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FUNCTIONAL MODELS AND

ASYMPTOTICALLY ORTHONORMAL SEQUENCES

by I. CHALENDAR, E. FRICAIN &#x26; D. TIMOTIN

1. Introduction.

A canonical orthonormal basis in the Hilbert space L2 ( -7r, 7r) is

formed by the exponentials exp int, n E Z. Starting with the works
of Paley-Wiener ([12] and Levinson ([8]), a whole direction of research
has investigated other families of exponentials, looking for properties as
completeness, minimality, or being an unconditional basis. In this context,
functional models have been used in [7], together with some other tools
from operator theory on a Hilbert space. The model spaces are subspaces
of the Hardy space H2, invariant under the adjoints of multiplications; their
theory is connected to dilation theory for contractions on Hilbert spaces
(see [14], [9]). The approach has been proved fruitful; it has allowed the

recapture of all the classical results and has lead to many generalizations.

We are interested in investigating, along the line of research from [7],
the case when the basis is asymptotically close to an orthogonal one (see
definition below). This is a particular case of unconditional basis, where
more rigidity is required, but the conclusions obtained are usually more
precise. A basic result appears in Volberg’s paper [15], where it is shown

that the usual Carleson condition for an interpolation set can be adapted
to obtain a characterization of asymptotically orthonormal sequences of
reproducing kernels; further developments can be found in [3]. We intend to

Keywords: Hardy space - Functional model - Asymptotically orthonormal sequence.
Math. classification: 47A45 - 46E22 - 46B15 - 30D55.
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provide a comprehensive treatment of this subject, emphasizing the parallel
with unconditional bases.

The plan of the paper is the following. The next two sections contain
preliminary material. The case of reproducing kernels for the whole Hardy
space is treated in Section 4; we give an equivalent form of Volberg’s condi-
tion and prove some related results. Section 5 investigates the relevance of

Volberg’s condition for model spaces; the main results are Theorem 5.2 and
Corollary 5.6, which allow the characterization of asymptotically orthonor-
mal sequences of reproducing kernels. Perturbation results are obtained in
Section 6. In the last two sections we discuss the important case of expo-
nentials, as well as some other examples.

2. Preliminaries.

For most of the definitions and facts below, one can use [9] as a main
reference.

Let H be a complex Hilbert space. A sequence C 1t is called:

- complete if Span{
- minimal if for all

- Riesz if there are positive constants c, C verifying, for all finite

complex sequences 

A Riesz sequence is minimal, but the converse is in general not true.

The Gram matrix of the sequence is r - ·

Riesz sequences are characterized by the fact that r defines an invertible
operator on .~2.

The basic Hilbert space in which our objects live is the Hardy space
H2 of the open unit disc D; this is the Hilbert space of analytic functions

defined in the unit such that

F-11_,o oo. Alternately, it can be identified with a closed subspace of
the Lebesgue space L2 (1r) on the unit circle, by associating to each analytic
function its radial limit. The algebra of bounded analytic functions on D
is denoted by H°° . Any 0 E H°° acts as a multiplication operator on H2,
that we will denote by T~ .
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Evaluations at points A E B are bounded functionals on H2 and the

corresponding reproducing kernel is =

then kx is an eigenvector for

normalizing kx we obtain i

Suppose now 0 is an inner function. We define the corresponding
model space by the formula H2 eE)H2; the orthogonal projection
onto Ko is denoted by Pe . In Ke the reproducing kernel for a point A E D
is the function

and the normalized reproducing kernel

Note that, according to (2.2), we have the orthogonal decomposition

Suppose A = is a Blaschke sequence of distinct points in
Liy) (which means that ~n~l 1 - ~ I  oo). As usual, we denote by
B = BA = I1n?:l bÀn the associated Blaschke product, and Bn = 
here ban (z) =  IA-1 Àn-Z . As B is an inner function, we may consider then n
model space KB ; it is well known that is a complete minimal
system in KB. It is a Riesz basis if and only if it satisfies the Carleson
condition

we will write in this case A E (C) and say that A is a Carleson sequence.
Also, the sequence A is called separated if

In connection with Blaschke products, we will have the opportunity
to use the following two formulas. If A, p E D, then

the denominator in the right hand side is given by

where 0 E (-r, 7r] is the argument of Ap.

