of weight k &#x3E; 2, My is the
motive attached to f, X f is the Q-algebra of endomorphisms of M f, E is
the number field generated by the Fourier coefficients an of f, and F is the
subfield of E fixed by F.

In this section we show that X f contains a sub-algebra which is

isomorphic to the crossed product algebra X. We explain how this statement
is connected to the Tate conjecture for the motive My. We show X is a
central simple algebra over F which is 2-torsion in the Brauer group of F.
We prove that X is trivial in the Brauer group of F if all the elements of X

are defined over the real numbers.

2.1. Motives.

For the convenience of the reader we start by recalling some of the
basic definitions and properties of Grothendieck motives. We follow the
introduction of [BR93], Section 1.
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Let K C C be a number field equipped with a fixed embedding into C.
Let X and Y be smooth projective varieties defined over K and suppose
that each geometrically irreducible component of X has dimension d. Let
Z(X x Y) be the rational vector space generated by the irreducible sub-
varieties of X x Y, defined over K, of pure codimension d. Let Zh (X x Y)
be the quotient

where - is the cohomological equivalence relation; i.e., for any Z E

Zh (X x Y), Z N 0 if and only if the image of Z in x Y) (d) under the
cycle class map is zero. Endow Zh (X x Y) with the multiplication operation
given by composition product of correspondences.

An effective motive is a pair M = (X, p) where p E Zh (X x X) is a
projector, that is it satisfies p2 = p. If N = (Y, q) is another effective motive
then Hom(M, N) is defined to be

The category of effective motives over K thus defined has a tensor structure

given by

Let L be the effective motive (P , 1 - Z) where Z E Zh x is the

class of the cycle I~l x {point}. The functor sending M to M 0 L is fully
faithful, so that it can be formally inverted.

DEFINITION 2.1.1. A motive is a pair (M, a), where M is an effective
motive and a E Z. (M, a), also denoted M(a), is the a-fold Tate twist of M.
If N(b) is another motive then Hom(M(a), N(b)) is as

for any r &#x3E; maxf a, bl.

This defines the category of Grothendieck motives over K. In this

category projectors have kernels and images. However it is not known

whether this category is abelian. If however one uses numerical equivalence
instead of cohomological equivalence to define morphisms then the resulting
category is known to be abelian and semi-simple [Jan92].
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The effective motive M = (X, p) has a realization in each of the
standard cohomology theories. For instance there is the Betti realization

of M, which depends on the choice of embedding K C C. Similarly, for each
prime there is the £-asdic realization

- 

,- - . , , ,

of M, which comes equipped with an action of Gal(Q/Q). The realizations
of the motive M(a) for a E Z are easily described in terms of the those of
the effective motive M: M(a)B - MB 0 (27rz ,)a Q and Mz 09 xC¡
where Xt is the £-th cyclotomic character.

2.2. Modular motives.

Let f be a primitive elliptic modular cusp form. In this section we
recall the definition of the motive M f attached to f. When f has weight 2
then M f is well understood: in this case it is an abelian variety. So we shall
assume that f has weight larger than 2.

Write k + 2 for the weight of f and n = N for the level of f. This
change in notation will be in force for the remainder of this section and is
done in order to conform to the notation used by Scholl in [Sch90]. Thus
we assume that k &#x3E; 0. We shall also assume that n &#x3E; 3 although this is not

necessary (cf. [Sch90]).
Let Mn denote the modular curve over Q representing the functor

which associates to any Q-scheme ,S’ the set of isomorphism classes of
elliptic curves E over ,S’ with level n structure a: E[n] ~ (Z/n)2 . Here
E[n] := ker([n]: E - E). Let j : Mn - Mn denote the smooth compactifi-
cation of Mn. Let

denote the universal elliptic curve and let 1f : Xn - Mn denote the universal
generalized elliptic curve. These objects exist since n &#x3E; 3. Let

denote the k-fold fiber product of X n with itself over Mn and let X~ denote
the canonical desingularization of X~ constructed by Deligne.
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The group (71/n)2 acts on Xn by translation in the fibers and p2 acts
on X n by inversion in the fibers. This induces an action of the semi-direct
product (Z/n) 2 x p2 on X n . Let Mk be the symmetric group on k letters.
Then the group

acts on X n . By the canonical nature of the desingularization this action
extends to an action of rk on Xn.

Let 6’:]~ 2013~ {=L1} denote the homomorphism which is trivial on

(Z /n)~~ , is the product map on and is the sign character on Let

denote the projector attached to E and let Wn = (Xn, TIE) be the associated
motive.

The group GL2(Z/n) acts on X n via

where -y E GL2 (Z/n). Here we allow E to be a generalized elliptic curve, or
N6ron n-gon in the sense of [DR73]. This action extends in the obvious way
to an action of GL2 (Z/n) on 

LEMMA 2.2.2. - This action of GL2(Z/n) on X n is fl,-equivariant.

Proof. Consider first the actions of GL2 (Z/n) and (Z/n) 2 on X n .
For any point (e E E, a) of X n and ’1 E GL2 (Z/n) the correspondence
(¿9E(Z/n)2 applied to (e, a) gives the formal sum

On the other hand ’10 ¿9E(Z/n)2 9 applied to (e, a) produces

As these two formal sums are equal the correspondence on X n, and hence

on X~, given by ¿9E(Z/n)2 9 commutes with ’1. Since the action of -y on X~
commutes with the action of M2k and ~~ we see that ’1 commutes with the
action of TIE as well. 0



1626

The (left) action of on X n extends to an action on X n
which by the lemma above is HE-equivariant and hence gives a (right)
action of GL2(íZ/n) on Wn. Let

The notation should not cause any confusion with the group denoted

by h~ above. Let Fl n denote the subgroup of of matrices of the

form 0 1 Let I f denote the anihilator of f in the r 1 (n) Hecke algebra.
pi 

Scholl defines M f to be the sub-motive of C 1 n which is the
pi 

kernel of I f acting on The motive M f is defined over Q, has rank 2,
weight I~ ~ 1 and, via the action of the Hecke operators, coefficients in E.

In this paper we will be interested in studying the endomorphisms
of M f which are defined over Q. To this end set X f = Q9 Q,
where denotes the endomorphisms of M f which are defined over
arbitrary number fields. Note here that tensoring by Q in the definition
of X f is actually redundant in view of the definitions made in Section 2.1,
but we write it anyway since in the abelian variety situation it is really
the algebra X f = and not which was studied by
Momose and Ribet.

In the next section we will find it easier as to work as in [Rib80] with
an auxiliary modular form g which is constructed from f as follows:

Thus the q-expansion of g is obtained from that of f by stripping all the
Fourier coefficients of f which meet the level n. A short computation shows
that

where p denotes the Mobius function. The relation (2.2.3) shows that g is
in fact a cusp form, and that it satisfies the usual automorphy property
with respect to elements in FI(n 2). In fact if F2(n) D denotes the

congruence subgroup defined by

then g E C since E for each din.
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It is also easily checked that g is an eigenform of all the Hecke operators of
level n2.

One may attach a motive Mg to g mimicking Scholl’s construction.
One simply replaces n by n2 to obtain the motive Wn2 as above. Let Ig
denote the annhilator of g in the rI(n2) Hecke algebra. Let

where 1 (n) means that the (2,2) entry satisfies z m 1 mod n. We define
2 p 2

Mg to be the sub-motive of Wn2 which is the kernel of Ig acting
2 

n 

on Wn2 . Then the motive Mg, like Mf, is defined over Q, has rank 2,
weight k -+- 1 and coefficients in E.

2.3. Crossed product structure.

In this section we will show that X f, the Q-algebra of endomorphisms
of M f , contains a sub-algebra isomorphic to the crossed product algebra X.

Let ’1 E Aut(E) and let X be a Dirichlet character that takes values
in E~. We say that f has an extra twist or simply a twist by (’1, x) if

for all but finitely many primes p. Ribet calls such a phenomenon an inner
twist in [Rib80] but we prefer to use the above terminology. When E is

non-trivial and f does not have complex multiplication the prototype of an
extra twist for f is (c, E-l) where c denotes complex conjugation on the CM
field E.

The reader might envision an apparently more general definition of
an extra twist wherein ’1 is an embedding of E into Q and X is a Q-
valued Dirichlet character. However it turns out that both y and X are
then necessarily E-valued. Indeed by comparing determinants of the Galois
representations associated to f and one sees that = x2 . Let m be
the order of E. If m is even then the order of divides ) nt so that the
order of X divides m. On the other hand if m is odd then the order of 
divides m so that the order of X divides 2m. if m is

odd we see that in either case Q(X) C Q(/-tm) = Q(~). But it is well-known
that Q(6) C E. Thus x is E-valued. The relation (2.3.1) along with the fact
that the aP’s generate E show that -y is also E-valued.
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If f has a twist by (’1, x) then the primitive Dirichlet character
associated to X is uniquely determined by ’1 since f does not have complex
multiplication. We therefore write xq for x.

Let r C Aut (E) denote the subgroup of ’1 c Aut (E) such that f has
a twist by (’1, xq) for some E-valued Dirichlet character X’Y’ The following
observation is due to Ribet [Rib80] (in the weight two case) and will not be
used in the sequel.

LEMMA 2.3.2. - r is an abelian subgroup ofAut(E).

Proof. As Momose has observed in [Mom81], for each ’1 C r there
exists an integer k (depending on ’1) so that = e ; in view of the
relation = each x7 is the product of a quadratic character and a
power of E. A short computation using the identity

now shows that the character corresponding to q6 is the same as the

character corresponding to ð’1. 0

Let M denote the set of E-valued Dirichlet characters. By (2.3.3)
the map defines a cocycle c’ : r ~ M and therefore determines a
cohomology class in H (r, M). The relation X2 - shows that this class

is 2-torsion.

Consider the 2-cocycle c E Z2 (r, E" ) defined by

where G(x) is the Gauss sum of the primitive Dirichlet character associated
to x. The relation (2.3.3) shows that c(’1,ð) is a actually a Jacobi sum.
That c is E-valued follows from a standard formula for the action of Jacobi

sums under along with the fact that the characters involved
in the definition of c(-y, 6) are all E-valued. Let X be the central simple
algebra attached to c defined as follows. For each -y E r let x’Y denote a
formal symbol. Consider the E-vector space X with basis the symbols x’Y:

Let F denote the fixed field of r. Make X into an F-algebra via the relations

where e E E and ’1, 6 E r. Clearly F is the center of X. The
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following proposition, which was observed by Serre in the case k = 2
(cf. [Rib80], p. 49), gives some more information about F.

