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GAUSS-MANIN SYSTEMS, BRIESKORN LATTICES
AND FROBENIUS STRUCTURES (I)

by A. DOUAI and C. SABBAH

A Frédéric Pham, avec amitié

Introduction.

It is now well-known that it is possible to associate with any germ of
isolated hypersurface singularity a canonical Frobenius-Saito structure(’)
(also called a flat structure by K. Saito) on the (germ of the) base space
of its miniversal unfolding. The theory of primitive forms [56] allows such
a construction, together with Hodge theory of the Brieskorn lattice, as
developed by M. Saito [58], [60] (see also [22] for a presentation of the

theory). Such a construction is local, but also canonical.

In [50], the second author has indicated how to extend such a

construction to polynomials on C’ which are convenient and nondegenerate
with respect to their Newton polyhedron, a notion defined by A.G. Kouch-
nirenko in [28]. The reason for extending the previous work of K. Saito and
M. Saito is that, in some aspect of mirror symmetry theory, the Landau-
Ginzburg potential often takes the form of the universal unfolding of a
function on a smooth complex affine variety and is not necessarily reducible
to the unfolding of a germ of complex isolated singularity.

KeyuTords : Gauss-Manin system - Brieskorn lattice - Frobenius manifold.
Math. classification : 32S40 - 32S30 - 32G34 - 32G20 - 34Mxx.

1 ~ Throughout of this article, we use the words "Frobenius structure" or "Saito

structure" in an equivalent way; some authors also call such a structure a "conformal
Frobenius structure", as we always assume the existence of an Euler vector field.
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A motivation to extend furthermore the construction to convenient

and nondegenerate Laurent polynomials, which is the main result of this
article, comes from the computation of S. Barannikov [3] for the particular
case of the Laurent polynomial f(ui , ... , un ) = ul + ... + l/~i -’’ un :
he associates to such a Laurent polynomial a Frobenius structure on the
germ 0), which is shown to be equivalent to that coming from the
quantum cohomology of (defined e.g., in [39]). One finds in [24]
other such polynomials(2). In the second part [17] of this article, we will
extend the computation of S. Barannikov to the case of the linear form
wouo + ... + wnun restricted to the torus flj = 1, where (wo,..., wn)
is any sequence of positive integers such that gcd(wo, ... , wn) = 1; in such
a case, the canonical Frobenius structure is completely determined by its
initial data, that we compute explicitly.

In this article, we give a detailed presentation of the construction
of the Frobenius structure attached to a regular tame function on an
affine manifold (when a primitive homogeneous form exists, see below).
We first give the main properties of the Gauss-Manin system and the
Brieskorn lattice of any unfolding of such a function. Essentially, we
show that all expected results (if we refer to the local situation) hold:
holonomicity, regularity, duality, ... Such results were only sketched in [50].
In Appendix A, we recall with some details basic results written by
B. Abdel-Gadir in [1], [2], as these papers are hardly available.

Once these basic results are obtained, the main tools that one has to

develop in order to mimic K. + M. Saito’s construction of the Frobenius
structure are:

. the Hodge theory for the Brieskorn lattice of the tame function f on
a smooth complex affine variety,

. the existence of a primitive and homogeneous section of the Brieskorn
lattice.

The first one was achieved in [51], [52]. In Appendix B, we recall
the analogue, in the affine situation, of the method of M. Saito to obtain
a solution of Birkhoff’s problem for the Brieskorn lattice. This slightly
simplifies the approach in [52]. Moreover, we make the link with the

construction of good bases given in [15].
We are then mainly interested in finding a primitive homogeneous

section corresponding to the minimal exponent. Natural candidates are

(2) The second author is grateful to R. Kauffman for pointing him this article.



1057

volume forms. In the singularity case, the minimal exponent has multiplicity
one [60], so such a primitive homogeneous section is essentially unique, if it
exists. In fact, any volume form gives rise to such a primitive homogeneous
section. We show that a similar result holds for convenient nondegenerate
Laurent polynomials on (C*16’~. It was asserted in [52] that the same

result holds for convenient nondegenerate polynomials on However, let
us emphasize that a supplementary assumption is understated there: the
linear forms defining the Newton boundary have nonnegative coefficients.
Without this assumption, the volume form may not be homogeneous, the
minimal exponent may not have multiplicity one, and we cannot assert
the existence of any primitive homogeneous section.

A basic tool in the convenient nondegenerate case, which goes back
to [27], [57], consists in the identification between the Hodge exponents at
infinity (i.e., the Hodge spectrum) and the Newton exponents. A simple
proof of this result is given in § 4. It also applies to the case of convenient
nondegenerate polynomials on en which was treated in [52].

1. Partial Fourier transform of regular
holonomic D-modules with lattices.

l.a. Equivalences of categories.

Let D C fool be a nonempty open disc with coordinate t
and let X be a complex manifold. Let E C D x X be a closed analytic
hypersurface. We assume throughout this article that the restriction to E
of the projection p : D x X 2013~ X is finite (i.e., proper with finite fibres).
On the other hand, we simply denote by oo the divisor {oo} x X C p1 x X.

We denote by (resp. the sheaf of holomorphic
differential operators on D x X (resp. on l~l x X). Given a holonomic
DDxx-module Jlil, we say that the singular locus of .llif is contained in E

if is O-locally free of finite rank.

Let w : J~ 2013~ X be a holomorphic map of complex manifolds. Then
.M is naturally equipped with a 

module structure, relative to which it is holonomic and with singular locus
contained in ~’ - X’ x x E.

PROPOSITION 1.1 (Malgrange). - Let M be a holonomic 
module with singular locus contained in E. There exists a unique (up to
isomorphism) x x -module M satisfying the following properties:
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- M is holonomic, with singular locus contained in E U 00,

../1~I has regular singularities along 00,

is localized along 00, i. e.,

---- 
Any morphism -~ .,/1~12 can be lifted in a unique way to a morphism

denotes the duality functor on the category left holonomic
D-modules, we have Last, the 1-1 functor commutes

with base change with respect to ~p : X’ -~ X.

Proof. See Appendix, g A.b.1. 0

We consider the following categories:

. the objects are regular holonomic DD x x-modules
with singular locus contained in E, and the morphisms are morphisms of D-
modules ; the full subcategory of modules which satisfy the supplementary
condition (NC) (see below) will be denoted by 

. the objects are regular holonomic 
modules with singular locus contained in E, and the morphisms are

morphisms of D-modules;

. the objects are regular holonomic

with singular locus contained in E U oo (recall,
cf. A.a, that these are holonomic Dpi x x-modules), and the morphisms
are morphisms of D-modules;

. the objects are which are

holonomic and regular even at infinity, with singular locus contained in E

(cf. Def. A.7), and the morphisms are morphisms of Dx ~t~ (8t)-modules.
We have natural functors between these categories, described in the

diagram below, where

. ’restr.’ is the usual restriction,

. ’an’ is the "analytization functor"

. p denotes the natural projection to X.

COROLLARY 1.2 (see [1]).

1) Any loop in this diagram is a functor isomorphic to the identity of
the category which is the origin of the loop.



1059

Analytization diagram

2) This diagram commutes with base change, i.e., if f : X’ ~ X is
any holomorphic map, and ifhk f + denotes the k-th inverse image functor
between the corresponding categories on X and X’, the diagrams on X
and X’ correspond each other through 

3) This diagram commutes with proper direct image with respect
to X, i.e., with the functors is f : X - X’ is a proper holomorphic
map (e.g., a closed embedding).

4) This diagram commutes with the natural duality functor of each
category.

Proof. - See Appendix, 33 A.a and A.b. 0

Remarks 1.3.

1) In the appendix, the previous statements are proved without the
regularity assumption along E. That regularity along E is preserved by the

or duality is now a well-known result (see, e.g., ~41~ ) .

2) Let M be as in Proposition 1.1 and let be a ODxx-coherent
submodule of M. Let us define Mo as a coherent OIPlxx(*oo)-submodule
of let A4’ - Mao ; then satisfies the same properties as As

does, and moreover .~l~t’ and Mo coincide out of E ("out of" means

"after tensoring with meromorphic functions having poles along ~" ) ; then
glue with get By Remark A.3, Cor. 1.2, 1) holds for
such pairs 

COROLLARY 1.4. - Let .Jlil be as in Proposition 1.1. Assume moreover
that there exists a ODxx-submodule M0 C which is free of finite rank

and such that M = Q90Dxx Then Mo : = locally
free of finite rank as a C7x [t]-module and M = p*)4 is locally free of finite
rank as a Ox 
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Proof. - See Appendix, § A.b.2. 1:1

The noncharacteristic assumption. - We say that p is noncharacte-
ristic with respect to M or if the following condition (NC) is satisfied:

(NC) The fibres of p are noncharacteristic with respect to Char A4.

The characteristic variety Char.A4 is equal to a union of the zero section

Tvxx (D x X) and of conormal spaces (D x X), where Zi is a irreducible
closed analytic subset of D x X contained in E. Among the Zi are the
irreducible components of ~.

In geometrical terms, Condition (NC) means that, for any Zi, any
limit at (t, x) of tangent hyperplanes to Zi is transversal to p-1 (x). In other
words, for any x E X, the conormal space (D x X) cuts D x at

most along D x {0}. This implies that the restriction to (D x X) of the
natural projection T* (D x X) - (T* D) x X is finite. This also implies that
the restriction of p to Zi is finite. In other words, the only components of the
characteristic variety of other than the zero section are the (D x X),
where ~i are the irreducible components of E.

We write

Figure 1

The following is classical (noticing
that the fibres of p are noncharacteristic with respect to A4 along oo).

LEMMA 1.5. - If is holonomic on D x X with singular locus
contained in E and satisfies (NC), then Jlil is DDxxlx-coherent with
relative characteristic variety contained in the union of the zero section of

(T~D) x X and E x C~. Moreover, -coherent. D

Equivalence of categories with lattices. - When working with lattices,
we will always assume that the noncharacteristic assumption (NC) is

satisfied.
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DEFINITION 1.6 (Lattices). Let.A4,M,M be as above and satisfying
the non characteristic assumption (NC). A lattice Mo in M is a 
coherent submodule of M which generates M as a DDxx/x-module.
We similarly have the notion of a lattice in a DAla.xx-module and
in a Dx [t] (,9t) -module. In a lattice Mo is a coherent
Opi x x (*oo)-module which generates M as a 

We say that the lattice Mo (resp. Mo, Mo) has Poincar6 rank 1 if,
for any vector on X, one has (resp.... ) .

Notice that, if Mao is a lattice in (resp. Mo is a lattice in M), then
out of E ("out of" is as in Remark 1.3, 2).

COROLLARY 1.7. - Same statement as that of Corollary 1.2, 1 ) for
the categories of pairs (M ,Mo) of a D-module with a lattice.

Proof. See Appendix, Remark A.3. D

l.b. Partial Fourier transform.

Consider the isomorphism of algebras

which is the identity on Dx and such that t ~ -aT and Ot H T. Any
M becomes a VX[T] (aT)-module via this isomorphism,

that we denote M and that we call the partial Fourier-Laplace transforms
of M in the t-direction.

Clearly, if M is DX [t] (8t)-coherent, then M is DX [T] and

conversely. Using the homological characterization of holonomic modules
(cf Appendix, §A.a), one gets:

PROPOSITION 1.8. - M is holonomic is so. 0

Denote by DM the left associated to the right
It is also holonomic. Notice

that we clearly have

In local coordinates, the left-right transformation is expressed using the
transposition of operators P - tP.
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Denote by P - P the involution of the algebra which is

the identity on DX and such that T = -T and aT = -8r. One has t P = tP.
One deduces that

It follows from [25] that

is if M is so. Put 0 = T-1 and identify the action
of t = -aT on G with that of o2ao. It also follows from [25] that G is
holonomic as a Dx [0] )-module.