The following two lemmas are proved in [7], II.
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LEMMA 2.1. - a minimal but not complete sequence
in Ke, then, for all , is still a minimal sequence.

LEMMA 2.2. - If81,82 are two inner functions, then dist(0102,
H°° ) = and this quantity is strictly smaller than 1 if and
only an isomorphism onto its image.

We end the preliminaries with a lemma pertaining to Riesz sequences
of normalized reproducing kernels.

LEMMA 2.3. - Let be a Blaschke sequence of distinct

points in D, B the corresponding Blaschke product, and 8 an inner
function. Suppose that (h° )n,l is a Riesz sequence in Ke, and denote

by c, C the corresponding constants appearing in (2.1). Then

Proof. The subspace KB is spanned by the eigenvectors hÀn,
Take a sum (with a finite number of

and

whence

Since the lemma is proved.

3. Asymptotically orthonormal bases.

We will say that is an asymptotically orthonormal sequence
in H (abbreviated AOS) if there exists No E N, such that for all N &#x3E;, No,
there are constants cN, CN &#x3E; 0 verifying
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and cN = 1 = liMN-c). CN.

If No = 1, then one says that is an asymptotically orthonor-
mal basic sequence (abbreviated AOB). Obviously this is equivalent to
(xn)n,l being an AOS as well as a Riesz sequence.

The following simple lemma is a basic tool.

LEMMA 3.1. - c H, then is an AOB if and only
if it is minimal and an AOS.

Proof. If is an AOB, then it is a Riesz sequence, and

therefore minimal. Conversely, if is an AOS, then (xn)n,No is a

Riesz sequence for some No. Now minimality ensures that we can add the
first finite number of vectors and still preserve this property. 0

As in the case of Riesz sequences, several equivalent characterizations
are available for AOB’s, as shown in the next proposition ([3], Section 3).

PROPOSITION 3.2. - Let be a sequence The following
are equivalent:

(1) an AOB;

(ii) there exist a separable Hilbert space 1C, an orthonormal basis
C 1C and U, K : H, U unitary, K compact, U + K left

invertible, such that (U + K)(en) = Xn;

(iii) the Gram matrix h associated to defines a bounded

invertible operator of the form I + K, with K compact.

One can obtain complete AOB’s by slightly perturbing orthonormal
bases; this fact is made precise in the following lemma.

LEMMA 3.3. - Let 1t be a Hilbert space, an orthonormal
.. . - ..... -

basis in 7~~ and a sequence in ~-~C, such that
Then (x’ n ),,, 1 is a complete AOB in 7-t.

Proof. Consider the operator 4) : 7-t - 7~ defined = ~.
The condition in the statement implies that is Hilbert-Schmidt, of
norm strictly smaller than 1. Thus (D is of the form unitary plus compact
and invertible; from Proposition 3.2 it follows that is an AOB.

On the other hand, since (D is invertible, complete implies 
complete. 0
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We should note the following way to obtain AOB’s.

LEMMA 3.4. - Let be a normalized sequence in ~, tending
weakly to 0. There exists a subsequence which is an AOB.

Proof. Choose recursively the sequence by requiring that

if h’ is the Gram matrix associated to then h’ - I has Hilbert-

Schmidt norm smaller than 1/2. Applying Proposition 3.2 to r’ implies
that is an AOB. El

In particular, a Riesz sequence tends weakly to 0, and thus it contains
AOB’s as subsequences.

4. Reproducing kernels and AOB’s.

Suppose A = is a Blaschke sequence of distinct points in D.
Since the reproducing kernels are complete and minimal in KB, if

is an AOS, then it is also a complete AOB in KB . Such sequences
are characterized by the following theorem of Volberg ([15]).

