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ON G-DISCONNECTED INJECTIVE MODELS

by Marek GOLASI0144SKI

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 625-664

Introduction.

The purpose of this paper is to redefine the equivariant minimal-

ity and redevelop some results on the rational homotopy theory of G-
disconnected spaces. This was originally studied by the author in [7] but
some of the constructions used must be corrected.

The central results of Sullivan’s theory of minimal models [18] has
been generalized by Triantafillou [19], [20] to equivariant simply connected
and nilpotent spaces when G is finite, but only to G-connected and finite
type spaces. Since a space X is G-connected only if all the fixed point
subspaces X H are non-empty and connected for all subgroups H C G,
this is a very restrictive condition. To model these equivariant spaces it is
necessary to use not only the de Rham algebra Ax of Q-differential forms
on X but also a functor Ax on the orbit category which contains

all of the algebras AX H for all subgroups H C G. The key to producing
equivariant minimal models is to study the injectivity of such functors.

Keywords: Differential graded algebra - de Rham algebra - EI-category - i-elementary
extension - i-minimal model - Linearly compact (complete) k-module - Postnikov
tower - Quasi- isomorphism - Rationalization - G-simplicial set.
Math. classification: 55P62 - 55P91 - 16W80 - 18G30.
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This paper addresses two issues in moving to more general G-
disconnected spaces. First, it was observed by Scull that the original defi-
nition of the equivariant minimality used in [19] is incorrect because of an
error concerning algebraic properties. In [17] there is an explanation of this
error, with counterexamples, and a new definition of the equivariant min-
imality is developed for simply connected spaces. Consequently, methods
presented in [7] for the G-disconnected case and based on [19], [20] must
also be rebuilt and main results redeveloped. On the other hand, from the
context of [19], [20], it follows that some constructions presented there and
then used in [7] really lead to the correct one.

The second issue is that in the G-disconnected case the category 
was originally replaced by the category O(G, X) with one object for each
component of each fixed point simplicial subsets X H of a G-simplicial set
X, for all subgroups H C G (see the unpublished Ph. D. thesis by Fine [5]).
Unfortunately, this does not lead to a construction of equivariant minimal
models. The problem is that in the category of functors from O(G, X)
to the category of (finitely generated) Q-modules, there is not sufficiently
many injectives, and injectivity in that category is not preserved by the
object-wise tensor product. These properties are crucial to make further
steps in [5] for the rational homotopy type studies of disconnected G-spaces
(even of finite G-type). Furthermore, under an action of a finite group on
a simplicial set we can never find a base point unless a group action has
a fixed point. This paper defines another category which overcomes this

problem.

In Section 1 we study the category kl-Mod of covariant functors on
an EI-category I to the category of k-modules over a field k. To ensure the
existence problem of sufficiently many injectives and preserving injectivity
by the object-wise tensor product, we adopt the category of functors from
an EI-category I to the category of linearly compact k-modules
considered by Lefschetz in [13]. Then we investigate the category of functors
from an EI-category I to the category of differential graded algebras
over a field k. We generalize the approach presented in [17] and redefine
a minimal model of a complete injective kl-algebra. Proposition 1.7, a

replacement for [7, Proposition 2.4] shows that minimal kl-algebras behave
(up to homotopy) as cofibrant ones. Then Theorem 1.12 gives an existence
of minimal models.

Section 2 applies results assembled in Section 1 to the category of

G-simplicial sets, where G is a finite group. To show an existence of the
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minimal model A4x for a disconnected G-simplicial set X we replace
O(G,X) by the more subtle category C7 ( G, X ) with one object for each
0-simplex of fixed point simplicial subsets X H, for all subgroups H C G.
To any G-simplicial set X, we associate the complete and injective de
Rham Q(5(G, X)-algebra Ax, where Q is the field of rationals. The main
result stated in [7, Theorem 3.11], relating the rational homotopy type of
a nilpotent Kan G-simplicial set X by means of the minimal model of the
de Rham algebra Ax and others, have been redeveloped.

In a forthcoming paper we plan to apply these new minimal models
to showing equivariant formality of G-Kahler manifolds, the result aimed
at in [5], [6]. °

The author would like to express his gratitude to Laura S. Scull for

sending her Ph. D. thesis and helpful discussions, and to the referee for

carefully reading the paper and many suggestions to settle its final version.

1. Injectivity and minimal models of functors to algebras.

For a field k, let k-Mod denote the category of (left) k-modules.
The dual category k-Mod°P is isomorphic to the category k-Modc of

linearly compact k-modules considered in [13]. Given a k-module M, let
M* - be its topological dual. Write M~5N for the completion
(M 0 N)/B, called the complete tensor product of M and N (see e.g., [7]
for its properties).

Let DGAk denote the category of homologically connected commuta-
tive differential graded k-algebras with unit (or simply k-algebras). Given
a k-algebra A with a differential d, write for the k-module of its co-

cycles of degree n -~-1. For a k-module M, denote by SM the free k-algebra
generated by M in degree n with the trivial differential. Then any 
T : M - gives a rise to the differential dT on the tensor product

S’(M) such that

for a E A and m E M. The k-algebra A(M) = (A 0 SM, dr) is called in
[11] the elementary extension of A with respect to T. There are two ways of
defining simply connected minimal k-algebras. One is to use the intrinsic

algebraic condition that the differential is decomposable; this is the original
approach taken by Sullivan [18]. The other is to define a minimal algebra
to be a union of a sequence of elementary extensions of k-algebras; this



628

approach was developed by Bousfield-Gugenheim [1] and Halperin [11].
Non-equivariantly these two definitions are equivalent.

However, it was observed in [17] that "equivariantly these two ap-
proaches are not the same, as it was erroneously claimed in [19], [20]". The
original work of Triantafillou defined the equivariant minimality using an
analogue of the decomposable differential. In using minimal models to en-
code geometric information, the stages in the Postnikov tower of a space
correspond to elementary extensions of the algebra. Therefore, in order to
obtain a connection to geometry, it is necessary to redefine the equivariant
minimality following the elementary extension approach and restate its al-
gebraic properties using the new definition. Consequently, methods for the
G-disconnected case presented in [7] and based on [19], [20] must also be
rebuilt and main results redeveloped.

Now we recall some notions and results presented in [7], [8], [10].
For a small category ~, a covariant functor 2013~ is called a left

We also have contravariant functors --&#x3E; k-Mod, alias right kII-
modules. Projective (resp. injective) RI-modules are defined by usual lifting
properties. Observe that the category of projective right kI-modules is

isomorphic to the category of injectives in the category of covariant functors
from I to the category k- Mode. A covariant functor from I to k- Mod C is

called a linearly compact left kI-module. For two linearly compact left kill-

modules M, N we define the object-wise complete tensor product as

the linearly compact left kI-module such that (M§N)(I) = M(I)§N(I)
for all I E Ob (~) . We assume in this section that the category is such that
the constant left kll-module k determined by the field k (of characteristic
zero) is injective and that the above object-wise complete tensor product of
two injectives in this category is again injective. For each object I E Ob (ll)
we have the right kI-module

determined by the Yoneda functor ]!(2013, I) and similarly, the left kl-module
-). Given a category C, any covariant (resp. contravariant) functor

I --&#x3E; C we call a covariant (resp. contravariant) I-system in the category C.