Remark 1.10 (Inverting - Consider the 

This is a holonomic being the inverse partial Fou-
rier transform of G. The kernel and the cokernel of the natural mor-

phism M - M[i9~-1] are thus holonomic. Moreover, they take the form

p+N’, p+N" for some holonomic Dx-modules N’, N" (this follows from
Kashiwara’s equivalence applied to holonomic Vx [T] (8T)-modules suppor-
ted on T = 0, after partial Fourier transform).

If M is an object of then so is p+N’, and this
implies that N’ is Ox-locally free of finite rank (i.e., a vector bundle with
a flat connection).

If moreover p satisfies Condition (NC) with respect to M, it follows
from Corollary 1.12 below that N" is Ox-locally free of finite rank, from
what we also deduce that M is Ox-flat and that M[o9~1] also belongs to
HolregE(Dx[t](8t)). Let us sketch a proof of the local Ox-freeness of N" :
choose any local coordinate x on X, and consider, as in § A.b.3, the vanishing
cycles functor; then = 0 (cf. Appendix § A.c.l, last part of the proof
of Theorem 1.11) and, by Corollary 1.12, we also have - 0;
as the functor ox is exact on holonomic DAlan X X-modules (see, e.g., [43]),
we conclude that §zN" = 0; as this vanishing result holds for any local
coordinate on X, this implies that N" is a vector bundle with a flat

connection.
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l.c. Regularity of the partial Fourier transform.

THEOREM 1.11. - Let M be a holonomic Dx[t](8t)-module with
singular locus contained in ~. Assume that M is regular, including along oo.
Then

1) the partial Fourier transform Man is regular on Ñ-an x X (but
usually not at oo),

2) under the noncharacteristic assumption (NC), Man is smooth out
of{0} x X.

Proof. See Appendix, § A. c. 1. 0

COROLLARY 1.12. - Under the same conditions and with the

noncharacteristic assumption (NC), the Ox G is coherent.

Proof. Denote by p : p1 x X 2013~ X the projection. Under

the noncharacteristic assumption, p G is

consequence of 1.11, 2) and [25]. Therefore,
as a

0

Starting from a regular holonomic DD x x-module .Jlil with singular
locus contained in E and satisfying (NC), we have considered the following
objects:

. its extension As as a holonomic Dp1 x x (*00 )-module,

. the algebraization M - p*.M, which is a regular holonomic
Dx [t] (8t)-module,

. the Fourier transform M of M, which is a holonomic 
module,

. the localization G = of M along T = 0, which is a holonomic
and also a coherent with a flat

connection, regular along T = 0. We denote by rk G the generic rank
of Gan as a OAlan xx-module.

DEFINITION 1.13. - Denote the composite functor A~ ~-~ G from
the category of coherent Ox with

a flat connection, regular along T = 0.

Remark 1.14. - Under the condition (NC), G is not far from

being locally OX [T, T-1]- free. More precisely, locally on X, there exists N
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such that is free. Indeed, let D’ be a

neighbourhood of T = oo in P1 with coordinate 0 = T-1 and let 9 = Gan
on D’ x X. As G is regular along and has pole along 0 = 0 only, we
have G = On the other hand, since 9 is a with

flat connection, it is locally stably free (cf. [37]), so that, locally on X, there
exists N such that 9 EB is free. Equip with the

trivial connection d. We clearly have

Apply then Corollary 1.4.

Examples 1.15 .

(a) The condition that p : E 2013~ X is finite insures that Man has
regular singularities. If p is only quasi-finite, this may not hold. If for

instance X is a disc with coordinate x, consider the Fourier transform M of
the regular holonomic (8t)-module of which (xt _1)1/2 is a solution;
then M contains the line x = 0 in its singular locus and is irregular along
this line: indeed, define M as the quotient of Dx [t] (,Ot) by the left ideal
generated by the operators

the Fourier transform M is the quotient of by the left ideal

generated by

which contains the operator 2013~&#x26;c -t-r-t- ~:r responsible for the irregularity
along x = 0 when T # 0.

A more precise relationship between the characteristic variety of M
and the irregularity of M along x - 0 is given in [53], Chapter 3,
Proposition 4.5.7.

(b) Consider the system satisfied by the function (t2 - x3)1/2, i.e., the
quotient M of by the left ideal generated by the operators

The singular locus E is defined by t2 = x3, so p : E 2013~ X is finite, but
ix = 0} is characteristic with respect to E, hence it is characteristic with
respect to M (as x X) is a component of the characteristic variety
of M).



1065

The Fourier transform is the quotient of by the left ideal
generated by

which also contains

One checks that, near a point where T ~ 0, the characteristic variety
contains the component x = 0,r = 0, where (T, x, T, ç) are the symplectic
coordinates on T* (Alan x X). Therefore, the singular locus of M contains

and is not

Assume that we are given as in Corollary 1.7, with .Jlil in

In general, we cannot recover M or G in an "algebraic"
way from M . Put (abusing notation)

We will show in this paragraph that it is possible to recover G~ :=

O x [0] from the partially microlocalized object 

Throughout the remaining of this section, we assume that the

noncharacteristic assumption (NC) is satisfied for 

We work with the sheaf of formal relative microdifferential operators
on D x X, that we denote by (see, e.g., [47], [61]). Denote by 0 the
variable corresponding to at 1 in We implicitly restrict this sheaf
to the image of the section dt of (T* D) x X, that we identify with D x X,
so that we view ED xxlx as a sheaf on D x X. Local sections of ED XXIX
are formal series ~~ ~~o a~ (t, x) 8~ , where the a j are holomorphic functions
defined on a common open set of D x X. The commutation rule is given by

One identifies with the subring of consisting of

polynomials in 0 via 0t H 8-1 
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If is a coherent VDxxjx-module, we denote by

the corresponding (formal) partial microlocal module. Notice that A411
comes equipped with a natural action of differential operators on X.
In order to take this action into account, consider the sheaf

of formal series Pj03 where Pj are sections of ÐDxx/D defined on
a fixed open set and of degree bounded independently of j. It contains

as a subsheaf, and we have MJ-l = 0VDXX M.

PROPOSITION 1.18. - Let be an object 
M = and G = M~at 1~ . Under the noncharacteristic assumption (NC),

1) Ox Q9~ [0- ’]-coherent; the natural action of t and of the
vector fields on X defines on it a flat connection, such that t acts as ()2åo;

2) the natural morphism

is an isomorphism of Ox ~9~ which is compati ble with the
Dx ~B~ [0-1] structure.

We have denoted by the sheaf

, with the identification

Proof. For the first point, use that M’ is supported on E and
apply the standard preparation theorem.

For the second point, denote by x x / x the sheaf on X having formal
series as sections, where the aj are sections of Ox [t] on
a common open set. It contains as a subsheaf. We then have a

morphism

hence a well-defined analytization map G/B -4 p,,A4P. Both objects are
equipped with a flat connection and the previous morphism is obviously
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compatible with the connections. The kernel and cokernel of it are therefore
of the same kind. It follows from [37] that all these objects are locally stably
Ox 10~ [0-’]-free. Hence, after adding a suitable power of (Ox ~0] ~8-1 ~, d) to
both objects, we may assume that, locally on X, they are Ox 10~ [0-’]-free,
as well as the kernel and the cokernel of the analytization map. As a
consequence, in order to show that the kernel and cokernel are zero, it is

enough to show this fact after restriction to any x° E X .

Choose x° E X. By flatness of over and as p is

finite, the restriction to x’ of is p* of the microlocalized module

associated to M°. An analogous result also holds for G, hence for GIB. Last,
we know that the morphism is an isomorphism when X is
reduced to a point (see, e.g., [52], Prop. 2.3). Hence, GIB -4 is an

isomorphism after restriction to xo. 0

Relation with microlocalization. - We still assume that satisfies

condition (NC). Let (c, XO) E E C D x X and let {1]1, ... , qr ) be the inverse
image of in Char . Denote by

the germ at E Ttc,xo)(D x X) of the sheaf of (formal)
microdifferential operators on D x X. Then by (NC) and the Preparation
Theorem for microdifferential operators,

has finite type over ~8~~8-1~. Notice that, denoting on the right by 
the partial microlocalized module, we also have

The natural morphism of -modules

is compatible with the connections. It is moreover known that both

have the same rank. Arguing as in Proposi-
tion 1.18,2), we conclude that this morphism is an isomorphism. This

justifies the ambiguous notation 

I.e. Partial microlocalization and partial Fourier transform
with a lattice.

Recall that we assume (NC) . Let be a lattice in At Denote by
the subsheaf of having sections and
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put

Then A4’ is and supported on E, therefore p. 0
is Ox [B]-coherent, by the Preparation Theorem for micro differential

operators. Notice that, by definition, p*.

PROPOSITION 1.20. - Assume that p*MÖ is free of

rank equal to rk G. Then,

1) G is free (of rank rk G);

2) there exists a unique Ox free submodule Go C G of rank
rk G such that G = Go and, under the isomorphism of
Proposition 1.18, 2), we have

Moreover, the construction of (G,Go) is compatible uritll base change.

Proof. We know, by Corollary 1.12, that G is 0 -’]-coherent.
Denote by C the chart of p1 with coordinate 0, and consider Gan on C x X,
which is and Oc* xx-locally free of rank rk G when
restricted 0, as it has a flat connection (see also Theorem 1.11, 2).

It follows from [37], Prop. 1.2, that there is a bijective correspondence
between lattices of Gan and lattices of G~, where a lattice means

here a coherent Ocx x-module (resp. a coherent Ox[0]-module) which
generates Gan or G~ when inverting 0. Moreover, in the analytic case, such
a lattice coincides with Gan out of 8 = 0.

As we have seen above, is a lattice of p*M’. Hence, from

Proposition 1.18, 2), we obtain a lattice Go of G~, and consequently a
lattice Gon of Gan, such that

As G has regular singularities along 0 = oo, we have G = p* Gan . We
therefore define Go as p*Gon. In particular, Go [0-’] = G.

Assume now that is free of rank rkG. Then

Gall is also Ocx x-locally free of rank rk G. Cover X by open sets U for
which there exists a disc D’ centered at 0 = 0 such that Gon is 0 D’ x U
when restricted to D’ x U. Apply then Corollary 1.4 to obtain that Go
is Or [0]-locally free and that G is Ox [0, 0-’]-locally on any such U.

Let us now consider the base change. We will assume that i : X’ ~ X
is a closed inclusion. The case of a projection is easy. Notice first that, even
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without any assumption of local freeness, the functor T (cf. Definition 1.13)
is compatible with base change i* (also denoted by i+° in order to take
account of the 9t or 8r action). Consider now the composite mapping

As is ODx x-flat and i* is right exact, we have a surjective
morphism i*(.A4’) --+ and, as p is finite on E, a surjective
morphism i* This morphism becomes
an isomorphism after inverting 0 and, by assumption, the left-hand term is
locally free of rank rk G over Ox, It is therefore an isomorphism. 0

Remarks 1.21.

1) If X is reduced to a point, then one may also construct Go from Mo
in the following way. Denote by Mo the image of Mo in M[9~] by the
natural morphism M - M[8;1] = G. Then Go is the C[0]-submodule of G
generated by Mo (indeed, this submodule satisfies the required properties
for Go, see [52], [Prop. 2.1 and 2.3]).

2) If Ado is a lattice in As, one defines microlocal lattices A4’
and (1.19) induces an isomorphism of the corresponding lattices.

3) By the very definition of Go, we have I

l.f. Behaviour with respect to duality.