PROPOSITION 2.3.5. - F is the subfield of E generated by the elements

a2 p varies through the prime numbers such that 

Proof. Let (’1, be an extra twist for f. We claim that

ap = X-~ (p) for all p ~’ N. Indeed, since the claim holds for all but finitely
many primes p, the primitive form associated to the form £ an . 
must, by uniqueness results for newforms, equal the primitive level N form

It follows that if r is the conductor of x,y then the claim holds

for all primes But a short computation using [AL78], Theorem 3.1
ii b), which is concerned with the exact level of twists of primitive forms,
shows that r ~ N. The claim follows.

To prove the proposition note that the relations a^~ p = a px-y (p)
and X 2 - show that each ’1 E r fixes for 

So is contained in the fixed field of h, namely F.

(This is the only part of the proposition that we need in the sequel). To
show that F is in fact generated by these elements we refer the reader
to [Rib92], §5.3, where this is proved for k = 2 and note that Ribet’s proof
generalizes verbatim to higher weight. D

There is a natural homomorphism (cf. [Rib8l], Proposition 2)

which takes the class of c’ to the class of c. Under the inflation map

X may be considered as an element of the Brauer group Br(F) of F. Since
the class of c’ is 2-torsion, the class of X lies in Br(F) ~2~ .

The importance of the algebra X, at least when k = 2, stems from the
following theorem of Ribet [Rib80], Theorem 5.1, and Momose [Mom81],
Theorem 4.1.

THEOREM 2.3.6. - If f is of weight 2 then X f is isomorphic to X.

Returning to the general case let MB denote the Betti realization
of Mj. It is a free E-module of rank 2. In [Mom81], Theorem 3.1 i),
Momose proves the following result.
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THEOREM 2.3.7. End(MB ) contains a sub-algebra isomorphic to X.

In fact Momose’s paper precedes Scholl’s work [Sch90] by about ten
years so the motive M f was not available to him at the time. Momose was
therefore forced to work with the realizations of M f . However as we now
show some of Momose’s ideas (as well as some of Ribet’s and Shimura’s)
can be extended to show that X f itself contains a crossed product algebra.
We have:

THEOREM 2.3.8. - If f has weight k &#x3E; 2 then X f contains a sub-
algebra isomorphic to X.

To order to prove the theorem we state the following proposition. Let
9 - ~(n,N)-1 anqn be the eigenform of level N2 introduced in the previous
section and let Mg be the associated motive. Let us set

PROPOSITION 2.3.9. - If N &#x3E; 3 then X f is isomorphic to Xg.

Proof of Theorem 2.3.8. - During this proof let k + 2 be the weight
of f and n = N be the level. This change of notation is made as in the
previous section to conform to the notation used by Scholl in [Sch90]. The
case k = 0 is Theorem 2.3.6 so we shall assume that k &#x3E; 0. The theorem is

vacuously true in the cases n = 1 and 2 since in these cases X is the trivial
algebra. We shall therefore assume that n &#x3E; 3.

We shall show that Xg contains a sub-algebra isomorphic to X. The
proof will proceed via several lemmas. Theorem 2.3.8 will then follow from

Proposition 2.3.9 which we prove after we prove the theorem.

Recall that if ’1 E GL2 (Q) has positive determinant then ’1 induces a
slashing operation on cusp forms h of weight v given by

Let ,S’ :_ Sk+2 (F2(n)) and let T C ,S’ be the subspace spanned by g and
its Galois conjugates. For each extra twist (’1, of f define the twisting
operator on T by

where r is the conductor ot xq, u varies over a set of representatives
of the integers prime to r and cx~~~, is the operation of slashing by the
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matrix := (~ ~’). Note a priori an element of E, acts
on T not as scalar multiplication but via the map

A short computation shows that

for all Galois conjugates g~ of g. Thus the Tl* are endomorphisms of T.
In [Rib80], Theorem 5.1, it is shown that

as endomorphisms of T where 6) is the 2-cocycle defined in (2.3.4).
Although only weight 2 forms were considered in [Rib80] the proof of these
facts are independent of the weight of g. Thus there is a map from XOP, the
opposite algebra of X, to the sub-algebra of End(T) generated over E by
the Since X is 2-torsion in the Brauer group of F (cf. [Rib81], p. 273)
we see that is isomorphic to X. In particular we obtain a map from X
to this sub-algebra of End(T). It is not hard to see that this map is an

isomorphism (injectivity follows from the fact that X has no non-trivial
two-sided ideals and surjectivity is obvious).

We now show that the are motivic, that is they come from

endomorphisms qq of the motive Mg: y 
= where is the

(scalar extension to R) of the Betti realization of It might be worth
remarking that in this proof we follow the convention that maps that are
adorned with a ’*’ act on spaces of cusp forms. So ’*’ does not denote

pull-back unless explicitly mentioned otherwise.

Fix an extra twist (q, of f. In particular fix the conductor r of 
As remarked in the proof of Proposition 2.3.5 we have r ~ n. Let H denote
the upper half plane. Since normalizes r2 (n) the matrix induces

a map

LEMMA 2.3.10. - The map

where the triple consists of an elliptic curve over C together urith a level
n-structure, induces an isomorphism
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Proof. Let us show that 9 is well-defined. Assume that w for

_ (a c d 1) (E F2 (n). Then w maps to

which, by multiplication by cz + d, is isomorphic to the tuple

where a, b, etc. also denote the images of a, b, etc. in Z/n 2. Since (fJ§ ) E _r2
the F2 -classes to which w and z map under 0 are the same. This shows that 0
is well-defined. To show injectivity assume O(z) and are ]p2 -equivalent.
Then

where - denotes hn-equivalence. In particular we see that

so that w = ’1Z for some ’1 = (a 1) E SL2(Z). As above

This means that there is agE F’ such that g . (fJ§) = 1. One easily
sees that this forces g to lie in F2 (n) so that w and z define the same
F2 (n)-class. This proves that 0 is injective. Finally to show surjectivity let
(E, a) E Mn2 (C). Then E "’ C/(Z + Zz) for some z E H. Since r n2 C rn
we may always assume that the level structure induced by a on C/(Z + Zz)
differs by the standard level structure by an element y E SL2 (Z /n2 ) . Then
by replacing z by ’1z where y is a lift of ’1 to SL2 (Z) we see that 0 takes z
to the F2 -class of (E, a). This proves that 0 is surjective. 0

In view of the lemma it is reasonable to expect that has a motivic

avatar. This is in fact true: it is a correspondence a : Mn2 - Mn2 which we
now define. Fix (E, cur) C Mn2. Let da be the integer mod n2 defined by

where 2 is the Weil paring and
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Assume momentarily that da = 1. Let H denote the subgroup
of E[r 2] C E[n2] defined by

Let E’ - E/H and let p: ~ 2013~ E’ denote the canonical projection. We
now define an n2-level structure ~’ on E’ as follows. Choose any extension
~ : E[r 2n2] ~ (Z/r2n 2)2 of a, that is choose a making the following
diagram commute:

Let be the map induced by â. It is not
- _ _ _ .- , n 

difficult to see that a(H) is the kernel of the endomorphism of (Z/T yz )
given by (~ -1). The map defined as the composition of the maps

actually takes values in the n2 torsion of (Z/r2n 2)2, that is, in the image
of ~r2 : (Z/n 2)2 ~ (Z/r2n 2)2 . Thus the above sequence of maps induces a
map

which further is clearly an isomorphism. Denote this map by 

The above construction of ~’ depends on a choice: the choice of the
extension % of cr. Let £’ = ~’ (~) denote the set of all distinct o-’s obtained
via the construction above. Since any two extensions &#x26;1 and 62 of 6 that
make (2.3.11) commute differ by an element of A E GL2(Z/r 2n 2) with
A 1 mod n2, a short computation shows that any two elements a’ 1 and o,’ 2
in E’ differ by an element of F2 . Let s denote the cardinality of ~’ . Then s
is independent of 6 and E, though it depends on n and r.

Now assume that da is arbitrary. There is a unique element ’1a E r n2
d-1 0).such that 1. In fact a short computation shows that ’1a = (0 a n

Applying the above construction with a replaced by ’1aa we again obtain E’
and ~’ .
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Now define

The correspondence a is evidently defined over Q( (n2 ). For a point
(E, a) E Mn2, let [E, ~~ denotes its class in Then we have:

LEMMA 2.3.14. - The correspondence 0152 : Mn2 - Mn2 induces a map

which takes [E, cr] to [E’ (-y6)’].

Proof. As we have remarked above any two elements of ~’ differ

by an element of F£. So the s distinct points (E’, (’10"0-)’) become one
point [E’, in the quotient. We now show that a on the quotient

is well-defined. To do this we must show that if ’1 E F~ then
~cx(E, ~)~ - Since F~ = where ’~’ denotes the

reduction map it suffices to show this in the two

special cases: ’1 E rn2 and -y E r2 (n) . So assume that -y E r n2. Then
= det( ’1 )dCT and

so that - (E,’1aa). So clearly . On the

other hand assume that ’1 E r2(n). Since a(E, for some

’1’ E r2 (n) and ~x(E, ~) - 0152(E, ’1aa) by definition we may as well assume
that da = 1. A short computation shows that elements of T2 (n) fix the

subgroup

of (Z/n 2)2. In particular E’ = E/H is the same whether we define H as the
preimage of the above subgroup under or under a. Now pick any lift $
of ’1 to r2 (n) C SL2 Z . If -y’ is defined by

then l’ E r~ and another short computation shows that ~’ (~y~) _ 
In sum we see that - [E’, (~y~)’~ _ [E’,1’. a’] - [1’. =

[1’ . a(E, a)] = [a(E, a)]. This shows that the map 0152 is well-defined on the

quotient and proves the lemma. 0
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Clearly the morphism a on the quotient r£)Mn2 commutes with
the correspondence a defined in (2.3.13) with respect to the projection
map Mn2 - Moreover as the following lemma shows the map a
on is the moduli theoretic version of al/r’

LEMMA 2.3.16. - The following diagram commutes:

Proof. Let z E ?-~. Then

where the second equality is induced by multiplication by r. Clearly da = 1.
A short computation shows that H is the subgroup of E[r 2] generated by 1
and z + I/r. To define a we must write down (E’, ~’) where E‘ = E/H
and a’ is the level n2-structure on E’ defined in (2.3.12). To this end let 3
be the r2n2-level structure on E defined by

Then and a short computation shows that

Now where E’ and o-’ are defined as

above. On the other hand

since (z -+- 1/r)/n2 = ~-1 ( T ~ . 0

We now extend the definition of a to the cusps. To do this we need

to recall some facts from [DR73]. Recall that a N6ron n-gon is a polygon C
obtained by gluing n marked copies of I~l together, the point 0 of the i-th
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copy being glued to the point o0 of the i + 1-th copy. Thus C is a curve of
genus 1 whose normalization is I~l x Z/n. The inverse image of Creg in its
normalization is Gm x Z/n. This has a natural group structure whose n-
torsion subgroup, which we denote by C[n], is An x Z/n. A level n-structure
on C is an isomorphism 6: C[n] -&#x3E; (Z/n)2.