THEOREM A. - The sequence is a complete AOB in KB
if and only if

Blaschke sequences that satisfy (4.1 ) have already appeared in liter-
ature (see, for instance, [5], [4], [11], [13]). In particular, it follows from

results in [13] that, among Carleson sequences, they are characterized by
the possibility of free interpolation with functions in H°° rl V MO. We will
adopt the terminology in [13] and call a sequence that satisfies

(4.1) a thin interpolating sequence (or just thin sequence); we will write
(An) C (19). Thus thin interpolating sequences correspond to AOS of nor-
malized reproducing kernels.

A different characterization can be stated by using the Gram matrix.

PROPOSITION 4.1. - If A = a Blaschke sequence of

distinct points in D, then the following are equivalent:

(i) is a complete AOB in KB ;
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(ii) (F - I)en ~ 0.

Proof. (i)*(ii). By Proposition 3.2, (iii), it follows that h = 
with K compact; since Ken - 0, (r - I )en - 0.

(ii) ~ (i) . By hypothesis (r - -~ 0. But

(we have used 2.5)).
In particular, there is some N such that for n &#x3E; N we have

 1 / 2, and therefore baP ( ~n ) ( 2 &#x3E; 1/2 if p or n are larger than
N. Since the points An are distinct, the whole sequence A is separated,
and there exists E &#x3E; 0, such that baP ( ~n ) ~ &#x3E; ~ for all n # p. Therefore
1 - (~n ) I 2 &#x3E; -clog (An) ) &#x3E; 0 for some c &#x3E; 0. It follows that

whence - 1; by Theorem A it follows that is a complete
AOB in KB . 0

It is well known that Carleson sequences A = can also

be characterized by the fact that they are separated and the measure

~ ( 1 - ~ is a Carleson measure. A similar characterization can be

obtained for thin interpolating sequences, as suggested by Lemma 7.1 in
fl3l. We need some notations: for any z E D, 17. will be the interval 17. C T

while, for C &#x3E; 0, CI is the interval with the same center and length
CIII.

PROPOSITION 4.2. - Suppose A = is a Blaschke sequence.
The following are equivalent:

(i) A is a thin interpolating sequence;

(ii) for any A &#x3E; 1,

Proof. (i)=}(ii). Fix A -&#x3E;- 1; from (2.6) it follows easily that there is
some constant a &#x3E; 0 such that, if &#x3E;
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Therefore, if Ap E then .’
. Consequently,

(4.3) follows from Proposition 4.1, (ii). 
Y’ ’ 

(ii) ~ (i) . We show first that 2:(1 - is a Carleson measure.
From (4.3) it follows that we may suppose (by deleting a finite number of
terms, if necessary) that for all An we have

and therefore

Fix the interval I C 1r, and define a = {n E N : An E S, 1. If n E a, then
1Àn C 21. By Vitali’s covering lemma (see for instance [6], V.17), there is
~’ C a, such that the intervals An are disjoint for n E ~’, while UnEa An C

5I)..n; the last inclusion implies that { . Then,
using (4.4), it follows that

thus is indeed a Carleson measure.

and choose n e N, such that

We write

Since it follows from (4.5) that the first sum is
bounded by 4c

The second sum can be written as
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By (2.6), there is some constant C &#x3E; 0 such that, for &#x3E; one

On the other hand, since ]
a Carleson measure, there exists C’ &#x3E; 0, such that ; ’,

. It follows then that (4.6) is bounded by

This can be made as small as possible by choosing E and A; by Proposition
4.1 it follows that A is a thin interpolating sequence. 0

As a consequence, we mention the following two results that help to
clarify the geometry of thin sequences; they are suggested by corresponding
results related to Carleson sequences (see [9], VII.3).

PROPOSITION 4.3. - (i) Suppose A = is an increasing
sequence in llJ) such that ( = 1. If

then A is a thin interpolating sequenee. If, moreover, A C [0, 1), then ~1 is
a thin sequence if and only if -y = 0.