PROPOSITION 1.22. - The functor F (cf. Definition 1.13) commutes
with the duality functor of each category, up to conjugation, i.e.,

Proof. One considers each individual functor entering in ,~’. For

M - ./l~l, the commutation with duality has been seen in Proposition 1.1.
For the algebraization p* , this is stated in Corollary 1.2, 4). For the Fourier
transform, this is (1.9). For the localization and the equivalence "localized
D-modules Q meromorphic connections", apply first Lemma A.11 to
defined in Remark 1.14, and then use that G = p* ~. D

Recall that, if G is any coherent OX [T, we denote by G
the O x-module G with an action ’ of C[T, defined by T - g = -Tg. If we
denote by g the element g when viewed in G, we will write Tg = -Tg = -Tg.
If G is equipped with a connection V, then G is equipped with the
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connection p such that and if ~ is a vector

field on X (this is compatible with the notation used in (1.9)). Notice
that TB1 arg = TB1 argo

A sesquilinear pairing ,S’ on G is a C7X [7-, T-1 ]-linear morphism

compatible with the connections. We say that S is nondegenerate if it

induces an isomorphism (compatible with the connections) G* ~ G, with
E Z)

if ,S’(g", 1 91) = (-1)~"s(g’~ 9").

COROLLARY 1.23. - Let .llil be an object of 
If is a morphism, then the morphism ,~’(~) : G* -~ G
induces a sesquilinear pairing S on G = F(M). If Ker P and CokerP
are 0 D x x -locally free of finite rank, then S is nondegenerate. If the adjoint

= Jlil is equal to (-1 )~’P, then S is w-Hermitian. a

Similarly, for any (c, XV) E induces a morphism

where the duality is taken as (see (1.17)):
indeed, by flatness of over and using
that left-right transformations commute only up to conjugation, we have
a canonical isomorphism ~ Using Remark A.13, 1),
we get a sesquilinear pairing 

~ 

The analogue of Corollary 1.23 holds for 

Let Go be a coherent Ox of G such that

Consider similarly Go . - Go C G and G* C G* (we identify Go with the
sheaf of homomorphisms A : such that
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DEFINITION 1.24. - The nondegenerate sesquilinear pairing S is said
to be Hermitian of weight w on (G,Go) if S is w-Hermitian and if the
isomorphism G* - G induced by S sends Go onto TWGO, in other words
if ,S’ induces a perfect pairing

PROPOSITION 1.25 (A microdifferential criterion). - Let ,Jlil be an

object of with a lattice Mo. M.
Assume that

1) has Poincar6 rank one (cf. Definition 1.6),

2) P satisfies all assumptions of Corollary 1.23,

3) for some XO E X, p*Mb,xo is of rank rk G,

(i.e., is Hermitian of

weight w on

Then S is Hermitian of weight w on (G, Go ) in some neighbourhood ofxo.

Proof. It will have three steps.

1) Consider the filtration F. by the order of differential operators
on DD x x and extend it on DD x x~D ~(e» ~e-1 ~ , so that F-1 = 0 and

Fo = (this is the filtration considered in Remark A.13, 1). The
lattice Me induces a good filtration = Similarly,

induces a good filtration of p,,A4" as a (0- ’)-module.
At the level of Rees modules (cf. § A.d), we have

As has Poincar6 rank one, we have for

any &#x3E; 0. By Assumption 1.25, 3), RFP*.A4 " is free as a RpOx,xo QeD 10 - 1 1 -
module. Therefore, we may apply the analogue of Lemma A.12 to conclude
that the dual complex of has cohomology in degree dim X + 1

only, and that the filtered module is identified with (p* M£o ) * with
the filtration dual to F.P.M".. In particular,

Assumption 1.25, 4) is therefore equivalent to the fact that strictly
shifts the filtrations by w (up to conjugation).
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Using flatness of over and (1.26),
identify the filtered module with the filtered module

Then, Assumption 1.25, 4) is also equivalent to the fact that Id0Pxo
strictly shifts the filtrations by w.

2) By Assumption 1.25, 2), S’ is Hermitian of weight w on (G, Go) if
and only if SA is so on (G A, Gg ) .

Denote by D the sheaf with 0- Ot, and by DA its
tensor product by We therefore have G = D M and

G A = DA M. Let be the filtration by the degree of
differential operators, denote by F.D, F.D~ the similar filtrations.

We may argue as in the first step, starting from (M, Mo ) : indeed,
Mo also has Poincar6 rank one and, by Assumption 1.25, 3) and

Proposition 1.20, G 0 A ", is also free. One also uses Remark A.13, 2).

Hence, ,5’ is Hermitian of weight w on (G, Go) near XO if and only if
Id0P : DA JI)M -4 DA M strictly shifts the filtrations

by w.

3) Last, we conclude by noticing that the analytization morphism
is strict with respect

to the filtrations. 1:1

2. Gauss-Manin system and Brieskorn lattice.

2.a. The setting.

Let AN be the affine space with coordinates ul , ... , uN . Let X be a

complex manifold and let Ll C AN x X be the closed subset defined by an
ideal in OX [Ul, - - - , We assume that the projection q : is

smooth of relative dimension n, with n &#x3E; 0.

Let F be a section of Ox [Ul, ..., It defines a function F : C.

We put

Let 6a denote the distance function to some point a E For x e X,
put Llx = C e. If XO E X is fixed, put Uo - C AN and

We will assume that f has only isolated critical points.
We will denote by p = p (f ) the sum of the Milnor numbers p (f , u) of f at
its critical points u.
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Following [45], we say that f is M-tame if, for some choice of a E 
for any q &#x3E; 0 there exists R(q) &#x3E; 0 such that, for any r &#x3E; the spheres
6a (r) = r are transversal to for any t with I t  17.

Denote by D(0, q) the open disc centered at 0 in C and B (a, R) the
open ball centered at a in 

If f is M-tame, there exist r~ &#x3E; 0, R &#x3E; 0, ~ &#x3E; 0 and a neighbourhood
of x° in X, that we still denote by X, such that

1) all critical points of f are contained in rl B(a, R - E) r1

f -’(D(O, 71)),
2) the fibers x) C AN are transversal to the spheres 6(r) = r

3) moreover, the fibers = are transversal to spheres
6(x) - r for any r &#x3E; R - sand t E 

Figure 2

In the following, we fix a, q, R, E and X as above. We denote by B the
open set u n B (a, R) n F-1 (D (o, r~) ) and we put D = D(O, We therefore
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have the following diagram:

Let C denote the critical set (see Fig. 2). Then
is finite onto its image and C - X is finite and onto (at least if C is not
empty) . We also denote by C’ the other components of the critical set of D
in U, on which lF may not be finite. Notice that C U C’ is locally a complete
intersection, being defined by the vanishing of the partial derivatives of F
with respect to "vertical" local coordinates on uan. As qlc is finite, we get:

LEMMA 2.1. - The sheaf is Ox -locally free of rank 0

Remark 2.2. - Denote by nBjX the sheaves of holomorphic
differential forms relative to the smooth morphism q : B - X. Then
the complex has cohomology in degree n only. Moreover,

supported on C and, locally on X, is isomorphic
to Oc (by choosing a local generator of near each 

Hence,
-, ,, 

...

is q*Oc-locally free of rank one. Notice
also that the complex has cohomology in degree n
only, as + is Stein.

Let ~ be a local section of the tangent sheaf exp, i.e., a local

holomorphic vector field on X. Choose a local lifting ~’ of ~ as a vector field
on Llan and consider the class of L~, (F) in Oc. By definition of C, this class
does not depend on the choice of the lifting, because Lr¡(F) belongs to the
ideal of C if q is "vertical". We therefore denote this class by ~,C~ (F)~ .

DEFINITION 2.3. - The Kodaira-Spencer map ~p attached to 4$ is

the morphism

Remarks 2.4.

1) Usually, the critical locus of 4D on LI contains components other
than C, on which 4) may not be finite. In other words, the function F(., x)
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on the smooth affine variety Ux may have critical points which disappear
at infinity when x -4 x°. By the choice of ,t3, we do not care about these
critical points. On the other hand, B is big enough so that restricting to B
looses no information concerning f on Ll°.

For the same reason, we do not assert that, for It I  q, the fibres

IF(., x) = tj c Ux and IF(., x) - tj n B(a, R) have the same topological
type. This only holds a priori for the fibres f = t on Us.

2) We may replace the affine manifold Ll with a Stein closed

submanifold of B (a, R + E) x X. In such a way, one recovers for

instance the classical "local" situation of an isolated critical point of a
holomorphic function.

Exam pl es 2.5.

In the examples below, we consider a regular function f : U -4 C on
an affine manifold on which global coordinates exist (U = (Cn or U = (C* 16’~ )
and we consider a one-parameter family F(-, x) = f + xg on U = U x X,
where the class of g in the Jacobian quotient is nonzero.

1) Consider the following situation ( cf. [50], § 3.3.7): U = A 2 x X,
X is a disc with coordinate x and Then,
for any x, F(~, x) has a critical point at uo = ul - 0 with Milnor number
equal to ( 5 - 1 ) 2 = 16. For 0, F(-, x) has five other critical points
3x ((, 1/~) These points disappear at infinity when x -4 0.
The first Betti number of the smooth fiber of f = F(., 0) is 16, but that of
the smooth fiber of F(., x) for 0 is 21.

2) Let U - (CC*)2 and U = U x X. Consider the function

f (ul, U2) = Ul + U2 + 1/(ulu2) (Cf. [3]) and the perturbation F(ul, U2, X) =
Then f has three critical points and, for 0, F(., x)

has five critical points, two of them approaching ul = u2 = 0 when .r 2013~ 0.
The corresponding critical values go to infinity. A simple Euler characteristic
computation shows that the Betti number of the smooth fibre of F(-, .r) is
strictly bigger than that of f if x =,4 0.

3) In both previous examples, the critical locus of 16 contains

components other than C, but ~ remains finite on all the components.
One may vary a little bit the previous example to obtain an example
where 4) is not finite on these other components: take F - f + 
Notice that, up to a constant, f 2 and 1/(ulu2)2 have the same class
in the Jacobian quotient The

conclusion concerning the Betti numbers remains the same.
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2.b. The Gauss-Manin system.

We collect here various known results concerning the Gauss-Manin
system (cf. [9], [47], [48], [49], [63], [46], [58]). These usually apply to a local
situation around each critical point of f. We will show how to adapt them
to the global situation considered here. The results of [62] will be useful.
The presentation follows that of [58].

The Gauss-Manin complex is the direct image complex 
in Choosing local coordinates (Xl’...’ Xm) on X, so that
q = (ql , ... , cm), with associated vector fields ~~1, ... , we may express

it as

with V defined as

The DD X x-structure on the complex is defined by

The Gauss-Manin system is the DD x x-module M = As

we will see below, when the conditions of §2.a are satisfied, the other

cohomologies of are ODxx-locally free of finite rank, the rank being
computed in terms of the Betti numbers of B.

Consider the filtered complex with

Recall (see [58], Lemma 2.2) that, taking the realization of using
the Godement canonical flabby resolution, we have

As ~ is Stein and as each term in is 0,6-coherent., it follows that

If we forget the Dx-structure on we may compute this complex
as a relative de Rham complex, i.e., as the direct image of viewed

as a DDx13jx-module, if i : B - D x B denotes the graph inclusion of F
(see [58], Lemma 2.4):
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PROPOSITION 2.7. - For any j C Z, is isomorphic (as a
VDxx/x-module) to the j-th cohomology of the complex

where the ODxX (8t)-action is defined by the usual formulas:

In particular, 0 for j &#x3E; 0. D

Remark 2.8. - One may filter the previous complex using a formula
analogous to (2.6). Then the previous proposition holds true with filtration
(cf. loc. cit.).

The main finiteness result for the Gauss-Manin system of M-tame
functions is a direct application of general results for "elliptic pairs" proved
in [62].

THEOREM 2.9. - The Gauss-Manin complex satisfies the following
properties:

1) The cohomology modules are coherent, holonomic and

regular 

2) 0 for j &#x3E; 1 and a locally free 
module of rank dim Hj+n-I (U-) if j  0.

3) The direct image is equal to the restriction to

4) The fibres of the projection p: D x X --+ X are noncharacteristic
with respect to the Gauss-Manin complex and we have =

HO(f+08o ).
5 ) The Poincar6 duality morphism induces a morphism
M, the kernel and cokernel of which are OD x x -locally free of finite

rank.

6) The filtration of A4 induced by (2.6) is good.

