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FINITENESS PROPERTY
FOR GENERALIZED ABELIAN INTEGRALS

by Rémi SOUFFLET

1. Introduction and results.

We note PI the real projective line with its standard analytic struc-
ture. If n E N, all subsets of R’ are naturally embedded in the analytic
manifold P’.

We assume that the functions log and power E R,
are defined on R and are equal to 0 out of ]0, +oo[. A (real) power map
r : RP is the data of p real numbers (~yl, ..., ~yp) and is defined by

A subset X of R’ is a globally semianalytic set if it is defined, in a
neighbourhood of any point of P’, by a finite number of equalities and
inequalities satisfied by analytic functions. A globally subanalytic set of
R" is the image of a globally semianalytic set of R’ x by the canonical
projection from R’+’ to R’. A globally subanalytic map is a map such
that its graph is globally subanalytic. A globally subanalytic function is a
globally subanalytic map from R" to R.

The functions we will deal with can be defined as follows.

Keywords: Abelian integrals - Preparation theorem - o-minimal structures - Diophan-
tine conditions.
Math. classification: 32B15 - 32B20.
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DEFINITION 1. 1. - A xlx -map f : IRn -7 RP is a finite composition
of globally subanalytic maps and power maps. A xa-function is a xa-map
from M. to II~.

This kind of functions has been studied by Khovanskii [Kh2],
Tougeron [To] and Miller [Mi]. The importance of their geometry takes
back to Dulac’s problem [Du]. Namely, they appear in the study of the
Poincaré return map (near a polycycle) associated to an analytic vector
field (see [Mo] and [MR]). More recently, Grigoriev and Singer showed that
real power functions and series of real power functions appear as solutions

of algebraic differential equations [GS]. The understanding of their geome-
try is thus essential in the theory of differential equations and foliations.

In [LR2], Lion and Rolin study the volume of globally subanalytic
sets. They show that the integration of a globally subanalytic function on
a globally subanalytic set leads to a function which belongs to the class
of They can be defined as finite compositions of globally
subanalytic maps with the functions exp and log. From [DMM], these
functions satisfy the following finiteness property:

’~: there exists an integer N which bounds the number of connected

components of the fibers uniformly with respect to t E R.

Such a property is always true in an o-minimal structure, a definition
of which is the following.

DEFINITION 1.2. - Let 2tn be a collection of subsets We say
that 21. = 2tn is an o-minimal structure if

- it contains the semialgebraic subsets of the spaces n E N,
- for all n, 2tn is a boolean subalgebra of p(IRn),
- the elements of 2t are stable under cartesian product and linear

projection,
- consists of the finite unions of points and intervals.

If 21. is an o-minimal structure, a map f : R~ 2013~ RP is said to

be definable in 9~ and is called a 2t-function if its graph belongs to the
structure 21..

The first examples of o-minimal structures are the semialgebraic
sets (it is a result of Tarski [Ta], see also [BCR],[BR]) and the globally
subanalytic sets [Ga]. As a consequence of Khovanskii’s theory [Kh2], the
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property 8 is true for the class of xÀ- functions. Miller specifies this result
by showing that the form an o-minimal structure [Mi]. The works of
Wilkie and of van den Dries, Macintyre and Marker extend the o-minimality
to the class of £G-sets [DMM]. Consequently, the results of [LR2] give an
other proof of the finiteness properties of abelian integrals established by
Varchenko [Va] and Khovanskii [Khl].

Our aim is to generalize the results of [LR2] to the class of xA-
functions.

Parameter family of Consider a xB-function f =

hk o Fk o ... o hl o r1 where the hi’s are globally subanalytic maps and
the hi’s are real power maps. We consider that the maps hi are fixed and
the maps Fz are taken as parameters. The data of the maps r is equivalent
to the data of a multidimensional parameter 1 C raeN. This way, we consider
a parameter family of xÀ-functions we denote (fry )ryEJRN.