Recall that an EI-category is a small category such that any endo-

morphism is an isomorphism. Define the partial order on the set Iso (TI) of
isomorphism classes I of objects I E Ob (TI) by
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Henceforward, we assume that I is a cofinite EI-category (each
isomorphism class I has only finitely many predecessors) with a filtration
0 = To C Tl ... C T m = Iso such that

provided that I V Tk, and J V Tl~ for 1~’  k and l’  l. We point out that
this condition always holds for a finite EI-category.

We make use of [8], [10] to show briefly how injective left kI-modules
can be constructed from injective modules over some group rings. If

I C Ob(ff) with the automorphism group Aut(I), we write k[I] for the

group ring of Aut(7) over k, k[I]-Mod for the category of left k [I]-modules
and kI-Mod for the category of left kl-modules.

For a fixed object I E Ob (ff), we introduce the following covariant
functors (cf. [15] for the dual notions).

Cosplitting functor kTI-Mod ---* k [I]-Mod.

If M is a kI-module, let be the k[I]-submodule of M(I) equal to
the intersection of kernels of all k-maps M(f) : M(I) - M(J) induced by
all non-isomorphisms f : 7 2013~ J with I as the source. Each automorphism
g E Aut (I ) induces a map M(g) : M(I ) -~ M(I ) which maps into

itself. Thus SI(M) becomes a left k[I]-module. It is clear how 67 is defined
on morphisms.

Corestriction functor Res, : sends M to M(I).

Coextension functor EI : kI-Mod sends N to 

(kI(-I), N)

Coinclusion functor In, kl-Mod assigns to a k[I]-
module N the kI-module Ini(N) defined by

Given a subset T C a kff-module M is called of type T if the

set {7 E Iso(I); 0} is contained in T. For any I E T choose a

representative I E 1 and fix a k[I]-monomorphism



630

where Q, is an injective k[I]-module. If M is of type T then we get a
monomorphism of kI-modules

In particular, it follows that any injective M-module of type T is a direct
summand of a M-module fl.7CT EIQI, where QI are injective 
forIET.

Then the next result follows easily from the above definitions.

LEMMA 1.1. - (1) The functors E, and Res, and the functors S’I and
InI are adjoint, i.e., there are natural isomorphisms of k-modules

and

(2) The functor SIEI : k[I]-Mod ---* is naturally equivalent to
the identity functor. The composition SJE¡ is zero for 1 i= J.

(3) SI and EI preserve products, monomorphisms and injective mo-
dules.

Let now M be a kI-module and To C Iso(I). Then the adjunction
induces a natural kI-map

for any I E Ob (I). The product of the maps JIM running over I E To
yields

Write kerTo M for the kernel of If M is of type T then kerTo M is of
type TB(T n To). The following full description of injective left kI-modules
has been developed in [8].

THEOREM 1.2 (Filtration Theorem for injective kl-modules) . - Let
be an EI-category filtration satisfying
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(*) for a subset T C If Q is an injective left kI-module of type T
then there is a natural filtration by kI-modules

satisfying:

is the inclusion

map;

(2) Qz is injective of type TBTl;
be the composition inlin2’" in,. Then 

SI QI - SIQ is an isomorphism for I E TB7l;

(4) there is a natural exact sequence which splits (not naturally with
respect to Q)

for l = 1,..........m 

Conversely, if a kr-module Q of type T satisfies (1), (3) and (4),
and are injective k[I]-modules for I E T then the I-modules Qz are
injective for l = 0, ..., m.

A covariant functor I -~ DG Ak is called a kl-algebra (or simply an
II-system of k-algebras). We say that a kI-algebra ,A is linearly compact
(resp. complete) if the algebras are linearly compact (resp. complete)
for all I E Ob (I) . Define the nth graded piece of ,,4 as the left kr-module

,An (I ) = all I E Ob (I) . A kI-algebra A is called injective if the
left M-modules A n are all injective for n &#x3E; 0.

Given a graded linearly compact left M-module we get
graded linearly compact k-modules for all I E Ob (I)
and let Iql = i for q E Qi (I). In the light of the associativity of the complete
tensor product ~, we can define graded linearly compact left M-modules

and snQ studied in [7] (called the nth tensor and symmetric power,
respectively) as follows:

and



632

for i, n &#x3E; 0, where
is the homogeneous k-submodule of
elements

~ generated by

Furthermore, we define TQ and 5’Q, the graded linearly compact ten-
sor and symmetric left kI-algebra, respectively with

Observe that

where RQ is the closed homogeneous ideal of TCa generated by elements
The assumptions on the category

yield

PROPOSITION 1.3. - If (a = is a graded degree-uTise injective
linearly compact left then the graded linearly compact kn-
algebras ,S’(a and TQ are injective.

Proof. The natural map
mines

for I E Ob (I) . Furthermore, given the nth symmetric group ,S’n, there is
the natural action

such that

where is the sign
determined by the obvious interchange map. Because characteristic of k
is zero and this action of ,S’n on vanishes on so there is a

natural map

such that

for and = 1,..., n. Then we get the induced
natural map such that for

and consequently is a direct summand of
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But the constant left kI-module k is injective, the iterated complete
tensor products of linearly compact injectives are injective and

are direct summands and hence the proof is complete. D

To state the notion of the minimality for a kI-algebra we first make
the following crucial construction. Let A be a complete kI-algebra, M a
linearly compact left kI-module and T : M - a ke-map, where

the left kff-module of cocycles of degree n + 1 of the kI-algebra
A for some n &#x3E; 0. We construct a linearly topological kI-algebra 
called the i-elementary extension of A with respect to T.

Given a linearly compact left kI-module M, the property (*) leads in
[8, Corollary 2.2] to an existence of the minimal injective resolution

i.e., M, is the injective envelope of Imwl-1 for 1 = 0,1,.... Then, the map
T : M - induces Mi - such that the diagram

commutes. Let M* = be a graded left kI-module_, where M, has
degree n + 1. Define the complete kl-algebra ,,4.T (M) _ where the

differential on ,A.T (M) restricts on ,A to the one given on ,,4. and on Ml to

wi -i- ( -1 ) l Tl for 1 = 0,1,.... Note that by Proposition 1.3 the kl-algebra
is injective and linearly compact provided that A is so.

For a complete kl-algebra A, we define the object-wise cohomology
functor by Hn (,A) (I ) - for I E Ob (ff) - We say that a map
f : ,,4 ~ ,~3 of complete kl-algebras is a quasi-isomorphism (resp. an
n-quasi-isomorphism) if the induced maps - 

are isomorphisms for m &#x3E; 0 (resp. isomorphisms for and a

monomorphism for m= n + 1). For a linearly compact left kI-module

M, we also define cohomology by looking at the natural transformations

Hom (M, A). This is a cochain complex with a differential induced by the
differential on ,,4 and write Hn (,A, M) for its cohomology. If ,A, is injective,
then the standard homological algebra arguments yield a cohomology
spectral sequence
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being an essential tool in investigations presented in [17], [19]. Observe
that a map f : ,A. --~ ,l3 of injective kl-algebras is a quasi-isomorphism
(resp. an n-quasi-isomorphism) if and only if the induced maps Hm(j, M) :
~f~(~4,M) 2013~ (B, M) are isomorphisms for m -&#x3E; 0 (resp. isomorphisms
for m  n and a monomorphism for m = n + 1) and any linearly compact
left kI-module M. Given a map f : .A - ,B of kr-algebras with differentials
d and d’, respectively consider its cocone C f as the graded left kI-module

C~ = A n x with the differential 6 such that 6(a, b) = (da, f a - d’b)
for (a, b) E C~ and n &#x3E; 0. Then we form relative cohomology groups

to get long exact sequences

and

Moreover, any commutative diagram

yields maps

and

for all n &#x3E; 0 and any linearly compact left kl-rnodule M. Furthermore, a

sequence of maps

produces two long exact sequences

and
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Given a map f : ,,4 -~ ,~ of injective kl-algebras and a linearly compact left
kff-module M, homological algebra also produces a cohomology spectral
sequence

The proofs of [17, Lemma 11.51, Lemma 11.53] lead to the following.