Proof. We apply [62], Corollary 8.1 to

. the morphism that we restrict

to the family of open sets B(a, r) x X with r e ]R 2013 6-, R + ~[,
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. the constant sheaf restricted to Ll n (B(a, R + E) x X) and

. the D-module Ou restricted to this open set.

We conclude that has coherent DD x x-cohomology and that
we have a morphism

in where denotes the direct image of D-modules with proper
support (we have used that oB is selfdual). Using [62], [Th. 7.5], we get the
usual Kashiwara’s estimate for the characteristic variety of the direct images

or showing that their cohomologies are holonomic DD x x-modules.
Moreover, the same argument as in [62], Cor. 7.6, shows the ODxx-local
freeness of (recall that x~ ( ~+ C~,~ ) = 0 for j &#x3E; 0,
cf. Proposition 2.7). That the cohomology of the cone of 
is ODxx-locally free may be seen in the same way.

Let us show the regularity of (by the previous arguments, we
would only need to show the regularity of Jl~l ) . Let Z be a hypersurface in
D x X. Notice that we also may apply the results of [62] to the localized
module C~,~ ( * ~ -1 ( Z ) ) , as it also satisfies the ellipticity condition. We may
work with instead of 4D+013. Therefore, we may apply the same
argument as in [41] for the direct image of the irregularity sheaf: we have

the irregularity sheaf of along Z is
thus equal to RW of that of 013, i.e., is equal to 0.

For the noncharacteristic property in 2.9, 4), see [47], p. 281. The
"base change" assertion is proved as in [5], VI, 8.4 (cf. also [13], Prop. 1.6).

For 2.9, 3), let us recall the proof given in [44], § 1. Remark first that
the previous results also apply (with the same arguments) to x

for any disc Dr, hence to They also show that the restriction

morphism

is a quasi-isomorphism. Using a projectivization f : Z - 1~1 of f and

denoting by j : ?~l ° ~ Z the inclusion, one finds
and The natural

morphism is a quasi-isomorphism: indeed,
as both VAlan-complexes have regular holonomic cohomology, it is

enough to prove this after applying the de Rham functor; this functor
commutes with f + and R f * (see, e.g., [42], II.5.5); last, the natural
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morphism is a quasi-isomorphism, by the
Grothendieck comparison theorem.

Let us end with the proof of 2.9, 6). It is enough to prove the
ODxx-coherence of the Brieskorn lattice Mo defined as FOM. Indeed,
we have

as the complex d,31XFA) has cohomology in degree at most n. Now,
it is known that the ODx x-coherence of Mo is reduced to the 

coherence of the relative cohomology which can be proved as
in [11] for instance. D

Remarks 2.11.

1) We may argue as in [47], p. 281, to conclude that .~l satisfies the
noncharacteristic property (NC).

2) If R’ is a radius &#x3E; R, then it also follows from [62], Cor. 8.1, that
the restriction morphism - 4D+B (maybe defined after restriction
of X to a smaller neighbourhood X’ of XO) is a quasi-isomorphism, which
is compatible with the filtrations. In particular, (M’,.A4) --+ (.A4, A4o) is
an isomorphism on D x X’. Similarly, if one chooses another system of
balls on U, then for sufficiently large radii R, the corresponding filtered
Gauss-Manin systems are isomorphic to on D x X", if X" is

a sufficiently small neighbourhood of xo. Moreover, the Poincar6 duality
morphisms are compatible with these isomorphisms.

2.c. The Brieskorn lattice (case without parameters).
In this paragraph, we put and we omit the exponent °, as we

do not use parameters (i.e., we assume that X is reduce to a point). We
assume as above that U is affine. Let f : ~7 2013~ A~ be a regular function
on U. Recall (cf [52]) that the algebraic Gauss-Manin system and the
algebraic Brieskorn lattice are given by the following formulas, where we
use algebraic differential forms on the affine manifold U:
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That we get such a formula for Go starting from the definition given in
Proposition 1.20, 2) when X = pt. follows from Remark 1.21, 1).

Denote by f+ the algebraic direct image of DU-modules, so that
lVl = Remark that the cone of f+Ou at ) is the direct

image of C7U by the constant map. We thus have an exact sequence

as 0 for j tt ~-n ~--1, 0~. If f is M-tame, or cohomologically tame
(cf. [52]), then 11j f + Ou is isomorphic to (for some integer rj ) with its
usual at-action, if j  0. Hence the maps

I are

onto for j  0. Therefore, we get an exact sequence

In particular, dim Hn-1 (U, (C) is nothing but the Euler
characteristics of the algebraic de Rham complex of M. As M is regular
(included at infinity), this is also the global Euler characteristics of

the analytic de Rham complex of M’. This Euler characteristics may
be computed as the difference between the generic dimension of the

horizontal sections of Man (which is equal to the generic dimension

dimc(t) (C~(t) M) of H) and the sum of dimensions of vanishing
cycles of the complex DR M’ (which is equal to (C(T) 0C[7] G),
see, e.g., [35], p. 78). One deduces that

Using that, for any c E C, the vector space Ot-, DR Man is equal to

(cf. [52], Cor. 8.4 and proof of Prop. 9.2, for cohomologically
tame functions, and [44], §1, for M-tame functions), we also deduce that
dimc(,) G == M.

That f has only isolated singularities (and assuming n &#x3E; 2) implies
that the complex (0. (U), df 1B) has cohomology in degree n only, hence

and

(see also [16] where this is stated for cohomologically tame polynomials).
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Consider := with its lattice .Mo- M-tameness of f
implies, as in Theorem 2.9, the regular holonomicity of and the

OAlan-coherence of Mo. We also have Man = .llil (see [44], §1), and
so - Mao and therefore

As is finitely generated over C[t], this implies the finiteness of Mo as
a (C~t~-module (see [52] and [44], see also [14]), hence, by [52], that of Go
(and its freeness) as a according to the regularity of M.

If f is M-tame, one may also consider the direct image where

,l3 is defined in §2.a (taking X = pt.), that we now denote by Mf3, and
therefore define the analytic Brieskorn lattice as the image of 
in Arguing as in Theorem 2.9, one shows
that the natural restriction morphism MID -4 (which sends MO|D
into is an isomorphism.

LEMMA 2.12. - The algebraization is (M,Mo).

Sketch of proof. - The proof will have three steps:

1) We will show that Môn can be computed analytically. Let Z be
a smooth partial compactification of U so that f extends as a projective
morphism f : Z ~ A~ and that 0 . - Z B U is a divisor (it is not

necessary to assume that Z is smooth, it is assumed here to simplify the
notation). We will show that M0an is equal to the image of T ( Z, Qn, 7"1 [*A])
in In order to do that,
consider a smooth projective compact ificat ion Z of Z on which f extends
as f : Z - P . Denote by i : Z - .~ x I~1 the graph inclusion of f and put

equipped with a natural lattice No. If q denotes the projection Z x pI -4 p1,
then the Opi (*00 )-module Mo associated with Mo is obtained as the image
of oo, No) in (go, N)). By compactness of Z, Môn is
computed using the corresponding analytic objects. Restrict then to 

2) We show that the natural morphism Môn -4 Mo is an isomorphism
by a Mayer-Vietoris computation. Fix some big disc D C and

cover f - 1 (D) by open sets B, uan B ,l3’ for some sets ,~3, ,l3’ as in §2.a,
with ,~3’ c B. One can compute Mo n and A40 using this covering. One then
has to show that the filtered direct image of OUan on f -1 (D) ,t3’ and

that of Oxan [*A] (viewed as a filtered on f -1 (D) ~ B’
coincide, as the filtered direct images computed on the other open sets
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clearly coincide. This follows from the regularity along A of OXan [*A] and
from the comparison Theorem (as in the proof of 2.9, 3): the direct image
is O D-locally free of finite rank and its filtration is the trivial one.

3) Last, we show that is an isomorphism by
showing that the corresponding microlocal lattices are isomorphic. By
the computation above, this follows from the O D-local freeness of the direct
images computed on uan B ,l3’ and on ,~3 ,l3’ ) . 0

2.d. The Brieskorn lattice.

We now come back to the original situation, where X is not necessarily
reduced to a point. Recall that, by Proposition 2.7, we have

M = 

and that Ado is defined as the image of in M, which can be
computed by (2.10). We know, by 2.9, 6), that the sheaf Mao is 

coherent and is a lattice of M. It follows from Remark 2.8 that Mao has
Poincar6 rank one ( cf. Definition 1.6).

We may associate to pair (G, Go) as in § I.e. We call Go
the Brieskorn lattice associated with F.

PROPOSITION 2.13. - The Brieskorn lattice is Ox free of
r- . .......

rank p and we have Moreover, the
restriction G’ of Go at XO is equal to the Brieskorn lattice of fl13o, which is
nothing but the algebraic Brieskorn lattice of f:Uo -4 A~ as defined in § 2.c.

Therefore, by Lemma 2.1, Go/BGo is Ox-locally free of rank /-t.
Proof of Proposition 2.13. - For the first part, according to

Proposition 1.20, it is enough to prove that p,,A4p is Ox [8]-locally free.
One then may argue as in [47], p. 276-284, using the sheaves of relative
microdifferential operators £Dx13/X and instead of the

absolute ones, as we do not care here about the Dx-structure.

For the second part, remark that, as the tensor product is right exact,
Formula (2.10) shows that the restriction of Mo at XO coincides with A40
Therefore, the same property holds for the algebraization Mo, and then
for Go. D

THEOREM 2.14. - The Poincar6 duality morphism 2.9,5) induces
a nondegenerate Hermitian pairing S of weight n = dim ,t3/X on the
Gauss-Manin system (G, Go).
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Proof. By Proposition 1.25, we are reduced to a local statement
on D x X. Let (c, XO) E ~. Choose a very small neighbourhood D, x V
of (c, x’) such that ~-1 (D° x V) intersects small balls around each critical
point above (c, XO) in a transversal way. This gives a covering of ~-1 (Dc x V)
by these small balls and the complement in ~-1 (Dc x V) of smaller balls. The
theorem applies to 4D restricted to each of these open sets: for the small balls,
this is the local situation at a critical point, cf. [58]; for the complement
of the smaller balls, V is then smooth and the corresponding A4’. is zero.
Therefore, it applies to 4) itself. D

Remark 2.15. - The microlocal sesquilinear pairing attached to ,S’ is

equal to the direct sum of the microlocal sesquilinear pairings attached to
each critical point of f. It is known (cf. [58]) that these pairings are equal,
up to a constant, to the microlocal pairing obtained from the higher residue
pairings of K. Saito [55].

2.e. The Malgrange-Kashiwara filtration and the spectrum.

We keep notation of § 2.c and we assume that X is reduced to a point.
For the convenience of the reader, we briefly recall the basic definitions
(see §A.b.3 and e.g., [52], §1, for more details). Let be the

increasing filtration of (C~T~ (aT) defined by

for

for

There exists a unique increasing exhaustive filtration V.G of G, indexed by
the union of a finite number of subsets a + Z c Q, satisfying the following
properties:

1) for every a, the filtration is good relatively to V, (C ~T~ ~0,);

2) for every 0 E Q, + /? is nilpotent on

By assumption, each is a finite type module over 
Because T is invertible on G the map induced by T

is bijective. Consequently, for every {3 E Q we have

Consider also the filtration G. of G by free C[O]-modules of rank J1
defined by i



1084

For 0 E Q, set

and let v,~ - dimgr¥(Go/G-1). Notice that, for any p, we have an

isomorphism

The set of pairs ~~3, for 0 is called the spectrum of (G, Go).
The spectral polynomial of (G, Go) is

Its degree is equal to p.

3. The Frobenius structure.

We keep notation of § 2. a. We say that the family 4J is a

universal unfolding of f if the Kodaira-Spencer map cp attached to (D

(cf. Definition 2.3) is an isomorphism in a neighbourhood of x°. We therefore
restrict X to such a neighbourhood. We then have dim X = p. Throughout
this section we assume that X is a universal unfolding of f. We will
recall how one may construct on the germ at x° of X a natural Frobenius

structure on X, following the method of K. Saito [56] and M. Saito [58],
[60], as adapted to this situation in [50].