If we consider a function f depending on a real parameter ~, then
it can happen a change of dependency under integration. Let us take
an example to illustrate this fact. Consider the I-parameter family of
functions (gry)ry defined by g~y (x) = x’Y. Its integration leads to the functions
Gq (x) = if -y :/~- -1 or the function log = -l. The functions

and Cry are xB-functions but they have not the same dependency with
respect to ~. In the case of G,y, a rational dependency with a pole at -1
occurs. Thus we should better formulate the integration process under the

following form: define the functions for p, v E R and p ~ -1 by

Then is a primitive of for all -y = -1. Of course, in this

elementary example, the function (p,v,x) ~ GJ-L,v(x) has an explicit
finiteness property. Nevertheless, the case of several variables (at least

two) leads to dependencies that can be much wilder. This may happen for
instance when considering a convergent sum of functions for infinite

different values of p.

Results. - One can find in [Sol] the announcement of these results
(without proof). A function of the form f = I

where P is a polynomial and the t2’s are xA-functions, is called a Q5-

function. As in the case of xÀ-functions, we consider parameter families
of 6-functions or where q is the parameter coming from
the xa-functions ti . Our main result is the following.
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THEOREM 1.3. be a parameter family of 0-functions
of jRn x R. There exists a subset D C R N of full Lebesgue measure
such that, for all q E D, for all xa-functions cp, ~b of the function

is a Qfunction.

To clarify this result, we can formulate it under the following form:
there exists a parameter family (G8)8EJRM of functions of R’ such that, if
q E D, then F,y - G~(.y) . But the dependency of G6 with respect to -y is
still not well understood.

Theorem 1.3 says that for almost all value of the exponent parame-
ter q, the integration of a (5-function on a x A-set belongs to the o-minimal
class of £G-functions. From [DMM], we are then able to derive the follow-
ing finiteness result. It can be seen as a partial generalization of [Va] and
[Khl].

THEOREM 1.4. - Let ( f,y, p ) be a parameter family of 0-functions of
and let (cp~) and be parameter families of xa-functions of R’.

We note ~ the parameter given by q E R N, p, v and P. Then the function

FE (x) - f " (x) (x) p (x, y) dy satisfies: there exists a subset D c of full- 

Qu. (x) )
Lebesgue measure such that, for all non negative integer m, for all 7 E D,
there exists a constant ~) E 1‘~ which bounds the number of connected
components of the level sets I F~ - cl, uniformly with respect to c E R, the
parameters p and v, and the polynomial P of degree less or equal to m.

The paper is organized as follows. In Section 2, we prove a first

integration result in the case of families of reduced xÀ-functions. This
is done thanks to the preparation theorem of Parusinski [Pa], Lion and
Rolin [LR1] which allows to localize the integration study on suitable
xB-cylinders. In Section 3, we study the relationships between the local
parameters and the global ones and we give a result in the spirit of

Theorem 1.3 in the case of xÀ-functions. The proof of Theorem 1.3 is done
in Section 4. Section 5 is devoted to the proof of Theorem 1.4.

2. The reduced case.

The first step in the proof of Theorem 1.3 consists in restricting the
study to suitable reduced functions.

Reduced x~-functions and diophantine conditions. - Thanks to the
preparation theorem of Parusinski [Pa] (see also [LRI]), a xa-function
f : R can be reduced to the following form:
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on a partition of into finitely many x~-cylinders C. We refere to
[LRI] for the details. In such an expression, the bi’s are real numbers and

is a rational combination of

where 8 is a x’-function equal to 0 or comparable with y on C, A is a
xÀ-function and U is a xA-unit. Under this form, one can give sufficient
conditions under which the formal integration of f with respect to y is

convergent. This leads to the following definition.

DEFINITION 2.1. - Let 6 = (81, JRS and let c, v be positive real
numbers. We say that 6 is of (c, v)-type if, for all (no,..., ns) E {0}?

We denote ~~,v the set of (c, v)-type numbers of ffi.S and ~)~ =
It is a well-known fact has full Lebesgue measure if

v &#x3E; s + 2 (see [Ar] section 5.24.C). Moreover, the following lemma is

just a consequence of the multi-dimensional Cauchy’s criterion for analytic
functions.

LEMMA 2.2. - Let be an analytic
function of where X E RP, Y, Z E and let D be a polydisc of
convergence of V. Let 6 = (b1, ..., bs) E 0’ v and i

- j£)) for all I E NP+2s. Then the series ~
defines an analytic function in D.