Now consider the following two types of automorphisms of I~l x Z/n:

Each of these maps descends to an automorphism of C, and induces an
automorphism of the group x Z/n. The group of automorphisms A
generated by the above maps is in fact the full group of automorphisms of C
compatible with the group structure. Thus A is the semi-direct product
of (id, T) and An -

A pair consisting of an n-gon and level n-structure is said to
be isomorphic to another pair (C, if there is an element g E A such
that a’ = a o g. It is shown in [DR73] that the curve Mn parameterizes
isomorphism classes of generalized elliptic curves with level n-structure: that
is, while the points of Mn parameterize usual isomorphism classes (E, a)
of elliptic curves with level n-structure, the finite set of points of Mn B Mn
parameterize isomorphism classes of N6ron n-gons (which for clarity we
have denoted by a different letter here, namely C) with level n-structure.

Recall there is a natural action of GL2(Z/n) on Mn B Mn
(cf. (2.2.1)). In particular F2 c GL2(Z/n) acts on Mn2 B Mn2 . We
let ) denote the quotient. Finally note that a level n2-
structure a: C[n 2] ~ (Z/n 2)2 is completely specified by giving its values

. ~ 2 - -- .-

on ( 2 and the generator 1 of Z /n~ . We can now state the
following lemma.

LEMMA 2.3.17. - The assignment

where a and c are relatively prime integers, and (~) is any pair such that
(~~) E SL2(Zjn2), induces a bijection

Proof. We first show that there is a natural bijection

Let Yn be the set of elements of (~/n)2 of exact order n. Then the map
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induced by (~) ’2013~- f~) E Yn, where a and c are relatively prime integers,
induces a bijection

On the other hand the map induced by the pair (C, a),
where a is the level n-structure defined by
with (~) any element in Yn such that (~~) E SL2 (Z/n), induces a bijection

Indeed if (i’ ) is another tuple such that SL2 (Z/n), and a’
is the associated level structure, then taking - db’ - bd’, a short

computation shows that so the pair (C, ~’ ) is isomorphic
to the pair (C, a). Similarly, -a, we see that (C, -o-) is

isomorphic to (C, a) and so the map does indeed factor through the
quotient 1. Thus (2.3.19) is well-defined. To show it is injective
suppose that (~) and ( )§) are two elements of whose associated level

structures have matrices

up to multiplication by an element ’1 of 1’n, where denotes A-equivalence.
Then, comparing determinants, we must have ’1 = 1. Moreover, since the
effect of elements of A on the first column of the matrices above is at

most alteration by a sign we see that (~) and c define the same class
in Vn/:f: 1. Finally the surjectivity of (2.3.19) is clear, since an arbitrary level
n-structure 6, is always, up to a unique element of of ’determinant equal
to 1’. This proves that (2.3.19) is a bijection, and therefore that (2.3.18)
is a bijection. Replacing n with n2 in (2.3.18) and taking F2 (n)-invariants
we get the bijection 0 of the lemma. n

We are now ready to define the action of a on the cusps. Since 
normalizes r2 (n), it induces a map

We now simply define a: ) as the avatar
of with respect to the bijection 0 of the lemma above. More precisely,
we define a so that the following diagram commutes:
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We also define a as a correspondence on Mn2 )Mn2 so that it lifts the

map a on the quotient r~B(M~2BM~). More precisely, if [ ] denotes

rn-class and a~~ ) = [C, then define

where s’ is the cardinality of F2
Set R :_ 1t U P~(Q). In view of (2.3.13) and (2.3.20) we have now

defined a correspondence a: Mn2 - Mn2 which, by Lemma 2.3.16 and the
commutative square above, makes the following diagram commute:

We now extend the definition of a to a correspondence Xn2 - Xn2
as follows:

where the sum on t is over all r2n2 torsion points, and we recall

that p : E - E’ is the canonical projection. We further extend a to a

correspondence X n2 ~ X n2 , by defining a on the fibers lying over the
cusps as follows:

The self-correspondence a of X n2 extends in a natural way to a

self-correspondence of X n2 which we continue to denote by a.

LEMMA 2.3.21. X n2 -~ X n2 commutes with 

Proof. The correspondence cx is easily seen to commute with the
actions of and ~~ . Therefore to prove the lemma it suffices to show that
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Fix a point (e E E, o-) E Xn2. Then,

where the third (resp. fourth) equality follows from the fact that

E (resp. (’1aa)’-l(g) E p(E [r2n2])) . The proof for
a point (c E C, cur) where C is a N6ron n2-gon is similar and is omitted. This
proves the lemma. 0

By the canonical nature of the desingularization of the

correspondence a extends to a correspondence

By the lemma above a induces a morphism of the motive Wn2 = (~C~2 ? 
which we call 0152 again.

Given a vector space V over Q with an action of the group rk let Y(E)
denote the image of V under the endomorphism of V induced by the

projector Let

be the Betti realization of the motive Wn2. Scholl has proved (cf. [Sch90],
Theorem 1. 2 .1 )

Let H B (a) : H B (Wn2 ) - HB (Wn2 ) denote the Betti realization of a.
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LEMMA 2.3.22. - The correspondence quasi-
commutes with elements of T n, that is, given ’1 E Tn, there exists a

’1’ E rn making the following diagram commute:

Proof. It suffices to prove the lemma when k = 1 since the general
case is proved similarly. Now we have already shown in the course of

proving Lemma 2.3.14 that Mn2 -~ Mn2 quasi-commutes with elements
of r~. It is a simple check to see that this implies that ~~2 2013~ X n2
quasi-commutes with elements of The lemma follows. D

2
By the lemma 0152 induces an endomorphism of W n2T2 - Let us continue

to write for the endomorphism = induced

by 0152. Moreover the lemma shows that the isomorphism of Scholl above
induces the following isomorphism:

which we again denote by Sch.

Let L(k, R) denote the space of homogeneous polynomials of degree k
in the two variables X and Y with coefficients in R. Then L(k, R) is a

r2 (n)-module via

e r2 (n) and P(~) e Let denote

the corresponding parabolic cohomology group. Recall that there is an

isomorphism which we call the Shimura isomorphism and which we denote
by Sh (cf. ~De169~ ) :

where = Re(27rih(z)(X - and zo is a base point in H.

Changing the base point changes ch by a coboundary and Sh is well-

defined.



1641

Give R) the discrete topology and let R) denote the sheaf
on consisting of locally constant sections of the cover

Then there is a natural isomorphism

Recall that the isomorphism 0 of Lemma 2.3.10 identifies r2(n)B1t
with Let 7rl:1t ~ and 7T2:M~2 -~ be

the projection maps. We now show that 0 may be used to identify
the sheaf 0 = on with the sheaf 9 == 
on (More precisely g is the sub-sheaf of T2n-invariant sections
of ~r2 * Symk Rl7r*lR). If U is an open sub-set of 1,2 (n) B ~C then

Here and in the discussion below f is a section of 0 and should not

be confused with the modular form f. Similarly if V is an open sub-set
then

Again g is a section of g and should not be confused with the modular
form g. Also H(E, R) is to be identified with if (E, ~) is

isomorphic to (E’, a’) .
Now suppose that the open sets U and V correspond under the

isomorphism 9 of Lemma 2.3.10. For z E ?-~C, let

denote the elliptic curve and level structure defined in Lemma 2.3.10.

Consider the dictionary
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between the sections f E and g E ~(Y), where we have identified the
ranges of f and g using the explicit isomorphism

defined as follows. Identify Hl (Ez, R) = Hom(Z © Zz, R) with L(1, R) via
the isomorphism hl - X, hz H -Y where hl, hz E Hom(Z © Zz, R) is the
basis dual to 1, z. Then we take (2.3.27) to be the induced isomorphism
obtained by applying Sym , noting that Sym~ = R) as a

r2 (n)-module.
The dictionary (2.3.26) may be used to identify the sheaves 0 and C.

We first check that it is well-defined. Let ~y = (~~) C r2 (n) . Then
multiplication by cz + d induces an isomorphism E-z # Ez , so that one
has an induced map Symk which we shall

also denote by ~y. Now a short computation shows that the diagram

commutes, where the vertical maps are the isomorphism (2.3.27). If

then f (-yz) = -y - f (z), using the facts:

(Ezloz) up to multiplication by an element of F2; (2.3.28)
above commutes; and g is hn-equivariant. Thus f is well-defined. As for g, a
similar check using the relation -y ~ f (z), for ’1 C r2 (n), and (2.3.28),
shows that the definition of g is independent of the r2 (n)-orbit of z. So g
is also well-defined. Note also that g(E, = g(E, 0") for ’1 E r 2 . Finally
since the dictionary f - g is clearly a bijection, one obtains the desired
identification of the sheafs 0 and 9.

It follows that there is an induced isomorphism on the level of

cohomology:

where we have identified with 

Combining this map with the map (2.3.25) we obtain an isomorphism
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Since this isomorphism preserves the parabolic parts on both sides, namely

we finally get an isomorphism

which we shall also denote by 0.