LEMMA 1.4. - Let A be a complete kff-algebra and M a complete
left kl-module.

(1) For a kI-map T : M --&#x3E; Zn+1 A there is an isomorphism

of left kI-modules.

. (2) Given kl-maps T : M ~ and kl-map T’ : M’ --~ Z’+ ’A, let
f : (M’) be a of i-elementary extensions with the

properties:

(i) the map restricts to an isomorphism on A;

(ii) f (m) = g(m) + for m E M, where g : M - M’ is an
isomorphism and a(m) E A.

Then f is an isomorphism.

A M - gives rise to an element ~T~ E M).
Thus, making use of [17, Proposition 11.52] it might be shown

PROPOSITION 1.5. - Given T : M --~ Z n+l A and 7’ : M -
the i-elementary extensions (M) and (M) are isomorphic if

and only if [T] = [-r’] in M).
The notion of the minimality for systems of simple k-algebras stated

in [17] as a union of an increasing sequence of i-elementary extensions is
exactly the statement of [19, Corollary 5.11]. But, as it was observed by
Scull [17], this is not isomorphic to that one stated in [19, Definition 5.1].
Now, we extend Scull’s notion [17] of the minimality on kl-algebras via a
series of i-elementary extensions with respect to two indices and correct [20,
Definition 2.3] as well. A complete kl-algebra A4 is said to be i-minimal if
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where = 1~ and Ut,o A4 (n, l) with .~1~1 (n, 0) - .Jli1 (n - 1),
l + 1) is an i-elementary extension of l)

with respect to a map Tn,t : l) with a linearly compact
left kI-module Mn,t for all 1 &#x3E; 0 and n &#x3E; 1;

(2) the canonical map l + 1)) -
1) - is an isomorphism for all 1 &#x3E; 0 and n &#x3E; 1.

Note that an i-minimal algebra A4 is injective and linearly compact, and
the natural inclusion map A4 (n) - M is an n-quasi-isomorphism for all
n &#x3E; 0.

Suppose f : A --&#x3E; B is a map of complete kI-algebras, T : M - 
and cp : M ---* maps of left kl-modules. If dcp = fT, where d is the
differential on B then by [7] there is a map f : extending f
and cp. To state a generalization of that let k(t, dt) be the free k-algebra
generated by t in degree 0 and dt in degree 1, with d(t) = dt. A homotopy
between maps f, g : A ---&#x3E; B of kI-algebras is a map H : dt)
such that poH = f and g, where po, pl : dt) - B are the
natural projections. We write for homotopic maps f and g. Define
the map

Then the obstruction and its relative version developed in [5, Lem-
ma 6.2.2, Lemma 6.2.4] and fixed in [17, Lemma 12.55, Lemma 12.56] can
be reproved for complete kI-algebras as well.

LEMMA 1.6. - Let ,,4T (M) be an i-elementary extension of a kI-
algebra A with respect to T : M - 

(1) Suppose we have a diagram of complete kff-algebras

with h f by a homotopy H : ,,4. -~ B0k(t, dt). Then the map
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given by O(m) = ( f d(m), g(m) + fol Hd(m)) for m E M defines [0] E
Hn+1 (h : ,l3 ~ C, M) and there is an extension f : of

the map f : ,A. -~ ,~3 with if and only if the obstruction class

[0] E Hn+1 (h : ,~ --~ C, M) vanishes.

(2) Suppose u~e have a diagram of complete kff-algebras

where uTe assume the following:

(i) p is onto;

(ii) Pf 

(iii) ker p and ker v are injective;

(iv) there exists a homotopy H from h f to 9lA such that (v0 id) H
is constant;

(v) there exists a M - A such that vglM = 

Then the obstruction class [0] E H’+ 1 (h : B ---~ C, M) vanishes if and only
if there are an extension H : ,,4T(M) ~ C0(t, dt) of H and an extension
f : such that p f = vg and (v0 id)H is constant.

Now we are in a position to show that i-minimal kI-algebras defined
above play the same role in the category of complete and injective kl-

algebras as minimal algebras in the category of k-algebras. First, we
redevelop the result presented in [7].

PROPOSITION 1.7. - Let f : A --4 B be a quasi-isomorphism of kJI-
algebras and g : A4 - B a map of kff-algebras, is i-minimal. Then

there is a map g : fl4 -~ ,,4 (unique up to homotopy) such that the diagram

commutes up to homotopy.
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Proof. The kI-algebra .Nl is i-minimal, so, , where

is an i-elementary extension of .J~l (n, l ) with respect to a map

We proceed inductively to construct the kI-map g : A4 - A. Let
90 == 1] : .~lil (o) - ~ -~ ,,4 be the unit map. Assume we have defined

9n-l == 9n,0 : A4 (n - 1) = - ,~4 and 9n,1 : 1) - ,A with
and 91M(n,l). Then consider the commutative

(up to homotopy) diagram

By Lemma 1.6 (1) the obstruction to extend to M(n, l + 1) =
lies in ,,4. -~ ,13, Mn,l ) which vanishes because

the map f : ,A -~ ,~3 is a quasi-isomorphism.

The relative obstruction theory arguments of Lemma 1.6 (2) yield
uniqueness (up to homotopy) of the map g and the proof is complete. D

Therefore, i-minimal kI-algebras are cofibrant up to homotopy. Then,
by means of the obstruction theory as in [17, Proposition 3.5] and closely
following the non-equivariant proof (e.g., [1, Proposition 6.3] and [4]), one
can show that the homotopy -- is an equivalence relation between maps
M - A whenever is i-minimal. Writing ~.J~l, .,4~ for the set of homotopy
classes of maps from to .A we obtain

COROLLARY 1.8. - quasi-isomorphism of complete
kll-algebras and M is an i-minimal kll-algebra then the induced map
f* : ~./1i(, ,,4~ -~ [M, ,t3~ of the sets of homotopy classes is a bijection.

To state the next result we need to reprove [17, Lemma 13.57] in our
context. Let and N be i-minimal kl-algebras. Then

and

where

and

are i-elementary extensions of A4 (n, l) and N(n, l) with respect to maps
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respectively for

LEMMA 1. 9. - A map f : A4 - N of i-minimal kn-algebras is

homotopic to a map g : -~ N which takes to N(n, l ) for all
l &#x3E; 0 and n &#x3E; 1.

