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A COMBINATORIAL INTERPRETATION OF SERRE’S
CONJECTURE ON MODULAR GALOIS

REPRESENTATIONS

by Adriaan HERREMANS*

Introduction.

In 1987, Jean-Pierre Serre stated a conjecture on modular represen-
tations of degree 2 of Gal(Q/Q). He considers a continuous representation
p : Gal(Q/Q) 2013~ GL(V), where V is a 2-dimensional vector space over a
finite field F of characteristic p. This representation is assumed to be ab-

solutely irreducible and odd (i.e., detp(c) = -1 if c denotes the complex
conjugation). Serre then conjectures that there exists an integer N &#x3E; 1

prime to p, an integer k &#x3E; 2, a Dirichlet character E : F’

and a cuspform of level N, weight k and character - with
coefficients in F, which is an eigenvector of all Hecke operators T, for all
primes 1 APN, such that p is unramified outside pN and

for all prime numbers 1 A pN

where Frobl is an arithmetic Frobenius element at l. Furthermore, Serre
defines for the representation p a conductor N, a weight k and a character
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- Shimura cohomology.
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c, and in a strong form of his conjecture, requires that f as above should
exist of type (N, k, c). All details can be found in [14].

Our goal in this paper is to present a combinatorial conjecture
equivalent to Serre’s conjecture in his strong modified form (see §4.2). The
idea is to replace modular forms by their counterparts in the theory of
modular symbols. In order to state this new conjecture, we look at the free
Z-module of finite rank

for N &#x3E; 1 and z 2, where CN is the set of pairs (u, v) of elements in Z/NZ
such that Zu + Zv = Z/NZ, and Z[X, is the group of homogeneous
polynomials in two variables X and Y of degree k - 2 with coefficients in
Z. We describe a right action of matrices in SL2(Z) on this module (see
~5.1) and define Lk(N) to be the quotient of 0z Z[X, by the

subgroup generated by the elements x + and x + + for

x E 0z Ylk-2, where a = (o -’) and T = (o =~). On this space
we define explicit Hecke operators Tz and diamond operators Rd (see §5.2).

Our conjecture can be stated as follows:

MAIN CONJECTURE 1. - Let p : Gal(Q/Q) 2013~ GL(Y) be a continuous
absolutely irreducible odd representation in a 2-dimensional vector space
V over a finite field F of characteristic p. Let N, k, E be the conductor, the

weight and the character attached to p by Serre (see [14, §1, 92] ). Then
there exists a non zero Z-linear map

satisfying the following conditions:

1. For each prime l not dividing pN, we have

where al = Tr p(Frobi).
2. For each integer d prime to N, we have
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The main theorem of this paper is then:

MAIN THEOREM 1. - The main conjecture (stated as above) is equiv-
alent to the strong conjecture of Serre (in his strong modified form, see
§4.2).

The theorems of this paper were mainly obtained in my Ph.D.thesis,
where the main theorem was proved for k x p + 2. Most of the ideas took
shape throughout discussions with Joseph Oesterl6, to whom I would like
to present my deepest gratitude. The existence of this paper owes a lot to
him. Furthermore, I would like to thank Jan Denef for his support during
the Ph.D.work.

1. Preliminaries.

1.1. Modular forms.

Denote by ?~C the complex upper half plane. For 7 = (a 1) E GL~(R)
and z E 7~, we put j ( 7, z) cz + d. For a holomorphic function f on ~-C,
an integer and 7 E GL~(R) we denote

We define

and denote Fk(r1(N)) the space of mod-

ular functions (resp. modular forms, modular cuspforms) over C of weight
k with respect to Fi (N) . The integer N is called the level of the modular
function.

Let On (resp. On ) be the subset of M2(Z) consisting of matrices (a d)
with ad - bc = n, (resp. ad - bc = n, d - 1 - c--
0 mod N). For every n &#x3E; 1 we define Hecke operators Tn and Tn on modular
functions by the formulas:
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and similar for Tn where we replace An by If a modular form

is an eigenvector of the Hecke operators Tn, we have that
I It it known that WN o Tn = T,, o WN (see e.g. [4, §4] or [16,

p. 86-87]) where WN is the Atkin-Lehner involution and that both Tn and
Tn stabilize the space of modular forms and modular cuspforms.

For d prime to N, we define a diamond operator Rd by

where E is a matrix congruent to mod N with d E

the class of d. Let
’B.J wi

be a Dirichlet character.

We say that , belongs to , for every
d prime to N (analogous we define , We define

and we have that I

1.2. The Shimura isomorphism.

The standard representation of on (C2 is the representation
given by

We deduce from this representation, for each k &#x3E; 0, a representation
of GL2 (C) on the kth tensor power of (~2 . We shall denote by Vk
the subspace TSk (~2 ) of (C2) consisting of the symmetric tensors. It is
stable under GL2(C). The representation of GL2(C) on Vk is characterized
by the relation

From the natural non degenerated pairing on c2

we deduce a non degenerated pairing on Vk characterised by
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Remark that we have

(called ’the main involution’ by Shimura, see [16,

The Shimura cohomology group is now defined, for k &#x3E; 2, by

We shall denote by

the C-linear map

f - cohomology class of I

with zo E ?oC (see [16, chap. 8]). One can prove that the map is well-defined
and that this definition does not depend on the choice of zo ~7~.

We define a Hecke operator

in the following way: if u is a 1-cocycle in Z’ (rl (N), Vk-2) we choose a
map uo : A£ - Vk-2 such that

for 7 E and cx E On. Such a map always exists. Let 7’ E r1 (N).
By (5), the map ( is T1 (N)-linear on the left, hence

depends only on and we define

One proves that the class of u’ only depends on the class of u and is

independent of the choice uA. We define therefore T~ (class of u) = class of
u’. We remark that we use the notation Tn just to draw the attention that
this operator is defined with respect to ~~.

