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TRACES AND THE F. AND M. RIESZ

THEOREM FOR VECTOR FIELDS

by S. BERHANU and J. HOUNIE

Dedicated to the memory of Laurent Schwartz.

Introduction.

In this paper we study the existence of boundary values for solutions
of smooth, locally integrable complex vector fields in the plane. A nowhere
vanishing smooth, complex vector field

is said to be locally integrable in an open set D if each p E D is contained in
a neighborhood which admits a smooth function Z(x, ~) with the properties
that LZ = 0 and the differential 0. Among other important examples
of locally integrable vector fields we note the class of real analytic vector
fields and the class of smooth, locally solvable vector fields (Definition 4.1).
On the subject of locally integrable vector fields we refer to the treatise [T].
Not every smooth vector field is locally integrable although nondegenerate

Keywords: Weak boundary values - Locally integrable vector fields - Hardy spaces - F.
and M. Riesz property.
Math. classification: 35F15 - 35B30 - 42B30 - 42A38 - 30E25.



1426

vector fields which are not locally integrable are nontrivial to construct;
the first example of such a vector field is due to Nirenberg ([N]).

The central question studied in this work is the existence of a

distribution boundary value for continuous solutions of L f = 0. If f is

continuous on a rectangle Q = (-a, a) x (0, b), we say f has a boundary
value b f E D’(-a, a) (or a trace = 0) if for every E C~(2013~, a),

If (0.1) holds for every E C°° (-a, a), a standard category argument
shows that there exists a distribution bf E D’(-a, a) such that

and that f ( ~, y) remains bounded in a) for some s E R as y  0. It
is remarkable that a qualitative property satisfied by f (x, y), namely that
it satisfies a homogeneous PDE, guarantees the existence of the boundary
value when what is only a priori known is that the size of f ( ~, y) blows
up in a tempered manner rather than remain bounded as y B 0. A well-
known instance of this phenomenon is (see e.g., [H6], Thm. 3.1.14) that if
h is holomorphic in a rectangle Q = (-a, a) x (0, b), then the traces h(-, y)
converge as y - 0+ to a distribution bh(x) if and only if there exists an
integer N such that

uniformly for x in compact sets. Among other things, this result implies
that

(1) The holomorphic functions on Q with boundary values form an
algebra, and

(2) if the holomorphic function h has a boundary value at ~y = 01, then
it also has a boundary value on any curve q C Q through the origin.

In this work we explore extensions of these results for solutions of
locally integrable complex vector fields. In Section 1 we present a condition
akin to a weaker form of (0.2) that is sufficient for the existence of a

boundary value for solutions f of L f = g where L is a locally integrable
vector field and g is a locally integrable function. In Section 2 we show that
this condition is necessary for the existence of a boundary value for the
solutions of a real analytic vector field on a noncharacteristic piece of the
boundary. Lemma 4.3 in Section 4 also establishes the same necessity for a



1427

subclass of locally solvable, smooth vector fields. Sections 3, 4 and 5 contain
results on the F. and M. Riesz property for vector fields. The celebrated
classical F. and M. Riesz theorem may be stated as: if a holomorphic
function f (z) defined on a smooth domain of the complex plane has a
weak boundary value which is a measure then the measure is in fact

absolutely continuous with respect to Lebesgue measure. In a recent paper
( [BHI] ) we extended the F. and M. Riesz theorem to all locally integrable,
smooth complex vector fields L in the plane for smooth domains at the
noncharacteristic part of the boundary. In our theorem we assumed that the
solutions f grew at a tempered rate near the boundary. For holomorphic
functions, as mentioned already, such a growth rate is equivalent to the
existence of a boundary value. Moreover, in our recent paper ([BH2],
Theorem 1.1) it was shown that tempered growth as in (0.2) implies the
existence of a boundary value for any vector field L (not necessarily locally
integrable) for which the x-axis is noncharacteristic. For locally integrable
vector fields L, Theorem 1.1 here establishes the existence of a boundary
value under a growth assumption which is weaker than tempered growth.
This growth assumption is expressed in terms of a first integral of L and it
specializes to (0.2) in the case of the Cauchy Riemann operator. In Sections
3, 4, and 5, we will prove the F. and M. Riesz property for classes of vector
fields under the weaker and more natural assumption on the growth of the
solution that is considered in Sections 1 and 2. In its original formulation,
the classical F. and M. Riesz theorem states that a complex measure 11
defined on the boundary T of the unit disc A all of whose negative Fourier
coefficients vanish, i.e.,

is absolutely continuous with respect to Lebesgue measure dO. Condition

(0.3) is equivalent to the existence of a holomorphic function f (z) defined
on A whose weak boundary value is p. In other words, the theorem asserts
that if a holomorphic function f on A has a weak boundary value b f that
is a measure, then in fact b fELl (1r).

The F. and M. Riesz theorem has had numerous applications and
it has inspired an extensive generalization in two different directions:

i) generalized analytic function algebras, which has as a starting point
the fact that (0.3) means that JL is orthogonal to the algebra of continuous
functions f on T that extend holomorphically to F on A with F(O) = 0;
ii) ordered groups, which emphasizes instead the role of the group structure
of T in the classical result. For the generalization along function algebras,



1428

we mention the book [BK] by Klaus Barbey and Heinz Konig. A description
and survey of the second direction of generalization can be found in [Kl]
and [K2]. Thus, although absolute continuity with respect to Lebesgue
measure is a local property (i.e., if each point has a neighborhood where
it holds then it holds everywhere), both directions have focused on global
objects. Exceptions are the paper [B] where it is shown that if a CR measure
on a hypersurface is the boundary value of a holomorphic function
defined on a side, then it is absolutely continuous with respect to Lebesgue
measure, and the results in [BH1]. In this work we continue to stress the
local character of the F. and M. Riesz property. The recent works [RS1]
and [RS2] discuss results on boundary values which are hyperfunctions.