The following cutting lemma will be useful in the sequel.

LEMMA 2.3. - Let be a reduced

xÀ-function on a xÀ-cylinder C. There exist xa-functions 91 of R’+’ and
92 of R’ such that f (x~ ~J) = + 

Proof. Recall that U = V o 9 where

is a so-called morphism of reduction with values in [-1, l]p+2s and

V(X, Y, Z) = is an analytic unit of polyradius of con-

vergence (2,..., 2). The functions a2 and bj are xa-functions of jRn. We

and the corresponding analytic functions
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considering that these functions are identically equal to 0 if the correspond-
ing set E or F is empty. Then we have 91(X,y) = yfO A(x)Vl(x,yfl, 
and the function 92 is given by g2 (x) = ..., y6,). 11

We can then prove some sort of almost stability result for the

integration of reduced x-functions. This is the following proposition.

PROPOSITION 2.4. Let f(x,y) = be a

reduced xÀ-function on a xÀ-cylinder C. There exists a subset QS C D c R’
of full Lebesgue measure such that, if 6 = (81,...,8s) E D, then there exist
xÀ-functions G1 of R’+’ and 92 of I~n such that F(x, y) = G1(x, y) +
g2 (x) log y, is a primitive of f with respect to g.

Proof. - It suffices to prove that such a D contains the sets Q’ and
&#x3E; s -f- 2. From Lemma 2.3, we have f = Hence the problem

is to find sufficient conditions under which g, admits a x A-primitive with
respect to y. Up to a sub-decomposition of C into 2 x A-cylinders, we can
assume that y - 8(x) has constant sign on C.

- Assume that v &#x3E; s + 2 and 6 (E 0’. In this case, the function 92 is
identically equal to 0. Then we get

and we define the series W(X, Y, Z) = E, From Lemma 2.2,
the condition 6 implies that W is analytic on the same polydisc of
convergence as V. We then consider

This is a x A-function on C and an elementary computation shows that
·

- If we assume that 6 C Q’ then we can use the cutting Lemma 2.3
one more time to deduce that 91 admits a xÀ-primitive with respect to y.
The computations being quite the same as in the previous case, we do not

give the details. 0
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3. Some intermediate results.

When considering a parameter family of x’-functions the

definition implies that ~ is a global parameter. Conversely, in the expression
of a reduced x À - function on a cylinder, the real exponents (61 , ..., 6s) are
some kind of local parameters. To prove Theorem 1.3, it is necessary to

understand how the local parameters depend on the global one. This is the
aim of the following results.

LEMMA 3.1. Let be a parameter family of xÀ-functions

If i, is reduced to the on

a xa-cylinder, then the b2’s are polynomials in -y with rational coefficients.

Proof. We proceed by induction on the number m of globally
subanalytic maps in the definition of 

Case m = 1. - We put Y) - (hI or1)(x, y) = hi (xP, where

1-t E qi C R and hl = (hl,l, ..., h1,p) is a globally subanalytic map. It
suffices to apply the preparation theorem for globally subanalytic functions

The functions hl,3 can be simultaneously reduced to the form

Hence the conclusion holds in the case m = 1.

Step of induction. - Assume that, after m compositions of terms of
the form we get p functions C such that

the gi’s verify simultaneously the conclusion of the lemma. We can then
write

Notice that we can assume that the polynomials 81, ..., 8s are common to
the reduced functions 92 (it suffices to add zero terms in the units UZ ) . We
put = (À 1, ..., Àp) : JRP identifying the power map and the

corresponding vector in JRP. We have: 9;~ 2 = Moreover, U2
being a xÀ-unit, the function Ui = Ui 2 is also a It comes

is a globally subanalytic map, then we have
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where the are globally subanalytic functions for all j and a is
The exponents in the variable yl that appear in this expression

are all polynomials in the global parameter with rational coefficients. The
result follows now as in the case m = 1 (see Proposition 4 of 0

The second intermediate result is arithmetical: from Lemma 3.1, we
must prove that the set E such that the s-tuple (Pi (-y), ..., 
satisfies a diophantine condition (with Pi polynomial with rational coeffi-
cients) has full Lebesgue measure.