3.a. F-manifold structure.

The Kodaira-Spencer isomorphism q*Oc pulls back the
algebra structure of q.Oc to This defines a product * with unit on ex.
By definition, the Euler vector field £ of the structure is where [F]
is the class of F in 

Notice that the algebra q*Oc is the direct sum of the corresponding
algebras attached to each critical point of f. At this point, the structure is
nothing but the direct sum of the local structures, so that we may apply
the known results in this case: we have the structure of a F-manifold on X

(see [23], [22]).

3.b. Frobenius structure.

We recall in Appendix B the method of M. Saito (cf. [58]) to find a
solution to Birkhoff’s problem for the algebraic Brieskorn lattice Gg C G°
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attached to f : Ll ° -~ A1, starting from any filtration of 
opposite to the filtration induced by G~ and satisfying nice properties. Any
nice solution (called V+ -solution in Appendix B) gives a of Go
in which the ae-action takes the form

where Ao, Aoo are two constant p x p matrices, and Aoo is semisimple.
The characteristic polynomial of Aoo is equal to the spectral polynomial

of the Brieskorn lattice of f (cf. ~ 2.e), which is also equal to the
polynomial associated with the "Hodge spectrum of f at infinity" , that is,
the spectrum (as defined by Steenbrink) of the limit mixed Hodge structure
attached (as in [19], [64], [59]) to f -1 (t), Q) when t - 00 (cf. ~52~ ) .

We denote by Roo the endomorphism of having -Aoo as
matrix in the basis induced by 6~.

On the other hand, recall that is a

free rank-one module on the Artin algebra q.0c..

DEFINITION 3.2. - Let WO be a element of ; I

We say that

1) WO is primitive if it generates Qn A nn-1 (Ll ° ) as a q* Oeo-
module ;

2) u° is homogeneous if it is an eigenvector of Roo.

Assume that a primitive homogeneous element WO exists and consider
the locally free C~X [0]-module Go : it is equipped with an integrable
connection V with a pole of type 1 at 8 - 0 and a regular singularity
at infinity (and no other pole). It is also equipped with a Hermitian
form S of weight w. The solution of Birkhoff’s problem given by the
basis £° extends, according to theorems of B. Malgrange [32], [33], to

a solution in a neighbourhood of ~°. This implies (see also [50]) the

existence of a flat connection V on the locally free Ox-module Go/BGo in
some open neighbourhood of x°. The pairing ,S’ induces a symmetric p-flat
nondegenerate pairing g on Go /8Go and extends by V-parallel transport
to a p-horizontal local section c,~ of called a primitive section.

The infinitesimal period mapping Go /9Go defined by
K. Saito [56] (see also [50]) that u induces, is an isomorphism near x° and,
transporting the structures existing on gives rise to a Frobenius
structure on X, compatible with the weak Frobenius structure of § 3.a.
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In conclusion, according to the previous results, in order to ex-

hibit a Frobenius structure on X compatible with the natural weak

Frobenius structure, it is enough to find a Y+-solution to Birkhoff’s

problem and to construct such a primitive homogeneous element

It follows from Remark 2.11, 2) that the germ of this Frobenius
structure at (X, x° ) does not depend on the choice of the sufficiently big
ball B defining the filtered Gauss-Manin system (G, Go).

Notice that there may exist many different Frobenius structures,
attached to different choices of solutions of the Birkhoff problem or to the
choice of a primitive homogeneous element WO. We will be mainly interested
to the most canonical one.

3.c. Canonical Frobenius structure.

We wish to fix a natural choice of the Frobenius structure. This has

to be done at two levels:

. A natural (or canonical) choice of the solution to Birkhoff’s problem,
responsible for a canonical choice of a flat connection and metric on the
vector bundle Hodge Theory furnishes such a choice, according
to M. Saito [58], Lemme 2.8, through a natural filtration opposite to the
Hodge filtration (the necessary Hodge Theory in the affine case is done

in [51], [52]).
. We will say that a primitive homogeneous element is canonical if

1) it is an eigenvector of Roo corresponding to the minimal element
amin of the spectrum of f (i.e., the minimal exponent),

2) up to a constant, it is the only such eigenvector, i.e., amin has

multiplicity one in the spectrum.

That a canonical primitive homogeneous element does exist is proved
by M. Saito in [60], Remark 3.11, in the singularity case. We prove
this below (c~ §4.d) for convenient nondegenerate Laurent polynomials
on (C*)~. As we remarked at the end of the introduction, this also holds for
convenient nondegenerate polynomials on C~ satisfying the supplementary
assumption that the coefficients of the linear forms defining the Newton
boundary are nonnegative. In all these cases, the class of a volume form gives
such a canonical primitive homogeneous element. The following examples
illustrate phenomena which can occur when this supplementary assumption
is not satisfied.
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Exam pl es 3.3.

on (~2. There is only one spectral number
a = amin = 1, which therefore has multiplicity p = 2. However, the class
of volume form dx A dy is homogeneous, and furnishes a (noncanonical)
primitive homogeneous element.

on (C2. The class of the volume form
dx A dy is not canonical. Its order with respect to the V-filtration is

3 Cemin, amin + 1 ~ with However, amin has multiplicity one in
the spectrum and the corresponding eigenvector (class of ydx A dy) is in

fact primitive, hence is a canonical primitive homogeneous element.

Remark 3.4. - Assume that we found a canonical primitive
homogeneous element WO as above. Given a universal unfolding of f
parametrized by (X, x°), we can then construct on the base space (X, x°) a
canonical Frobenius structure. When f is the germ of an analytic function,
two universal unfoldings are analytically isomorphic, hence the Gauss-
Manin systems, with their Brieskorn lattice and sesquilinear pairings, are

isomorphic, giving rise to isomorphic Frobenius structures. For functions f
as in § 2.a, we cannot assert that two universal unfoldings are isomorphic.
Therefore, it lacks here a proof of the independence up to isomorphism
of the Frobenius structure with respect to the particular choice of the

unfolding.

For the example treated in the second part of this paper [17], and
more generally if all the critical points of f are simple and all the critical
values are distinct, the Frobenius structure is semi-simple, hence completely
characterized by its initial value at x° (cf. [18], Main Theorem p. 188, see
also ~39~ , ~ II.3, [50], Th. 5.1.2). We therefore get the independence (up to
isomorphism) with respect to the choice of the unfolding in such a case.

In general, one can expect that the Gauss-Manin system with its

Brieskorn lattice is completely determined by the Gauss-Manin systems
with Brieskorn lattices of the universal unfolding of each critical point plus
the Stokes structure at x° . Would this happen to be true, we would get the
desired independence, as in the previous case.

3.d. Basic recipe.

It is possible to recover some information on the Frobenius structure
on X by an algebraic computation on the Gauss-Manin system of f. Let us
indicate the recipe to get it.
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(a) Compute the Gauss-Manin system GO and its Brieskorn lattice Go.

(b) Compute the "good basis" EO of Go as a 

(c) Find a primitive homogeneous element u°, which should be part
of the basis EO, and denote by a the corresponding eigenvalue of 
Denote ~ = EO, and let be the eigenvalue of Aoo corresponding to Ek’
I~ = 0,..., ~ - 1 (so that a(0) = cx).

Then we get ( cf. for instance [50] or [54], Chap. VII) :

1) there exist flat coordinates (to, ... , t~_ 1 ) on X centered at x° such
that

&#x3E; the basis 8Y E TxoX corresponds, under the Kodaira-Spencer
map w and identification Go/OGo induced by the
multiplication by cv°, to the basis EO;

~ the Euler vector field is given by

where the ck ’s are the coefhcient of
induced by E’;

in the basis

2) the homogeneity constant D of the structure (i.e., such that

Dg, where g is the metric") is given by

4. The case of Laurent polynomials.

Let be a Laurent polynomial
in n variables. Write and put

Denote by F (f ) the convex hull in Rn of the set Supp(f) B 101. We will
assume from now on that f is nondegenerate with respect to its Newton

polyhedron and convenient ( cf. [28]). In particular, 0 belongs to the interior
of h ( f ) . It is known that such an f is M-tame, by applying the same

reasoning as in [10].
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4.a. The Newton filtration.

For any face a of dimension n - 1 of the boundary denote

by L, the linear form with coefficients in Q such that Lu m 1 on a. For
g E put 0,(g) = maxaLa(a), where the max is taken on the
exponents of monomials appearing in g, and set 0(g) - max, 0,(g).

Remarks 4.1.

1) Of course, if L, has integral coefficients, then 0,(g) is an integer
for any g E U-11.

2) For we have

with equality if and only if there exists a face a such that 0(g) = Øa (g)
and 4(h) = ~~ (h) .

3) As 0 belongs to the interior of h( f ), we have ~(g) &#x3E; 0 for any
g E C[u, U-1] and 0(g) = 0 if and only This would not remain true

without this convenient assumption.

4) Put du/u = dul /ul A ... A dun /un and let U denote the torus
(C*)n with coordinates ul, ... , un. If w E write w = g du/u and
define ~(c,v) : _ 0 (g).

Consider the Newton increasing filtration indexed by Q,
defined by

The previous remark shows that 0 for a  0 and

= C . du/u.
Extend this filtration to on (U) [0] by putting

and induce this filtration on Go :

DEFINITION 4.2 (Newton filtration of the Brieskorn lattice). - The
Newton filtration of the Brieskorn lattice is defined by

where we have put
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LEMMA 4.3. - The Newton filtration on Go satisfies the following
properties:

if and dim,

Proof. 1) is clear, 2) follows from and 3)
follows from the similar statement for 0

DEFINITION 4.4 (Newton filtration on the Gauss-Manin system). -
For any a E Q, we put

For instance, we have

From the definition, we clearly get TNaG C which implies that
NaG is a C[T]-module, and the Newton filtration on G is exhaustive.

Notice however that we do not have = 0 for a « 0. Nevertheless, it
follows from the regularity of G at T = 0 and from the identification of the
Newton filtration with the Malgrange-Kashiwara filtration (cf. ~ 2.e) given
by Lemma 4.11 below, that we have 0 and Na G = G out
of T = 0, i.e.,

THEOREM 4.5. - Assume that f is convenient and nondegenerate
with respect to its Newton polyhedron. Then the Newton hltration A/.Go
on the Brieskorn lattice coincides with the filtration Go n V,G induced
on Go by the Malgrange-Kashiwara filtration V.G.

The case of convenient nondegenerate polynomials on the affine

space An has been treated in [52], and we will follow the proof given
there. The case of germs of analytic functions which are convenient and

nondegenerate goes back to [27], [57]. However, the proof that we give here
is somewhat simpler than that of loc. cit., as it does not make reference to

duality. One can easily adapt the simpler proof below to the case of loc. cit.
The proof of this theorem will be given in § 4.c.
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4.b. Division.

Denote by J(f) the ideal

LEMMA 4.6. - Let g E J(f). Then there exist
such that with, for any

, and

Proof. Consider with Kouchnirenko ( cf. [28], Th. 4.1 ) the surjective
map

Put Na
(cf. Remark 4.1, 2), we have
According to loc. cit., this inclusion is an equality, i.e., 81 is strict for N,.
This gives 4.6, 1 ) and 2). Now, 4.6, 3) follows from 4. 6, 1 ) , 
0(gi), and 4.6, 4) follows from 4.6, 2), as ~(uigi )  0(ui) + 0

PROPOSITION 4.7. - Assume that wl , ... ,WJ-l E are such that

their principal parts project onto a basis of G), Ea. Then, any element
w E iVQ’(U) may be written as

with ai E C such that a2 = 0 if O(wi) &#x3E; a, and with 0(df A q)  a,

0(d?7)  a - 1.

