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ALGEBRAS WITH FINITELY

GENERATED INVARIANT SUBALGEBRAS

by Ivan V. ARZHANTSEV (*)

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 379-398

1. Introduction.

It is easy to prove that any subalgebra in the polynomial algebra
K ~x~ is finitely generated. On the other hand, one can construct many non-
finitely generated subalgebras in for n &#x3E;, 2. More generally,
any subalgebra in an associative commutative finitely generated integral
algebra ,~4 with unit is finitely generated if and only if Kdim A x 1, where
Kdim A is Krull dimension of A. The aim of this paper is to obtain an

equivariant version of this result.

Let A be an associative commutative finitely generated integral
algebra with unit over an algebraically closed field I~ of characteristic

zero, and let G be a connected reductive algebraic group over K acting
rationally on A. The latter condition means that there is a homomorphism
G - Aut(A) such that the orbit Ga of any element a E A is contained in
a finite-dimensional subspace in ,,4 where G acts rationally. We say in this
case that ,,4 is a G-algebra.

In Section 2 we introduce three special types of G-algebras. Theorem 1
states that any invariant subalgebra in a G-algebra A is finitely generated
if and only if ,A belongs to one of these three types.

(*) The work was supported by CRDF grant RM 1-2088, by RFBR grants 01-01-00756,
02-01-06401 and by CNRS.
Keywords: Algebraic groups - Rational G-algebras - Quasi-affine homogeneous spaces
- Affine embeddings.
Math. classification: 13A50 - 13E 15 - 14L 17 - 14L30 -14M 17 -14R20.
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In Section 3 we consider a geometric method for constructing a non-
finitely generated subalgebra in a G-algebra. The proof of Theorem 1 is

given in Section 5. It is based on the notion of an affines embedding of a
homogeneous space defined in Section 4.

An (affine) homogeneous space G/H is said to be aflinely closed if any
affine embedding of G/H coincides with G/H (cf. [AT01]). It was proved
by D. Luna [Lu75] that a homogeneous space G/H is affinely closed if and
only if H is a reductive subgroup of finite index in its normalizer Nc(H) .
For convenience of the reader we recall the proof of this result following
G. Kempf [Ke78], Cor. 4.5.

In Section 6 some results on affine embeddings are given. In particular,
some characterizations of embeddings with a G-fixed point are presented
(Propositions 3, 4 and 6). The notion of the canonical embedding of a
homogeneous space G/H, where H is a Grosshans subgroup of G, is

introduced in Section 7. (Let us recall that H is a Grosshans subgroup of G
if the homogeneous space G/H is a quasi-affine variety and the algebra of
regular functions is finitely generated.) This embedding is a very
natural object associated with G/H, and investigation of its properties
leads to some characteristics of the pair (G, H).

In section 8 a version of our result over algebraically closed fields of
positive characteristic is discussed. Finally, some problems are collected in
Section 9.

Acknowledgements. The author is grateful to Michel Brion for nu-
merous discussions and suggestions, to A. Premet for pointing out an error
in a preliminary version of this text, to A. J. Parameswaran for a useful
remark and to the referee for many comments and corrections.

This paper was written during the staying at Institut Fourier (St.
Martin d’H6res, France). The author wishes to thank this institution and
especially Michel Brion for invitation and hospitality, and Independent
Moscow University for support.

2. Three types of G-algebras.

Type C. Here ,,4 is a finitely generated domain of Krull dimension
Kdim A = 1 (i.e., the transcendence degree of the quotient field equals
one) with any (for example, trivial) G-action. Such algebras may be consi-
dered as the algebras of regular functions on irreducible affine curves.
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Type HV. Let H be a closed subgroup of G and

for any g E G, h E H}.

The left G-action (l(g’) f )(g) := f (g’-lg) on ,,4.(H) is rational.