We now define I to be the isomorphism which is the composition of
the isomorphisms Sh, 0 and the inverse of (the scalar extension to R of)
Sch (cf. (2.3.24), (2.3.31) and (2.3.23) above):

2
Recall that HB (a) is the action induced by a on HB (Wn2 ) . On the

other hand the action of induces an action on ,S’ given by slashing
by Denote this action by As the following proposition shows
these two actions are related via the isomorphism I.

LEMMA 2.3.32. - The following diagram commutes:

Proof. The proof follows from the commutativity of three squares,
each corresponding to one of the three isomorphisms out of which I is

built. Each square will show that the isomorphism under consideration
identifies the natural action induced by a on the domain and range of this
isomorphism.

We start with the Shimura isomorphism. The matrix acts in the

usual way on the parabolic cohomology group: for a parabolic 1-cocycle
c : r2 (n) ~ R) one has
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A short computation shows that t (where a*/.
temporarily denotes pull-back and not slashing!) so that

Since the last term is up to a coboundary just chi Ql/r (’1) we see that
the Shimura isomorphism identifies slashing by on S, which we
have called (this is not pull-back!) with the action of on the

above parabolic cohomology group. In other words the following diagram
commutes:

Let us now show that the isomorphism 0 in (2.3.31) identifies the

action of on the domain of 9 with the action of a on the range of 9.

First note that (2.3.25) is equivariant with respect to the natural actions
of on both sides. We claim that the map (2.3.29) identifies the

action of on its domain with the action of cx on its range. To see this it

suffices to work at the level of sections. We shall use the notation (sheaves:
0, 9; open-sets: U, V; sections: f, g) introduced in the discussion leading
up to the definition of the map (2.3.29).

Now acts on f E via

On the other hand cx acts on g via

where p* : HI (E’, R) - HI (E, R) is pull-back with respect to the projection
p:.E’ 2013~ E’. Now suppose that f ~ g in the dictionary (2.3.26). We show
that f H a ~ g in this dictionary. By definition g(E, ~) - f (z)
where (E, a) - (Ez,’1az) for z E H and ’1 E ]F2 - Recall that =

I by {2.3.13) . The s level structures on E’ differ from each
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other by elements of ]F2. It follows from the F2 -equivariance of g that
(a . g) (E, ~) - p*g(E’, a’) where a’ is any one of these level structures.

Moreover since E - Ez we have E’ - E,+11,, and therefore p* may be
considered as a map p* : A short computation now
shows that the following diagram commutes:

where the vertical maps are the isomorphisms (2.3.27) for z + 1/r
and z respectively. Thus (a - g) (E, o,) = p* g (E’, o,’) = p*g(Ez+l/r’ 0-’) ==

f (z -~ 1/r) where the last equality follows from the commutativity of
the square above. On the other hand if g’ ~ corresponds to 0152l/r . f in the
dictionary (2.3.26) then g’(E, 0-) = ai~~,’ f (al~~.(z)). It follows that g’ = a’g
as desired. This proves the claim.

It follows from the discussion above that the map (2.3.30) identifies
the action of on with the action of a on

Hl(Mn2,Symk Let 9 be the isomorphism in (2.3.31). Then
since and a preserve the respective parabolic parts of the above

cohomology groups, we see that the diagram

commutes, as desired.

Finally we consider the equivariance of a with respect to the

isomorphism of Scholl. By the Leray spectral sequence for the cover

7rk : X~2 2013~ Mn2 and the Kfnneth formula one has an isomorphism

By the functoriality of the Leray spectral sequence the following diagram
commutes:
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Since

and HB (a) and a respectively preserve these smaller spaces the above
square induces the following commutative diagram:

Finally taking F2 invariants and tensoring with 1I~ shows the diagram

commutes.

The lemma now follows from the commutativity of the diagrams
(2.3.33), (2.3.34) and (2.3.35). 0

Consider the commutative diagram with exact bottom row

where is a projector whose kernel is the sub-object

morphism and t* is the inclusion map T ~ S.

Let be defined by

r2 r2
where 0152U denotes the u-fold composition of 0152: Then by the
lemma above I identifies
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with

Hence HB ( f¡’Y) factors through HB (t) and therefore

Since the realization functor HB is faithful on Grothendieck motives

factors through t producing a Mg whose Betti
realization is via I identified with 

Invoking the faithfulness of the functor HB once again we see that
the assignment H produces an isomorphism from the sub-

algebra of End(Mg) generated (over E) by the i],, to the sub-algebra of

generated by the The isomorphism liT then
identifies this algebra with the sub-algebra of End(T) generated by the 7y*
But the latter is isomorphic to as we have already remarked.

We have shown that there is an embedding X --~ Xg = End(Mg).
Theorem 2.3.8 now follows from Proposition 2.3.9. 0,

Proof of Proposition 2.3.9. It remains to prove the proposition.
As in the proof of the theorem let k + 2 be the weight of f and n = N be
the level. Thus n &#x3E; 3 by hypothesis. Let

Then as in Lemma 2.3.10 the map

induces an isomorphism

Now fix a divisor d of n. There is a natural map Td : hl (n2) ~?-~C ~ r1 (n) B 1í
induced by z H dz. In view of the isomorphism (2.3.36) one might expect
that Td has a motivic avatar. This is in fact true: we now write this map
down and will denote it by T(d). Let (E, a) E Mn2. Let

and let H = a-l(Cd). Let E’ = E/H and let o7/ be the following level
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n-structure on E’. Write for the isomorphism
induced by a. Then the natural sequence of maps

..........’ ," ....

is an isomorphism onto the n-torsion of (Z/n2)2/Cd. Since this n-

torsion subgroup is also the isomorphic image of (Z/n)2 under the map
(Z/n)2 ~ induced by ( y ) H (nxld) the above sequence of
maps induces an isomorphism

which we shall define to be a~’ . Finally we define r(d):M~2 2013~ Mn via
T(d)(E, o-) - (E~, a~~).

One can check (cf. Lemma 2.3.14) that T(d) induces a map

T(d) : r)~ )Mn2 - and that (cf. Lemma 2.3.16) the following
diagram commutes:

We now extend the definition of T(d) to a correspondence
T(d) : Xn2 -~ Xn as follows:

where p : E --~ E’ is the canonical projection. This correspondence
naturally extends to a correspondence r(d):Xnk2-&#x3E; Xkn. A short check
(cf. Lemma 2.3.21J shows that this last map is equivariant with respect
to the projectors lIE and it quasi-commutes (cf. Lemma 2.3.22) with the

respective actions of r1n2 and r) on and Xkn. Write Wl (n) for Wtnn1
pi

and for W n r2 2 . The above remarks imply that T (d) induces a

morphism of motives:

The arrow is reversed since we are now in the category of motives.

Let denote the induced map on

Betti realizations.
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The map z - dz also induces a map

mapping h(z) to h(dz) for h E Sk(r1(n)). Then the analogs of the

isomorphism I, namely:

identify the action of Td* with the action of HB (T (d) ) (cf. Lemma 2.3.32).
Now let ~ I Let T f (resp. T,) be

the subspaces of (resp. Sk(r1-(n2))) spanned by f (resp. g) and
their conjugates. Let -T* : Tj - Sk(r1(n2)) be the map induced by T on
realizations. Since T* maps T f isomorphically to T9, arguments similar to
those occurring towards the end of the proof of the theorem above show
that T in fact factors through c : M9 --~ Wl (n2 ) . That is, there is a map
T : Mg such that T - t o T.

We now claim that T : Mg is an isomorphism. The following
argument was suggested to us by D. Blasius. Let Tt : M) - M~ denote
the transpose of T. + 1 denote the common weight of the pure
motives Mf and Mg. Let a: My -~ M f (-w) and b: Mg -~ M9 (-w)
be polarizations of My and Mg. Let p - a-1 o Tt ( -w ) o b : M9 -~ My.
Since T is an isomorphism on realizations, p is as well. In particular

My is an isomorphism on realizations. Let HB (h) be
the map induced by h on MB - HB(Mf). Let P(x) E Q[x] be the
minimal polynomial of HB(h). Suppose the constant term of P(x) is 0,
that is suppose that P(x) - for some polynomial E Q[x].
Then = 0. Since HB(h) is an isomorphism we have

= 0, and therefore as usual, Pi (h) = 0. This contradicts the
minimality of P so the constant term of P is non-zero. It follows that h-1
is a polynomial of degree deg(P) - 1 in h. The morphism h-1 o p is then
the inverse of T.

It follows from the claim that This proves the proposition.
0

2.4. Tate conjecture for M f.
In [Rib80], Theorem 6.1, Ribet shows how the Tate conjecture for the

abelian variety A f can be deduced from Theorem 2.3.6. We now observe
that Theorem 2.3.8 can be similarly used to prove the Tate conjecture for
the motive M f, for f of weight k &#x3E; 2, under an injectivity assumption.

Let be a prime and let Mz denote the .~-adic realization of My.
Let K be a number field and set GK = Write 
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for the endomorphisms of My which are defined over K. Then there is a
natural map

which is tautologically injective since morphisms in the category of motives
are defined modulo cohomological equivalence. Let

denote the scalar extension of the map (2.4.1) to Qt. Unlike the abelian
variety case it is not known that aK is injective. The Tate conjecture for M f
says that 0152K is an isomorphism.

COROLLARY 2.4.2. - Assume that aK is injective for some number
fields K containing the fields of definitions of the endomorphisms of M f .
Then

1) cxK is an isomorphism for every number field K ;

2) X f is isomorphic to X.

Proof. Let K be any number field satisfying the hypothesis of
the corollary. We claim that 0152K is an isomorphism. By assumption aK is
injective. It follows from Theorem 2.3.8, noting = =

that the domain of a K has dimension at least d :_ [E: F] [E : Q] over Qz .
On the other hand the range of aK has dimension d over Qt by [Rib80],
Theorem 4.4, (which does not need the assumption = 2 imposed there).
So aK must be an isomorphism and X f must be isomorphic to X. This
proves the first statement for number fields K satisfying the hypothesis
of the corollary as well as the second statement. Now suppose K is an

arbitrary number field. Let Ko be a sufficiently large finite Galois extension
of Q containing K as well as the fields of definition of the endomorphisms
of M f . Then is injective and therefore, by what we have just shown,
an isomorphism. It now follows that aL is an isomorphism for all number
fields L intermediate between Ko and Q by taking invariants under

Gal(Q/L) on both sides of the Gal(Q/Q)-equivariant isomorphism aKo .
In particular 0152K is an isomorphism, proving the first statement in general.