(ii) Suppose is a sequence of distinct positive numbers,
0  rn  1, such that ). Then there exist 0

such that is a thin interpolating sequence.

Proof. (i) Fix 0  ~  1, A &#x3E; 1, and choose N such that for all
n&#x3E;Nwehave

It follows that, if n &#x3E; N and k  n, then S Aln.
On the other hand, if
- ,... / A ,

it follows by Proposition 4.2 that A is a thin sequence.
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Therefore, if ] 1, then : ".

(ii) We may suppose rn is increasing. Choose numbers bn &#x3E; 0, such
that  oo, and (I - 0. Since the thin interpolating
property is not changed by adding a finite number of distinct points, we
may suppose that ] We will then define t, and

If A &#x3E; 0 is given, then the condition (1 - 0 implies that,
for n sufficiently large, n Then (4.3) is trivially verified,
whence A is a thin sequence. D

It should be mentioned that (ii) in the above proposition has already
been noticed in [11].

We end this section by quoting a stability result from [3], Section 3,
where it has been proved that thin sequences are stable with respect to
"small" perturbations.

THEOREM B. - Let A = A’ = be tuTo sequences
in D. If supn&#x3E; 1 (n )  1, then A E (19) if and only if A’ E (19).

5. Projection onto a model space.

Suppose now that 6 is an inner function, while A is a Blaschke

sequence of distinct points in D. We are interested in the AOB property for
the corresponding sequences of normalized reproducing kernels (h,9 )n&#x3E;,,
as defined by (2.3). It turns out that Volberg’s condition (4.1) is necessary
also in this context, as is shown by the next result ([3], Section 3). Below
we will give a simpler proof.

PROPOSITION 5.1. - an AOS, then is a thin

interpolating sequence.

Proof. By applying formula (2.5), we have
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Since Proposition 3.2, (iii), implies I
0, it follows that I

._ 

.." --m-

. Proposition 4.1 implies
then that is an AOB in KB. 0

There is no hope to obtain, without supplementary conditions, a
converse to Proposition 5.1. Indeed, suppose (An) is a thin sequence,

converging nontangentially to a point ( E ’lP, while 6 can be analytically
extended on an neighborhood of (. It follows from Theorem C in Section 8
below that (h~ ) is in this case norm convergent, and thus cannot be even
a Riesz sequence.

We will therefore try to obtain partial converses to Proposition 5.1.
It is then natural, in view of the theory of Riesz bases developed in [7], to
work under the supplementary condition supn &#x3E; 1 10 (An)  1. (Note that in
the previous example we have - 18(()1 = 1. )

THEOREM 5.2. 2013 Suppose sup,,, is a thin

interpolating sequence, then either

or 
’

(ii) there exists p ~ 2 such that is a complete AOB in Ko.

Proof. The condition on implies the existence of positive
constants tending to 1, such that

According to (2.4), we have, applying (5.1),

Since we can find
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constants 1, such that

A similar argument shows the existence of 1, such that

It follows that 1 is an AOS; hence there exists m &#x3E; 1 such that

Let p be the smallest positive integer with the property that (he )n&#x3E;p
is an AOB. If p = 1 we are in case (i) of the statement. Otherwise,
Lemmas 3.1 and 2.1 imply that is complete in Ko. The theorem
is thus proved. 0

It should be mentioned that a weaker version of Theorem 5.2 appears
in Lemma 3.9 in [3].

COROLLARY 5.3. - Suppose that supn&#x3E;1|  1 and A is a

thin interpolating sequence. Then is an AOB if and only if it is
minimal.

Case (ii) in Theorem 5.2 corresponds to (he not minimal; an
example can be obtained by taking 0 to be a proper inner divisor of B.
Minimality of sequences of reproducing kernels has been investigated in [1];
using Theorem 4.7 therein, we obtain the following characterization.

COROLLARY 5.4. - Suppose Then 

is an AOB if and only is a thin interpolating sequence and there
exists f E H°°, f ~ 0, such that -I- 1.