Further we follow notation of the book [Gr97]. Let B = T U be a Borel
subgroup of G with the unipotent radical U and a maximal torus T. Here
T normalizes U and there is a G-equivariant T-action on A(U) defined by
right translation (r (t) f ) (g) . := f (gt). For a character E X (T) consider
the G-invariant subspace

The G-module E(w*) is 101 unless w is dominant. Denote by X+ (T) the set
of dominant weights. For every E X + (T ), E(1J* ) is a simple G-submodule
having highest weight denoted by w*. The map úJ ---* w* is an involution on

X+(T). Since each element in is a sum of T-weight vectors (where T
acts by right translation), we see that is the direct sum of the 

w E X+(T). From the definition, it is obvious that w’ C X+(T), then

Consider the G-algebra

where A is a dominant weight. (More geometrically, the algebra may
be realized as

where is the G-line bundle on the flag variety G/B
corresponding to the character 

We say that a G-algebra A. is an algebra of type HV if it is G-

isomorphic to an invariant subalgebra of for some A E X+(T). Any
G-algebra of type HV is finitely generated, see Lemma 2 below.

The algebra may be considered as the algebra of regular func-
tions on the orbit closure of a highest weight vector in the simple G-module
with highest weight A*. Clearly, any invariant subalgebra in has the

form
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where P is a subsemigroup in the additive semigroup Z+ of non-negative
integers, cf. [PV72].

Example l. - Let G be S Ln (K) and 1Ji , ... , be its fundamen-

tal weights. The natural linear action G : Kn induces an action on regular
functions

The homogeneous polynomials of degree m form
an (irreducible) isotypic component corresponding to the weight 
Hence ,A. = and any invariant subalgebra in ,,4 is composed of

homogeneous components indexed by elements of a subsemigroup P C Z+.

Type N. Let H be a reductive subgroup of G. Then the algebra A(H)
is finitely generated. Denote by CG (H) the centralizer of H in G. Consider
the following condition:

(*) H is reductive and for any one-parameter subgroup v : K* -~ &#x3E;

CG (H) the image v(K*) is contained in H.

Let us note that for a reductive subgroup H one has NG(H)° -
where L° denotes the connected component of unit in an

algebraic group L. Hence condition (*) may be reformulated as "H is

reductive and the group is unipotent", where W (H) = 
But the normalizer NG(H) is reductive [LR79], Lemma 1.1 and thus

condition (*) is equivalent to the condition

(**) H is reductive and the group W(H) is finite.

We say that a G-algebra ,,4 is of type N if there exists a subgroup
H C G satisfying condition (*) such that A is G-isomorphic to A(H).
Any G-invariant subalgebra of a G-algebra of type N is finitely generated
(Lemma 1).

Example 2. - Let G = SLn and H = SOn. The group G acts on
the space of symmetric n x n-matrices by (g, s) -~ gT sg. The stabilizer
of the identity matrix E is the subgroup H and the orbit GE is the set
X of symmetric matrices with determinant 1. This yields that the algebra
A = K[X] with the G-action (g * f ) (s) : - is an algebra of

type N.

A G-algebra A is a G-algebra of type N if and only if

(***) A contains no proper G-invariant ideals and the group of G-
equivariant automorphisms of A is finite,
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(see Remarks in Section 5).
Now we are able to formulate the main result.

THEOREM 1. - Let A be a G-algebra. Then any G-invariant sub-
algebra of A is finitely generated if and only if A is an algebra of one of
the types C, HV or N.

The proof of Theorem 1 is given in Section 5. Now we begin with
some auxiliary results.

3. Non-finitely generated subalgebras.

Let X be an irreducible affine algebraic variety and Y be a proper
closed irreducible subvariety. Consider the subalgebra

for any

PROPOSITION 1. - The subalgebra A(X, Y) is finitely generated if
and only if Y is a point.

Proof. If Y is a point, then A(X, Y) = K[X]. Suppose that Y has
positive dimension. Consider the ideal T == I(Y) = f f E K[X] I f (y) =
0 for any y E Then is an infinite-dimensional vector space. By
the Nakayama lemma, we can find i E Z such that in the local ring of Y
the element i is not in Z2 . For any a E ~"[~] B~" the element ia is in 
Hence the space has infinite dimension.