Denote by the- complex vector space of antiholomorphic
cuspforms. As an immediate consequence of the Shimura isomorphism we
can state
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THEOREM 2 (Shimura isomorphism).

is an isomorphism of complex vector spaces, where sh is defined by

In fact Shimura proves in [16, Thm. 8.4] that there exists an iso-
morphism between modular cuspforms and the cuspidal subgroup of the
Shimura cohomology group defined over the real numbers. The theorem
stated above follows essentially from extending scalars and the observation
that is isomorphic to the quotient of the Shimura

cohomology group by its cuspidal subgroup.

Furthermore, it is known that the Shimura isomorphism is compatible
with Hecke and diamond operators (see [16, Thm. 8.5~ ), i.e.,

THEOREM 3. - For every n &#x3E; 1 and every d E we have

that .

2. Combinatorial description
of the Shimura cohomology groups.

2.1. Shapiro’s Lemma and the cohomology
of an SL2(Z)-module.

We first give an explicit formula which describes Shapiro’s Lemma:

LEMMA 1 (Shapiro’s Lemma). - Let G be a group and H be a
subgroup of finite index. Let Q be a left H module. Let P be the coinduced
module Homz[H] (Z [G], Q). Then G acts on P by (g’u)(g) = u(gg’) and we
have

canonically.

We first define a map H’ (G, P) --&#x3E; H1 (H, Q). Let v : G - P be a
1-cocycle in Zl(G, P). Define u(h) := v(h)(e) for h E H. It is easy to see
that this is a 1-cocycle and that the map is well-defined.
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We now define a map H1 (G, P). Let u : H ~ Q be a
1-cocycle in Q). Take a map u : G - Q such that

(such a map u always exists). We then define v : G - P by

One checks that this is a 1-cocycle, that the map is well-defined and that
the cohomology class of v is independent of the choice of u.

Furthermore, it is straightforward that the composition of this two
maps gives the identity.

Remark. - If Q is a left G-module, we have that P ~ Z[HBG] 0z
Q, where G acts on Z[HBG] 0z Q as g’(Hg ø q) = Hgg’-’ (9 g’q.
The isomorphism works as follows: to an element u E P we associate

). The inverse isomorphism associates
to an element j J , the map E P defined by

These isomorphisms are compatible with the actions of G.

Assume now that M is an SL2(Z)-module where multiplication by
2 and 3 are invertible. Denote M+ for the submodule of M fixed by
-I = (~1_~), and M- the submodule of M on which -I acts as -1.
Following ideas in [12, §1.7, Prop. 9], we obtain the following, where a and
T denote the matrices (° -o) and (~ =~).

PROPOSITION l. Denote M+a for the submodule of elements of
M+ which are invariant under a, and define in a similar way M+T , then
we have that

Proof. We first remark that M = and H1(SL2(Z), M-)
= 0. Indeed, if u E Zl(SL2(Z), M-) is a 1-cocycle, we have u(-I.g) -

) and therefore
Because multiplication by 2 is invertible in M-, u is a coboundary. Since
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it suffices to

describe i

In other words, 0 defines by passing to the quotient, a 1-cocycle in

Zl(PSL2(Z), M+).
Since is the free product of the groups of order 2 and 3

generated by the images of cr and T respectively, we have an isomorphism

where ker(l + ~) denotes the kernel of multiplication by (1 -~- cur) in M+.
Furthermore we have ker( (

since multiplication by 2 and 3 are invertible, and we remark

, - , , 
-

So we get an isomorphism of

The image under A of a 1-coboundary g H gm - m is the image of
m by the diagonal map M+ , M+ /M+~ x M+ /M+T . We end the proof
by the fact that

defines by passing to the quotient an isomorphism H1 (,S’L2 (7), M) -
M+/(M+" + M+T ) (see e.g. [12, §1.7]). D

2.2. Application to the Shimura cohomology.

We can apply the last paragraph to the group G = subgroup
H - r1(N) and the G-module Q = Vk-2 where is an integer &#x3E; 2.

Since H1(r1(N), Vk-2) we obtain as a direct consequence of
Shapiro’s lemma and the remark, canonical isomorphisms

Then we apply Proposition 1 in order to conclude that
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where .

Combining all explicit isomorphisms above, we get the following
description when is identified with i by the
isomorphism (7): the Shimura map is identified

with the map

Example. - In order to give the reader a better idea of the role
of the modular symbols, we describe shortly the case = 2. In this

case, we identify M+ with in the following way: to
an element r1 (N) (~g) of r1 we associate the single element

r1(N)g = r1(N)(-g) of if N - 2 (-1 E r1(N)), the sum
of the two elements ri (N)g and I‘1 (N) (-g) if N &#x3E; 2 (-1 g r1 (N)). With
this identification we have (see [7, Prop. 6.4.1]):

PROPOSITION 2. - The composition of the surjection M+ -~ M+/
(M+O’ + M+T ), of the isomorphism M
(see formula 7) and of the canonical isomorphism (N)) -~ Hl (Xl (N),
cusps; C) where Xl (N) is the modular curve with regard to r1 (N) (see
e.g. [7, 93.2]) associates to an element I
modular symbol gool.

2.3. Hecke operators.

The linear map T.’ : 7~(ri(~V)) -~ gets identified through
the isomorphism (7) with a linear map

where
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Assume that ’ is an element of with the following
property: for each we have

We associate to this element the linear map

where . We have clearly
One can prove the following proposition.

PROPOSITION 3. - The map. induced by 0 define,
by passing to the quotient, the map

However, this is not easy and takes several pages of comparing the
Hecke operators on the appropriate spaces (in fact we study this operators
trough a ’dual’ Shimura isomorphism following ideas in [9] and [17)). Note
that the action of Hecke operators given on M is of a total different nature
than the (usual) action on modular functions and Shimura cohomology
groups. All details can be found in [7, chap. 7].

We have a similar description of the diamond operators, which is

easier to prove.

PROPOSITION 4. - The map M+ - M+ induced by

defines, by passing to the quotient, the map

Remark. - All the results in Sections 1 and 2 can be stated and

proved (see [7]) in the more general setting of any subgroup r C SL2 (Z) of
finite index (instead of rl (N)) and the setting of correspondences defined
as double cosets (instead of the concrete Hecke or diamond operators).
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3. Some algebra.