Proof. We proceed again inductively taking go = fo = idk. Let
./1~l(n, l) ~ .I~l and LN(n,l) : Ar(n, 1) - N be the inclusion maps

and assume we have 9n-l - gn,o : A4 (n - 1) - - N(n - 1) -

Given inductively
consider the diagram

which commutes up to homotopy. Now M (n, l + 1) = A4 (n, l)Tn,1 (Mn,l)
for Tn,l : and the obstruction 0 : Mn,l --+ N
(n, XjVn from Lemma 1.6 (1) lies in - N, Mn,z).
But the sequence of the inclusion maps j(n, 1) - 1 + 1) - N leads
to the long exact sequence

Consequently the obstruction class
vanishes and in the light of Lemma 1.6 (1) there exist a map

extending . and a homotopy

Then, we produce the map

and the inductive step is complete.
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In general, any quasi-isomorphism of i-minimal kl-algebras is not an
isomorphism. Nevertheless we are able to show

PROPOSITION 1.10. - If a map f : A4 - .JU of i-minimal kff-algebras
is a quasi-isomorphism then there exists an isomorphism g : A4 --+ N with
f ~ g

Proof. By Lemma 1.9 there is a map g : .I~l -~ N which is

homotopic to f and takes M(n, l) to N(n, 1) for all l &#x3E; 0 and 1.

We proceed inductively to show that g is an isomorphism.

Given the isomorphism = gn,o : M(n - 1) - M(n,0)---&#x3E;
N(n - 1) = jV(n, 0) assume inductively that gn,l : A4 (n, l ) - N(n, l )
is also an isomorphism. But g : M - N is a quasi-isomorphism, hence the
5-lemma applied to the commutative diagram

leads to the isomorphism

Thus there is an isomorphism  (Nn,l ) * of graded left kI-modules
associated to minimal resolutions of Mn,l and N n,l, respectively. Conse-
quently, + 1) and jV(?7,/ + 1) are isomorphic as graded left kI-

modules. Moreover, as in [Theorem 3.8] we can see that for any m E Mn,l+l
there is cx (m) E N(n, l ) with gn,l+l (Tn) = (9n,l, 9)* (M) + cx (m) . Finally, in
virtue of Lemma 1.4 (2), the map M (n, l + 1) - N(n, 1 + 1) is an
isomorphism of kI-algebras. D

Then Proposition 1.7 and Proposition 1.10 lead to the conclusion.

COROLLARY 1.11 ([7]). - and p’ : M ----&#x3E; A are quasi-
isomorphisms, where M and A4’ are i-minimal kff-algebras then there is
an isomorphism f : such that the diagram

commutes up to homotopy.
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Now let .,4 be a complete and homologically connected kI-algebra
(i.e., the unit induces an isomorphism 77. : 
an i-minimal kI-algebra M a quasi-isomorphism p : M ---+ ,A is called

the i-minimal model of A. Observe that the above uniqueness results
make this definition meaningful. The methods similar to the proof of [17,
Theorem 3.11] give rise to the existence (cf. [7, Theorem 2.8]) of i-minimal
models. Nevertheless, we present a sketch of its proof.

THEOREM 1.12. - If A is an injective, complete and homologically
connected kI-algebra with linearly compact cohomology for all

n &#x3E; 0 then it has an i-minimal model p : M -~ A.

Proof. We construct inductively maps Pn,l : M(n, l) - ,,4. for

1 &#x3E; 0 and n &#x3E; 1. Let pl,o - r~ : 1~ ~ ,A and assume inductively that
Pn,l : -~ ,~l is an (n - I)-quasi-isornorphisrn for some 1 &#x3E; 0 and

n &#x3E; 1.

Writing Mn,l = M (n, 1) - A), we make use of the
spectral sequence

Because -~ ~4) - 0 and = 

--~ .A.) ) = 0 for p + q - n + 1 and p &#x3E; 0, the identity
map idMn,l E -~ A) - Hence

and idMn,l represents a class 

l ) ~ A, Mn,l ) . In virtue of the exact sequence

yields an element E l), Mn,l) with = 0.

So Pn,ITn,1 is a coboundary and there is a map p : An such that

d~P = where d is the differential on A.

Defining l -I- 1) - to be the i-elementary
extension of with respect to Tn,l : we

get a map + 1) -~ A extending Pn,l and p. Now given
Pn,l : .J~1 (n, l) - ,A for 0, let pn : M (n) the extension of all

the maps Pn,l on = 
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Finally, given pn : A4(n) - A for all n &#x3E; 0, let p : A4 - A be the
extension of all the maps pn on A4 = The desired properties
are not hard to verify. 0

To extend the notion of the i-minimal model to any (not necessary
injective) kI-algebra we recall the result on injective envelopes developed
in [10, Theorem 2.1] and generalizing constructions presented in [8]. By
induction over the filtration of Iso(I) we have proved

THEOREM 1.13. - If I is an EI-category such that the group ring
k[I] is semisimple for all I E then for any complete kr-algebra A
there is a complete and injective kr-algebra and a natural inclusion

,~4 ~ which is a quasi-isomorphism.

Remark 1.14. - This theorem allows us to produce i-minimal models
for a wider class of kI-algebras. Let A be any complete and homologically
connected kI-algebra with linearly compact cohomology and JD(A) the
associated injective kl-algebra determined by Theorem 1.13. Then by
Theorem 1.12 there is an i-minimal kI-algebra A4 and a quasi-isomorphism
p : M - called the i-minimal model of A.

2. Equivariant disconnected rational homotopy theory.

Let now G be a finite group. Recall that a simplicial set X with a
simplicial action of G is called a G-simplicial set. Of course, fixed point
subsets X H are simplicial for any subgroup H C G. Much of topological
information about a G-simplicial set X is encoded in the form of functors
from the category O(G, X) objects of which consist of pairs (GIH, a), for
a subgroup H C G and a in the set of connected components of
the fixed point simplicial subset X H . Morphisms (G/K, (3) - (G/H, a) in

are G-maps ~ : G/H such that 7ro(4))(a) - (3 with the
induced map ~ : X H ~ X K of fixed point simplicial subsets.

The geometric information we are modeling depends on Postnikov
towers and homotopy groups, which are based constructions. Therefore we
need to replace in [7] the category O(G, X) by a closely related indexing
category X) which allows us to keep track of base points in various
components. This category (5(G, X) is defined as follows:

objects Ob ((5(G, X)) are pairs (G/H, x) with a subgroup C G and
x C XH, where Xi is the set of 0-simplexes of the fixed point simplicial
subset X~;
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morphisms (G/H, x) -~ (G/K, y) are given by G-maps 0 G/H -
G/K such that 00(y) = x with the induced 0 0

Remark 2.1. - If I is a small category and F : I - Cat is a

contravariant functor into the category Cat of small categories, then the
Grothendieck construction on F is the category If F defined as follows:
the objects are pairs (i, x) where i is an object of I and x one of
F(i); a morphism (i, x) --~ (i, x’) is a pair (p, with i - i’

in IT and 0 : j- -~ F((~)(~) in F(i).
For the category of canonical orbits of the group G, any G-

set X leads to the contravariant functor X6 -) : O(G) - Cat given by
Xo ~ (G/H) - X H for G/H E provided that sets are considered as
discrete small categories. Then

In order to apply the results of Section 1 in the sequel, we need
to demonstrate that the category Õ( G, X) has appropriate properties.
First, we show that it admits the required filtration. We identify an object
G/H, x) in 6(G,X) with the 0-simplex x. For the isomorphism class T
of any object x, let g(x) = n be the largest number such that there is a
sequence x  ...  xn . The group G is finite, so C9(G, X) is a cofinite
EI-category. Furthermore, we can define the filtration

on the set of isomorphism classes satisfying (*), where
11 for 1 = 0,1, ... , m.