0

2.5. The Brauer class of X.

We have the following theorem which was proved by Ribet [Rib81],
Theorem 1, when k = 2.



1651

THEOREM 2.5.1. - Assume k &#x3E; 2. The algebra X is a central simple
algebra over F with maximal commutative subfield E. Moreover the class
of X in Br(F) is 2-torsion.

Proof. This was proved at the beginning of Section 2.3. The fact
that X is 2-torsion may also be seen as follows. This argument is similar
to the one attributed by Ribet to Tunnell [Rib81], Theorem 1, in the

2. By Wedderburn’s theorem X ^’ for some positive
integer n and some central simple division algebra C over F. Now let MB
denote the Betti realization of M f . MB is vector space of dimension 2

over E, and therefore of dimension 2 ~E : F~ over F. X acts on all the

realizations of M f, so in particular X acts on MB. Thus C acts on MB
as well, and the dimension of MB as a C-module must be a multiple of n.
Since the dimension of C over F is ([E: F]/n)2 we have

In particular [E : F] /n = 1 or 2. This proves that X is 2-torsion in Br(F). 0

An immediate consequence of the above theorem is that X is either

. a matrix algebra over F, or,

. a matrix algebra over a central simple quaternion division algebra
over F.

In [Rib80] Ribet remarks that it seems hard to distinguish the above two
cases by ’pure thought’. Ribet was concerned with the case k = 2 but his
remark is equally relevant in the higher weight case.

In [Rib81] Ribet gives two different sufficient conditions for X to be
a matrix algebra over F when k = 2. The second of these requires A f
to have potentially multiplicative reduction at at least one place of Q
(see [Rib81], Theorem 3). A suitable generalization of this result holds
when k &#x3E; 2 under the additional assumption that 1~ is even. Since our proof
of this fact has a local flavour we will defer discussing it to the next section

(see Theorem 3.4.6 below).
Ribet’s first sufficient condition for X to be a matrix algebra over F

requires that all endomorphisms of A f are defined over R (see [Rib81],
Theorem 2). This has the following generalization to higher weight. We
recall some facts. Let MB denote the Betti realization of My. Recall
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that MB is a vector space of dimension 2 over E. Let

be the E-linear involution on MB induced by the action of complex
conjugation on H*(X~2(CC),Q). We have:

THEOREM 2.5.2. - Assume that each endomorphism of X, thought of
as endomorphism of MB, commutes with Foo. Then X is a matrix algebra
over F.

Proof. There is a decomposition of E ® C-modules

Since 1 permutes the two spaces occurring on the right hand side of

(2.5.3) the eigenspaces of on MB both have dimension [E: F] over F.
By hypothesis X ^--’ Mn (C) preserves these eigenspaces. Hence M-¿, the
’+’-eigenspace of on MB, is an X-module, and therefore a C-module.
As above this implies is a multiple of n and we have

This forces [E : F]/n = 1 and C = F proving the theorem. 0

COROLLARY 2.5.4. If x,y ( -1 ) = 1 for all ’1 E r then X is a matrix
algebra over F.

Proof. The construction of Ribet [Rib8l], pp. 268-269, works
in all weights showing that if Xy (- 1) = 1 for all ’1 E F then all the

endomorphisms in X are defined over the real numbers. Thus the hypothesis
of Theorem 2.5.2 is satisfied. 0

Remark 2.5.5. - When k is odd there is always an endomorphism
in X which does not commute with This can be seen for instance by
Theorem 3.1.1 below. Thus Theorem 2.5.2 is essentially a theorem for even
weight forms.



1653

3. Local behaviour of X.

We now turn our attention to the local behaviour of the algebra X.
Let v be a place of F which is either finite or infinite. Let Xv = X 0F Fv.
The standard exact sequence

shows that the Brauer class of X is completely determined by the Brauer
classes of the Xv. By Theorem 2.5.1 the class of Xv in Br(Fv) is 2-torsion,
so that a priori Xv is a matrix algebra over Fv or a matrix algebra over a
division quaternion algebra over Fv.

3.1. Infinite places.

As we have already remarked in the proof of Theorem 2.3.8 the
number field F is totally real. Thus if v is an infinite place of F it must
be real. The following theorem due to Momose investigates the structure
of Xv for such places.

THEOREM 3.1.1. - Let v be a (real) infinite place of F. If k is even
then Xv is a matrix algebra over R. If k is odd then Xv is a matrix algebra
over the quaternion division algebra IHI of Hamiltonians.

Proof: This follows easily from [Mom81], Theorem 3.1 ii). Indeed
since X acts faithfully on MB we may consider X as a sub-algebra
of End(MB ) . Let Z be the centralizer of X in EndF (MB). Then Z
is a central simple algebra over F and [X:jF][Z:F] == 
(so Z has F-dimension 4). In particular the natural multiplication map
X 0p Z - is an isomorphism (it is injective since the domain
is simple, and surjective because of dimension reasons). It follows that the
Brauer class of X is the inverse of the Brauer class of Z. But Momose has

shown [Mom81], Theorem 3.1 ii), that Z is totally indefinite if and only if k
is even. The theorem follows. 0

3.2. Modular crystals.

In the next two sections we will investigate the structure of Xv at the
finite places v of F. In this section we prepare the ground by studying the

crystalline realization of M f at p where p is the residue characteristic of v.

It is convenient to recall some general terminology. Let K be an
extension of Qp with residue field F. Let I~o denote the maximal unramified
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extension of Qp in K. Recall that a filtered N)-module D over K is a
finite dimensional Ko-vector space D endowed with

. a a-linear Frobenius map 0: D ---+ D,

. a linear map N : D 2013~ D such that No = poN, and,

. a decreasing filtration Fil2(DK) on DK = D 0 K such that

Fil2 (DK ) = DK for i « 0 and Fil2 (DK ) = 0 for i » 0.

We say that D has coefficients in E if D is a free E (9 Ko-module such that
the action of E commutes with all the structures.

Given f and a prime w I p of E there is a way to attach a filtered

((~ N)-module over K for some extension K of Qp as follows.

Let p f : Gal(Q/Q) ---+ GL2(Ew) denote the w-adic Galois representa-
tion attached to f. It is known that is potentially semi-stable. Fix
an extension K of Qp such that p f becomes semi-stable when restricted

to GK. Fontaine has constructed a functor Dst : V - (B,t 0Qp V)GK from
the category of semi-stable representations of Gx to the category of filtered

N)-modules over K. Let D = This is the filtered N)-
module attached to f (and p and K). It is a free module over Ew 0Qp Ko
of rank 2. When K/Qp is Galois then DK comes equipped with an action
of its Galois group Gal(K/Qp). Write D* for the filtered N)-module
corresponding to the representation which is dual to P¡IGK’

We now write down the filtered module D§§ attached to f for various
primes of E in as many cases as are known following [Bre01] . We shall
denote the basis of the filtered modules below of rank 2 over Ko
by e2 where E~ is a finite extension of Ew.

Let us start with the case In this case it turns out that

K = Ko = Qp. Let P2 c be defined by

If w(ap) = 0 then Dw is one of the following two filtered (~, N)-modules:

It is known that when f is a CM-form then Dw = Dgpiit. When f does not
have CM then it is expected but not known that D:V = Dnon-split . On the
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other hand if w(ap) &#x3E; 0 then D§§ is

Now let us assume that piN. Let Np be the exact power of p that
divides N. Let C denote the conductor of E and let Cp denote the exact
power of p that divides Cp. Note Np &#x3E; Cp &#x3E; 1. It is useful to consider three

cases:

1) Np = Cp : in which case = p~ ~-1 ) /2 (Ramified principle series),
2) Np = 1 and Cp = 0: in which case a 2 = (Steinberg),

3) Np zh Cp and Np &#x3E; 2 in which case ap = 0 (Other).
In the first case the local component at p of the automorphic representation
is in the ramified principal series whereas in the second case it is (the
twist by an unramified character of Qp of) the Steinberg representation.
The third case includes the cases when this representation is supercuspidal
(or extraordinary when p = 2).

We discuss each of these cases in turn. Assume that we are in the first

case. Then it is known that we may take K to be the totally ramified (but
tamely ramified) extension of Qp given by adjoining a primitive pth root of 1:
K = Qp(pp) = where -p. In particular we see that Ko = Qp
again. Define E’ to be the prime-to-p part of E. Let AP-1
denote the Teichmfller character. Define the integer z by 1  i  p - 2 and

Now assume that NP = Cp = 1. Then D§§ is given by

where g E Gal(K/Qp). It is likely that Dw has the same shape even
when Np = Cp &#x3E; 1 except that the filtration is probably more complicated
to write down.

Now assume that we are in the second case (the Steinberg case). Then
it is known that we may take K = Ko = Qp. Let ,C E Ew denote the
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so-called ,C-invariant of f. Then Dw is given by

It would be interesting to write down what Dw is in the third case.
As already mentioned, in [Bre0l] Breuil has asked for a complete general
classification of the filtered modules associated to cusp forms.

Now assume that p is arbitrary again. Let Mcrys == Dw where
w varies over all the places of E denote the crystalline realization of the
motive M f . It is a free E 0 Qp-module of rank 2.

3.3. Good places.

We now investigate the structure of Xv when v is a finite place of F,
say of residue characteristic p. In this section we shall assume that 

and shall say that v is a ’good’ place of F.

Following Ribet we shall say that v is ’ordinary for f ’ if 

6(p)"~) = 0 (equivalently w(ap) = 0 for one, equivalently all, places w
of E lying over v). The following result shows that Xv is a matrix algebra
over F for such v. It was proved by Ribet [Rib81], Theorem 6, in the

case k = 2.