1. Sufficiency.

Let L be a smooth locally integrable vector field defined in an open
subset of the plane. In appropriate coordinates (x, t) we may assume that
L possesses a smooth first integral Z(x, t) = x + icp(x, t) defined on a
neighborhood of the closure of the rectangle Q = (-A, A) x (-B, B). Thus,
after multiplication by a nonvanishing factor, L may be written as

and t) is defined and smooth for A, B.

The next theorem gives, in particular, a sufficient condition for the
existence of a boundary value of a continuous function f when f is a

homogeneous solution L f = 0 of a locally integrable vector field L:

THEOREM 1.1. - Let L be as above and let f be continuous on
Q+ = (-A, A) x (0, B). Suppose

i) 

ii) there exists N E I‘~ such that

Then limt~o+ f (x, t) = bf exists in D’(-A, A) and it is a distribution
of order N + 1.

Proof. - Let T E Cü( -A, A). Fix 0  T  B. For each integer
m &#x3E; 0, we will show that there exists
such that
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where C depends only on the size of for j x m + 1. To get t)
with these properties, Ix + 0) ) and choose a smooth function
u = u(x, y) defined near (o, 0) E E and satisfying

If we set

such a function u can be taken to be

It is easy to check that (a) above holds and

Let

Then T,, (x, 0) = w(x) and

Hence satisfies i) and ii). Observe next that if g(x, t) is a C1 function,
the differential of the one form g(x, t) dZ where Z = x + t) is given
by

This observation and integration by parts lead to

Note that the x-support of (i.e., the support of x ~ WN(t, x)) is
contained in the support of w(x). Now by the hypothesis on f (x, t) and
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property ii) of e L1 and so the second integral
on the right in ( 1.1 ) has a limit as E ~ 0. The third integrand on the right
is in L1 since L f is. Therefore,

Let P( ~ whose

x-support is contained in a fixed compact set independent of t, and m a
nonnegative integer, set

so with this notation we have t) = t). It is easy to see that
(1.2) also applies to any such g(x, t) so that

~ 

E C°° ( ( -A, A) x (-B, B)) whose x-support is contained in a
fixed compact set independent of t set g(x, t) in (1.3).
Observe that we may write

where eN and hN are smooth, the x-support of hN (x, t) is contained in a
compact set that does not depend on t, and

From (1.3) we know that

Observe next that

Indeed, this follows from applying the integration by parts formula (1.1) to
the 1-form f (x, t)P(x, t) dZ(x, t) and using the hypotheses on
f. From (1.5) and (1.6) we conclude that
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But then since the function and its x derivatives go to zero as

t -~ 0, it follows that (1 + eN (X, t)) - 10 (X, t) -~ in C,- (- A, A)
which implies that

for all t) E C°°((-A, A) x (-B, B)) provided its x-support is contained
in a fixed compact set independent of t. We now return to a general
g(x, t) E C°°((-A, A) x (-B, B)) with x-support contained in a fixed
compact set independent of t.

Applying (1.3) and ( to the identity

we conclude that

for any g(x, t) E A) x (-B, B)) with x-support contained in a
fixed compact set independent of t. We will prove by descending induction
that for any such g(x, t) and 0 x k x N,

V -fZ

which for k = 0 and g(x, t) = W(x) E A) gives us the desired limit.
To proceed by induction, suppose 1  1~  N and assume that the limits

both exist for any g(x, t) E C°° ((-A, A) x (-B, B)) with x-support
contained in a fixed compact set independent of t. We have already seen
that ( 1.10~ ) is true for k = N as follows from (1.8) and (1.9). Take
g (x, t) in the limit on the right in ( 1.10~ ) and observe
that may be written as

where and hk-1 are smooth, the x-support of is contained

in a compact set that is independent of t, and
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From the second limit in ( 1.10~ ) we know that

exists. The first limit in ( 1.10~ ) tells us that

Hence from ( 1.12) , (1.13) and the fact that
follows that

for E C°° ( (-A, A) x (-B, B)) with x-support contained in a
fixed compact set independent of t. Consider now a general g(x, t) and
write ~ . Hence, taking account of ( 1.10~ ) and
( 1.14) we conclude that

We have thus proved (1.14) and (1.15) which state precisely that (1.10k-1)
holds, completing the inductive step. Therefore,

and thus exists. Moreover, since the functions

and all their x-derivatives converge to zero as E - 0, (1.1), (1.2) and (1.16)
imply the following formula for b f :

This formula shows that b f is a distribution of order N + 1. 0

Since the finiteness condition ii) in Theorem 1.1 is formulated in terms
of a particular first integral Z that was expressed in special coordinates it
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is appropriate to discuss the invariance of this condition. Observe first, that
E = ~x + = Z(ry) where q is the initial interval (-A, A) x {0}. If
p = x + iy, -A  x  A is a point of the complex plane lying on Z(Q), we
have

for some constants Cl , C2 &#x3E; 0. Thus, if we define the weight

the finite integral condition may be written as

Consider now another first integral W of the vector field L defined in

a neighborhood of Q, i.e., a smooth function satisfying LW = 0 and
0 on its domain of definition. By a standard consequence of the

Baouendi-Treves approximation theorem [BT], there is a rectangle Q1 c Q
centered at the origin and functions F E COO(Z(Q1)) and G E COO(W(Q1))
such that W - F o Z and Z = G o W on Ql. It turns out that

F: Z(Q1 ) ) --~ is a diffeomorphism with inverse F-1 = G. In
particular,

which implies that

and shows that the finite integral condition is locally independent of the
choice of the first integral.