Before proving such a statement, we start with more general results
which may be of its own interest. In the following, B1 denotes the closed
ball of R N centered at the origin and of radius 1.

LEMMA 3.2. - Let ( ft) be a continuous globally subanalytic family
of analytic functions of Bl where the parameter t varies in a compact
subset. Assume that, for all t, ft does not vanish identically. Then there
exist constants c &#x3E; 0 and v &#x3E; 0, with v E Q, such that, for all t and for all
6 1], we have

where and Volk denotes the in RN
for N.

Proof. We proceed in 4 steps.

Step l. Let (s) be a globally subanalytic family of globally
subanalytic subsets of B2 of dimension at most N - l. There exists a
constant K &#x3E; 0 which bounds the (N - 1)-volumes of the Zs’s uniformly
with respect to s.

This is a direct consequence of the finiteness property of globally
subanalytic sets (Gabrielov’s property) and the Cauchy-Crofton Formula.

Step 2. - Let (Yu ) be a globally subanalytic family of globally
subanalytic subsets of Bl of dimension at most N - 1. If r e]0, 1], we
note Y~,~. = B2 I d(x, Yu)  rf and Zu,r the frontier of Yu,r. Then
there exists K &#x3E; 0 which bounds the (N - l)-volumes of the Zu,r’s and
such that Kr bounds the N-volumes of the for all r E]O, 1].

We start with a general result about the volumes. Let A be a

compact subanalytic set of dimension at most N - l. We set A° = A,
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for r &#x3E; 0. Let us prove that (we use arguments inspired by the study of
tubular neighbourhoods made in [BG]):

The function distance to A° being subanalytic and proper, there exists a
finite subanalytic stratification of R N such that, if X is one of these strata,
we have: either X has dimension less than N - 1, either X has dimension
equal to N, is open and d(., A) I x is a submersion. The strata of dimension
less than N - 1 being of no interest for the computation of the volume, let
us consider an open stratum X. We note X S = As n X and Xr n X.

The set X S is a hypersurface and let us choose x e X. Let u be a vector
normal to X~ and such that x - su E AO. We have x + tu E for

It I sufficiently small which means that the volume form of R N is locally
splitted into the product of the (N - 1 )-volume form on X s at x by the
1-dimensional volume form of the normal of X s at x. It is now sufficient to

apply Fubini’s theorem to get

which gives easily the formula above.

Now we apply the step 1 to the family Zu,r and we get the constant
K &#x3E; 0. For all r e]0,1], we then write

and the conclusion follows from the previous argument.

Step 3. - Let be a globally subanalytic family of globally
subanalytic open subsets of Bl. Let ru be the supremum of the radii of the
open balls contained in There exists K &#x3E; 0 such that Kru.

Let Yu be the frontier of Ou. If r &#x3E; r~ then O~ is contained in Yu,r.
It is then sufficient to apply step 2.

Step 4. - Let us now turn to the proof of the lemma.

We denote u = (t, E) and Ou = Xt,c’ If E e]0,1], we note Re = supt rt,~
where rt,e is defined in step 3. Let us show that Re tends to 0 when E tends
to 0.
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If R~ does not tend to 0, there exist sequences (~), (tl) and a
sequence of balls BZ of radius with Bi C such that 0,
limi ti = ~oo (as the parameter t varies in a compact subset, exists),
lim, = R &#x3E; 0 and the Haussdorff’s limit of is a ball ~oo of radius
R &#x3E; 0. Denote B~ the ball with the same center as and of radius R/2.
For sufficiently large i, we have C Bi. From the uniform continuity
of (ft), we deduce that the function itoo is equal to 0 on B~. Hence
itoo is identically equal to zero (analytic continuation) which is absurd

by assumption.

We have then R~ = 0. As the function R~ is globally
subanalytic, from IJo j asiewicz’s inequality, we deduce that there exists some
constants d &#x3E; 0 and v &#x3E; 0 with v E Q, such that

Taking c = Kd, we apply step 3 to complete the proof. D

This lemma admits an o-minimal version. Its proof is very close to
the above one (thus it is left to the reader as an easy exercice).