In this section we state two theorems in abstract algebra, which are
used later on in a concrete setting.

THEOREM 4. - Let K be a held, A be a K-algebra, M and N be
two A-modules, of finite dimension over K. Let L be an extension of K.
If the A(L)-modules M(L) and N(L) are isomorphic, then M and N are
isomorphic as A-modules.

Proof. See [10, p. 45 and p. 51]. 0

THEOREM 5. - Let R be a Dedekind domain, K be its fraction fiend,
~ be a maximal ideal of R, A be an R-algebra, V be a finite dimensional
vector space over K on which A acts R-linearly, M and M’ be two R-lattices
of V stable under A. Then the A/PA-modules MIPM and M’/PM’ have
isomorphic semi-simplifications.

Proof. Let Rp denote the localization of R at P. Then MP and

Mp are two Rp-lattices of V stable under AP and Ap/PAp, 
Mfp jP Mfp are canonically isomorphic to A/PA, M/PM, There-

fore, by replacing R by RP, we may assume that R is a discrete valuation
ring and in particular a principal domain.

We recall that an A/PA-module N of finite dimension over R/PR
has a Jordan-Holder filtration

(where Ni /Ni+1 is a simple A/PA-module for every 0  i  n) and that
is called a semi-simplification of N.

We separate the proof in different cases.

In this case we have the following two exact sequences:

This gives
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Since R is a principal domain, we have obviously PM/PM’ and
hence the theorem.

3.0.2. Case 2: M’ c M.

Then there exists an n c N such that Pn M C M~. We have

Remark that for every 0 , i  n - 1, we have

and so we can conclude by using n times the arguments of case 1.

3.0.3. Case 3: General case.

Starting with two arbitrary R-lattices, we apply the conclusions of
case 2 for M n N C M and M n N c N. Comparing the two results yields
the proof of the theorem. 0

COROLLARY 1 (Using the notation of Theorem 5). - Assume A to
be commutative. Let x : A 2013~ R/P be a homomorphism of R-algebras. If
there exists a non zero C such that ax = x(a)x for all a E A,
there exists a non zero y E M’/PM’ such that ay = x(a)y for all a E A.

Proof. - We deduce this lemma from Theorem 5 and the following
observation.

Let B be a commutative ring and N be a B-module of finite length.
Let be a maximal ideal of B. Then the following two statements are
equivalent:

1. N contains a submodule isomorphic to 

2. is isomorphic to some quotient of a Jordan-Holder filtration
of N.

Indeed, 1 # 2 is obvious. Since N is of finite length, it is a direct sum
of submodules, each of which is annihilated by a power of a maximal ideal.
Under assumption 2, the summand corresponding to the maximal ideal.A4
is different from 0, and it obviously contains a submodule isomorphic to

B/A4.
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If we apply this general observation to B = A, A4 the kernel of X and
N either M/PM or M’/PM’, we conclude the proof of the corollary by the
fact that the semi-simplifications of M/PM or M’/PM’ are isomorphic.

m

4. Serre’s conjecture.

4.1. Modular forms with coefficients in F.

Let N &#x3E; 1 0 be integers, and c : F X be a

Dirichlet character with values in the finite field F. There are different

ways to define the notion of a cuspform of level N, weight k and character
E with coefficients in F. We first give the definition used by Serre in [14],
under the assumption that é( -1) = ( -1 ) ~ and that is even when p = 2.
(These assumptions are satisfied when TV,A;,6’ are the invariants attached
to p as in [14, §1, §2]).

Let Z denote the ring of algebraic integers in C. Choose a maximal
ideal in Z containing p. Its residue field is an algebraic closure of Fp that we
denote by Fop. We denote by z 1--+ z the reduction homomorphism Z --4 IFp
and we choose an embedding F - IFP, so that E can be considered as a
character with values in iF;.

Denote by eo : Z the Teichmfller lift of E, i.e., the unique
character which takes values in the roots of unity of order prime to p such
that ÊÓ = c. We have that Eo(-1) = (_l)k.

Serre defines a modular cuspform with coefficients in F (see [14, ~3.1~ ),
of level N, weight and character c as a formal power series

such that there exists an element of the form

with fo = f, i.e. An = an for all n. Let us denote Sk (N, c)F for the space
of such cuspforms.

We have that Sk (N, does not depend on the choice of the maximal
ideal of Z containing p and of the embedding F - Fp : this follows from
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the fact Sk (N, a o co) for all a E Aut(C) (see [3, Prop. 2.7]).
The dimension of Sk (N, c)F over F is equal to the dimension of Sk (N, eo)
over C. We can define on the space Sk(N, c)F an action of Hecke and
diamond operators by T(/) == T fo (here T denotes either Tn or Rd). This
definition again is independent of the choice of the maximal ideal in Z and
of the embedding F --&#x3E; Fp, since a(Tf) for cr E Aut(C) for such
a correspondence; it is also independent of the choice of the lift fo. The
Hecke and diamond operators commute amongst each other, and we have

Rd f = c(d)f for d prime to N. We shall say that f is normalized if 1;
if f is normalized and f is an eigenvector of Tn, we have Tn f = an f .

Another way of defining a modular function with coefficients in F is
to use Katz’ definition (see e.g. [3, §2]). One can define on the space of Katz
modular functions Hecke operators Tn (for n &#x3E; 1) and diamond
operators Rd (for d prime to N) (see [3]). We will denote Fk (N, 

for the space of Katz modular function

(resp. Katz modular forms, Katz modular cuspforms) of level N, weight k,
character c with coefficients in F.

A third way is to define modular cuspforms with coefficients in F, of
level N, weight k, as a formal power series

such that there exists an element fo C of the form

with fo = f, i.e., An = an for all n. We denote Sk(rl(N))F for the space
of such cuspforms. As in the first definition of Serre, does not

depend on the choice of the maximal ideal of Z containing p nor on the

embedding F - Fp, and the Hecke and diamond correspondences act on
it. We define Sk (N, to be the subspace of on which the

diamond operator Rd acts by for each d prime to N.