Next, we need to correct [Lemma 3.6] which is essential for an

existence of i-minimal models of G-simplicial sets and show that the

category (5(G, X) satisfies the assumptions about injective functors. Recall
that the dual left (1~(~(G, X ) (-, (G/H, x) ) * for some

object (G/H, x) E Ob((5(G, X)) is called a co-Yoneda module, where k
is a field. Of course, any such a k(5(G, X)-module is injective.

LEMMA 2.2. - Let k be a field and X a G-simplicial set. Then

( 1 ) the object-wise complete tensor prod uct ~ of two injective linearly
compact left k(5(G, X)-modules is again injective;

(2) for any k-module M, the constant left kC9(G, X)-module M deter-
mined by M is injective.



644

Proof. We prove part ( 1 ) by means of methods used in [7,
Lemma 3.6] and [9]. First, observe that any injective linearly com-
pact left X)-module is a direct summand of a product of co-
Yoneda X)-modules X)(-, (GIH, x)))* for some (GIH, x) E

Therefore, it is sufficient to show that the complete tensor product
of two co-Yoneda X)-modules is a product of co-Yoneda X)-
modules. Observe that, for an object (G/K, y) in the category (5(G, X),
the free k-module

is freely generated by the set

The G-set G/Hl x G/H2 is in one-to-one correspondence with a disjoint
union GlKi, where Ki is the isotropy group of a point

and the set

is in one-to-one correspondence with a disjoint union

Thus we obtain a topological isomorphism of left k(5(G, X)-modules

and this demonstrates part (1).



645

To prove (2) we make the following observations:

(a) if G~ is the isotropy subgroup of a point x E Xo then for any object
there is a unique morphism (G/H, x) - (G/Gx, x) in (5(G, X);

(b) any connected component of the category is the full sub-

category given by all objects (G/H, gx) with g E G, H C G for a fixed
point x E Xo in the set of 0-simplexes.

Let M be the constant left k(5(G, X)-module determined by a k-
module M and consider the diagram

in the category of left X)-modules. Given a decomposition Xo =
UÀEA Gxx of the set Xo of 0-simplexes into disjoint orbits, fix maps

qx : N(G/Gx)..,xÀ) - M and such that the following diagrams:

commute, where aa - a(GIG,,,, xx) and {3À = for A E A.

Then, the unique morphism gz x ) - and 1À give rise
to a map

for any g ~ G.

Now, for any object (G/H, x) in X), note that x = for some

A E A and let (G/H, x) - be the unique morphism from
observation (a). Then (G/H, x) - and 

determine a map
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Consequently, in the light of observation (b), we get a map 1 : N 2013~ M in
the category of left (5(G, X)-modules with the commutative diagram

In particular, the constant left determined by the field
k is injective.

Given a simplicial set X, one can form the Q-algebra Ax over the field
Q of rationals by taking collections of Q-polynomial forms on each simplex
(sums of terms of type c,~(to, ... , tn)dtio 1B ... 1B dtil for 1 &#x3E; 0, where w is
a Q-polynomial in indeterminates to,..., tn) that agree when restricted
to common faces (see [1] for more details). The algebra Ax is the key
link between geometry and algebra, and Ax admits the following natural
linearly complete topology.

For a fixed n &#x3E; 0 consider all simplicial maps x : 0(l) --&#x3E; X, where
A(l) is the standard lth simplex. We have proved in [7] the Q-submodules

~4~(A(/)), form a fundamental system of neighborhoods
of zero for a linear topology on n &#x3E; 0. Furthermore, Ax is linearly
complete with respect to that linear topology and the induced topology on
cohomology of Ax is linearly compact as well.

Let now Cn (X, Q) be the discrete Q-module of n-chains on a simplicial
set X with coefficients in Q for n &#x3E; 0. Then on the Q-module Cn (X, Q)
of n-cochains there is linearly compact topology for n &#x3E; 0. In particular, it
follows that the induced topology on the cohomology groups H’ (X, Q) is
linearly compact for n &#x3E; 0 and the topological dual Q-module (Hn (X, Q)) *
is isomorphic to the homology group for n &#x3E; 0. On the other

hand, the map

given by the integration of forms, in virtue of [7, Corollary 3.2], is natural
and continuous. Consequently, by the de Rham Theorem [1, Theorem 2.2]
the induced map on cohomology - is a continu-

ous isomorphism for all n &#x3E; 0.
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Equivariantly, given a G-simplicial set X, let be the QO(G, X)-
algebra defined by Ax (GIH, x) = AXH , where X H denotes the connectedx

component of X H corresponding to x E Xo in the set Xi. Maps are
induced by the action of G on the connected components of the fixed point
simplicial subsets. By [7], the is complete for any
G-simplicial set X.

HOMOLOGY AND COHOMOLOGY OF G-SIMPLICIAL SETS. Let now R be a

commutative ring and C* (X, R) be the differential graded right R6(G, X)-
module given by

for Ob(O(G,X)) and n &#x3E; 0. We note that is a

projective RC7(G, X)-module for all n &#x3E; 0. Given a left R6(G, X)-module
M, we write CG (X, M) = M for the chain complex
induced by the tensor product of RO(G, X)-modules and then consider
two types of homology for X:

(1) the right R(5(G, X)-module Hn(X, R) such that

for (G/H, x) C Ob((5(G, X)) and n &#x3E; 0;

(2) the homology = with coefficients in a

left X)-module M for n &#x3E; 0.

Then standard homological algebra arguments yield a homology spectral
sequence

Dually, let C* (X, R) be the differential graded left R(5(G, X)-module
given by

for E Ob(C9(G, X)) and n &#x3E; 0. Given a right R6(G, X)-module
M, we write CG (X, M) = Hom(C* (X, R), M) for the cochain complex given
by natural transformations and then consider two types of cohomology
for X :

(1) the left R6(G, X)-module such that
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(2) the cohomology HG (X, M) - with coefficients in a

right X)-module M for n &#x3E; 0. 
G

Standard homological algebra arguments also yield a cohomology spectral
sequence

- 

Any map f : X - Y of G-simplicial sets gives rise to the right
X -~ Y, R) and the left RO(G,X)-module

Hn ( f : X -~ Y, R) such that

and

are given by the ordinary relative homology and cohomology groups, respec-
tively for (G/H, x) E Ob((5(G, X)) and n &#x3E; 0.

Furthermore, we can also consider relative homology Hf( f : X -
Y, M) and cohomology X -~ Y, N) groups with coefficients in a
left X)-module M and a right X)-module N, respectively
for which there are long exact sequences

and

Homological algebra yields appropriate relative homology and cohomology
spectral sequences as well.