PROPOSITION 3.3. - Let Q( be an o-minimal structure. Let ( ft) be
a continuous Q(-definable family of %-definable functions defined on a
%-definable compact K of JR.N. Assume that the parameter varies in a
Ql-definable compact subset and that, for all t, the zero set of ft has

empty interior in Then there exists a continuous Q(-definable function

8 : ~0,1~ - R, equal to 0 at 0, such that for CIO, 1],

where Xt,c is the set of points x C K such that I  é.

In the polynomial case, the following version holds.

LEMMA 3.4. - Let d be an integer. There exist c &#x3E; 0 and v &#x3E; 0 with

v C Q such that, for all non constant polynomial P of degree at most equal
to d satisfying sUPB1 1 and for all E E]O, 1], we have

where

Proof. This time, the parameter is the polynomial P itself. The

space of parameters is not compact any more. Nevertheless, the space of
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polynomials of degree at most equal to d has finite dimension and all the
norms on this space are thus equivalent. It comes:

Fact. - Let W1 and W2 be bounded open subsets of JRN. There exists
a constant L &#x3E; 0 such that, for all polynomials P of degree at most equal
to d, L supW2 IPI.

To prove the lemma, we argue as in Lemma 3.2 in 4 steps. The first
3 steps are completely the same. We modify the 4th one in the following
way:

If the function Re does not tend to 0 with 6;, there exists a sequence

(E.), there exist a sequence of polynomials (Pz) and a sequence of balls BZ
of radius ri such that Bi C ~p,,e, ? with lim2 E. = 0, = R &#x3E; 0 and the

sequence converges (in Haussdorff’s topology) to a ball ~oo of radius
R &#x3E; 0. Denote the ball with the same center as and of radius R/2.
For sufficiently large i, we have and thus IPI (  E.. But

sUPB1 1. This fact contradicts the equivalence of the norms (with
Wl = Bl and W2 = B~ ) . The conclusion follows as in Lemma 3.2. D

Remark 3.5. - One can find stronger versions of this last result in

[Yo] and [CY]. The method applied in those references is based on the

notion of metric entropy.

From Lemma 3.4, we can deduce the following arithmetical lemma
which will be used in the proof of Theorem 1.3. The author would like to
thank D. Trotman for pointing out a mistake in the first proof of this result.

LEMMA 3.6. - Let ?!,...,?~ be non constant polynomials of N
variables with rational coefficients. There exists v &#x3E; 0 such that the set

such that (Pi P, 0’ has full Lebesgue measure
in 

Proof - We fix a relatively compact ball Br of radius r &#x3E; 0 of 

Let us estimate the measure of the complement of B in Br.

For all n = íZs+1 B 10 1, we note

Then Pn = 0 defines an algebraic hypersurface Sj* of JRN (or eventually
an empty set but the estimation is then straightforward). The polynomials
Pn have degrees bounded by an integer d which does not depend on n.
Moreover, there exists an integer q &#x3E; 0 such that, if Pn is not constant,
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then SUPB, This comes from the fact that the coefficients of the

polynomials Pi are rational numbers whose denominators are bounded.

We denote 2)c the complement of 93. Then we have

where . Assume that c  1 (this
is not a restriction), from Lemma 3.4 we deduce that there exist K &#x3E; 0

and p &#x3E; 0 (p rational number) such that, for all n,

hence

We sum over with n &#x3E; 0 fixed. We get:

If v is large enough, the above sum is convergent. We deduce that the
measure of is smaller than K’c~‘ with a constant K’ &#x3E; 0 depending
only on r, s and the polynomials Pi. As c tends to 0, it follows that the

measure of ~c is equal to 0. This completes the proof. D

From Proposition 2.4, Lemmas 3.1 and 3.6, we can derive the following
partial result:

PROPOSITION 3.7. - Let parameter family of xA
functions There exist an integer no and a subset D C R N of
full Lebesgue measure such that, for all q E D, there exists a finite cover
of with no x)-cylinders on which f admits a primitive with respect
to the last variable in the class of 0-functions.

Proof. The only thing to show is that the number of cylinders
which appear in a preparation of f with respect to the last variable y does
not depend on the global parameter 7. This fact is a consequence of the
preparation theorem for globally subanalytic functions (see for instance
[LRI] ) and we leave the proof to the reader. D
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4. Proof of Theorem 1.3.