In the appendix we will explore when the existence of the limit in

(1.2) above implies the existence of a trace for f without any assumption
on Lf.

We finish this section with an example that shows that the finite

integral condition that suffices to guarantee the existence of a trace in
Theorem 1.1 is less stringent than previously known sufficient conditions
for trace existence.

Example 1.2. -
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The function Z(x, y) is a first integral for L. Define f (x, y) on R+ -
(-1,1) x (0, 1) by

Clearly f is smooth and Lf = 0 in R+. Note that the function g(x, y)
can be chosen so that given a &#x3E; 0 and m an integer, there is a constant
C = C(a, m) such that

For example, if ;

Therefore, in general, Theorem 1.1 in ([BH2]) cannot be applied to f (x, y).
However, Theorem 1.1 in this paper implies that f always has a trace at
y = 0 for any choice of g(x, y).

2. Necessity.

We will next consider the necessity of the growth condition in Theo-
rem 1.1 under the additional assumption that the vector field

is real analytic in (

real analytic first integral of L in Q, ~p real-valued, (~(0,0) == 0) = 0.

THEOREM 2.1. - Let f be continuous in Q+ and L f = 0 in Q+.
Assume that limt~0 f (., t) = b f exists in the sense of distributions and that
b f is a distribution of fixed order N on (-A, A). Then there is an integer
n such that for every compact set K in (-A, A) and 0  T  B,

Proof. Since cp is real analytic, we can arrange so that 0) = 0.
We may also assume that ~p is not identical zero, = 0 and CPt not

identically zero. By analyticity, we can then write cp(x, t) = t),
where m is a nonnegative integer, 0 is real analytic and t H 7P(O, t) is not
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identically zero. By the Weierstrass Preparation Theorem, there is 6 &#x3E; 0

such that in the rectangle

the zero set ,S’ of the product t)cpt (x, t) can be written as a disjoint
union

where So = ~0~ x ~0, ~) if m &#x3E; 0 and it if m = 0. Each ,S’~
(likewise for Sj ) is an analytic  x  61 ( s~ for S-)
with

The description of ,S’ shows that we can get 0  a  6 such that in some
interval (a - E, a + E), the function t ~ t) is strictly monotonic on (0,6].
The same property holds for x E (-a - E, -a -)- c). We will first show that
in such a rectangle

there is an integer and a constant C such that

. , , .. , .. , ...

(likewise for QE(-a)). The proof of this is basically the same as the one
for the Cauchy-Riemann operator (see [H6]). Indeed, we may assume that
for each x E (a - E, a + E), the function t t-~ t) is strictly increasing
on [0,,E]. The map Z = x + iyJ(x, t) is then a homeomorphism of 
onto Z(QE (a) ) . Therefore, by the Baouendi-Treves approximation theorem
([BT]), there is a holomorphic function F on such that

and for some i

cp (x, 2 ) ~ . Fix a point
neighborhood of Y and g = 0 on 0X ) (a - E, a + c). For 0  t  7], let

- ... , , - . , , , -

We apply the inhomogeneous Cauchy integral formula to g(x, y)F(x -f- iy)
in the domain Dt :
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Replacing F by f, we have

We will first estimate the double integral. Recall that ( = ~ + q) E Y,
and 0  t  q. Since a9 (x, ~) = 0 near Y, in the integrand of the double
integral, we may assume there is /3 independent of ( such that

Moreover, since f has a trace at t = 0, the are

uniformly bounded and hence there is a constant C independent of t such
that

It follows that the double integral is bounded uniformly in t. Consider next
the integral

Again we will exploit the fact that ~ f ( ~, s) ~ is a family of bounded
distributions. Observe also that since = 0, by decreasing a and
E if necessary, we get

Therefore, using the uniform boundedness of f f (., s) 1, there exist M and
C &#x3E; 0 independent of t such that

After letting t go to 0 in this latter estimate, we conclude that

and hence also in QE(-a). From now on fix a, T &#x3E; 0 such that the estimate

We will show that for some (

define the set
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Because of the description of the zero set S, there is an integer n such that
for any s V Ay, there exist £ x n distinct points 0  sl = s, s2, ... , Sf  T

such that = yJ(y, s), j  .~. Fix such s V Ay and sj, j = 1, ... , .~. By
definition of Ay, 0, and f 07 T)I. Moreover, there
exists 0  t1  s such that

Fix a positive integer k and let 0  t  ti. Define a closed curve

Consider the integral

where dZ denotes the differential of Z = x + t) and p is a variable
point in rt. Note that by the choice E (-b, b), y # 0, s V Ay, and
t, the integrand has no singularity on rt . Let Dt be the domain bounded
by Tt . Since 0 for each j = 1,... f, the map Z (p) is a

diffeomorphism near the points pj = y + Let E &#x3E; 0 such that Z is a

diffeomorphism on each of the balls Observe that the integrand has
singularities in Dt only at the points pj. Let

If h is any C1 function, we can express its differential as

It follows that since L f = 0, the differential of the one form in the integrand
of (2.3) equals 0 in the region Q,. Therefore by Stokes theorem, we get