THEOREM 3.3.1. If p is a prime not dividing N and v is a place of F
over p such that v(a2 = 0 then Xv is a matrix algebra over F~,.

Proof - Ribet’s proof in the case 1~ = 2 uses the p-adic Tate module
of the abelian variety over Fp which is the reduction of the abelian
variety A f at p. A proof when k = 2 may be given by studying the crystal
attached to A f instead. This proof generalizes to arbitrary weight k &#x3E; 2

as follows.

Let Mcrys be the crystalline realization of M f . It is a free E 0 Qp-
module of rank two equipped with a crystalline Frobenius endomorphism 0.
Hence it is a crystal over Qp of rank 2[E : Q]. As can be seen from the
previous section the characteristic polynomial of 0 (over E 0 Qp) is
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Let :== Mcrys0F0QpFv. It is a sub-crystal Of Mcrys of dimension
2[E: F] over Fv and hence dimension 2d over Qp where
The characteristic polynomial of 0 over Fv is over Qp it is
therefore

where w runs through the places of E lying over v.

If then w (ap) = 0 by the hypothesis on v ; hence H (x) has two
roots in Ew, one of zero w-adic valuation and the other non-zero. Therefore

exactly half (counted with multiplicities) of the roots of NorME- I Qp (H(x))
are w-adic units. Letting w vary among all places of E lying over v we have
that exactly d of the Newton slopes of Mv are 0.

Let :== Mcrys,v 0Qp Qur where Q~r is the maximal unramified
extension of Qp. Let Co be the 1-dimensional crystal with a

the Teichmfller lift of Frobenius. By the classification theory of crystals
(see [Dem72]) decomposes as Cod x C’ where C’ is a

crystal with no zero Newton slopes. Let V := Hom(Co, Mcrys,v). Because
Hom(Co, C’) = 0 (see [Dem72]) we have V ~ Hom(

The functor Mcrys is covariant, giving a left action of Xv on
On the other hand so that Xv

acts on Mcrys 0Qp Q~r and hence on

Since Hom(Co, ~) is also covariant we obtain a left Xv-module structure
on V. But dimpv V == [E : F] which implies that Xv is a

matrix algebra. 0

We shall say that a place v of F of residue characteristic p with p prime
to N is ’singular for f ’ if 0   k - 1. The following theorem
describes the structure of Xv at a singular place v under an additional
hypothesis. This theorem is new even 2.

THEOREM 3.3.2. - Say that p t N and that v is a place of F lying
over p such that

Let w be a place of E lying over v. If, as a fraction in lowest terms, the
denominator of w(ap) is odd then Xv is a matrix algebra over Fv.
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Proof. The hypothesis on v implies that for each w I v has two

roots in Ew, one of w-adic valuation cx  ) (k - 1 ) and the other of w-adic
valuation j3 &#x3E; ) (k - 1). (a,,C3 E Q.) Since w(cx) - 1~ - 1 - 
is the same for every w ~ v, the Newton polygon for is the same for

every such w. Therefore d of the Newton slopes of are 0152 and the

other d are f3. Hence decomposes as x where

Ca, C(3 are simple crystals of slopes cx, 3. We have 2d = dimQp =

dimQurp + dimQur CnB B= 2sna where 0152 = r/s is expressed in lowest
terms. This is because Ca and C(3 have the same dimension s over Q~r and
occur with the same multiplicity (na = n,~ ) in 

Let V := Hom(Ca, Then V ~ Hom(Ca, Ca)naand

As we have seen V has a natural structure of a left Xv-module, and by
hypothesis s is odd. Hence Xv must be a matrix algebra. 0

COROLLARY 3.3.3. - Let p and v satisfy the conditions of the theorem.
If p does not ramify in E then Xv is a matrix algebra over Fv.

Proof. - The hypothesis on p implies that w(ap) is an integer. 0

We shall say that a place v of F of residue characteristic p with p
prime to N is ’supersingular for f’ if &#x3E; I~ - 1. Notice that

the above theorems do not treat the supersingular places. To get a better

feeling of why this is so one need only look at the Newton polygon of Hv (x),
the characteristic polynomial of the crystalline Frobenius 0 considered as
an operator on the Qp-crystal ·

Figure 1 depicts various possibilities for the Newton polygons
of Hv (x) . The lowest Newton polygon occurs when v is ordinary, and

corresponds to the slopes (0, k - 1). The top most Newton polygon occurs
when v is supersingular and corresponds to the 1). The
intermediate Newton polygons occur when v is singular and correspond
to the slopes (a, k - 1 - a) where 0  cx  2 (I~ - 1). The ordinary and
singular Newton polygons are characterized by the fact that they have two
distinct slopes. This can be used to advantage in studying Xv in these cases
as was done in Theorems 3.3.1 and 3.3.2. Note that Theorem 3.3.2 only
treats those singular cases for which the denominator of a is odd. Thus for
the two singular Newton polygons in Figure 1, Xv is a matrix algebra for
a = 1, but may be ramified when a _ k.
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Figure 1: Newton polygons of Hv (x) .

3.4. Bad places.

We shall say that a place v of F is ’bad’ if the residue characteristic p
of v divides N. In this section we investigate the structure of Xv for

bad v. We divide our discussion into the three natural cases outlined in

Section 3.2. We start with the case Np = Cp. We have the following theorem
when k = 2.

THEOREM 3.4.1. - Suppose that piN and that Np = Cp. Assume
that k = 2. Let v be a place of F over p. Suppose that w(ap) = 0 or
w(ap) = 0 for each place w of E lying over v. Then Xv is a matrix algebra
over Fv.

Proof. The hypothesis on p implies that A f has potentially good
reduction at p. In fact if one takes K to be the completion of the cyclotomic
field for sufficiently large n, at the unique prime p of K lying
over p, then B = A f XQp K has good reduction at p. Let B denote the
reduction of B at p. It is an abelian variety over IFp since the residue
degree f (~ ~ p) = 1.

Let e’ denote the prime to p part of E. The characteristic polynomial
of Frobp acting on the £-asdic Tate module of B for £ y~ p is

This can be seen for instance by studying the local factor at p of the
L-function of L(s, f ) attached to f. 

-

Let V denote the p-adic Tate module attached to B. Let w be a
place of E lying over v and let Vw denote the w eigenspace of V. Then
the dimension of Vw over Ew is the number of w-adic unit roots of the

polynomial 
I B I II B2013 B
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which by hypothesis is 1. Let Yv denote the v-eigenspace of V. This has
dimension [E: F] over Since Xv acts on Yv we see that Xv must be a
matrix algebra over Fv . 0

We now extend the above theorem to l~ &#x3E; 2 subject to the restriction
that Np = Cp = 1.

THEOREM 3.4.2. - Suppose Np - Cp - 1 and k &#x3E; 2. Assume that

w(ap) = 0 or w(ap) - 0 for each place w of E lying over v. Then Xv is a
matrix algebra over Fv.

Proof. As already mentioned p f has semi-stable (in fact good)
reduction over GK where K is the completion of Q(pp) at the unique prime
lying above p. Let D = p Dw denote the associated filtered (0, N)-
module. Here Dw, the w-eigenspace of D, is the filtered N)-module
attached to f and w ( p as in Section 3.2. A study of the crystal D shows
that the characteristic polynomial of 0 is

Fix w I p. When w(ap)  2 (1~ - 1) we see that D~, has Newton slopes
and w(ap) each occurring with multiplicity [Ew : Qp]. After the

vanishing hypothesis in the statement of the theorem we conclude that
Dv - is an ordinary crystal of dimension 2~E : F~ ~F~, : Qp] over
Qp. Now an argument similar to that used in the proof of Theorem 3.3.1
shows that Xv is a matrix algebra over Fv. 0

Remark 3.4.3. - We have required Np = Cp = 1 above, and below,
simply because the reference we have used to write down the crystal
attached to f, namely Breuil’s CRM lecture notes requires this.
It is quite possible that the theorem is true simply if Cp, as is the
case when k = 2 (cf. Theorem 3.4.1).

An analog of Theorem 3.3.2 is also true when v is a bad prime.
We have:

THEOREM 3.4.4. - Say that piN with Np = CP = 1 and say that v is
a place of F lying over p. Let a E Q be such that

and a has odd denominator. If for each place w of E lying over v either

w(aP) = a or w(ap) = cx then Xv is a matrix algebra over Fv.
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Proof. The proof is similar to the proof of Theorem 3.3.2 and is
omitted. 0

We now turn our attention to the case when Np = 1 and Cp = 0 so
that f is ’Steinberg at p’. The following result was proved by Ribet [Rib8l],
Theorem 3, when k = 2.

THEOREM 3.4.5. - Suppose that Np = 1 and Cp = 0. 2 then Xv
is a matrix algebra over Fv. In fact X is a matrix algebra over F.

We have the following generalization of Theorem 3.4.5 when k is even.

THEOREM 3.4.6. - Let Np - 1 and Cp - 0. Assume that k &#x3E; 2

is even. Then Xv is a matrix algebra over Fv. In fact X is a matrix algebra
over F.

Proof. Assume momentarily that k = 2. In this case as we have
already remarked the theorem is due to Ribet. Ribet’s proof is global in
nature and proceeds as follows. Let A f denote the reduction of the abelian
variety A f at p. Deligne-Rapoport have shown that when f is Steinberg
at p then A f has purely multiplicative reduction at p, that is, the connected
component of A f is a torus T over Fp. Ribet observes that this torus has
dimension g = ~E : Q] over Fp and has a natural action of X. This provides
a homomorphism of X into M(Q). Ribet concludes that X must be a
matrix algebra over F for the usual dimension reasons.

This global argument may have a generalization to higher weight but
it would involve making sense of the reduction of the motive M f at p.
Instead we give a proof that is of a local nature.

We first show that Xv is trivial for each place v of F dividing p.
Let p f denote the p-adic representation attached to f. Then p f already
has semi-stable reduction over Qp. For a place w I p of E let Dw be the
associated filtered N)-module as in Section 3.2. Let Dv = EÐw I v Dw
denote the associated filtered (0, N)-module. The slopes of 0 on Dw 

1. When k is even these are distinct integers and the usual

arguments apply to show that Xv is then necessarily a matrix algebra
over Fv.