From the Preparation Theorem for xÀ-functions, the previous lemma
and Proposition 3.7, it is clear that we can restrict the study to the following
situation: the support of f is a xa-cylinder C = I (x, y) I x E 
y  where ~p and V) are continuous xa-functions on the base B of the
cylinder. On this cylinder, the 0-function f is a finite sum of monomials
of the form

where

- L is a finite product of logarithms of x’-functions of the base B,
- 

g, hl , ..., hd are x--functions on C,
- I~1, ..., kd are integers,
- the functions g, hl, ..., hd are simultaneously reduced on the cylin-

der C:

where A and the Ai’s are xa-functions on B, the 6j’s and the [ti’s are
real numbers, U and the Ui’s are x~-units (we can always assume that the
morphism of reduction is common to the x)-functions considered).

We have then

11-""" 11-"""

For all i, the function log is analytic in a neighbourhood of the closure of
the image of Ui (for Ui is a unit) and thus we have

where and Wi is analytic with the same
polyradius as Ui (we take for instance (2, ..., 2) ) .

The expansion of (**) yields to the case f = t.v where
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and V(x,y) W being analytic of polyradius
(2,..., 2). From Proposition 2.4, we can split v into the form v (x, y)
= vl (x, y) + w2 (x) /yi , vi and W2 being xa-functions and vi admits a xA-
primitive with respect to y in the class of x--functions for almost all values
of the local parameter (61, ..., 6s). Moreover, from Lemma 3.6, this is also
true for almost all values of the global parameter.

Let us put v2 (x, y) = w2 (x) /y1. We now compute a primitive for
the functions t.v2, i = 1,2. Following the ideas of [LR2], we proceed
by induction on the multi-indices with the

lexicographic order.

Case v = 0. - No logarithm appears in the expression I = 1, 2.
Hence this is just a consequence of Proposition 3.7.

Step of induction. - There are two cases:

t = 1. - Let w1 be a xÀ-primitive of vl with respect to y. We integrate
by parts choosing H = LAwl as a primitive of LAvl. It comes

The first term is clearly a 0-function and the second term is a primitive of a
sum of 0-functions whose multi-indices are strictly less than (d,1k1, ..., kid)-
Thanks to the hypothesis of induction, we can choose such a primitive in
the class of 0-functions,.

i = 2. - We still integrate by parts choosing the function

as a primitive of i Hence we get

The conclusions are now the same as in the previous case.
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To finish the proof, it is sufficient to note that if F is a 0-function and cp
is a xA-map, then the composition F o ~p is a 0-function. D

If we take into account a dependency with respect to a polynomial
parameter P, we have the following result.

THEOREM 4. l. - Let ( f,y, p) be a parameter family of 0-functions of
x R and let (~v) be parameter families of xa-functions of IRn.

There exists a subset D C R N of full Lebesgue measure such that, for all
q G D, for all polynomial P E IR[X1, ..., X2d] and for all a, v, the function

I I I

Proof. - This is a direct consequence of the proof of Theorem 1.3. 0

5. Proof of Theorem 1.4.

Let us recall some basic facts about the class of the so-called LE-

functions (see [DMM], [DM], 

DEFINITION 5.1. - A f : a finite composition of

globally subanalytic maps with the functions exp and log. A ,~~-function
is a from to R.

This class of functions gives rise to the £E-subsets of the spaces Rn,
n E N. In [DMM], van den Dries, Macintyre and Marker solve the Tarski’s
conjecture related to these sets by showing that the £0152-subsets form an
o-minimal structure. Their proof is based on Model Theory. In [LR2], Lion
and Rolin give a more geometric proof of this result based on a preparation
theorem for £E-functions.

The following result is a consequence of the o-minimality of the
collection of £E-subsets.

PROPOSITION 5.2. - Let be a parameter family of B-functions
ofR~. For all integer m, there exists an integer A(m) which bounds the
number of connected components of the level cl, uniformly
with respect E IIgN, c E R and to the polynomial P E ..., X2d] of
degree less or equal to m.