For a discrete right Q(5(G, X)-module M, let M* denote its topologi-
cal dual left Q(5(G, X)-module defined by M* (GIH, x) = Hom(M(G/H, x),
Q) with the induced linearly compact topology on each for

The natural map



649

leads to continuous isomorphisms

for all n &#x3E; 0. Consequently, cohomology groups are linearly
compact left QO(G, X)-modules for all n &#x3E; 0. Taking these facts into
account we can get as in [7, Theorem 3.5], by means of the cohomology
spectral sequence above, an isomorphism

for all n &#x3E; 0. Now we follow the proof of [8, Theorem 2.3] to show that the
QC9(G, X)-algebra ,AX is also injective.

PROPOSITION 2.3. - If X is a G-simplicial set then the QO(G, X)-
algebra Ax is injective.

Proof. - Given a G-simplicial set X, we identify an object (G/H, x)
in Õ(G,X) with the 0-simplex x. We do not also distinguish between the

X)-algebra Ax and the graded Q6(G, X)-module A x . Throughout
we keep notations from the proof of Theorem 1.2.

The group G is finite, hence the group are semisimple and
are injective Q[z]-modules for all x E Ob(O(G, X)). Given the

filtration

defined above let,

Then are of type TBTz and there is a natural filtration

of A x determined by the exact sequences

for l = l, ... , m. In the light of Theorem 1.2, to prove the injectivity of
A x , we need to show that the maps

are surjective for all objects
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Observe that any element in determines

a collection of polynomial forms on X H for x E Given a

simplex z E X H n with H =1= H’ let Gz denote its isotropy group.
Then Gz contains properly H or H’ and there is a 0-simplex x" such that

X H . Therefore we get a polynomial form w on the union
) ) HU x E Tl/Tl-1 XHXx

Let the object y E X)) be determined by the pair y).
Then the set

is one-to-one correspondence with the disjoint union

where Hl, ... , Hn are some distinct subgroups of G conjugate to H. Now
the polynomial form w on gives rise to such a form w on
the union Xf and by ~1, Lemma 2.7] there is a polynomial
form ZZT on Xy extending w. cv for all l = l, ... , m and
the proof is complete. D

_ 

Of course, the unit map r~ : Q - induces an isomorphism
H 0 (Ax) and finally we are in a position to apply Theorem 1.12 and

state the result.

THEOREM 2.4. - If X is a G-simplicial set then there is an i-minimal

QO(G, X)-algebra Mx and a quasi-isomorphism px : ,,4x.

The map px : Mix - is called the i-minimal model of the G-

simplicial set X.

HOMOTOPY OF G-SIMPLICIAL SETS AND OBSTRUCTION. To make a

geometric use of i-minimal models we briefly review basic facts on G-sim-
plicial sets. A map f : X - Y of G-simplicial sets (or simply a G-map) is
said to be a Kan G-fibration if the induced maps f H : X H -~ yH of fixed
point simplicial subsets are Kan fibrations in the sense of [16, Definition 7.1]
for all subgroups H C G. In particular, a G-simplicial set X is called a Kan
set if the map X - * is a Kan fibration, where * denotes the G-simplicial
set generated by a single point. The preimage of the 0-skeleton

y(O) of Y is called the fibre of the Kan fibration f : X -~ Y. Note that
for any G-simplicial set X there is a canonical G-map 6: X - Xo (given
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by the iterations of the 0-face operation) and its retraction : Xo - X
(given the iteration of the 0-degeneracy operation), where the G-set Xo of
0-simplexes is identified with the corresponding constant G-simplicial set.
We say that a map f : X - Y of G-simplicial sets is pointed if X and
Y have the same sets of 0-simplexes and f restricts to the identity map
on Xo.

For a Kan G-simplicial set X, let

be the contravariant functor to the category Gp of groups such that

is the nth homotopy group of the based simplicial set for

(G/H, x) E Ob (6(G, X)) and n &#x3E; 1.

Given a map f : X - Y of Kan G-simplicial sets, we consider also
the contravariant functor

such that

is given by relative homotopy groups for E Ob(6(G, X)) and
n &#x3E; 1. In the same way we define a contravariant C7 (G, X)-system 7ro(f :
X - Y) of sets. Then the non-equivariant natural relative Hurewicz map
leads to a map

for n &#x3E; 2, where Z denotes the ring of integers. It can be shown (cf. ~2~ ) that
a map f : ~C 2013~ Y of G-simplicial sets is a G-homotopy equivalence if and
only if the induced maps of fixed point simplicial subsetes f H : X H -~ yH
are homotopy equivalence for all subgroups H C G. Therefore, by the
non-equivariant simplicial Whitehead Theorem [16, Theorem 12.5] a map
f : X -* Y of Kan G-simplicial sets is a G-homotopy equivalence if and only
if 7tn ( f : X - Y) = 0 for all n &#x3E; 0. Furthermore, a sequence X ~ Y L Z of
pointed maps of Kan G-simplicial sets gives rise to the long exact sequence
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If 7tn(X) = n and 7tm(X) = 0 for m =1= n with n &#x3E; 1 then X is said to
be an Eilenberg-MacLane G-simplicial set of type (7t, n). We denote such a
G-simplicial set by K(7t, n). We indicate two ways an Eilenberg-MacLane
G-simplicial set can be constructed.

For a G-set X and n &#x3E; 1, let 7t be a contravariant (5(G, X)-system of
groups (abelian, provided n &#x3E; 2). Then consider the contravariant system
of O(G, X)-simplicial sets determined by the non-equivariant Eilenberg-
MacLane simplicial sets K(7t(GIH,x),n) for (G/H, x) E Ob(8(G,X))
(studied e.g., in [16]). Defining

for any subgroup H C G, we get the O (G)-system /C(7T, n) _ ~ I~ (~t, 
of simplicial sets. Then the coalescence functor c (developed e.g., in [3])
from the category of systems of O( G)-simplicial sets to G-simplicial sets
gives rise the required Eilenberg-MacLane G-simplicial set

On the other hand, considering the group G as a category with a
single object *, any G-set determines a contravariant functor X : G ---* Cat
and the Grothendieck construction leads to the category such that

and morphisms z - y are given by the set fg E G;
gy for x, y e X.

Given a covariant G f X-system X of G-sets, let Fx be the contra-
variant projective C7(G, H)-system of abelian groups defined as in [19] by
FJV(G/H, z) = F(x(x)H), where F(x(x)H) is the free abelian group

generated by the set x(x)H for any (G/H, x) E Ob((5(G, X)). Because
in the category of contravariant O(G, X)-systems of abelian groups there
are enough projectives, so the X)-system 7t of abelian groups leads
to a projective resolution

Then, to construct the Eilenberg-MacLance K(7t, n), we follow [19]
and replace cells and spheres by standard simplexes and their boundaries,
respectively. We stress the analogy between such a construction of an
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Eilenberg-MacLane G-simplicial set and the algebraic construction in the
previous section to define an i-elementary extension.

Let X and Y be G-simplicial sets with the same sets of 0-simplexes,
X’ C X a G-simplicial subset, X(’) the n-skeleton of X for n &#x3E; 1 and let
Y be a Kan set as well. Suppose U X’ - Y is a G-map, x E X
is an (n + I)-simplex and Gx C G its isotropy group, and let x E XGx for
some 0-simplex xo . If Y Gx - is n-simple and x denote the boundary of xp (xo) 

I

then p(£) represents an element in 7rn (yGx, xo). Consequently, cp defines

c, E X),7T~(y)). As in [19] we can prove that this is a
cocycle defining a cohomology class

which is the obstruction to extending the restriction G-

map U X’ -~ Y.