It is instructive to compare Corollary 5.4 with a result in [9], VIII.6,
where it is proved that under the hypothesis supn &#x3E; 1|  1, (he 
is a Riesz sequence if and only if A E (C) and dist(OB, H°°)  1. This last

condition is obviously stronger than the last requirement of Corollary 5.4.
On the other hand, the thin interpolating condition is much more restrictive
than Carleson’s.

We can say more in case 6 is not a Blaschke product. The next result
adapts an argument in [7], Theorem 3.2.

PROPOSITION 5.5. - Let 0 be an inner function with a nontrivial

singular part, and suppose supn&#x3E;1 1 E) (An)  1. If the sequence (he is
an AOB in Ko, then its span has infinite codimension.
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Proof - Suppose that sup,,,, - 1]  1. We shall write

8 = ,~3,S’, with (3 a Blaschke product and S‘ singular, nonconstant. Let
us also denote B (N) = 

By Proposition 5.1, is an AOB (and in particular a Riesz
sequence). If are the constants in (3.1), then applying Lemma 2.3
to 0 and B~N~ it follows that I . Since

1, we may find N E N, such that which,
according to Lemma 2.2, implies that is an isomorphism on its

image.

Now, if we define 6~ == ~3,5’1~2, 0’ is also an inner function, and

If we apply the same argument to O’, it follows that we can find N G N,
such that both Pe I KB(N) and Pe’ are isomorphisms on their images.

But we have

The operator on the left is one-to-one, while the image of is

closed. Therefore this image cannot intersect which is infinite

dimensional. But the image of (Pe IK B(N») is the space spanned by h9 for
n &#x3E; N; it follows that the space spanned by all the h° (n &#x3E; 1) also has
infinite codimension. 0

In this case one can improve Corollary 5.4.

COROLLARY 5.6. - Suppose that 0 has a nontrivial singular part
and  1. The following assertions are equivalent:

(i) A is a thin interpolating sequence;

(ii) (hE) is an AOB.

Moreover, in this case, 1} has infinite codimension in
Ke .

Proof. If A is a thin sequence, Proposition 5.5 shows that we are
in Case (i) of Theorem 5.2; consequently is an AOB. The converse

is contained in Proposition 5.1. 0
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6. Stability of AOB’s.

We will next study the stability of AOB’s with respect to small
perturbations.

THEOREM 6.1. - Suppose that  1 and is

an AOB. If A’ = a sequence of distinct points in ID that satisfies

then ( ~s an AOB.

Proof. Fix N &#x3E; 1, and define

and 4D the Blaschke product associated to (yn)n,l. Proposition 5.1 implies
that A is a thin sequence, whence, by Theorem B, l~’ and (~yn ) n,1 are both
thin sequences. If g, h E H°°, then the equality (
(OB - h)g implies

which shows that

Now, if.
Suppose CN and cN are the constants associated to A’ as in 3.1, while

= ( ban ~ ~n ) ~ ; one has then obviously B ~N&#x3E; ( an ) ~  ~N .
Applying Lemmas 2.2 and 2.3, it follows that

Consequently,

The hypothesis implies that, for N sufficiently large, 
and therefore H°° )  1. There exists thus f E H°°,
that and therefore

 1. It follows by Corollary 5.4 that is an AOB.

Applying repeatedly Lemma 2.1, we obtain that (h° )n,l is an AOB. 0
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In the particular case where 8 has a nontrivial singular part, we can
improve the stability constant in Theorem 6.1.

PROPOSITION 6.2. - Suppose that 6 has a nontrivial singular part,
supn,l  1 and (he is an AOB. If A’ = (~n)n&#x3E;1 is a sequence
of distinct points in D that satisfies

then

whence

Therefore I  1; Corollary 5.6 implies that is an

AOB. 
n " 

D

It is also possible to complement these results by studying the
completeness of the perturbed sequence. As concerns the effect of small
perturbations on Riesz basis, the following theorem was proved in [3].