Proof. - We fix an integer m e N. The vector space Em of polyno-
mials P of ..., X2d] whose degree is less or equal to m is isomorphic
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to (6(ni) depends on d). Hence, if we restrict the parameter fam-

ily to x Em’ we get a family of B-functions parametrized by
RN+d(m)

We now consider the function f as a function of x E R" and of the
parameters -y E R N and P E This is equivalent to consider the function
f as a function of x, q and a E }R8(m) where a is the vector of the coefficients
of the monomials of P.

Let g be the function defined by
g(x, y, a, c) = fy,(P)x2013 c = f(.x,y,a) 2013 c. This is clearly a LE-function
of Iaen+N+8(m)+1. Consequently, the set is a LE-subset and has

the property of uniform bounds for the number of connected components
of its fibers [DMM], [DM]. Hence there exists an integer A(m) which bounds
the number of connected components of the sets

uniformly with respect to q, a and c. As ~x E R n (x, q, a, c) ((0) ) ) =
= c}, the proof is completed. 0

Let us now turn to the proof of Theorem 1.4.

Proof. We put £ = (q, P, ~c, v) where q E E and v E R ,
and we put ( = (P, p, v) . From Theorem 4.1, we know that there exists a
subset D C of full Lebesgue measure such that, for all q E D, the
function

is a 0-function for all values of the parameter (.

We now choose -y E D, we fix an integer m and we take the parameter
P in the space E’.,.L of polynomials of whose degree is less or
equal to From Proposition 5.2, the theorem will be proved if we show
that, when ( varies in x R" x R , the function varies in a parameter
family of 0-functions parametrized by Em x IRM x where Er,.t is the space
of polynomials of R[Xi,..., whose degree is less or equal to q(m).

A finite sum of B-functions with polynomials in 2d’(m) variables
whose degree is less than q’ (m) has also this property that is: it can

be written as a 0-function with a polynomial whose degree and number
of variables are bounded by integers depending only on m. This is true
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for a product too. Thus we only have to show that the computation of

F,y,C involves finitely many operations as finite sums and products of C3-
functions.

From the proof of Theorem 1.3, in order to compute a B-primitive of
with respect to y on a xÀ-cylinder, we write the function f as a finite

sum of functions t.v where

and the number of functions in this sum is bounded by an integer depending
only on m. Such a function t.v can be written as a 6-function with a
polynomial whose degree and number of variables are bounded by integers
depending on m. Now, the integration process described in the proof of
Theorem 1.3 involves finitely many operations of sum and product of 0-
functions. Hence, each primitive of f on each xA-cylinder can be written
as a B-function with a polynomial whose degree and number of variables
are bounded by integers depending on m. To complete the computation of

F.y,~, it suffices to write

where the Ck’s are the xÀ-cylinders of the partition whose boundaries are
given by the x"-functions ’Øk and Fk is a B-primitive of f on Ck and

1ck is the characteristic function of Ck (hence is a xÀ-function). Moreover,
the number of xÀ-cylinders Ck does not depend on m. D

Remark 5.3. - Theorem 1.4 can be seen as a result of non-oscillation

of certain generalized abelian integrals. Indeed, consider two parameter
families of B-functions (F,y) and (G5) of JR:2 and a xa-function 4) of R 2. If
we put o~y,5 = Fy (x, y)dx -E- G5 (x, y)dy and ht = then the levels rt
are xlx_subsets of R2 and Theorem 1.4 implies that, for almost all values of
the parameters ~ and 6, the function t H I(t) = frt c,~.y,~ is a 6-function of
R. In particular, the number of its roots is uniformly bounded with respect
to (D.

Remark 5.4. - From the statements of Theorems 1.3 and 1.4, the

following question naturally arises: what about the remaining set D’ in
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the space of the parameter ~? We are able to give a partial answer to this
question: one can find "very bad" values of the parameter -y such that the
integrated function does not belong to the class of functions. This result
uses a precise preparation theorem for £G-functions and is presented in an
other paper (see [So2]). Unfortunately, we are not able to say anything
about the oscillating properties of the integrated function in this case.

The author would like to acknowledge M.M. Blais, Cano, Lion,
Moussu, Rolin and Trotman for useful discussions and remarks.
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