Let now F be a finite field of characteristic p not dividing N and
E : F X be a character. We then have the inclusions
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and in some cases this inclusions can be strict. They are compatible with
the actions of Hecke and diamond operators.

4.2. The various settings of Serre’s conjecture.

If is normalized and f is an eigenvec-
tor of the Hecke operators Tl, for 1 prime not dividing pN (with associated
eigenvalue al ), Deligne ([3, Thm. 6.7]) proved that there exists a semi-
simple continuous representation

characterized (up to conjugation) by the following:

for all prime numbers 1 ApN.

By Frob, we mean an arithmetic Frobenius element at l.

The weak conjecture of Serre ([14, 3.2.3]) can be stated as

CONJECTURE 2 (Serre’s weak conjecture). - Let p : Gal(Q/Q) -
GL(Y) be a continuous homomorphism, where V is a 2-dimensional vector
space over F. If p is absolutely irreducible and odd, then there exists a
normalized modular cuspform f with coefficients in F (of some level, some
weight and some character) which is an eigenvector of all Hecke operators
Tz for 1 prime not dividing pN, and such that p.

Serre associates a triple (N, k, c) to p and in a first version of his
strong version, Serre predicted that this modular cuspform f should belong
to Sk (N, e) F (see [14, 3.2.4]). He realized soon afterwards that his definition
of a modular form with coefficients in F was slightly too restrictive, and
he suggested to replace by or In the

literature, the conjecture of Serre is usually studied in the Katz setting,
we are going to look at the modified setting (i.e. the case 
Nevertheless we have the following theorem:

THEOREM 6. - The strong conjecture of Serre in the setting of Katz
modular forms is equivalent to the conjecture in the modified setting.

Proof. The equivalence of the conjectures follows from the follow-

ing facts: in these conjectures, the weight attached to p by Serre is &#x3E; 2.
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But it is known that for 1~ &#x3E; 2, we have Sk (NI )mod ex-
cept in the case where N = 1 and p = 2 or 3 (see [6, Lemma 1.9]; this
observation will return several times in the proof of the main theorem:
see ~9.1 ) . And for p = 2 or 3, absolutely irreducible odd representations

with conductor 1 do not exist (see [15, p. 229,
3(i)] and [15, p. 710, note 229.2]). D

Remark. - Edixhoven defines another weight k’ to p (see [5]). We
always have (and k’ = k in most cases). His refinement of the strong
conjecture of Serre is that the modular form can be found in Sk’ (N, )Katz.
This refinement implies the conjecture of Serre in the Katz setting. For

p ~ 2, it is even known (but difficult to prove) that this refinement is

equivalent to the Katz setting of Serre’s conjecture and even to the weak
version of Serre’s conjecture (see [6, Thm. 1.12j ) .

5. The Z-module Lk(N).

5.1. Isomorphism with 

We denote by M the module 0z Vk-2. Recall from
the introduction that CN is the set of pairs (u, v) of elements in Z /NZ such
that Zu+Zv = Z/NZ. Then there is a canonical bijection rl (N)B,S’L2(7~) -~
CN : it maps to the reduction mod N of the second row of g. We

hence can define a Z-linear map sending
(u, v) 0 P(X, Y) to 0 x, where g is any matrix in with

second row congruent to (u, v) mod N, and x is the unique element in
such that for every z E C (see §1.2 for the

definition of the pairing). This map can be extended to a C-linear map

LEMMA 2. - The map to is an isomorphism.

Proof. This is clear from the definition and the fact that the pairing
on is non degenerate. 0

We define a right action of SL2 (Z) on ~ 1 as follows:
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LEMMA 3. - The isomorphism to is compatible with the action of

SL2 (Z) in the following sense: vve have

for ,

Proof. If = rl(N)!J0x, we have’ ·
On the other hand, if -y - (~~), the second row of g-y is congruent to

mod N and we have

. The equality follows.

Recall from the introduction that is defined as the quotient
&#x3E;, by the subspace generated by the elements of the

subspace contains also the elements of the form

The map to, composed with the projection M --+ M+ (with kernel
M- ) defines, by passing to the quotient an isomorphism

When composing this isomorphism with the isomorphism (7) between
and we get an isomorphism

5.2. Hecke operators on Lk(N).

For each integer n &#x3E; 1, we define an operator Tn on

by the formula

for x = (u, v) 0 P(X, Y), where A runs over the finite set of matrices

I such that ad - bc = n, a &#x3E; b &#x3E; 0, d &#x3E; c &#x3E; 0, and where

otherwise.
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Remark that A satisfies conditiont

The choice of this sum to define Tn looks a little bit arbitrary.
Indeed, if we choose another sum EMBB in (with support in
the matrices of determinant n), which satisfies the same condition (8), we
do not have ] However, we have the following
proposition.

PROPOSITION 5. - have the same

images in Lk(N).

The proof is based on the following lemma (which is equivalent to [11,
Prop. 4.3]).

then we have I

We prove Proposition 5. Since both
we have for every , ¡

We deduce

Using Lemma 4, we can write therefore

with

This proves the proposition.
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We see from this that the composite map

is unchanged if we replace ]

PROPOSITION 6. - The Hecke operator defined on
defines by passing to the quotient a well-defined map

Proof. It suffices to prove that Tn vanishes on
Since both I

are combinations which satisfy condition (8), we deduce by

This exactly means that n A vanishes on Z[CN] 0z

A similar proof holds for since

"A both satisfy condition (8).

For each d prime to N, we define a diamond operator Rd on

Since

deduce that Rd stabilizes the subgroup of
by the elements of the form

. We therefore hav

PROPOSITION 7. - The diamond operator defined on

defines by passing to the quotient a well-defined map

Remark. - It is clear, not immediately from the definition but from

Proposition 5 and Lemma 4, that the Hecke and diamond operators
commute on Lk(N).
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5.3. Compatibility of Hecke operators.