Proof. There exists a unique family complex numbers
such that belongs to
then g belongs to J(f) and satisfies 0(g)  cx. This family (ai) clearly
satisfies ai = 0 if &#x3E; a. Write 9 = £j as in Lemma 4.6,
so that §(u18gi/8ui)  a - 1. Put then Tj = £j where Ei

is a suitable sign ±1, so Ei aiwi = df A "7. Remark now that
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Remark 4.8. - It follows from this proposition that Go is C[O]-
free (a property that we know to hold in a more general situation,
cf. Proposition 2.13) and, more precisely, that the classes in Go of WI,... , u,
form a C[0]-basis of Go adapted to the Newton filtration. Indeed, this
proposition implies that any [w] c NaGo may be written as a finite sum

Therefore, we have found /-t generators of Go over (~ ~9~ , giving rise to a
surjective morphism w : 2013&#x3E; Go. This family also generates G as
a and, as G is of rank p, this family
is a of G. The kernel of is thus a torsion submodule,
hence is 0. In particular, the previous decomposition (4.9) is unique.

Notice also that each .JUaGo is a finite dimensional vector space.

Last, observe that if [w] C Go is written as ¿i ai (0) [wil, then the order
of ~c,~~ with respect to the Newton filtration N.Go is given by the formula

We immediately deduce from this remark:

4.c. Proof of Theorem 4.5.

LEMMA 4.11. - The filtration N,G is equal to the Malgrange-
Kashiwara filtration Y,G.

Proof. By uniqueness of the Malgrange-Kashiwara filtration, it is

enough to prove the following properties for the Newton filtration on G: for

any a c Q,

1) NaG has finite type over C[T],
with equality if cx  1, and

3) on is nilpotent.

(Notice that the "goodness" property
for a &#x3E; 0 follows from 2) and 3.)
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1) As each Nj3Go is a finite dimensional vector space, it is enough to
show that, for a given a, there exists ko such that, for any &#x3E; l~o, we have

Choose l~o such that and let &#x3E; ko. We have,
according to Corollary 4.10,

which gives the desired inclusion.

2) We have yet seen that TNa G C and the inclusion

C iV,+,G follows from 0(f) = 1, by definition of the action
of ar. In particular we get TarNaG C Na G. As Na Go - 0 for c~  0,
we get Na G = 7’A/o;+iG for a  0.

3) Let a be a face of dimension n - 1 of Denote by gu the
vector field L(T(uau). Let g E Then we have in G the relation

and therefore

(In the local case, a formula of this kind can be found in [8].) Now, for any g,
the support of gu (g) - 0,(g)g is contained in that of g (it is obtained from
that of g by taking out the points corresponding to monomials ua such that

= 0,(g), because, if g is a monomial, we have ~r(~) 2013 0,(g)g - 0).
Hence, for any face ~’, we have 0,, (g) and, similarly,

(it follows that 0(g) and
; moreover, these inequalities are strict if a’ - a.

Denote by N(g) the number of faces a of such that 0,(g) - o(g).
Applying the previous relation to any such face successively and to any
initial monomial of g (i.e., a monomial u such that ø( ua) == 0 (g)), we
eventually get

End of the proof of Theorem 4.5. - According to Lemma 4.11,
we are reduced to proving that = NaG rl Go for any c~ E Q.
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Let be in NaG n Go, with each va+j
in Na+jGo. Multiplying by er, we find that va+r E Na+rGp n 8Go =
eNa+r-1 Go, after Corollary 4.10. By decreasing induction on r, we find
that w belongs to NaGa. 0

COROLLARY 4.13 (The spectrum). - The spectrum (or the spectral
polynomial) of the Newton filtration on Go is equal to the spectrum (or
the spectral polynomial) of the Malgrange-Kashiwara filtrations (which is
also the spectrum at infinity in the sense of Steenbrink of the Laurent
polynomial f ) . 0

From [52], we conclude:

COROLLARY 4.14. - The spectrum of the Newton filtration is

contained in [O,n] and is symmetric with respect to n/2. 0

Remark 4.15. - For a cohomologically tame or M-tame function on a
smooth affine complex manifold, it can be conjectured, after C. Hertling (for
analytic germs) and A. Dimca (for tame polynomials) that the spectrum
of (G, Go), written as al  ...  a, , satisfies the following inequality:

(if it is true, this inequality is the best possible). See also [7] for the case
of two-variable polynomials. Notice that, for convenient and nondegenerate
Laurent polynomials, one has ai = 0 and a~ = n, so that the inequality is
written as

Recall that, for a E R, one denotes by [a] the smallest integer larger
than or equal to a. We also obtain:

COROLLARY 4.15 (A (C [T~-basis of YoG) . wi, E 

be as in Proposition 4.7. For each i = 1,...J-L, put ki = Then the

classes in G form a of Yo G.
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Proof. We know that the classes of wl, ... , hence of

form a of G

Nakayama, it is therefore enough to prove that the classes of in gr) G
form a C-basis. This is even true in the graded space

Example 4.17 (The case of two variables). - We assume that n = 2. It
is then easy to compute the spectrum, according to the symmetry property.

First, remark that a E Q n [0, 1 belongs to the spectrum if and only if
there exists a monomial g E Clu, u-’] with 0(g) = a: indeed, assume that

with 0(h)  cx and  a (i = 1, 2). According to Lemma 4.6,
one may assume that 0(ai)  §(g) - 1, hence 0(ai)  0 as 0(g)  1.

Therefore, ai = 0 and g = h, a contradiction.

Now, we have determined the part of the spectrum contained

in Q n [0,1[: it is enough to compute 0 of every monomial corresponding
to a point in the interior of the polyhedron r ( f ) . By symmetry, we get
the part in Q n ] 1, 2]. The total multiplicity being equal to /1, we also get
the multiplicity of 1 in the spectrum. Notice that this is the analogue of
Arnold’s "butterfly".

4.d. The Frobenius structure.

By Lemma 4.3, 3), the smallest index of the Newton filtration is 0,
and it has multiplicity one, an eigenvector being the class of du/u. By
Theorem 4.5, this also holds for the V-filtration, and therefore w° : - du/u
is the canonical homogeneous primitive element in Go, as defined in ~ 3.c.

Saito’s method (cf. ~ 3 and Appendix B) gives the existence of a
canonical Frobenius structure on any germ of universal unfolding of the
convenient nondegenerate Laurent polynomial f . The homogeneity constant
is D = 2 - n.
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Appendix A.

In this appendix we give the missing proofs of the results in Section 1.
These are due to B. Abdel-Gadir and B. Malgrange and are adapted from [1]
and [2]. We give them for the convenience of the reader, as these references
are not published and hardly accessible (however, see also [38]). We keep
notation of Section 1.

A.a. Algebraization of D-modules.

Let us begin with a preliminary remark. Let Z be a complex manifold
and let E be a divisor in Z. The sheaf of meromorphic functions
on Z with poles on £ at most is a coherent sheaf of rings. The order of the

pole defines a filtration by Oz-coherent submodules. Coherent 
modules have locally good filtrations. As a consequence, Cartan-Oka

Theorem applies to sufficiently small compact polycylinders and a 
module F is coherent iff, for any sufficiently small compact polycylinder K
in Z, has finite type over r(K, and, for any x E K,

is an isomorphism.

Let now P be a projective space of arbitrary dimension (in the next
subsection, we specialize to I~ = P~). We fix a hyperplane at infinity H 00 and
still denote by oc the divisor H 00 x X c P x X. We also fix coordinates t
on the affine space A == P B We still denote by p the projection
P x X -4 X.

We review here the relationship between coherent Dx [t] (at)-modules
(on X) and good (on P x X). Recall that the

sheaves Ox [t], Ox [t] and Dx [t] are coherent. Similarly, the sheaves
and are coherent. (See [31], [21], [26].)

Consider the following categories:

. is the category of coherent left 

modules. Let M be a It is coherent if and only if

for any sufficiently small compact polycylinder K C X ,

~ M) is finitely generated as a 

~ for any x E K, the natural morphism r(K, M)
Mx is an isomorphism.

. Modcoh (Dpx x (*oo)) is the category of coherent left 
modules and Modp-good is the full subcategory of objects .M
such that, locally on X, there exist a coherent Opx x-rnodule 0 and a
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surjective morphism

Given a p-good M, there exists, locally on X, a coherent
DPx X-module N which admits a good filtration such that A4 is isomorphic
to Ar.

We have making a (left and
right) If M is a Dx [t] (0t) -module, we put

We also denote by Man the restriction of p* M to the open set

THEOREM A.1 (cf. [1]). - The direct image p* (partial algebraization)
induces an equivalence of categories

A quasi-inverse functor is given by p* (partial analytization).

Sketch of proof. - One shows that p* takes values in Modcoh and
that the two natural transformations Id - p* p* and p* p* ~ Id are

isomorphisms. These assertions are local on X, so that we may assume that
the p-good objects are generated by a Opx x-coherent submodule.

1) One first defines analogous categories Modp-good and

and proves the analogous statement for these categories.
The p-good objects we consider take, locally on X, the form ’F(*oo) where
,~ is Opxx-coherent. The theorem is a consequence of Grauert-Remmert
Theorems A and B which say the following:

A.2. - Let F be a coherent Opxx-module. Then Rkp*F are Ox-
coherent for any k and for any relatively compact open subset W of X,
there exists qo C I~ such that, for any q &#x3E; qo and restricting to Ih x W,

o the natural morphism p*p*0(q) - is onto,
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(As usual, we denote by Cpxx(9) the inverse image of Op(q), which is

the rank one bundle on P with first Chern number equal to q, and we

put Fl

Notice that, by taking inductive limits, we have, as p is proper,
= 0 for k &#x3E; 1 and any such .~’.

Fix a compact polycylinder K in X and take qo as in A.2 associated
to T and some neighbourhood of K. As is generated on K by its
sections (Cartan Theorem A), we get a surjective morphism, composition
of two surjective morphisms:

the kernel 9 of which is coherent in some neighbourhood of P x K. We
therefore have an exact sequence on such a neighbourhood:

For q big enough, we also have an exact sequence in some neighbourhood
of K:

and by taking direct limits, we get an exact sequence

Arguing similarly for 9, we find that, in some neighbourhood of K, 
has a free presentation

so that p* of it is a presentation of by free Ox [t]-modules. We
conclude that is Ox [t]-coherent and that the natural morphism
p*p*0(*oo) - 0(*oo) is an isomorphism, as this is true for 0 = 
That the natural morphism ~V -~ p* p* N is an isomorphism for a coherent

Ox[t]-rnodule follows from the projection formula and the fact that
= 0 for k &#x3E; 1.

2) The proof for D-modules is very similar. Having fixed an object .J~l
of we work locally on X so that we may assume
that = where M is Dpx x-coherent and has a Opx x-coherent
submodule T with a surjective morphism N. We
therefore have a surjective morphism
the kernel of which is a coherent Dpx x-module having a good filtration,
by Artin-Rees lemma, hence having a Opx x-coherent submodule G with a
surjective morphism Dpx x N’. One may end the argument as
above. D
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Remark A.3. - Consider the categories for which objects are pairs
made of a p-good Vpxx( *oo)-module and a p-good Opxx( *00 )-submodule
(resp. a coherent Dx [t] (8t)-module with a coherent Ox [t] -submodule). The
morphisms are morphisms of D-modules which send the O-submodule of
the source into the (9-submodule of the target. It follows from the proof
that (p~,p*) also give an equivalence between these categories.

A similar argument applies to the category of p-good 
modules and coherent or the same category with a

p-good 

Behaviour with respect to direct images, inverse images or duality.
Let f : X - Y be a holomorphic mapping and put f - 
P x X -~ P x Y. There are direct image functors with proper support
ft from and ft from .
to Then, standard arguments show that they correspond
each other through p*, p*. A similar result holds for inverse images of
D-modules.