We now turn to the other finite places of F. Let be a prime different
from p. Let
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denote that ~-adic representation attached to f. It is a theorem of Langlands
(cf. [HidOO], Theorem 3.26 3 (b)) that

where v is the £-asdic cyclotomic character Gp --~ Z~ and q is an unramified
character which takes Frobp to ap. Let M~ denote the £-asdic realization
of M f . Let A be a place of F lying over and let Ma denote the FA-
eigenspace of M£. Since is realized on Mz and since F commutes with
the Galois action on Mz we obtain an exact sequence of FA-modules

where the Vi have dimension [E: F] over Fx. Choose a number field K
such that all endomorphisms in X are defined over K and set H =

Gp n Gal(Q/K) . Then the action of X on Mz commutes with the action
of H. In particular the action of Xx = X 0~ F,B on Mx commutes with
the action of H. But H acts by distinct characters on the Y2 by (3.4.7).
This shows that Xx preserves the spaces and therefore for the usual
dimension reasons Xx must be a matrix algebra over F~ .

We have shown that X is trivial at all the finite places of F. By
Theorem 3.1.1 X is trivial at infinity as well and thus X is a matrix algebra
over F. D

The higher weight analog of Ribet’s Theorem 3.4.5 is false if k &#x3E; 2 and

I~ is odd (see Example 4.3.4 at the end of the paper). However something
interesting can still be said in this case. We have:

THEOREM 3.4.8. - Suppose that Np = 1 and Cp = 0. If k &#x3E; 3 is odd

then X is unramified everywhere except possibly at the primes of Flying
above p and oo.

Proof. This follows from the fact that the £-asdic part of the proof
of Theorem 3.4.6 did not use the fact that k is even. 0

COROLLARY 3.4.9. - Suppose that k &#x3E; 3 is odd and that f is

Steinberg at two distinct primes in the level. Then ~F : Q] is even and X
is ramified exactly at the infinite places of F.

As a final comment let us point out that we have no results in the
third case when Np &#x3E; 2 and Cp (except when such a case arises
from the previous cases by twisting, in which case one may reduce to the
previous cases).
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4. The case of quadratic twisting.

Ribet [Rib81], p. 271, has remarked that the cocycle c masks quite
effectively whether the Brauer class of X is cohomologically trivial or non-
trivial. In this section we compute c explicitly in terms of symbols under
the additional assumption that

(4.0.10) xq is a quadratic character for all non-trivial ’1 C h.

This formula allows us to give a simple criterion for the structure of Xv at
each good place t~ p in terms of the parity of a certain integer mv which is
essentially the v-adic valuation of ap if ap ~ 0. If ap = 0 then a similar result
holds if we replace ap by any non-zero Fourier coefficient apt where pt is a
prime satisfying p pt = 1 mod N. Before we begin we prove the following
lemma.

LEMMA 4.0.11. - The cusp form f satisfies (4.0.10) if and only if its
nebentypus E is real.

Proof. Let Q C F denote the subgroup of all ’1 C r such that

x 2 = 1. The relation = shows that Q = Gal(E/F(,E)). Thugs 0, - F
if and only if F(E) = F and this is the same as requiring E to be real since F
is totally real. 0

Let Q denote the class of primitive non-CM forms f satisfying (4.0.10).
By the lemma Q, the class of cusp forms we consider in this section,
is exactly the set of primitive non-CM forms with trivial or quadratic
nebentypus character.

4.1. Symbols.

Let D denote an arbitrary fundamental quadratic discriminant. For
a prime p dividing D let p* denote the corresponding prime fundamental
discriminant. Thus q* = and

with d = 4 D when D - 0 mod 4. It is a fact that every fundamental

discriminant D can be uniquely written as a product of prime fundamental
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discriminants. If xD is the corresponding primitive quadratic character of

conductor D ~ then an analogous decomposition holds for xD .
Now suppose that f has an extra twist by (’1,X’Y)’ After (4.0.10) we

have X’Y = xD for a fundamental discriminant D = D-~.

Let q be an odd prime. Consider the homomorphism of T into Z/2
which maps ’1 to 1 if q* is a factor of D’Y and maps ’1 to 0 otherwise. Let 
be the kernel of this homomorphism.

Now assume that q = 2. Let 2~, denote the 2*-part of D,~ for 1 E r.
Note that 2~, can be uniquely specified by specifying an element in Z/2 x Z/2
as follows. The two generators (l, 0) and (0,1) correspond to the cases

2~, = 8 and 2~, - -8. The element (1,1) corresponds to 2~, = -4 and the
trivial element corresponds to 2~, - 1. With these conventions the map

cjJ2 : r - Z/2 x Z/2 defined by q - 2~, is a homomorphism. Let h(2) denote
the kernel of the homomorphism from r to Z/2 obtained by projecting cjJ2 to
the first factor. Similarly let h(-2) denote the kernel of the homomorphism
obtained by projecting g52 to the second factor.

Note that the subgroups r(q) for q odd and h(~2) are all of index one
or two in F. Further if h(q), respectively one of h(~2), is of index 2, then
necessarily q N, respectively 2 N.

Let F(q) denote the fixed field of h(q) if q is odd and let jF’(=b2) denote
the fixed fields of h ( ~ 2 ) . These fields are at most quadratic extensions of F
and can therefore be generated over F by adjoining square roots of elements
in F, say, zq E F, respectively Z±2 E F.

More explicitly, when q is odd, one may take zq = a 2 where nq is a
positive integer satisfying anq 4 0 and

for all -y E r. Similarly we may choose Z±2 = a 2 where n±2 is a positive
integer satisfying an:i:2 i=- 0 and for all ’1 E r:

We are now almost ready to state our result. As motivation and to
introduce some more notation recall the following (very special case of a)
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result of Merkuryev-Suslin. Let K2 (F) denote the second K-group of F.
Then

In particular every 2-torsion element in the Brauer group of F is a product
of symbols of the form (a, b) for a, b E F. Here (a, b) is the central simple
quaternion algebra over F generated by 1, U, V, UV, subject to the relations

We can now state the following theorem.

THEOREM 4.1.3. - Let f E Q. Let S(N) be the set containing all the
odd primes dividing N as well as the formal symbols ±2. Then

up to Brauer equivalence, where q* - (-1) 2 (q-l)q if q is odd and q* _ ±2
if q = ±2.

Proof. The proof is by comparing cocycles on both sides.

Let D denote a fundamental quadratic discriminant. There is a well-
known formula for the Gauss sum of xD given by

Thus for ’1, ð in r we have

where we take the gcd to be negative exactly when both D,y and D6 are
negative and where a = 0 or 1 as follows:

On the other hand suppose that q is an odd prime dividing N. Let cq
denote the cocycle on the Galois group Gal(F(q)/F) corresponding to the
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symbol (zq, When F(q) = F the class of cq = 1. When ~F(q) : F] = 2
let aq be a generator for Gal(F(q)/F). Then the cocycle table of cq is

Via inflation

we may consider cq E H2 (r, E~). For q, 6 C F, we obtain

Now suppose q - 2. Let C±2 denote the cocycle on Gal(F(~2)/F)
corresponding to the symbol (2~2? 2). When F ( ~ 2 ) - F the class of

C±2 = 1. When [F(±2): F] = 2 let a:f:2 be a generator for Gal(F(±2)/F).
Then the cocycle table of C±2 is

Via inflation

we may consider C±2 c H2 (r, E~). As such, for ’1, 6 E F

Continuing with q = 2, consider the homomorphism

defined by s (x, y) = x+y. Let r ( -4) denote the kernel of the homomorphism
h -~ Z/2 obtained by composing s with cjJ2 : F - Z/2 x Z/2. Then r(-4)
is a subgroup of index 1 or 2 in F. Define C-4 to be trivial if r(-4) = F.
Otherwise let F(-4) denote the fixed field of r(-4), say F(-4) = 
for some Z-4 E F, and let c-4 denote the cocycle corresponding to the

symbol (z_4, 4). Let a-4 be a generator for Gal(F(-4)/F). Then the
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cocycle table of C-4 is

Via inflation

we may consider C-4 C H2 (f, E~). As such, for q, 6 E r,

Finally let h(oo) denote the subgroup of ’1 E F such that D., is

positive. Again r( (0) == r or h(oo) is an index two subgroup of r. In the
former case we set Coo to be the trivial cocycle on h. In the latter case we
define as follows. Let F(oo) denote the fixed field of r( (0). Then F(oo)
is a quadratic extension of F. In fact F (oo) = where

where the product on q is over odd primes q.

This is because if ’1 E r(oo) then D’Y is divisible either by an even
number of q* with q*  0 and p odd, or, by an odd number of q* with

q*  0, p odd, and 2~ == -8 or -4. In either case J§ = z_2 x zq
is fixed by ’1. Now let denote a generator of Gal(F(oo)/F). Let Coo
denote the cocycle on Gal(F(oo)/F) corresponding to the symbol -1).
Its cocycle table is given by

We note that (4.1.4) and a standard bilinearity property of symbols imply
that

in the Brauer group. As usual we may think of Coo as a cocycle on F by
inflation. As such Coo ( ’1, 6) = 1 except when both D’Y and D5 are negative,
in which case Coo (’1, ~) _ -1.
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With the above definitions one may now compare cocycles on both
sides. One may check that

as cocycles on r. Thus

where the second equality follows from (4.1.5) and the last equality follows
from fact that (a, 4) = 1 for any a E F~. This proves the theorem. C1

Remark 4.1.6. - After the above theorem was proved it was pointed
out to us that a similar result was recently proved by Quer in [Quer98].
Quer’s result is for k = 2, but does not assume the condition (4.0.10).

We now wish to evaluate the symbols that appear in the expression
for X in Theorem 4.1.3 above. First let us recall some general facts about
symbols.

Let F be an arbitrary number field. Let v denote a place of F which
is either finite or infinite. Let Fv denote the completion of F at v. It is

well-known that

(4.1.7) Q/Z

if v is finite (and is Z/2 if v is infinite and real and is trivial if v is infinite
and complex).