PROPOSITION 8. - The operators Tn and Rd on Lk (N) agree through
the isomorphism c with the operators T,, and R~ on 

Proof. When we identify and M+T ), the
Hecke operator T,, gets identified with an operator, still denoted T,,, on

By Proposition 3, the map 0: M - M defined by

maps M+ to M+ and defines T~ by passing to the quotient. If (u, v)
(resp. (u’, v’ ) ) is the reduction mod N of the second row of g (resp. h)
and if A = (a d), we remark that the condition gA E is equivalent to

, /

for all z E Cm. This shows that, by the isomorphism ~o, ~ gets identified
with the map ; 1
deduced from x 1---* EAEAn xi [A] by the extension of scalars. Proposition 8
follows for the Hecke operators.

The case of diamond operators is treated in a similar way, but is

simpler. Looking at Proposition 4, and if (u, v) is the reduction mod N of
the second row of g, the reduction of the second row of adg is congruent to

(du, dv). We conclude as in the case of Hecke operators. 0
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6. Relation between and 

Recall that denote the space of modular forms of weight
1~ for rl (N), the subspace of cuspforms and the

space of Eisenstein series, i.e., the orthogonal complement in

for the Petersson scalar product.

THEOREM 7. - There exists an isomorphism of complex vector spaces

such that Hom(T, 1) on the first space agrees with T x Hom(T’, 1) x
Hom(T, 1) on the second, with T either a Hecke operator Tn or a diamond
operator Rd.

Proof. There exists by Proposition 8 an isomorphism

such that T on the first space agrees with T’ on the second. Theorem 2

yields an isomorphism

compatible with the actions of T’ on both spaces (where T’ acts on

The Petersson scalar product yields an isomorphism

by which T’ on the first space is identified with Hom(T, 1) on the second
(see e.g. [16, Prop. 3.39]).

Finally the Atkin-Lehner involution gives an isomorphism

which transforms
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Combining all these isomorphisms, we get an isomorphism

such that T 0 1 on the first space agrees with T x T x Home (T, 1) on the
second. The proposition follows by duality. 0

7. On the torsion in Lk(N).

Let E be a free Z-module of finite rank and p be a prime number. If
E’ is a submodule of E, the following conditions are equivalent:

a) E/E’ has no (non trivial) p-torsion;

b) the map E’ /pE’ - E/pE deduced from the injection E~ 2013~ E is

injective;

c) the dimension over Fp of the image of the map E/pE is
larger than or equal to the rank of E’ over Z.

LEMMA 5. - Let E be a free Z-module of finite rank, El and E2
be two submodules of E and p be a prime number. Assume that E/El
and E/E2 have no p-torsion and denote by El and E2 the images of the
maps E/pE, E2 /pE2 - E/pE. The following conditions are
equivalent:

1. E2 ) has no p-torsion;

Proof. The image of the map
Its dimension over Fp is

On the other hand, the rank over Z of El + E2 is

We have rkzEl = dimf, El, rkzE2 = dimJFpE2, since E/El and E/E2
have no p-torsion. The lemma follows from the equivalence of a) and c) for
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LEMMA 6. - Let p be an odd prime number. Any polynomial P E
IFP [X, Y] of degree  p such that P(X, Y) = P(aX + bY, cX -f- dY) for all
(a b) E ,S’L2 (IFp) is constant.

Proof. We can assume that P is homogeneous of some 0

with d  p. We have to prove that P = 0. If Q(X) = P(X, 1) then
Q(X + 1) = Q(X), hence Q is a polynomial in XP - X. Since d x p,
Q is of the form a(XP - X) -f- b for some a, b E Fp. So we have d = p and

Exchanging the roles of X and Y, we see
that P must also be a linear combination of X p and YP - hence

P = 0. D

Remark. - When p = 2, the lemma is true for degree 0 and 1. The
homogeneous polynomials of degree 2 which are invariant under SL2 (F2)
are the scalar multiples of X 2 + X Y + Y2 .

PROPOSITION 9. - Let p be a prime number not dividing N. Assume
k x p + 2 2, and k % 3 if p = 2. Then the Z-module Lk (N) has no
p-torsion, except in the case where N = 1, p = 2, k = 3.

Proof. First we apply Lemma 5 with E = Z[CN] 0z Z[X, 
and E2 = E’ in order to prove that + ET ) has no p-

torsion. Then El n E2 is the set of elements 0z Z [X, Y] k - 2 fixed
under SL2(Z). If we identify CN with rl (N)~,S’L2 (~), El f1 E2 consists of
the elements

where P C Z[X, Y] k - 2 is such that Po ry = P for all q E ri (N). (We write
P o (a d) for the polynomial P(aX + bY, cX + dY).) Any such polynomial
is constant (hence 0 if k &#x3E; 3). Therefore the rank over Z of El n E2 is 1 if
k = 2 and 0 if k &#x3E; 3.

Let El, E2 denote the images of E1 /pEl and E2/pE2 in E = E/pE.
We have El C Ea, E2 C ET , hence El n E2 is contained in the subspace of
E fixed by SL2 (Z) . Exactly as above, we see that the dimension r of this
subspace is equal to the dimension of the subspace of Y~ ~_2 fixed by
rl (N). Since p is prime to N, the map r1 (N) -~ SL2 (Fp) is surjective, and
it follows from Lemma 6 that r = 1 if k = 2 and r = 0 if k &#x3E; 3.

We have proved that dimFp (El n E2)  rkz(Ei n E2). By Lemma 5,
E/ (E1 + E2) has no p-torsion.
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We now prove that

. For this, we remark that E~ = E+O" since

This implies that the linear map

is injective, hence our assertion.

We now prove the proposition when N &#x3E; 4. In this case -I (and
hence also ~) acts without fixed points on CN . It follows that any element
in E+ (resp. E- ) is of the form for some x E E.

Therefore the linear map

is surjective, and its kernel is contained in the kernel of the canonical

surjection E ~ Lk(N).

By passing to the quotient, we get an isomorphism from Lk(N) to
E+ /A, where A is the subgroup of E+ generated by the elements of the
form x + and x + + XI [T 2], where x E E+.