Let M be in Modcoh (resp. in Modp-good 
that we write locally on P x X (resp. locally on X) as .J~1 - N(*oo),
where N is an object of Modcoh (Dpxx) (resp. Modp-good As

op x x is Op x x -flat, we have locally

therefore Extk vanishes for k  dim(P x X)
and otherwise belongs (after a right - left transformation) to

Modcoh (resp. Moreover, if is

p-good, by considering a resolution of by flat Dx [t] (8t)-modules,
we have isomorphisms:

A.b. Holonomic modules.

Say that .JIiI (resp. M) is holonomic if, for dim(P x X), one
has
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Remark A.4. - If N is a holonomic Dpxx-module, it has a good
filtration (cf. [36]), hence is p-good. Then := N( *(0) is p-good and
holonomic as a Moreover, by [25], itself is Dpx x-
holonomic (hence coherent as a DPx X-module and p-good as a Dpx x or

Notice also that, if P = I~1, it is easy to show, without using [36],
that N is p-good: locally on X, one gets a good filtration of N by gluing
local good filtrations.

Applying [25], one also gets:

PROPOSITION A.5. - Let be an object of Modcoh 
The following conditions are equivalent:

1 ) .Jlil is holonomic;

2) considered as a Dpx x-module, is holonomic (hence coherent
and p-good) ;

3) is p-good and M = is a holonomic Dx [t] 

4) a holonomic 

Moreover, when these conditions are satisfied, one has

with d = dim(P x X), i.e., the dual as a is the

localization at infinity of the dual of A4 as a Dpxx-module. D

Remark A.6. - As an immediate corollary of this proposition, one
obtains that local analytic properties of holonomic D-modules hold for
holonomic Dx [t] (at )-modules. In particular, if M is a holonomic Dx [t] 
module,

. if Y is a analytic hypersurface of X, then M(*Y) is holonomic,

. there exist Bernstein functional equations with respect to any

holomorphic function on X,

. for any x E X, the germ Mx has a finite Jordan-Holder filtration.

DEFINITION A.7. - Let M be a holonomic 

1) Let E be a closed analytic hypersurface in P x X and put
We say that the singular locus of M is contained in E if
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p* M is OAanxx-locally free offinite rank near any point of (A x X) B ~. We
denote by the category of holonomic Dx [t] 
with singular locus contained in ~.

2) We say that M is regular included at infinity if the holonomic
Dp x x -module p* M is regular.

Given a holonomic Dx [t] (0t)-module M, there exists, locally on X, a
closed hypersurface E containing the singular locus of M: indeed, locally
on X, there exists a finite number of closed analytic subsets Zi of P x X such
that p* M is O-locally free of finite rank near any point of (P x X) B UiZi
(take the family Zi so that the characteristic variety of p* M as a 
module is equal to now, each Zi, being
locally (on X) defined by homogeneous polynomials with X-holomorphic
coefficients, is contained in a hypersurface E as soon as it is not equal
to P x X.

A.b.l. Proof of Proposition 1.1. - First, remark that the restriction
functor, from the category X x ) to the category Hol E (DD x x ) is
an equivalence: indeed, on D x X B E, is a locally free O-module of finite
rank with a flat connection, hence determined by a linear representation of

7Ti(D x X B E), and 7rl (Alan x X B E) -4 7rl (D x X B E) is an isomorphism.
This functor also induces an equivalence between the regular holonomic
objects. In what follows, we implicitly replace D with Alan.

We first work on a relatively compact open set U of X. Then there
exists a disc D’ C P1 centered at oo such that D’ x 0. On
D’* x U, is a holomorphic bundle with a flat connection. Recall that the
restriction from D’ x U to D’* x U induces an equivalence from the category
of meromorphic bundles with a flat connection on D’ x U with poles along
fO’l x U to that of bundles with a flat connection on D’* x U: an inverse
functor is given by Deligne’s canonical extension (cf [12], see also [34]);
any morphism of bundles with flat connection extends in a unique way to a
morphism of the corresponding Deligne’s extensions, as horizontal sections
of a flat bundle extend as meromorphic sections of the Deligne extension.
Using Deligne’s extension, one may extend MAlan X U to some Mpi xu. Now
we may glue various extensions existing on various relatively compact sets,
according to the unique lifting of morphisms.

The compatibility with duality or with base change is a direct

consequence of the unique lifting of morphisms. 0
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A.b.2. Proof of Corollary 1.4. - Keep notation of ~ A.b.l. Consider
the free ODxx-submodule Mao of M. For x° E X, fix a free 

submodule M1° c MID’ in such a way that the restriction Mag and M1°
glue together as a trivial bundle on P1 (it is possible to choose such a M1°
according to the classification of bundles on P ) . By construction, in some
neighbourhood U of xo, is the inverse image by the projection
D’ x ~7 2013~ D’ of A40 . Denote by A4’ the inverse image of M’o by this
projection. This is a locally free 0 D’ x u-submodule of x u. 

0

Restrict the situation to x U. Now, A4o and M’0 glue together
as a vector bundle No on P1 x U, the restriction of which to x 

is trivial. Therefore, by rigidity of trivial bundles on JP&#x3E;1, No is a free

Oplxv-module, if V is some (maybe) smaller neighbourhood of xo. We
have resp N0
which is therefore free as a (resp. module, and

= Mo (resp. M) is a free Ov[t] (resp. 

A.b.3. Behaviour with respect to moderate nearby/vanishing cycles.
Let Y C X be a smooth hypersurface. Consider the V-filtration (increasing,
indexed by Z) of Dx [t] (8t) relative to Y (a section P E r(U, (0t) ) is
a section of on U iff for any * &#x3E; 0, P.
where Iy denotes the ideal sheaf of Y in X). There is a natural notion of a
good V-filtration on a coherent This notion also exists

for coherent Dpxx or Dpx x (*oo)-modules.

Any holonomic DpxX-module has a canonical good filtration

(increasing, indexed by Z), called Malgrange-Kashiwara filtration with
respect to Y (see, e.g., [43] for more details on the V-filtration): it is the

unique good V-filtration ( a priori only locally defined, but globally defined
by uniqueness) such that, on each graded piece gr~ , the operator x0z + k
has a minimal polynomial with roots in ] -1,0], if x is a local equation of Y.
We then say that any holonomic Dpxx’moclule is specializable along Y.
We define two functors 1/Jy == gro and Oy grv from holonomic 
modules to holonomic Dp y-modules (Bernstein-Kashiwara, see, e.g., [43],
Cor. 4.6.3). The functor is called the (moderate) nearby cycles functor
and cpy is called the (moderate) vanishing cycles functor.

If the roots of the minimal polynomial of x8x + k on gr) are real or
rational, it is natural to extend the definition of the V-filtration so that

it is indexed by R or Q with a (locally) finite set of jumps modulo Z.
For a E R, each VaJlil is V0(Dx X p1 )-coherent and + a is nilpotent
On gra .M .
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One may similarly define the notion of specializable or

Dx[t](8t)-module, and similarly define the nearby or vanishing cycles
functors. Using Proposition A.5 and the previous results on holonomic
Dpxx-modules, as well as the uniqueness of the Malgrange-Kashiwara
filtration, one gets:

COROLLARY A.8. - Holonomic or 

are specializable along Y. The Malgrange-Kashiwara filtrations and the

nearby/vanishing cycles functors correspond each other under p* and p*. 0

A.c. Partial Fourier transform.

We now fix I~ = I~1, we denote by t the coordinate on A~ and by T the
Fourier coordinate on the affine line ~1. Proposition 1.8 clearly follows from
the characterization of holonomic Dx [t] (0t)-modules via the vanishing of
Ext k dim X -~ 1, as this condition is invariant by Fourier transform.

Let M be DX [t] (0t)-holonomic. Notice that M is supported in ~0~ x X
if and only if M = p+N for some holonomic Dx-module N (this follows
from Kashiwara’s equivalence applied to holonomic 
supported on T = 0, after partial Fourier transform), and then M is the
direct image of N by the inclusion {0} x X ~ Â1 x X. In such a case,
(M)an is regular iff M is so.

A.c.l. Proof of Theorem l.ll. - Let us begin with the regularity
statement. The assertion is local with respect to X, so we will work in
some neighbourhood of a point x° E X. We will argue by induction on the
dimension of X, the case dim X = 0 being treated for instance in [35].

By induction on the dimension, we may reduce to the case

where Mx. has no Dx supported in a strict analytic
germ (Z, xO) C (X, XO) (if M is supported on such a set, we may assume
that this set is smooth by considering a finite map f : (Z, XO) - 0)
and by replacing M with f+M).

Denote by ~i (I E I ) the irreducible components of 1: and by mi
the multiplicity of the conormal space (Alan X X) in the characteristic
variety of Man . Then it is known (see, e.g., [35], Prop. 1.5) that M is a
holonomic having generic rank (as a O-module) equal
to f(M) == ¿i mi 

There exists an analytic hypersurface Y C X such that, for any

x ¢ Y, the fibre p-1 (x) is noncharacteristic with respect to p*M, and
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similarly there exists Y C X corresponding to M. If x ~ Y, has only
one cohomology module, hence so has it Man, where ix corresponds to the
inclusion ~x~ ~--~ X. If moreover x V Y, then the singular locus of it Man
is the intersection of the singular locus of Man with ¡Ian x Ixf. As it M
is regular at infinity, the singular locus of is reduced to 

hence the singular locus of m an is reduced to 101 x (X B Y U f7). The
sin g ular locus of Ran is thus contained in Alan X ( y U y)] U [101 x X]. Insingular locus of is thus contained in [Alan x (Y U fi)] U [(0) x X]. In
order to prove the regularity of Man, it is enough to prove the regularity
of the meromorphic bundle Mlan, of rank F with connection obtained by
localizing Man along its singular locus. Indeed, Man has no submodule
supported in ¡lan x (Y U Y), and any submodule supported in ~0~ x X is
regular, as we noticed above.

We assume first that dim X = 1. Denote by x a local coordinate on X
centered at x°. Denote by V. Rn the Malgrange-Kashiwara filtration of
Man with respect to the hypersurface. = 0. Denote simply by ~ and 0 the
corresponding nearby and vanishing cycles functors. By uniqueness of such
a filtration, we have V .(Ran) = where the right-hand filtration is
taken in the category of DX [T] 

LEMMA A.9. - The module Man is regular in a neighbourhood of
¡Ian X Ix’l if and only if (which is holonomic on kan X 01) is
generically 0-locally free of rank r.

Sketch of proof - The "nearby cycles" module wMan only
depends on the formal module where we denote

(somewhat inaccurately) Generically
along Â1an x fxol one may decompose this formal module as the direct
sum of a regular one and of a purely irregular one. Then V) of the purely
irregular one vanishes identically. Therefore, the equality of ranks (as in the
lemma) is equivalent to the vanishing of the purely irregular component, or
equivalently to the fact that the formal module is regular. This, in turn, is

equivalent to the regularity of Man itself. D

Remark then that

Now, the finiteness of p on £ insures that M has no "vanishing cycles
at t = oo" with respect to the function x, hence r(M) - r( ’ljJM) (the
characteristic cycle is easily computed from that of Man, as Man
is regular).
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Let us now consider the case dim X &#x3E; 1. It is a matter of verifying
that the restriction of the meromorphic connection considered above

to any disc of a holomorphic family of discs transverse to the generic part
of the singular locus is regular. For the component {0} x X, this follows
from the regularity at the origin of for any x g Y U Y, as ijm is
regular at infinity (see, e.g., [35]). Fix a germ of disc A C X transverse to
(Y U Y) at a generic smooth point. Then Alan x A is noncharacteristic with
respect to Man . We apply the first part of the proof to the restriction of M
to A~ x A.

Now to the second part of the theorem (the noncharacteristic case).
We reduce to the case where dim X = 1 as above. Then, knowing that Man
is regular, to show that x (z°) is not contained in the singular locus of
Man amounts to showing that the "vanishing cycles module" vanishes

identically out of T = 0. Going back to M, this is equivalent to showing
that §(M) is isomorphic to C[t]d for some d. By the noncharacteristic
assumption, we even have ~(M) == 0, hence the result. D

Remark A.10. - In [2], the proof of Theorem 1.11 is given in the
noncharacteristic case only. The proof proceeds differently: the partial
Fourier transform is realized by taking the direct image of C[T] M Q9 et’
with respect to the projection (t, T) H T. The second point of the theorem
is obtained by applying Kashiwara’s estimate for the characteristic variety.