Consider next each integral in the preceding sum. We may assume that
the map Z = x + icp is a diffeomorphism on a neighborhood of the closure
of each of the 1 balls. This means that the vector field L is elliptic in a

neighborhood of each + isj ) and so there are holomorphic functions
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Fi such that This allows us to

change variables z = Z(p) and write for each of the balls

where in the last equation we applied the Cauchy integral formula to the

holomorphic function

We have shown that foryE (-b,b), 

We shall next estimate the integral in (2.5). Write this integral as a

sum We will estimate each Ij. Let

for some constants cl. Observe that

To estimate IE, we will use the fact is a uniformly bounded set
of distributions on a neighborhood of [-a, a]. Thus there exists an integer
N E N and a constant C &#x3E; 0 such that
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where in the latter inequality we have assumed N. Since
= 0, after decreasing T, we have

From (2.6) and (2.7) we conclude

where the constant C is independent of y, s, t and E. It follows that

Next we will estimate 12 which is the integral over the curve *

Observe that on this curve, by inequality (2.2),

Moreover, since y ~  b  a and r ~--~ Sp (a, r) is monotonic on [0, T], we have

if we take The integral over Ft is also estimated the same way and
so we also have

(2.11) 114/ ~ C for some constant C.

Finally we will estimate 13 which is the integral over Observe that

f (x, T ) is bounded and since ’Px may be assumed to be small, as we saw
in (2.7),
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Hence

From the estimates for the Ij (j = 1,..., 4) and (2.5) we get

since we may assume that N x M. Observe next that for some C &#x3E; 0,

Therefore, using (2.13), and (2.14):

Letting t H 0 in the latter inequality, and recalling that 0) = 0, we
arrive at

Recall now that c.p(x, t) = t) with t) not identically vanishing.
We may assume that a and T were chosen so T)~ &#x3E; 0 whenever

a. Moreover, since o (x, 0) - 0 (because = 0), there exists
0  To  T such that

It follows that if we choose (y, s) so that 0  Iyl  b, s ~ Ay and 0  s  To,
then (2.16) and (2.17) imply

which proves the theorem. 0

From Theorems 1.1 and 2.1, we get the following consequences:

COROLLARY 2.2. - Let L be real analytic and f continuous in G~+,
L f = 0 in Q+. Then the following are equivalent:

(1) limt~o+ f (~, t) - b f exists in the sense of distributions and b f is a
distribution of fixed order on (-A, A);

(2) there exists N such that for every compact set K in (-A, A):
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for some C = C(K);

(3) there exists such that for any compact set K c (-A, A), there
exists C = C(K) &#x3E; 0 such that

COROLLARY 2.3. - Let L be real analytic. Suppose f and g are
continuous solutions in Q+ with boundary values at t = 0. Then their
product f g also has a boundary value.

COROLLARY 2.4. - Let L and f be as in Corollary 2.3 with f
having a boundary value at {t = 0}. Then f has a boundary value on any
curve -y C Q through the origin.

Example 2.5: Derivative estimates. - Let L be a real analytic vector
field and Z = x + icp(x, y) a first integral. Suppose f (x, g is a C’~ solution
in Q+, k ) 1 and assume that b f exists. Let. . Then M f
is also a continuous solution of L in Q+ with a trace at y = 0 and so by
Theorem 2.1, for some C and N,

But then the latter together with the equation L f = 0 imply that

Thus the first derivatives of f satisfy a growth condition similar to that
of f. By iterating this argument, we conclude that all derivatives of order
no more than satisfy a similar growth condition.

For a concrete example, consider the vector field

for which Z(x, y) = x exp(iy) is a first integral. If f (x, y) is a smooth

solution in Q+ with a trace 0, then for any multi-index a, there are
constants C and depending on cx such that
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3. Applications.

We wish to use the result of Section 1 to strengthen the F. and M.
Riesz theorem proved in [BHI] .

Let 
- -

be a smooth vector field on a neighborhood Q = (-A, A) x (-T, T) of the
origin in the plane with a smooth first integral Z(x, t) = x + t). Write
L =X+iY where

and

Fix B  A. There exists To &#x3E; 0 and a map

such that T(s, 0) _ (s, 0) and

For each fixed s, T ~ r(s, T) is a piece of the integral curve of X through
(s, 0) and it has the form r(~,r) = (x(s, T), T).

LEMMA 3.1. - Let f be continuous in Q+, L f = 0 in Q+ and set
for and Y

are linearly dependent on F (s, T), V T E (0, b)~.
Assume that (cp (x, t) - cp (x, f (x, t) E L1 (Q+ ) for some integer N and
its boundary value b f (x) - f (x, 0) is a Radon measure p. Let M = g + v

where g is locally integrable in (-B, B) and v is a measure supported on a
set whose Lebesgue measure is zero. Then the support of v is a countable
subset of F.

Proof. We recall from Theorem 3.1 in [BH1] that if p ~ F, then
b f is in fact microlocally hypoanalytic in some direction (p,~) and so by
the classical F. and M.Riesz theorem, p ~ supp(v). Observe next that if

0  bn  To is a sequence converging to 0, then we may write F = 

where each

Fn F : X and Y are linearly dependent on V T E (0, 6n) ) .



1443

We may therefore assume from now on that

F = and Y are linearly dependent on VT EE (0, To ) ) .
Let s E F. Since X and Y are linearly dependent on {F(~, T) : 0  T  To},
we get = 0 for 0  T. It follows that Re a(x(s, T), T) = 0
for 0  T, and hence h ( s, T ) _ (8, T), for all T E [0, To]. Thus L = ’9 on
f sl x [0, To] and

Define next

is an isolated point of Fl
and

is an accumulation point of ~}.