Since a acts without fixed points on CN, the elements of the form
x + for x E E+, i.e., of the form y + yl [a] + YI [a 2] + yi[g3] for y E E,
coincide with the elements of E’ = E+’. Similarly, since the group of order
6 generated by -T acts without fixed points on CN, the set of elements of
the form x + with x E E+ is equal to E+T . From this we
conclude that Lk (N) is isomorphic to + E+T ), hence has no p-
torsion.

If N = 3, a acts without fixed points on C3. Similar arguments as
above show that Lk(N) becomes isomorphic to E+I(E+’ + after

tensoring by Z[1/3]. This proves the proposition since p ~ 3 in this case.

If N = 2, T acts without fixed points on C2. Similar arguments as
above show that Lk (N) is isomorphic to + E+T ) after tensoring
by ~~1/2~. This proves the proposition since p ~ 2 in this case.

If N = 1, the same proof works after tensoring by ~~1/6~, hence for
p fl 2, 3. We conclude the proof by a direct (and easy) computation, which
shows that L2(l) ~--- 0, L3(1) ~ Z/2Z, L4 ( 1 ) ^--’ Z and Z/2Z. D



1311

Remark. - Since L3 ( 1 ) is isomorphic to - we can

look at the action of the Hecke operator TL (l an odd prime) on the non
zero element X of Z/2Z. We deduce that

By [12, Lemma 6, Lemma 7], we can devide Ai in 1 + 1 subsets (each
contained in a different right SL2(Z)-coset) of the form

where , and co = bn = 0. For each of this cosets

we have ’ mod 2 since ao is equal to 1 or l. Since,
for l an odd prime, 1 + 1 is even, we conclude that all Tl act on L3 ( 1 ) with
eigenvalues zero in characteristic 2.

8. On the representation of on

8.1. Lowering the degree.

Let d &#x3E; 0 be an integer and p be a prime number. Denote Ud for
the Fp-vector space of homogeneous functions of degree d on F2p - {0, 0)} .
There is a natural action of GL2 (IFp) on Ud given by

There is an action of Hecke operators on Z[CN] 0 Ud given by the
formula 

- - - -03A3

where

otherwise,

for x = (u, v) 0 f. Again this choice is an arbitrary choice, but in a similar
way as in §5.2, one shows that this operator is well-defined modulo the
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right action of I . The action of a diamond operator
is given by

with (u, v) E CN and f E Ud. We have the following proposition.

PROPOSITION 10. - Let d &#x3E; p, then there exists an exact sequence

The injection u is given by multiplication by Q := XPY - YpX and we
have u(P) o g = det (g) u (P o g) for and g E 
The map is given by

and is compatible with the action of 

Proof. Injectivity of u is obvious. A polynomial R E Fp [X, Y]d
vanishes on 1Fp if and only if it is a multiple of all Fp-linear forms, i.e., of

This proves that the image
of u is the kernel of the map Fp [X, Y]d - Ud. Counting dimensions shows
that this latter map is surjective.

Comparing the action of GL2 (IFp) on Fp [X, Y] d and Ud we deduce
that the second map is compatible with the action of On the

other hand, the polynomial Q is not invariant under One has

Q o g = det(g)Q. We deduce that for a polynomial P E Fp [X, we

have

8.2. Degree d  p - 1.

Suppose that d ~ p - 1.

PROPOSITION 11. - There exists an exact sequence



1313

where the first map is compatible with the action of GL2 (Fp) and v( f .g) =

Proof. The first map is

This map is compatible with the action of We have a duality

defined by

We have that for any g E GL2 (IFp) . The
orthogonal complement of Fp [X, Y] d, viewed as a subspace of Ud by the first
map, with respect to this duality is Fp[X, viewed as a subspace of

in a similar way: indeed these two subspaces are orthogonal since

P(x, y) = 0 for all P E Fp[X, Y]p-l (as one checks easily by
taking for P a monomial), and the sum of their dimensions, d + 1 and
p - d, is equal to p + 1, the dimension of Ud. This yields an isomorphism
from Ud lFp [X, Y~ d to the dual of I

On the other hand, as in the pairing on Vk (see §1.2), one deduces from
the pairing  (u, v), (u’, v’) &#x3E;= uv’ - u’v on pairing on 
which is non degenerated since p - I - d,, p - 1. Identifying Fp [X, 
with the dual of TSP-’ - d (]F2 ) as in 95.1, one gets a duality

which satisfies , where P, Q E

E GL2(IFp) and g = This yields an isomor-
phism between the dual of and itself. By
composing this isomorphism with the previous one, one gets the surjective
map v : I with kernel Fp [X, Y] d -

Using the compatibility properties of the previous pairings with the
action of we deduce that and
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9. Proof of the main theorem.

9.1. From characteristic zero to characteristic p.

In this section, F denotes a finite field of characteristic p prime to
N. For each prime 1 not dividing pN, let a, be an element of F. Let

~ : (Z/TVZ)~ 2013~ F" be a Dirichlet character with values in F such that
c( -1) = (20131)~. We want to compare the following two conditions:

(C 1 ) There exists a non zero linear map : F such that

p o for all primes 1 not dividing pN, and M o 
for d prime to N.

(C2) There exists a non zero f E Sk(N, )mod (see 94.2 for the definition
of this space) such that TL f = al f for all primes 1 IpN.

We shall also consider the condition:

(C3) There exist integers M, M’ &#x3E; 1 such that M M’IN, integers i, j such
that i -f- j = l~ - 1 mod p - 1, a finite extension F’ of F, and Dirichlet
characters El : F’x, C2 : F’x, such that
ClC2 = c and E 1 (1) l’ = al for all primes 1 IpN.

Note that condition (C3) only depends on k mod p - 1. We shall
prove

PROPOSITION 12. - If (C2) holds, then (C1) holds.

PROPOSITION 13. - If (C1) holds, (C2) or (C3) holds.