A.d. A remark on duality of meromorphic connections.

Let Z be a complex manifold and let E be a divisor in Z. A

meromorphic connection on Z with poles on E will mean a coherent
equipped with a flat connection. By [37], we know that

such a sheaf is locally stably free on Z. On the other hand, viewed as a
Dz-module, we know from [25] that .Jlil is Dz-holonomic. Denote by 
the dual meromorphic connection (M, C7Z (*~) ) with its natural
connection, and by DM the dual left holonomic Dz-module (may be not
localized along Z). Then, after [25], the localized module (DA4) ( *~) is still
Dz-holonomic, and is a meromorphic connection. In the following, we put

and

Notice that (ID.A4)(*E) is the dual of .Ilil in the category of left D-modules,
that we denote 

LEMMA A.11. - There is a canonical and functorial isomorphism of
meromorphic connections A4 * -
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Notice that the lemma also gives another proof of the vanishing of
D) dim Z.

Proof. Put n = dim Z. The Spencer complex Sp°(D) is a left

D-resolution of 0 by D-locally free modules and the de Rham complex
on+- (V) is a right D-resolution of u :- SZn(*~). Consider the complex
X§° : - where each term is equipped with its natural structure
of right D-module. It is a complex of right D-modules. As is locally
O-stably free, this complex is (up to a shift by n) a right D-resolution
of w Q90 .M = by locally stably free D-modules. Hence, the complex
,C’ = Homv(IC--, D) can be used to compute we have D-D = H’L* -

Notice that the right D-module Q90 D) is isomorphic to
Q90 M) Q90 D, where now the right structure is the trivial one.

Recall now that, if T" is any coherent O-module, then the natural
morphism

of left D-modules is an isomorphism (there may be an ambiguity in the
middle term: let us specify that the 0-modules structure of D is the

right one).

Therefore, we have Use now the left D

structure on to identify Ck to M* Sp~(D) as left D-modules.

Computing the differentials gives ,C’ ^_~ M* 0o Sp’(D). As .J~l * is locally
O-stably free, this is a resolution of M* as a left D-module. 0

There is a filtered variant of this lemma. We now assume that

Z = D’ x X, where D’ is a disc with coordinate 8 10 = 0~.
On D, consider the increasing filtration F.D such that C~Z has

degree 0, each vector field on X and the logarithmic vector field (Jae have
degree one, and 0-’ has degree one. Hence the vector field t . 82ae
has degree zero and FoD = Oz (t). Consider the sheaf of graded rings
RFD - ©k FkD - zk on Z, where z is a new (commuting) variable. We
consider the category of graded RFD-modules, the morphisms being graded.
The sheaf RFD is coherent, and D-modules with good filtrations correspond
to coherent graded RFD-modules without z-torsion. The shift of filtrations
corresponds to the multiplication by the corresponding power of z.

A 0-graded H om-acyclic resolution of a RFD-module is a resolution by
Hom-acyclic graded RFD-modules for which the differentials have degree 0.
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Any coherent RFD-module has locally such resolutions, which are used to
define the dual RFD-complex, that we denote by 
where the exponent 0 indicates that the differentials have degree 0.

Denote by 8’ the sheaf of linear combinations over j
of fields zE (E a vector field on X) and t. This is a locally free RpO-module.
Denote also by its RFO-dual. We have a connection

which is z-graded of degree 0.

We may therefore define the de Rham complex and the Spencer
complex of RFD, which are respectively 0-graded ?tom-acyclic resolutions
of cv’ :- and RFO. Moreover, the rules for going from left to right
are similar to those for DZ or D.

LEMMA A.12. - Let RM be a coherent graded left RFD-module
which is RFO-locally free. Then,

1) there exists a coherent D-module with a good filtrations F.M
such that RM = RFM; moreover, is 0-locally free;

2) the dual complex has cohomology in
degree n only and DRFDRA4 is strict, of the form for some

good filtration 

3) there is a canonical isomorphism 
which induces, by restriction to z = 1, the isomorphism of Lemma A.11.

Proof. To get A. 12, 3), we use the same proof as in Lemma A.11
with Q’° (RFD) and introduced above. By restricting to z = 1,
we get the isomorphism of Lemma A.11. Then A.12, 1) is clear, as a

locally free RFO-module has no z-torsion, and A.12, 2) follows similarly
from A.12, 3). 0

Remark A. 13. We mainly use formal variants of these lemmas.

1) Let D be a disc in C and consider the sheaf 
introduced in (1.17). For any E D x X, we consider the germ

Introduce the sheaf 0 of vector fields, generated
ove] and We have
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Introduce the corresponding Spencer complex and de Rham com-

plex, to get the analogue of Lemma A.11 for a finitely generated
which is free.

Filter as in Lemma A. 12. Then, the analogue
of this lemma holds for filtered VDXX/D ((0)) (O-l)(c,xo)-modules.

2) We may take for D the sheaf Dx [0, 6~](~, with B-1 = at, or also
its tensor product DA by C~x Q9~ [0-’] -

Appendix B.

We quickly review M. Saito’s solution to Birkhoff’s problem for the
Brieskorn lattice [58]. We keep notation of §2.e, which applies to any
free C[T, G of rank M equipped with a connection having
singularities at 0 and o0 only, T = 0 being regular, and with a lattice Go,
which is a free C[8]-submodule of rank p stable by t = 82 ae . The only
supplementary assumption made here is that the indices of the Malgrange-
Kashiwara filtration are rational numbers (the same reasoning would
apply with real numbers). We denote by N the nilpotent endomorphism
of Ha . = grv G induced by TaT + cx.

B.a. - The following assertions are equivalent (cf. e.g., [54], §IV.5):

1) there exists a basis E of Go satisfying (3.1),

2) there exists a C [T]-lattice G’° C G which is logarithmic (i.e., stable
by TaT ) such that Go = Go n G’° C 

On the other hand, according to the existence of a Levelt normal
form (see e.g., [54], lemme II.1.2), there is a bijective correspondence
between logarithmic lattices G’° and exhaustive decreasing filtrations H8 ==

EDaE[0,1[ H~ of H = Ha, which are stable by N. Put G,k :== 
To G’° is associated the filtration

DEFINITION B.1. - A solution G’° to Birkhoff’s problem for Go is
compatible with V.G (or is a V-solution) if, for any cx E Q, we have

B.b. - Recall that, for any cx, the space is finite dimensional

(see e.g., [52]). We will repeatedly use that for (3 « 0, we have fol
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and V, c G’° . Then, by induction, ( B .1 ) ( * ) is equivalent to

Denote by amin the minimal spectral number:

Then, if a V-solution G’° exists, we have, for any a E [amin, amin + 1 ~,

as Hence, for such an i
is independent of the choice of the V-solution.

Given a V-solution G’°, we then have

which is equivalent to

We then say that G’° is a Y+-solution to Birkhoff’s problem for Go if, for
any a, we moreover have

B.c. - Assume that G’° is a Y+-solution. Then, the corresponding
matrix which is the first component of 8ae in the previous
decomposition, is semisimple, and its spectrum is equal to the spectrum
of (G,Go). Moreover, Go n G’° n Ya G is nothing but the sum of the
eigenspaces of Aoo acting on Go n G’° corresponding to the eigenvalues  a.

In particular, any element of Go f VI-in G = Go ’ I G’° n is an

eigenvector (with eigenvalue amin) ofj4oo.

B.d. - Let ,S’ be a Hermitian nondegenerate sesquilinear pairing of
weight w on (G, Go) ( cf. Definition 1.24). It induces nondegenerate linear
pairings

On the other hand, we say that a solution G’° to Birkhoff’s problem for Go
is compatible with S (or a S-solution) if the induced pairing

takes values in
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PROPOSITION B.3. - Let G’° be a logarithmic C[T]-lattice of G.

1 ) G’° is a V -sol u ti on to Birkhoff ’s problem for Go iff for any a E [0, 1 [,
its associated filtration G’.gr;; G is opposite to G.gr;; G.

2) G’° is a V++-solution iff moreover both filtrations are (B)-opposed
in the sense of [58], i . e., for any a E ~0 ,1 ~ and any 1~,

3) A V-solution G’o is a S-solution iff

j’f 

J’f 

where orthogonality is taken with respect to the pairing (B.2).

Remarks B.4.

1) A proof in the microlocal situation was given by M. Saito in [58],
[Th. 3.6]. An adaptation to the affine situation was given in [52]. We sketch
here a simpler proof of 1). The proof of 2) and 3) is then easy, see loc. cit.
or [54], Rem. IV.5.13. Notice also that another proof of 2) can be obtained
from Theorem 3.2.1 in [15].

2) According to [58], Lemma 2.8, there is a natural choice of an

opposite filtration to G. which gives rise to a V+, S-solution
to Birkhoff’s problem in case G, H is the Hodge filtration of a mixed Hodge
structure for which the weight filtration is obtained from the monodromy
filtration of N and such that the pairing (B.2) is a morphism of mixed
Hodge structures. That these properties are satisfied for the Gauss-Manin
system, its Brieskorn lattice and the duality pairing S of Theorem 2.14,
follows from [58] in the singularity case, and from [51], [52] in the affine
case.

Proof. Let H be any finite dimensional C-vector space equipped
with an exhaustive increasing filtration H. (indexed by Z, say) and with
two exhaustive filtrations F.H (increasing) and (decreasing). We
denote by grH the graded space associated to H.. Then F.H and F’’ H
naturally induce filtrations F, grH and F’.grH.

Let u be a new variable. The C-vector space IF = EBkuk FkH is naturally
equipped with the structure of a C[u]-module, as F.H is increasing,
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and similarly IF’ = is a They glue together
along C [u, u-’] as a vector F’’ H) on P . The following
properties are equivalent:

1) there is a decomposition

2) for all 1~ ~ .~, one has

3) for any I~ one has

and

4) the bundle F(F. H, F’* H) is isomorphic to the trivial bundle (of
rank dim H) .

When any of these properties is satisfied, we say that F.H and F’°H
are opposite.

LEMMA B.5. - Assume that F, grH et F’*grH are opposite. Then so
are F. H et F’’ H and, for any k, one has gr (

Sketch of proof. - By induction, one reduces to a filtration H. of
length two, and one uses that an extension of trivial bundles on P1 is trivial.
This gives the first part. The second part reduces to a dimension count. 0

Let us sketch the proof of B.3, 1). Assume that the filtrations G.Ha
and G’’ Ha are opposite for any a C ~0,1 ~. Then, and are

opposite for any a. According to Lemma B.5, for any /3  cx, the filtrations

and remain opposite and, for all k,

For l~ and a fixed, let {3 « 0 such that and ~ 1

The left-hand term above is the dimension of

Therefore, Hence
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because G.gr~G and G’*gr’G are opposite for any 7. So, (B .1 ) ( * * ) is true
at the level of dimensions. It remains to show the vanishing of the two by
two intersections of the terms in (B .1 ) ( * * ) , and it is enough to show that,
for any k and any a, Gk-l f1 G Ik n VaG = 0. But the image of this term
in gr~G vanishes, by oppositeness. Hence

if 13 « 0 is chosen so that n = fOl.

Conversely, assume that G’° is a V-solution. We have to show that,
for any a and k,

Clearly, (B.7) is a consequence of (B.1)(*). Fix a and k and choose

(3 « 0 such that C G’~, then choose £ » 0 such that =

n + Y~,~G. Then

On the other hand, (B.1) (**) implies

In the sum, the right-hand term is contained in G’~, and the left-hand term,
contained in n vaG, meets G Ik at 0 only. Therefore,

hence (B.6).
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