THEOREM ([3], 3.1). - Suppose that sup,,,, I
- _ - 

/ L

is a Riesz basis in Ke, then there exists E = c(8, A)  1 such that for all

sequences 11’ _ (~n)n&#x3E;1 in D satisfying ~b~n (~n) ~  c, we have (I
a Riesz basis in K e "

Combining this result with Theorem 6.1, we obtain the following
consequence for complete AOB’s.

COROLLARY 6.3. - Suppose that supn,l 18(Àn)1  1. 

is a complete AOB in Ko, then there exists E - c(8, A)  1 such that for

all sequences A’ = ( ~n ) n,1 satisfying

we have ( is a complete AOB in Ko .

A few words are in order concerning the different stability constants
appearing in this section. The analogue for Riesz sequences of Theorem 6.1
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appears in [3], Theorem 3.3. The right hand side of (6.1 ) is replaced therein
by

For AOB’s, one should have expected a similar result, with J(A) replaced
by 1; Theorem 6.1 is therefore a sensible improvement.

As concerns completeness, there exists also an explicit upper bound
for the constant c(8, A) which appears in Theorem 3.1 of [3]; namely, we
must have

as well as

where 6 and h is the Gram matrix associated to 
One can see that this is much more complicated than the bound given by
formula (6.1).

7. Bases of exponentials.

The study of bases of exponentials in L2 (0, a) has provided the
original motivation for the development of the functional model approach
in [7]. It is therefore natural to discuss in more detail AOB’s of exponentials.
Some preliminaries are needed to translate the problem into the language
of model spaces. Note also that, as is customary, the index set will now be
Z rather than N*.

If C+ = fz E C : lmz &#x3E; 0}, then we define § :
(o is a conformal map from C+ to D). The operator

maps H2 unitarily onto H2 ((~+), the Hardy space of the upper half-plane.
The corresponding transformation for functions in H°° is

it maps inner functions in D) into inner functions in C+. We have then
UKe = H2 (C+) 8 (80 ~)H2 ((~+), and U(k9) is the reproducing kernel for
the point 
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The Blaschke factor corresponding to p E C+ is

and the Blaschke product with zeros is

the coefficients cAn being chosen as to make all terms positive in i. The

thin interpolating condition, which we will denote by (~9+), becomes

Let F : L (R) ~ L (R) be the Fourier transform. Then maps H2

unitarily onto L~(0,oo). If 8a(z) = then maps Koa unitarily
onto L2(0,a); the normalized reproducing kernel (A E D) is mapped

We also have Oa (A) = eiafl.

The results from the previous sections concerning reproducing kernels
can then be adapted to the case of exponentials with ft C C+; note
that the relevant inner function Oa is singular. The next theorem deals,
however, with a more general class of exponentials.

THEOREM 7.1. - Let two sequences of dis-

tinct complex numbers. If is a complete AOB in L2 (0,1), and
lJ.1n - 0, then is a complete AOB in L2(0,1).

Proof. Fix N &#x3E; 1, and define

and V by we have:



1544

CN being the constant in (3.1) corresponding to the AOB Since

[L.1 - 0 and CN - 1 for N - oo, it follows that if N

is large enough, then I I V - I  1 and thus V is invertible. If is the

orthogonal projection onto m}, similar computations for
m ~ N show then ( ~ 0, and therefore Y - I is compact.
Proposition 3.2 shows that is a complete AOB in L2 (0,1 ) .

Now the two sequences of complex numbers and (7n)nEZ
differ by a finite number of terms, and therefore is an AOS. On

the other hand, -~ 1 implies 0; thus and (7n)nEZ
are both contained in a strip, say I  A. Multiplication by e-At is

an invertible operator on L2(0,1); thus is a Riesz basis in

L2(0, 1). An application of Lemma 2.1 implies that is also

a Riesz basis, and therefore the same is true about (ei/" n t)nEZ; the proof is
complete. 0

In the case 203C0n, one can compare Theorem 7.1 to Kadec’s
Theorem (see [7], 1.5), which states, for real sequences (p£), that Riesz
bases are preserved under the requirement  1 /4. Such a uniform
bound is not adequate for AOB’s; indeed, since in L2 (0,1),

it follows that i implies
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Suppose now that there is q &#x3E; 0 such that 1m J-ln &#x3E; q for all n E Z. In
this case AOB of (normalized) exponentials in L2 (0, a) (a &#x3E; 0) are exactly
characterized by the corresponding condition (~9+ ) .