Proof. Let us identify with R/P, where R is the ring of in-
tegers of a number field K, and P a maximal ideal of R containing p.
Let V, Vl, V2, V3 denote the vector spaces Homz (Lk (N), K), 

and Let A denote the

commutative algebra over R generated by indeterminates T (for l prime
not dividing pN) and Rd (for d prime to p). We let A act R-linearly on
V,V1,V2,V3.

The A 0p C-modules deduced from V and Vl x V2 x V3 by extending
scalars from K to C are isomorphic by Theorem 7. By Theorem 4, the
A-modules V and Vl x V2 x V3 are isomorphic. Let M, Ml, M2, M3 be R-
lattices in V, Vl, V2, V3 stable by A, and M, Ml, M2, M3 their reductions
mod P. Finally, let x : A -~ F denote the homomorphism of R-algebras
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which maps Tj to al for all primes and Rd to E(d) for d prime to N.
We denote by M(x) the set of elements x E M such that ax = x(a)x for all
a E A. The condition 0 is independent of the choice of the R-lattice
M by Corollary 1, and similar statements hold for Ml, M2, M3. Moreover
we have M(x) # 0 if and only if one of the spaces Ml (X), lVl2 (x), M3 (x) is
different from 0.

We can take for Ml the R-module we then have M1 -
and the condition Mi (x) # 0 is equivalent to (C2).

We can take for M2 the R-module then M2
gets identified with and condition M2(x) # 0 is

equivalent to 0, hence to (C2).
We can take for M the R-module Homz(Lk(N), R). Then M gets

identified with Homz(Lk(N)1 Lk(N)tors, F). The condition 0

implies ( C 1 ) .

Proposition 12 follows from the four last alineas. We now prove

Proposition 13. We distinguish 4 cases:

9.1.1. Case k % 3 if p = 2 and
(~,p~)~(l,2,3).

In this case has no p-torsion by Proposition 9, and the
condition 0 is equivalent to (Cl). Therefore to conclude, it will

suffice to show that M3(x) # 0 implies (C3). We can for this extend
the scalars and assume that M3 has a basis in which A acts by upper
triangular matrices. The characters xi : A --+ R’ appearing as diagonal
entries are described in [13] (they are essential for Rd and

¿:dd’=n El (d)c2(d’)d,k-l for Tn, where El, C2 are the convenient characters)
and M3(x) fl 0 if and only if X is the reduction modulo P of one of the
xi’s. Hence 0 implies (C3).

9.1.2. Case 2: (N, p, k) = (1, 2, 3).

In this case (C 1 ) is equivalent to say that a, - 0 for all 1 ~ 2 by
the remark at the end of §7, and (C3) is equivalent to the same statement.
Finally (C2) is never satisfied since = 

9.1.3. Case 3: (p, k) = (2, 4).

Remark that we have an isomorphism
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with a, b, c E F2. This isomorphism is compatible with the right action of
GL2(F2) = We deduce an isomorphism

which is compatible with the action of the Hecke operators TL (with 1 an

odd prime) and diamond operators.

Suppose that ( C 1 ) is true for k = 4. Then the non zero linear map

p : 0z Z[X, VJ2 2013~ ~ induces a non zero linear map on one of the
two factors 1 . Therefore (C 1) is
satisfied for k = 2 or 1~ = 3 with the same eigenvalues. Hence by the previous
cases, either (C2) is satisfied for k = 2 or k = 3 and an f E S2 (N, 
or f E S3(N, c)pod or (C3) is satisfied for k = 2 or 1~ = 3. If N = 1 (C2)
cannot be satisfied since 101 (and hence = {0}) for
1~  3 (see e.g. [8]). If N &#x3E; 1 and (C2) is satisfied, we conclude by replacing
f by Al f or by where A1 is the Hasse invariant in characteristic 2.

Indeed, one gets or E S4 (N, c)pod (see [5, §3.1],
[6, Lemma 1.9] and §4.2). This proves the proposition in case p = 2 and
k = 4.

9.1.4. Case 4: general case.

We argue by induction on k. For N = 1 and p - 2 or p = 3 we

will prove the stronger statement that (C1) implies (C3). When k % p+ 2,
Proposition 13 follows from the cases 1, 2 and 3. In case N = 1 and p = 2
or p = 3 (C2) is never satisfied for k % 5.

So we can assume &#x3E; p + 2. From the exact sequence in Proposition
10 we deduce an exact sequence

Hecke and diamond operators are compatible with the second map. The
first map satisfies

for L prime to p and

Suppose that (Cl) is true for k. Hence, the non zero linear map



1317

either

a) has non zero restriction to

factors through

In case a), we have that (C1) is satisfied for with al replaced
by bl = al /l and same c. Using the induction hypothesis, we see that we
are in one of the two following cases:

- there exists an f E Sk-p-l(N,c)pod such that Tl f - bl f for 1

prime to pN, Rd f - and (1,2) or (1,3). In this
case, we conclude the proof by E Sk(N, (see [5, 93.1]) and

(see [6, Lemma 1.9] and §4.2). Remark
that f can (and has to) be choosen such that q d is non zero. Indeed,

.. dq
otherwise f would be a pth power, i.e., ~ but,
we can then take E cnqn instead.

- there exist integers M, M’ &#x3E; 1 such that M M’IN, integers i’, j’ such
(with k’ = k-p- 1), a finite

extension F’ of F, and Dirichlet characters E, : F’x,
E2 : (~/M’~)" -~ F"‘, such that ClC2 = c and -t- 

for all primes 1 IpN. We conclude by taking the same M, M’, Cl, E2, F’
and by i = i’ +1 j’ = j+1.
In case b), we remark that Uk-2 only depends on k mod p - 1.

Therefore we find an integer d’ with 1  d’  p - 1 such that d’ _
k - 2 mod p - 1 and Ud, = Uk-2. From Proposition 11, we deduce an
exact sequence

Hecke and diamond operators are compatible with the first map. The

second satisfies

for x E Z[CN] 0 Ud,, n &#x3E;, 1 prime to pN and d E Since we have

a non zero map in the middle term of the exact sequence, it is either non

zero on the left term, or its factors through the right term.