Note that Fi is a countable set and Fa is a closed subset of F. We will

first show that the restriction JLFa of p to Fa is absolutely continuous with
respect to Lebesgue measure. For any y E Fa, observe that

where d(x, S) denotes the distance from x to a set S.

Recall from Theorem 1.1 that for any V) E Co (-B, B), and for any
integer m &#x3E; N, we have

where

and

Hence

Recall next that
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which implies that

Fix now a compact set K c F’ with Lebesgue measure 0 and choose

a sequence 0  1 E Co (-B, B), E ~ 0, such that: i) (x) = 1
for all x E K ; ii) 0,(x) = 0 if d(x,K) &#x3E; E; iii) 
Note that 0,(x) converges pointwise to the characteristic function of K
as E -~ 0 while 0 pointwise if j &#x3E; 0. Let q E Cü(-B,B)
and apply (3.3), (3.4) and (3.5) to 0 = keeping in mind the trivial
estimate d(x, K). By the dominated convergence theorem,
(~c, ~Er~) ~ while as E ~ 0 (when
j = 0, use the fact that 0). Thus by (3.4) we conclude that the first
integral on the right in (3.3) goes to 0 as E - 0. That is,

Consider next the second integral on the right in (3.3) with V, = 
Observe that

C

and so using (3.2) and choosing m = 2N + 2, we have

where xE (x) is the characteristic set of  6}.
we conclude that

We have thus shown that
I

which implies that the same conclusion holds for any continuous function
0 on K (first extend 0 to a compactly supported function on (-B, B)
and then approximate the extension by test functions). Thus the total
variation of M on K is zero and by the regularity of M it follows that

= 0 whenever F’ C F is a Borel set with = 0. This proves that

MFa is absolutely continuous with respect to Lebesgue measure. D
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4. The locally solvable case.

We recall first the class of locally solvable vector fields (see [NT], [T]):

DEFINITION 4.1. - Let L be a smooth vector field defined on an

open set Q C R~, p C Q. L is said to be locally solvable at p if there
exists a neighborhood U = U(p) such that for every f E COO(f2) there
exists u E V’ (f2) such that the equation Lu = f holds in U. If L is locally
solvable at every point p we say that L is locally solvable in Q.

We will consider a vector field

which is locally solvable on a neighborhood of the rectangle R = (-a, a) x
(-b, b). Since our point of view is local and locally solvable vector fields
are known to be locally integrable [T], we will assume without loss of

generality that there is a smooth real-valued function cp(x, ~/) defined on
a neighborhood of R such that Z(x, y) = x + y) is a first integral
of L, i. e., LZ = 0 or, equivalently, + 

Furthermore, we may assume that yJ(0, 0) = CPx(O, 0) = 0. It is well known
that the local solvability of L is equivalent to the fact that L satisfies the
Nirenberg-Treves condition (P) ( ~NT~ , [T]) and this reflects on the behavior
of cp in the following way:

- for every x E [a, a],
- the map [b, b] ::1 y H y) is monotone.

Our goal here is to prove a strengthened version of the F. and M. Riesz
theorem of ([BH1]) for the class of locally solvable complex vector fields.
For such vector fields, unlike ([BH1]), we will make a milder assumption
on the growth of f (x, t) as in Sections 1 and 2.

THEOREM 4.2. - Suppose L is locally solvable, f (x, t) is a continu-
ous solution of L f = 0 in Q+ = (-A, A) x (0, T) and it has a boundary value
b f (x) which is a measure. Assume that (cp(x, t)-cp(x, 0))N f (x, t) E L1 (Q+).
Then b f (x) is absolutely continuous with respect to Lebesgue measure.

Before we prove the theorem, we will use the result of Section 3 to
make some reductions. Write L = X + iY where
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and

In view of Theorem 3.1 in [BH1], the main problem in proving the F. and
M. Riesz property comes from vertical segments on which ’Pt(x, t) vanishes.
If yJt vanishes of order at least two on one of these segments, the arguments
given in Lemma 3.1 show that it causes no trouble. The difficulty comes
from segments on which this does not happen, i.e., they contain a point on
which ’Ptx f= 0. We will show in this section that when L is locally solvable,
this difficulty can be circumvented. The local solvability of L together with
the vanishing of yJt on the t- axis to order one (but not two) allow us
to make the following assumptions in addition to the usual normalizations

cp(o, 0) _ ~(0,0) = 0. Namely,

Condition iv) is not essential in the ensuing arguments. We include
it here for simplicity (see Remark 4.8). Actually this condition can be
achieved for a locally solvable vector field, at least with a Z(x, t) defined
for t &#x3E; 0, which is the region of relevance here. Choosing a convenient
smaller value of T and shrinking A if necessary we may assume that

~b (x, T) &#x3E; 0 and T) &#x3E; 0 for A. Since for 0  x - A the function

[0, T] E) t ~ is non decreasing it follows that Z( ~0, A) x [0, T]) is

mapped to the closed "triangle"

whose interior is

Since ’Px(O, 0) = 0 and ’Px(O, T) = ~(O, T) &#x3E; 0 we see that the curves

(~,~(:r,0)) = (x, 0) and that bound

R+ meet at a positive angle at the origin forming a corner with opening
7rj3, where 0  j3  1/2. We may assume that the initial values of T
and A had been chosen small so that the Baouendi-Treves scheme for f
converges to f in a neighborhood of ~-A, A~ x (0,T]. By the Baouendi-
Treves approximation theorem [BT] there is a holomorphic function F+
defined on R+ such that f = F+ o Z on (0, A) x (0, T). We begin now with
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a lemma which shows that if f has a trace, then it has to satisfy a pointwise
growth condition:

LEMMA 4.3. - If L and the first integral Z(x, t) = x -f- icp(x, t) are
as above, and f is a continuous solution of L f = 0 in Q+ witll a weak
distribution boundary value at t = 0, then after decreasing A and T, there
is an integer N and a constant C &#x3E; 0 such that

Proof. Since f has a trace at t = 0, there exists an integer m and
a constant C &#x3E; 0 such that for every T E Co (-A, A),

It follows that if we set

then for every ~ l

For c &#x3E; 0 small, let Q~ = (0, A) x (E, T) and Observe that

the function F+ is continuous on Q,. Let ~ on

[0, A - 26], and g 0 on (A - 6, A) where 6 is a small positive number.
We apply the inhomogeneous Cauchy Integral Formula to the function

on the domain 

..

We estimate first the double integral which after the change of variable
y’ = cp(x’, t) becomes

Since the support , there is C &#x3E; 0

independent of x and t such that for any x E (0, A - 36),
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It follows that

Consider next the second integral on the right in (4.3) which equals

Recall that t) = 0) - 0 T) &#x3E; 0. After decreasing
A if necessary, we may therefore assume that for some t1 &#x3E; 0, and

Fix (x, t) E (0, A) x (0, ti]. If t) = 0, then f (x, t) = 0 and so we
may assume that t) &#x3E; 0. This assumption together with (4.6) imply
that x + iW(x, t) E Q, for E small enough. We will estimate the integrals
in (4.5) at x + iy - x -I- t) with (x, t) as described. For the second
integral in (4.5) with y = ~p(x, t) we have

Since is continuous and so bounded on [0, A], it follows that

where the constant C is independent of (x, t). Consider next the second
integral in (4.5) with x + iy = x + icp(x, t) E OE as above. Note that

 t) and so using (4.2), we get

where C is independent of (x, t) and E. Since ’Pt(x, t) &#x3E; 0, we can let E - 0
in (4.8) to get

From (4.4), (4.7) and (4.9) we conclude that is

bounded for (x, t) E (0, A) x (0, ti], and so since g(x) - 1 near 0, we have
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shown that for some integer N, the function f (x, t)cp(x, t)N is bounded on
(0, A) x as desired. 11

LEMMA 4.4. - Let f be as in Theorem 4.1 and F+ the holomorphic
function such that f (x, t) = F+ (Z(x, t)). Then bF+ is a measure on (0, A).

Proof. Recall that F+ is holomorphic on the region

Under the assumption that b f is a measure, we wish to show that bF+ is a
measure on (0, A). Fix 6 &#x3E; 0 and let T E A). From ( 1.1 ) of Section 1
we have

By Lemma 4.3, there is an integer N such that |j
that u(x, y) is a smooth function satisfying

Since (4.10) can be written as

Note that and so from (4.10) and (4.11)
we get

On the other hand, since A is bounded, F+ has a trace on

(0, A) and (bF+, ’11) is also given by the right hand in (4.12). Thus bF+ is
also a measure. 0
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Proof of Theorem 4.2. - By Lemma 4.3,

is bounded on R+. Thus, F+ (z) has a trace bF+ on and by Lemma
4.4 it must be a bounded measure. Now, any open subarc of 7min B {0}
can be embedded in a closed smooth curve bounding a region D C R+
that can be mapped to the unit disk by a conformal map + that extends
smoothly to the closure as a homeomorphism. By the classical F. and M.
Riesz theorem, the boundary value of (F+/D) is an integrable function
and this implies that bF+ is locally integrable in 7main B f 01. The continuity
of f (x, t) for t &#x3E; 0 and the Baouendi-Treves approximation formula imply
that there are polynomials Pk(() such that Pk o Z(x, t) converge uniformly
to f (x, t) on [-A, A] x [c, T] for E &#x3E; 0. This shows that F+ can be extended

continuously up to 7max. Observe that the curves [0, A] E) x H (x, t)
stem from the origin and have which is a strictly increasing
function of t if t  T is close to T. Hence, the segment [0, A] :3 x - (x, Ax)
remains between the graphs of T) and tl) for small x if we choose
~(0,  A  1/;(0, T). Shrinking A we may assume that

Since cp is bounded on [0, A] x [e, Tj for E &#x3E; 0 we see that F+ (~, Ax) E
L°° [0, A]. Now we consider the triangle bounded by the straight line y = Ax,
the horizontal line y = 0 = and the vertical line x = A. We may
smoothen up the 2 corners of this triangle that are distinct from the origin
and obtain a domain with only one corner with opening located at the

origin and call this region Rl. Off this corner the function F+ has a trace
on the boundary of R1 which is a locally integrable function. We consider
now the conformal map from the upper half plane to the sector
0  arg z  (J7r, choosing the branch that is real on the positive real axis
and set R2 = ~-1 (Rl ), so R2 is a smooth domain.

LEMMA 4.5. - The holomorphic function F2 = F+ o 4)(z) grows
temperedly at the boundary of R2.