Now let a and b be non-zero elements of F. Then the symbol (a, b)
determines an element in Br (F) [2]. For each finite place v of F, let (a, b)v
denote the induced element of Br(Fv) [2]. By (4.1.7) the symbol (a, b)v is

completely specified by a sign --~ 1 or -1. This sign can be computed in
terms of the v-adic valuations of a and b. There are two cases, the tame

case: v t 2, and the wild case: v 2.
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First assume that v is prime to 2. Fix a uniformizer 7r, of the ring of
integers of Fv. Write

where we consider v here to be normalized such that - 1. In this

section v will refer to a valuation which is normalized in this way unless

explicitly stated otherwise. Then one has

Here the symbol ( v ) takes the values ± 1 and is 1 exactly when the image
of c is a square in the residue field at v.

Now assume that v 12. We shall only treat the case F = Q so that
v = 2. For a unit u E Q; let denote the residue of -1 (u - 1) in Z/2 and
let w(u) denote the residue of 2 (u2 - 1) in Z/2. Then for units u, v in Q;
we have

Note that these formulas completely determine (a, b) 2 for a, b E Q~.
Now let us return to our situation. Let F be the number field generated

by the numbers a 2for p (we can drop the E (p) -1 term since it is just + 1 ) .
The exact sequence (3.0.6) shows that the Brauer class of X is completely
determined by the Brauer classes of the Xv, which are in turn completely
determined by specifying a sign, one for each v. For notational convenience
we write Xv - a for an integer a if the sign of the Brauer class of Xv is the
same as (-1)a.

Recall that if v is infinite. Moreover for a good place v of F
we have Xv - 0 if v is ordinary for f (cf. Theorem 3.3.1 ) or v is singular
and the denominator of the valuation of ap is odd (cf. Theorem 3.3.2). The
following theorem generalizes these results (for the cusp forms considered
in this section). To state it we introduce a positive integer mv for each good
place v of F of residue characteristic p with 0:

In the definition of mv we take the valuation v which is normalized such

that v (p) = 1. Then we have:
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THEOREM 4.I.ll. - Let p be a prime such that 0.

Let v be a place of F lying over p. If p 7~ 2 we have

If p = 2 then the same conclusion holds if F = Q.

Proof. By Theorem 4.1.3 we have

Since v is good, that is since v is prime to N, we have v (q* ) - 0.
First assume that p # 2. Then v is prime to 2 so that by (4.1.8) we have

(~9~ = (~T~- But (~) = ( q* ) fv since every element of Fp has a
square root over a quadratic extension of Fp. We conclude that

Thus if ( p ) = 1 for all q E we have Xv = 1, as desired.

Suppose on the other hand that the subset 5’" of elements of S(N)
such that ( ~-) = 20131 is non-empty. Write the primes in 6’" as ql , q2, ..., qm
with m &#x3E; 1. As usual we allow one or both of ±2 to be in this list. Define

distinct primes rj for j = 0, 1, ... , rm-l as follows: set ro = p and define rj
for j = 1,..., m - 1 recursively by

We may and do assume that each ar) =I- 0. This can be done for j = 0 since
0 by hypothesis. For the other rj’s we simply note that if ar~ - 0 for

all rj defined by the congruence conditions (4.1.13) and (4.1.14) then the
set of supersingular primes for f would have a positive density contradicting
a result of Serre [Ser81] which says that for non-CM forms the density of
ordinary primes is 1.
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Recall that for a prime q E S(N), zq = a2 E F where nq is a positive
integer determined by the congruence conditions (4.1.1) and (4.1.2) and
the condition 0. It is only the primes q E ~5’- that contribute to the

sign of Xv since ,S’- then (~-) = ( p ) - 1. If q E ~S’- then q = q. for
some i with 1  i  m. Set

Clearly 0 since on distinct primes the Fourier coefficients are

multiplicative, and the r~ were chosen so that each 0. Furthermore

the nq2 satisfy the congruence conditions (4.1.1 ) and (4.1.2). Indeed suppose
that q* occurs in D,y (when qi ±2 we mean as usual that 2~, == ±8 or -4).
Then if i  m

= 

since, by (4.1.13) and (4.1.14), and x- (ri ) differ by a sign. Similarly
= if 9~ does not occur in D’Y so that - 1 in this

case. If i = m then

But (4.1.13) shows that

So if and only if qm occurs in D,y as desired.

Now if qi E ~5’- we have zq2 and (~) = -1 so that by (4.1.12)
we have

Substituting for nq2 from (4.1.15) above and multiplying over all i

in {1,..., m}, there is a telescoping effect, the result of which is

If we take the v(p) = 1 normalization for v then the right hand side
becomes mv, proving the theorem in the case 2.
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Now assume that p = 2 and that F = Q. Write v2 (zq ) for the power
of 2 that divides zq and define z’ by zq = 2v2 ~zq &#x3E; ~ z’. We have

One can easily check that (2, q*)2 is equal to (-1)‘~~q*~ by (4.1.10) which
may again be easily checked to be the same as ( ~) using the fact 2 splits
in Q(Q) if and only if q* - 1 mod 8. On the other hand (zq, q* )2 - 1

by (4.1.9) since ~(q* ) = 0 mod 2. Thus

Now the argument proceeds as in the case p ~ 2 proving the theorem in
this case as well. D

Remark 4.1.16. - The assumption that F = Q when p = 2 could

probably be removed if one had formulas for wild symbols other than in
the case F = Q.

4.2. The case ap = 0.

We now treat the case ap = 0 (and v is good). Clearly the structure
of Xv in this case is not determined by the parity of mv since mv = oo.
However as we now show the structure of Xv is still determined by a Fourier
coefficient at a prime pt, closely related to p.

In fact we take pt to be any prime such that ppt - 1 mod N and such
that apt =,4 0. Serre’s theorem on the density of the set of ordinary primes
guarantees that one can always find such apt. Set

Theorem 4.1.11 now has the following avatar when ap = 0.

PROPOSITION 4.2.1. - Let v be a place of F of residue characteristic
p prime to N and say ap = 0. Let mv be as above. If p fl 2 we have

If p = 2 then the same conclusion holds if ~ _ Q.
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Proof. Since p pt m 1 mod N we have

so that the proof of Theorem 4.1.11 goes through replacing p with pt. 0

Let us record the following easy consequences of the above results
which are valid for the cusp forms considered in this section, namely those
satisfying (4.0.10). The first result is a stronger version of Corollary 3.3.3
(away from p = 2).

COROLLARY 4.2.2. - Let v be a place of F of residue characteristic p
with If p is unramified in E then Xv is a matrix algebra over Fv.

Proof. This is immediate from Theorem 4.1.11 and Proposi-
tion 4.2.1 since in this case the integer mv or mv is necessarily even.

D

COROLLARY. - If X is ramified at v then v must divide either the

discriminant of the fields E, or 2N, or oo.

4.3. Numerical examples.

We now give some examples to illustrate the theorems proved in this
paper. These computations were done using the C++ program Endohecke,
written by the authors, by suitably modifying and extending parts of
W. Stein’s modular forms package Hecke. The algorithm is based on the
explicit formula for X in Theorem 4.1.3. In fact Endohecke only computes
the image of X under the norm map from Br(F) to Br(Q). In particular it
computes X completely only when F = Q.

In all the examples below f is a non-CM primitive form. In the first
four examples F = Q and we give the complete structure of X as an
element of the Brauer group of Q. The fifth and last example discusses a
case where F ~ Q.

Example 4.3.1. - Let f E S2(512,1) be the unique primitive form of
orbit size 4. This example was considered in [SteOO]. It turns out that f has
extra twists by xl, X±8 and X-4 and X is ramified at 2 and 3. No theorem
of ours predicts the ramification at the bad place 2, but at the good place 3
the ramification is predicted by Theorem 4.1.11 since a2 - 6 has odd 3-adic
valuation.
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Example 4.3.2. - Let f E S2 (57, X57) be the unique primitive form
of orbit size 4. Then f has extra twists by Xo, X-3, X-19 and X57 and X
is ramified at 2 and 5. This is as predicted by Theorem 4.1.11 since a2 = 2
and a 5 2 = -5. Note that at the bad places, namely 3 and 19, A has

potentially good ordinary reduction in the sense of Theorem 3.4.1, so

that X is split at these places.

Example 4.3.3. - Let f E ~S’2 (469, x4s9 ) be the unique primitive
form of orbit size 4. Then f has extra twists by xl, x-7, X-67 and X469
and X is ramified at 2 and 5. The ramification at 2 is predicted by
Theorem 4.1.11 since a2 = -2. On the other hand a5 = 0 so we must turn
to Proposition 4.2.1. We may choose 5t = 563. Since a563 = 810 == 2 .34 .5
has 5-adic valuation 1, we see that X is ramified at 5.

Example 4.3.4. - Let f E S3 (38, X- 19) be the unique primitive form
of orbit size 2. Then f has extra twists by xl , X-19 and X is ramified

at 2 and oo. The ramification at 2 shows that the higher weight analog of
Theorem 4.3.4 is false in odd weight. The ramification at oo is predicted
by Momose’s Theorem 3.1.1. To illustrate Theorem 3.3.1 consider p = 5.
Since a25 = -8, we see that f is ordinary at 5 and therefore X is split at 5.

Example 4.3.5. - Let f E 64(57,~57) be the unique primitive form
of orbit size 12. Then f has extra twists by Xl, x-3, X-19 and X57. Thus

~F : Q] = 3. Our program shows that X is ramified at an odd number of
primes lying over 3 and 101 and an even number of primes (possibly zero)
lying above 2.

We illustrate Theorems 3.3.2 and 3.4.4. For the first take p = 5.

Then 5 is unramified in F and 5 = VIV2 with residue degrees fl = 1, f2 = 2
respectively. Let w1 be a place of E lying above vl. Then wl (a5 ) = 1 which
has odd denominator and 2 = VI (a 2)  1~ - 1 = 3. Thus Theorem 3.3.2

guarantees that X is split at vi.

On the other hand consider the bad prime p = 19. It turns out 19

is unramified in F and that 19 = vl v2v3 in F with f 1 - f 2 = f 3 - 1.

Moreover for each place w of E lying over, say, vl , one checks that, by
replacing w with w if necessary, that 1, so that these numbers are

equal, have odd denominator, and are smaller 1) = 2 . Thus X
splits at v, by Theorem 3.4.4.
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