PROPOSITION 7.2. - then the

following are equivalent:

is thin interpolating;

is an AOB in L2 (O, a) for all a &#x3E; 0;

is an AOB in L2(0, a) for some a &#x3E; 0.

Proof. If we translate the problem in the disc, then the inner
function 8a is singular, and if (~(2013~), then = 

Therefore sUPnEZ 18a(Àn)1  1, and the results in the statement are a

consequence of Corollary 5.6. 0

One should remark that in this case the Volberg condition is in-

dependent of a &#x3E; 0. This should be compared with the situation for
Riesz sequences of exponentials (see, for instance, [10], D.5): in case

infnEzImJLn &#x3E; -oo, if is a Riesz sequence in L2 (0, a), then
(eil1nt)nEZ is a Riesz sequence in L2(0, a’) for all a’ &#x3E; a, but usually not
for a’  a.

Finally, a stability result can be obtained by translating Proposi-
tion 6.2.

COROLLARY 7.3. - Suppose Im An &#x3E; 7~ &#x3E; 0 for and

AOB in L2 (0, a) for some a &#x3E; 0. If sequence

of distinct points in C+ that satisfies

then

8. Examples.

As noticed in the previous section, bases of exponentials are related
to a singular inner function 0, with corresponding one-point supported
measure. In this section we will give some examples related to other inner
functions.
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Since complete AOB’s are asymptotically close to orthonormal bases,
it is natural to try to obtain examples by perturbing orthonormal bases.
If we take A, A’ E D, then Io,10 - 1-8(À)8(À’) -I- 0, and thus thewe ta e /B, /B E J.UI, t en B A A I 

= 

1-AAI I’ an t us t e

reproducing kernels themselves cannot be orthogonal. However, we may
obtain orthogonal bases of reproducing kernels in case the evaluations on
the boundary 1f of D are continuous; the precise statement appears in
Theorem C below. Suppose an C D are the zeros of the Blaschke factor
of O, while a is the positive singular measure on 1f corresponding to the

singular factor of 0. We define E8 C 1f by the formula
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In case 0 = e a, Eo~ _ ~ B ~ 1 ~, and thus obviously satisfies the
hypotheses of Theorem C and Corollary 8.1. Actually, Clark’s paper [2]
indeed has the bases of exponentials as a starting point. A different type
of example, adapted from [7], shows that complete AOB’s can appear in a
case when EE) = 0.

Take first a sequence of positive integers qn, n &#x3E; 1, such that
- oc. Choose then another sequence of positive integers pn,

n &#x3E; 1, subject to the conditions

Choose pn equidistant points on the circle centered in the origin and having
radius 1 - 2gn ; the union of all these points (for n &#x3E; 1) will be denoted by
A. We will also denote rn = 1 - 

We have thus A satisfies the

Blaschke condition and we may form the corresponding product B. Take
A &#x3E; 0; for sufficiently large n, if A E A has absolute value 1 - ~-, then
(S AI À n A) B ~~~ contains only points on the circles of radii strictly larger
than 1’B1. On each of these circles, the number of these points is of order

Therefore

can be estimated by A ~, and thus tends to 0 by (8.2). Therefore
A is a thin sequence by Proposition 4.2.

On the other hand, EB = 0. Actually, as in [7], more can be proved,
namely that " for all ( C ~. Indeed, for ( E ~, we have

For each fixed n, if 1,B1 = rn, then, with the possible exception of two points,
I( - ,B1 is comparable to The other points A on this circle are at
distances to ( comparable to I - with j = 1, 2,..., pn - 2. Therefore
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Then

as required.
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