Proof. Since F+ grows temperedly at the boundary of R1 and W
is smooth up to the boundary off the origin, we may only concern ourselves
with the growth of F2 in a neighborhood of the origin. We must show that

C for Ixl  E, 0  ~  E for some 0  c  1 and m &#x3E; 0 or,
in polar coordinates, . Since
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where we have used the fact that sin 0/ sin (3fJ is bounded on (0, 1r) and
r ~ r~ on (o, 1 ) because 0 E (0,1 . 0

Thus, F2 has a trace at the boundary of R2 that, off the origin, is

the finite measure given by the pull-back of bF, where we have written

F+/R1. We want to conclude that F2 is in the Hardy space E1 (R2)
and the next lemma will serve this purpose. We recall first

DEFINITION 4.6. - A holomorphic function H on a bounded do-
main D with rectifiable boundary is said to be in the Hardy space EP (D)
(1  p  (0) if there exists a sequence of rectifiable curves Cj in D tending
to bD in the sense that the OJ eventually surround each compact subdo-
main of D, such that

DEFINITION 4.7. - Suppose for a bounded region SZ in the plane
there with the property that almost every point p on the

boundary admits a nonempty nontangential approach subregion

that is, for a.e. p E an, open and p is in the closure For

1  p  oo the Hardy space is defined by

where O(~) denotes the holomorphic functions on Q and G* denotes the
nontangential maximal function defined using the f ex (p).

LEMMA 4.8. - Let F(z) be a holomorphic function on the unit
 1 ~ that grows temperedly at its boundary S’1. Assume that

bF (z) = p + v where p is a finite measure and v is a distribution supported
at z = 1. Then v = 0 is absolutely continuous with respect to the

Lebesgue measure dO on the circle. Thus F E H’ (A) - El (0).

Taking the lemma for granted and using a conformal mapping from

R2 onto A we conclude that F2 C E1 (R2), in particular, by [Du], Thm. 10.4

On the other hand, the change of variables OR2 D Z r--+ ( = ZO C R1 gives
n P
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so we want to know if the integral on the right is zero for 0,1, ...,
since in that case, using again [Du], Thm. 10.4, we will conclude that
F1 E Assume first that 1~ = 0 in which case we need to show

that

Note that F2 is not a generic element of E’(R2) because it satisfies the
restriction 

11

since by Lemma 4.4, bF, = b f on (0, A) and hence bF, E L~(0,~4). Note
that for any E &#x3E; 0,

and letting E B 0 we see that (4.15) holds by the dominated convergence
theorem. The same reasoning shows that (4.14) holds for all = 1, 2, ....
Thus, F+ E E1(R1) as we wanted to show. This allows us to estimate the
integrals

by dominating f (x, t) by m+(x) where

F* (p), pEaRl, is the nontangential maximal function of Fl - F+/R1.
Reasoning in a similar way for -A  x  0 we conclude that

Thus, an application of Fatou’s lemma yields

with m(x) E A) which shows that b f is absolutely continuous with
respect to Lebesgue measure. 0

Proof of Lemma 4.8. - Since v is supported at 9 = 0 we know
that is the Dirac mass, the ck ’s are complex
numbers and we may assume that cL is real by changing F if necessary by
a convenient multiple of F. Then F belongs to HP(0) for any p  1/L.
Let po denote the supremum of the set 10  p x 1, F E Since

we see by expressing Im F as the Poisson
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integral of its boundary value b(Im F) that Im F is in the real Hardy space
Re Hp for any p  1 / (L -1 ) . Since the Hilbert transform maps continuously
Re HP into itself we conclude that Re F E Re HP for any p  1 / ( L - 1 ) , so
po &#x3E; 1 /L and this implies that CL = 0. Iterating this argument we see that
po = 1 which means that bF = v + ~ = cob + p and by the F. and M. Riesz
theorem co = 0 and /-t E D

Remark 4.9. - The restriction iv) that cp(x, 0) = 0 is not essential
and can be removed as we briefly describe now. The main difference without
this assumption is that 7min would be a smooth curve rather than a straight
segment, but we could use a conformal map from a region bounded from
below by ’Ymin and containing Z( ~0, A~ x [0, T~ ) onto a region contained in
the upper half plane so that is mapped into a segment of the real axis.
This map would be smooth up to the boundary and we could carry out our
reasoning as before with the new region that has a straight lower side.

5. A second application.

Assume now that L is locally integrable with a smooth first integral
Z = x + t).

THEOREM 5.1. - Let f be continuous on Q+ = (-B, B) x (0, T),
and suppose

i) 

ii) there exists C &#x3E; 0 such that

Assume that the boundary value b f - p is a measure. Then p is
absolutely continuous with respect to Lebesgue measure.

Proof. Without loss of generality, let B = 1. By the reductions
in Section 3 and Remark 3.2, we may assume that p = g --i- c60 where g is
integrable, c is a number and ~o is the Dirac delta distribution at 0. Recall
from ( 1.17) that for any 9 E Cü( -1,1), we have
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where

and

Recall next that

which implies that

By Theorem 3.1 in [BH1], we may assume that ~p(o, t) = 0 for
and hence we have

We will apply formula (5.1 ) toy where

E C~ ( -1, 1) is fixed, 7/Jo (0) = 1 and n is a positive integer which
will go to infinity. Observe that from the form &#x3E; = g + c6o, we get

To estimate the second integral on the right in (5.1), by (5.3), we only have
to estimate

We can write

where the ai are constants independent of n. In view of (5.5) and (5.6), we
need to estimate the integrals

After using the variable 7/ = 1 - x2, we see that
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We also have

and so

It now follows that there is a constant C independent of n such that the
second integral on the right in (5.1) satisfies the estimate