A pointed map f : X - Y of G-simplicial sets is called con-

stant if it factors through the constant G-simplicial set Xo. Given an
Eilenberg-MacLane G-simplicial set n) with a contravariant O(G, X )-
system 7t of abelian groups and n &#x3E; 1, consider the constant G-map
8 : Then, we are ready to apply the obstruction
theory above and derive an isomorphism

for n &#x3E; 1 the proof of which offers no difficulties, where [X, K(7t, n)]3°
denotes the set of G-homotopy classes of pointed maps from X to K(7t, n).

POSTNIKOV TOWER AND RATIONALIZATION OF G-SIMPLICIAL SETS. Let

Xk be the G-set of k-simplexes of a G-simplicial set X for all k &#x3E; 0. For
each n &#x3E; 0 define an equivalence relation Rn on Xk by if each face

of x with dimension ~ n agrees with the corresponding face of y. Then we
can define a simplicial set PnX by

for all 1~ &#x3E; 0, where the face and degeneracy operations are induced from
those of X. Note that the G-structure on X determines such a structure
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on each PnX for n &#x3E; 0. Write qn : X -~ PnX and pn : Pn X --~ for

the pointed natural G-maps. Then the diagram

is called the Postnikov tower of a G-simplicial set X and PnX the nth stage
of this tower for n &#x3E; 0. We can follow mutatis mutandis the non-equivariant
results [16, Proposition 8.2 and Theorem 8.4] to show

PROPOSITION 2.5. - Let X be a Kan G-simplicial set. Then

( 1 ) each qn : X -* PnX is a Kan G-fibration ;

(2) for each n &#x3E; m the natural map PnX - PmX is a Kan G-fibration;

(3) each PnX is a Kan G-simplicial set;

(4) 

(5) each qn : X ---* PnX yields an isomorphism 
(PnX) for n.

The action x 7rn(X:,x) - defines a natural

transformation

The functoriality of the lower central series of a group allows to define
inductively functors

for all 1 &#x3E; 0 as follows:

and
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This yields a decreasing filtration

of 7tn(X) for all n &#x3E; 1 and short exact sequences

with the trivial action of on for 1 &#x3E; 0 and

n &#x3E; 1. We say that G-simplicial set is nilpotent if for any n &#x3E; 1 there is a

sufficiently large integer In with = 0.

To state the next result we need to recall the notion of a simplicial
set of paths. Let X be a Kan simplicial set, with the base point * and the
face operations di and the degeneracy operations s2, then the simplicial set
of paths is to be

and for each 0  i  n, di on (P*X)n is to be the restriction of di+l on
and similarly for each si. Then the map p* : ~* X -~ X such that

p* (x) = dox for x E (P*X)n is a Kan fibration.

Let now X be a G-simplicial set and xo E Xo. Then any element

g E G induces a simplicial map PxoX ---* Hence on the simplicial
set

a G-structure is defined and the Kan fibrations pxo : X give rise
to a Kan G-fibration

Then a map f : X - Y of pointed G-simplicial sets is G-homotopic to
the constant map 8 : X ~ Xo 1 Y if and only if there is a map f : X - PY
such that the diagram

is commutative.
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A pointed Kan G-fibration f : X - Y is called principal of type
(7t, n) if it is induced by a classifying map k : Y - K(7t, n + 1), i.e., there
is a pullback

where 7t is a contravariant (5(G, X)-system of groups and n &#x3E; 1. So a

pointed Kan G-fibration f : X - Y of type (7t, n) is characterized by a

cohomology class [k] E H’2+1 (Y, 7t).

PROPOSITION 2.6. - If X is a Kan nilpotent G-simplicial set and

is its Postnikov tower then the Kan G-fibration pn : P,,-,X admits
a refinement

where is a principal G-fibration with the fibre

and n &#x3E;- 1.

Proof. By Proposition 2.5 the map Pn : PnX - Pn-1 X is a Kan
G-fibration with the fibre for n &#x3E; 0. Suppose that r17tn(X)
= 0 for l &#x3E; In. From the non-equivariant relative Hurewicz Theorem we
deduce that pn : PnX - Pn-1 X leads to a natural isomorphism

Then, in virtue of the relative cohomology spectral sequence
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we see that may be regarded as an element of the relative cohomology
group PnX - From the cohomology
long exact sequence

it follows that gives rise to a pointed map

such that is G-homotopic
to the constant map

pullback
Then the

determines a factorization pn the long homo-
topy sequence of which reduces to

Hence we may repeat the procedure above, with rn,l replacing pn, and,
continuing in this way, we reach

each pn,l : : Pn,lX ---* being a principal G-fibration induced

by + 1). However, the
homotopy groups vanish for all m ~ 0, so that rn,ln : PnX -
Pn,lnX is a G-homotopy equivalence and we have proved the existence of
the required refinement at the stage n. D

Remark 2.7. - It can be also shown that any Kan G-simplicial set
the Postnikov tower of which admits a principal refinement is nilpotent.

THE MAIN RESULT. We say that a Kan nilpotent G-simplicial set X is
rational if the homotopy groups are uniquely divisible for any
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subgroup H C G, x E Xo and n &#x3E; 1. Note that for n &#x3E; 2 this means
that are Q-modules. We say that a pointed map f : X - XQ
of nilpotent G-simplicial sets is a G-rationalization of X if XQ is rational
and for every map g : X - Y of nilpotent Kan G-simplicial sets with Y
rational there is a (unique up to G-homotopy) map g : XQ - Y such that
the diagram 

-

commutes (up to G-homotopy). Given a nilpotent Kan G-simplicial set X
we follow [19], [20] to sketch how the principal refinement of the Postnikov
tower of X leads to its G-rationalization.

PROPOSITION 2.8. - Let X be a nilpotent Kan G-simplicial set X.
Then there is a rationalization f : X - XQ and, for a pointed map
f : X - Y of nilpotent Kan G-simplicial sets with Y rational, the following
statements are equivalent:

(1) the map f : X - Y is a G-rationalization of X ;

(2) HG ( f , M) : H3 (Y, M) --* is an isomorphism for all left
QO(G, X ) - modules M and n &#x3E; 0;

(3) M) : H~ (X, M) ~ Hn (Y, M) is an isomorphism for all right
QO(G, X)- modules M and n &#x3E; 0;

(4) Hn ( f , Q) : Hn (X, Q) --4 Hn (Y, Z) is a isomorphism for n &#x3E; 0;

(5) 7tn(f) : 7tn(X) Q9 Q ---* an isomorphism for n &#x3E; 0;

Proof. Given a nilpotent Kan G-simplicial set, consider its Post-
nikov tower
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and the principal refinement

of the Kan G-fibration p, : PnX - Pn-1X .