By cases 1, 2 and 3, we obtain in the first case either a cuspform of

weight d’ + 2 with eigenvalues al, character c or that (C3) is satisfied for

d’ + 2 and al (and hence for 1~ since d’ + 2 m k mod p - 1). This finishes the
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proof, since we can multiply the cuspform with an appropriate times the
Hasse invariant in characteristic p, such that we obtain a cuspform of
weight k, with the same eigenvalues al and same character c (see [5, ~3.1~ ) .
Note that we use again Sk (N, since we are in the case

(N, p) # (1,2) or ( 1, 3) by induction hypothesis.
In the second case, we obtain by Proposition 13 a cuspform of weight

p -f- 1 - d’ with eigenvalues al/ld 
, 

and character E or that (C3) is satisfied
and In case of a modular form of weight p + 1 - d’

there exists, by [6, Prop. 3.3], a modular form of weight p + 1 + d’ with
eigenvalues a, and character c. We can conclude again by multiplying
with the Hasse invariant if necessary (see [5, ~3.1~ ) using the fact that
we have (l, 2) or (l, 3) by induction hypothesis, and therefore

Lemma 1.9] and §4.2). In the case (C3)
is satisfied, we obtain integers M, M’ &#x3E; 1 such that MM’l N, integers i’, j’
such that i’ + j’ == p - d’ mod p - 1, a finite extension F’ of F, and Dirichlet
characters F’x, E2 : F~, such that 
and

I 

for all primes 1 We conclude by taking
the same M, M’, F’, -2 and by i = i’ -i- d’ and j = j’ + d’. 0

9.2. Conclusion.

Let F be a finite field of characteristic p, V a 2-dimensional vector

space over F and p : Gal(Q/Q) 2013~ GL(V) a continuous representation.
Assume that p is absolutely irreducible and odd. Let N, k, and c :

the conductor, the weight and the character associated
by Serre to p (see [14, §1, §2]).

We apply the results of §9.1, with al = Tr p(Frobl ) for 1 a prime
not dividing pN in order to prove the main theorem. Serre’s conjecture in
its strong modified form (see §4.2) for p is equivalent to condition (C2)
of ~9.1. Our main conjecture for p is equivalent to condition (Cl) of ~9.1.
Condition (C3) would imply that, after extending scalars from F to F’, p
becomes a reducible representation, with semi-simplification isomorphic to

EB E2X3, where XP : IFp is the cyclotomic character. This
cannot happen since p is assumed to be absolutely irreducible. The main
theorem is therefore a consequence of Propositions 12 and 13.
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10. Comments.

10.1. An example.

If the strong conjecture of Serre is stated with Sk (N, E) F instead of
this conjecture is false in characteristic 2 and 3 (see §4.2).

Here is a counterexample due to Serre. We take N = 13, k = 2. Let X be
one of the two Dirichlet character mod 13 of order 6. One can check that

the dimension of the space S2 ( 13, x) is equal to 1 (see formulas in [1]). Take
g the unique normalized new form of level 13, weight 2 and character x.
Its coefficients lie in Z[p] where p = e’i/3 - Reduce it modulo the unique
prime ideal of Z[p]. One gets a Katz cuspform f of level 13, weight 2 and
character E, where c : (Z/13Z) x ~ IF3 is the unique character of order 2.
The representation p f is absolutely irreducible and its associated triple is

(13,2,6’). However p f does not satisfy the original strong form of Serre’s
conjecture since S2(13, ~o) = 0. One remarks that the character is the

problem in this counterexample. However p f does satisfy the conjecture in
the modified setting (see §4.2).

Let us examine this example in our setting. We look for a map
p : C13 - IF3 which factors through L2 (13) and satisfies the conditions of
the main conjecture. One remarks first that it suffices to determine ~u( ( 1, 0) )
and /~((~, 1)) for a E 7~/ 137~ because Rd acts as the character c. Because of
the relation induced from it suffices even to know /~((a, 1)) for a E Z/13Z.

The reader might find it interesting to write down the relations
induced by a and T. Remark that T induces 3~((3,1)) == 3/-t((9, 1)) - 0.
In Serre’s original setting, this would imply that /~((3,1)) == /~((9,1)) = 0,
however in our setting this is an empty condition. Furthermore, we can now
write down the action of the Hecke operators (for small primes), diagonalize
it and one search for a linear map p which satisfies the conditions of the

main conjecture.

We can define an involution c on C13 by (a, b) ~ (a, -b). By
calculation (by hand) one can find a unique (up to multiplication by an
non zero element of F3) 1L+ (such that p+ o c = /-t+) and a u- (such that

We obtain

Remark that both ((3, 1)) and ((9, 1)) are different from zero.



1320

10.2. General remarks.

One can define in general an involution c on 
given by (u, v) 0 P(X, Y) f--~ (u, -v) Q9 P(-X, Y). By passing to the
quotient this gives a complex conjugation c on Lk(N). If there exists a
J.1 : the main conjecture, one can look for p+ and u-
(such that = ::I:J.1X). The unicity of p+ (resp. u- ) up to multiplication
by an element of FX is an interesting question that we leave for further
study.

Remark that Lk(N) also contains information on Eisenstein series
(see Theorem 7). Therefore one expects a similar description as the main
conjecture for reducible representations, although not exactly the same as
the mod 5 representation associated to Xo(1 1) suggests (see [2, ex. 1]).

The advantages of the main conjecture (with regard to the one of
Serre) is that one avoids the introduction of analytic objects (such as
modular forms in characteristic 0), and extra choices (choosing a maximal
ideal containing p in the ring of algebraic integers, and an embedding
of F in its residue field) like in Serre’s definition of a modular form in

characteristic p, or the heavy algebraic geometric background needed to
define Katz modular forms (although we do not give a description of the
Katz’ case when = 1, see Remark §4.2). Also from a computational point
of view, this conjecture is much more easier to test on computers than
Serre’s original one. Finally, it is our hope that the elements of F appearing
in the main conjecture will have a nice Galois theoretic interpretation in
terms of p.
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