We consider next the first integral on the right in (5.1 ) . We have to estimate

where

and

Clearly,

and likewise,

We therefore need only estimate

Recall that and so the integral in (5.15) is

dominated by a constant multiple of

We will show that (5.16) goes to zero oo. Indeed, note first that on
the interval ~0, 1~, the function x2(1 - x2)n-1 is bounded by -1 and so for
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any c &#x3E; 0, if n is large enough,

From (5.13)-(5.17), we conclude that as n --+ oo, the first integral on the
right in (5.1) converges to zero. This observation together with (5.4) and
estimate (5.10) show that the constant c in (5.4) equals 0 and hence u is
absolutely continuous with respect to the Lebesgue measure on the real
line. 0

6. Appendix.

We will now explore whether the existence of the limit in (1.2) of
Section 1 implies the existence of a trace for f without any assumption on
L f . As before, set Z(x, t) = x + t),

For any smooth function 03C8 (x) of compact support, and m a nonnegative
integer, recall that

Assume f (x, t) is a continuous function on (-A, A) x (0, T) and consider
the limit, which may or may not exist,

for any fixed integer N &#x3E; 0. Assume we are in the simplest possible
case associated to the Cauchy-Riemann vector field, i.e., - t, so
V = 10/0x, P(x, t) - t and the pull-back of dZ to any horizontal line
t =constant is just dx. Thus,
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and

If the limit (6.5) exists for N = 0 and every T we easily see that it

also does for every N and furthermore, B, = B2 = ... = BN. The
question is whether the converse holds. Consider the function f(x, t) =

which is smooth for t &#x3E; 0. Then is the limit

as E ~ 0 of

Since f satisfies the equation f - it fx = 0 it is clear that B1f(w) exists
and is zero for any ~. On the other hand,

so the existence of the limit implies that the Fourier transform T
of T has exponential decay as ~ -~ +oo which cannot be true for a

function with compact support unless T =- 0. The conclusion is that the
existence of Bl f does not imply, in general, the existence of Bo f . Note that

exp(-ix/t) blows up non temperedly as t ~ 0 in any neighborhood
of the origin. On the other hand, we will now show that if we assume a
priori that the growth of f (x, t) is tempered as t B 0 then the existence of
BN f implies the existence of Bo f , in particular Bo f = BN f. Hence, the
non tempered growth in the example above in which Bo f does not exist
while B1 f does is an essential feature.

THEOREM 6. - Assume that f (x, t) E C1 ( (-A, A) x (0, t) ) satisfies
for som e C, m &#x3E; 0 and bg E D’ ( - A, A ) :

) in the sense of distributions

Then as t B 0, f(., t) converges in the sense of distributions on

Proof. Item (2) above means that the limit BN f(’It) exists for
every Suppose that for some ak E = 1,..., N,
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has a limit in the sense of distributions as t E 0. We will show that there
are constants bk E C, k = 1,..., N - 1 such that

-L

has a limit in t he distribution sense as t ~ 0. Define

where we choose the bk and b so that p(x, t) = T f (x, t). Then b and the bk
have to satisfy

This system of equations leads to a polynomial equation of degree N in b
with coefficients depending on the aj. Since we may assume that aN :~ 0,
the polynomial equation has a nonzero solution b which then leads to
solutions bk for N - 1. Thus with these choices, we have

and hence p(x, t) = Sf (x, t)+btDxS f(x, t) has a limit as t n 0. By applying
this reduction successively, we may assume that for some a, {3 E R,

in the distribution sense as t B 0.

Fix a small E &#x3E; 0 and choose x(x) E C°° (-A, A) such that X(x) = 1,
Ixl ~ A - E, and set gi = xg. Then, g, (x, t) converges weakly in ~(2013.A, A),
considered as the dual of C°° ( -A, A) , to bgl = xbg and by a standard
application of the uniform boundedness principle, there exist R &#x3E; 0 and

s  0 such that Ilg1(., R, where || ||s denotes the norm in the Sobolev
space A density argument shows that - bgl weakly in Hs
as t E 0 and by Rellich lemma, replacing s by s - 1 we may assume that
gl (x, t) -~ bgl strongly in HS as t B 0. Assume first that 0152 I: 0. Set

E E Et * h - h in norm for any h E HS(IR). t) - bgl
in HS(IR), t B 0, so fi has a weak boundary value. It is easily verified

that and since,
we conclude that 11 (x, t) - f (x, t) = c(t)e on IE x (0, T). Pick a test
function 1/J E and observe that

A _ _
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in view of (1) and the fact that [0,T) 3 ~ - f 1 ( ~, t ) E is continuous.

If a &#x3E; 0, choose &#x3E; 0 1 for x C [0, A - 2e] while if a  0,
0 = 1 on [-A + 26,0]. Without loss of generality,

assume that a &#x3E; 0. We see that the integral on the left hand side may be
estimated from below yielding for small t &#x3E; 0,

This implies that o, t n 0, for any W e C(-A, A - 2E)
and we conclude that f (x, t) has a weak boundary value defined on

(-A, A - 2E) for any E &#x3E; 0. This shows that Bo f exists when a ~ 0.

If a = 0, define

Note that

For any 1 we have

Since - bgl in HS as t B 0, there exist C &#x3E; 0 and an integer n
such that for any smooth Tl(x),

Thus we get

It therefore follows that

and hence since the Fourier transform of o
decays rapidly at infinity. We conclude that Bo f exists. 0
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