We construct inductively G-rationalizations 
for n &#x3E; 1 and 0  l ~ ln. Because Pl,lX = we

define (Pi iX)Q = (D Q, 1). Then the canonical map

of C~(G, X)-systems of abelian groups induces the rationalization f l,l :
Pi,iX --~ Given a G-rationalization fn,l : (Pn,lX)Q for
some n &#x3E; 1 and 1 &#x3E;- 0, we first consider the G-map

induced by the canonical map

of O( G, X)-systems of abelian groups. Then the classifying map 
n + 1) for the principal Kan G-fibration

Pn,zX yields a commutative (up to G-homotopy)
diagram

Let be the principal Kan G-
fibration determined by the map Because the composed G-map

is G-homotopic to the constant G-map, so there is a rationalization

and such that
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Finally, passing to the inverse limit, the maps

give rise to the required G-rationalization

For the proof of its universal property we mimic the non-equivariant case

(cf. e.g., [12, Theorem 2A] or [14, Theorem 1.4]).
Let now consider (1) - (2). Given a left QO(G,X)-module M, by

means of the universal property of the G-rationalization f : X -i Y, the
induced map HG ( f , M) : HG (Y, M) - ~Y, I~ (M, n) J Xo -~ 

is an isomorphism for all n &#x3E; 0. To show (2) - (1) we
can make use of the principal refinement of the Postnikov tower of X, the
representability of cohomology by Eilenberg-MacLane G-simplicial sets and
then follow the non-equivariant procedure (see e.g., [14, Theorem 1.3]).

The implications (4) - (2) and (4) - (3) follow from coho-

mology and homology spectral sequences. For the proof of (2) - (4)
and (3) - (4) we take for M the Yoneda QC9(G, X)-modules Q(5(G, X)
(-, (G/H, x)) and its dual (C9(G,X)((GIH,x),-),Q), respectively for

E Ob(Õ(G, X)). The equivalence (4) ~ (5) is a direct con-

sequence of results (cf. e.g., [12, Theorem 3B]) on the non-equivariant ra-
tionalization of nilpotent spaces. 0

To formulate the main result containing the heart of the matter and
relating the rational homotopy with i-minimal models, we show as in [17,
Theorem 4.15 and Theorem 4.16] how the algebraic structure of the i-

minimal model of a nilpotent Kan G-simplicial set corresponds to the
structure of its Postnikov tower. The first step is to model the basic pieces
which compose the tower, the Eilenberg-MacLane G-simplicial set and then
pointed principal Kan G-fibrations as well.

For a contravariant n of Q-modules, let ~’c* be its

topological dual determined by the linearly compact Q-modules given by
for G/H, x) E O(G,X). Write Q (7t*) for the

i-elementary extension of the constant QO(G, X)-algebra Q with respect
to the trivial map T : 7t* - 0 for n &#x3E; 1. Given a nilpotent
G-simplicial set X we say that a QO(G, X)-algebra ,~4 is geometric for X
if there is a quasi-isomorphism ,,4. -~ 

LEMMA 2.9 (The Hirsch Lemma). Let X be a nilpotent G-sim-
plicial set, let a QC9(G, X)-algebra A be geometric for X and 7t a contra-
variant Then,
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(1) the set [X, K(7t, n)]G. of homotopy classes of G-maps is in the

one-to-one correspondence with the set of homotopy classes ~~T (~t* ) , ,A.~
of O(G, X )-maps;

(2) the set of isomorphism classes of pointed principal Kan G-fibrations
Y - X of type (7r, n) is in one-to-one correspondence with the set

of isomorphism classes of i-elementary extensions AT ( 7£* ) and the map
X - + 1) classifying X - Y corresponds to T : 7t* -~ 

Moreover, is geometric for Y.

Proof. - For ( 1 ) consider the minimal injective resolution

We know that the set [X, K(7t, corresponds to Hn (X, 7t) 7T*)

~ Hn+1 (_~ ~ ,~~, ~t* ) and by Lemma 1.6 the relative cohomology group
H"+’(Q --4 ,,4., ~t* ) corresponds to the set of homotopy classes [Q (71*), ,,4~ .

Part (2) is a direct consequence of (1). D

Now we may show how the i-minimal model of a nilpotent Kan
G-simplicial set X captures all of the rational homotopy information
contained in its Postnikov tower

Let

be the principal refinement of the pointed Kan G-fibration pn : 
Pn-1 X , where Pn,l-1 X is a principal G-fibration of type

n + 1) for l = 1,..., In and n &#x3E; 1. The G-simplicial
set is called the (n, l)-stage of this tower.

Write px : Mx --~ for the i-minimal model of X given by
Theorem 2.4, where = Mx(0) = Q, 

and A4 x (n, l+ 1) == is an i-elementary
extension l) with respect to a map Mn,l -~ (n, 1) of left
QO(G, X)-modules for 0 and n &#x3E; 1.
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THEOREM 2.10. Let X be a nilpotent Kan G-simplicial set and
px : .11~(x -~ Ax its i-minimal model. Then the correspondence X ~--~ A4x
is a bijection from equivariant rational homotopy types of nilpotent Kan
G-simplicial sets to isomorphisms classes of i-minimal QC9(G, X)-algebras,
and Mix encodes the rational homotopy information via the following
natural isomorphisms:

(1) H3 (X, M)_"-_’ Hn(,,4.x, M*) ~ H’ (A4x, M*) for all n &#x3E; 0, where

M is a right QC9(G, X)-module and M* its dual linearly compact left

QO(G, X )-module;

(3) the map + 1) classifying
the pointed Kan G-fibration Pn,l+l : PN,IX corresponds to
Tn,l : Zn+l A4x(n,l) determining the i-elementary extension

1 + 1) == l)(Mn,z) and there is an isomorphism

where (Mn,z)* is the topological dual of the linearly compact left X)-
module M,,,,l for all l, n &#x3E; 1;

(4) the i-minimal model for the (n, l)-stage Pn,zX of the
Postnikov tower of X.

Proof. The proof that the correspondence X H is a bijection,
is based on Lemma 2.9 (2).

To show (1) consider the quasi-isomorphism px : Mx --~ Ax. By
means of cohomology spectral sequences, this leads to isomorphisms

for all n &#x3E; 0, where M is a right QO(G, X)-module and M* its dual linearly
compact left Q(3(G, X)-module.

rv rv

The maps Hn (X, Q) H are isomorphisms for all
n &#x3E; 0 by the de Rham Theorem [1, Theorem 2.2] and (2) follows.

Given Mx(n, l ) geometric for Pn, 1 X we consider the pointed principal
Kan G-fibration Pn,zX to get, in the light of Lemma
2.9, the i-elementary extension l + 1) = A4x (n, with

Mn,1 i = (rz7tn(X)/rz+l7tn(X)) 0 Q, so (3)-(4) are shown and the proof
is complete. D
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(1) We plan to apply our new i-minimal models to show equivar-
iant formality (over the rationals Q) of disconnected compact Kdhler G-
manifolds and their holomorphic maps, results aimed at in [5], [6].

(2) We say that a Kan G-simplicial set X is complete if the canonical
map

is an isomorphism for all n &#x3E; 1. Of course, any nilpotent Kan G-simplicial
set is complete. The results above can be generalized on complete G-
simplicial sets as well. The rationalization of Kan G-simplicial sets must
be then replaced by their Q-completion.

(3) Let 1r be the circle group. We point out that a smooth version of our
methods might be extend the algebraization [17] of rational T-equivariant
homotopy theory not only to nilpotent but even to complete disconnected
T-spaces.
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