On the other hand, suppose that fl, ... , fn are generators of A(X, Y).
Subtracting constants, one may suppose that all fi are in Z. Then

dim A(X, Y)/Z2  n + 1, a contradiction. 0

PROPOSITION 2. - Let A be a finitely generated domain containing
K. Then any subalgebra in A is finitely generated if and only if Kdim .A  1.

Proof. If Kdim ,A &#x3E; 2, then the statement follows from the

previous proposition. The case Kdim A = 0 is obvious. It remains to prove
that if Kdim A - 1, then any subalgebra is finitely generated. By taking the

integral closure, one may suppose that is the algebra of regular functions
on a smooth affine curve Cl. Let C be the smooth projective curve such
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that C, Pk 1. The elements are the rational functions

on C that may have poles only at points Pi. Let B be a subalgebra in A.
By induction on k, we may suppose that the subalgebra B’ c B consisting
of functions regular at PI is finitely generated, say B’ = K ~s 1, ... , sm]’
(Functions that are regular at any point Pi are constants.) Let v(f) be
the order of the zero/pole of f E ,~3 at Pi. The set Y = ~v( f ) ~ I f E ,13~
is an additive subsemigroup of integers. Any such subsemigroup is finitely
generated. Let be elements such that the generate
V. Then for any f there exists a polynomial P(~1, ... , yn) with
v( f - P( f1, ... , fn)) &#x3E; 0, thus f - P( fl, ... , fn) E B’. This shows that
,t3 is generated by /i,..., f n , s 1, ... , sm . 11

4. Affine embeddings.

To go further we need some definitions.

DEFINITION 1. - Let H be a closed subgroup of G. We say that
an affine variety X with a regular G-action is an affine embedding of the
homogeneous space G/H if there exists a point x E X such that the orbit
Gx is dense in X and the orbit map G - Gx defines an isomorphism
between G/H and Gx. We denote this as Gy~ ~~ X. An embedding is
trivial if X = Gx.

Note that a homogeneous space G/H admits an affine embedding
if and only if G/H is quasi-affine (as an algebraic variety), see [PV89],
Th.1.6. In this situation, the subgroup H is said to be observable in G. For a

group-theoretic description of observable subgroups see [Su88] (char I~ = 0)
and [Gr97], Th.7.3 (char K is arbitrary). It is known that G/H is affine if
and only if H is reductive [Ri77], Th.A, [Gr97], Th.7.2. In particular, any
reductive subgroup is observable.

DEFINITION 2. - A homogeneous space is said to be affinely closed
if it admits only the trivial affine embedding. (In this case G/H is affine.)

The following result is due to D. Luna [Lu75].

THEOREM 2. - A homogeneous space G/H is affinely closed if and
only if H is a subgroup satisfying condition (*). Moreover, if G acts on an
affine variety X and the stabilizer H’ of a point x E X contains a subgroup
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H satisfying condition (*), then H’ is a subgroup satisfying condition (*)
and the orbit Gx is closed in X.

Theorem 2 implies that if H is a subgroup satisfying condition (*),
H C H’ C G and H’ is observable in G, then G/H’ is affinely closed. We
shall give a proof of Theorem 2 in Section 6 in terms of Kempf’s adapted
one-parameter subgroups [Ke78].

5. Proof of Theorem 1.

Let ,,4 be a G-algebra with Kdim A ) 2 such that any invariant

subalgebra in A is finitely generated. Consider the corresponding affine
variety X = SpecA. The action G : ,,4 induces a regular (algebraic) action
G : X.

Suppose that there exists a proper irreducible closed invariant subva-
riety Y C X of positive dimension. Then A(X, Y) is an invariant subalgebra
that is not finitely generated. In particular, this is the case if G acts on X
without a dense orbit. Hence we may suppose that either

(i) the action G : X is transitive or

(ii) X consists of an open orbit 0 and a G-fixed point o.

In case (i), fix a point x E X and denote by H the stabilizer of x
in G. Here H is reductive and if G/H is not affinely closed, then there is
a nontrivial affine embedding X’. The complement of the open
affine subset X in X’ is a union of irreducible divisors. Let Y be one of

these divisors. The algebra A(X’, Y) is a non-finitely generated invariant
subalgebra in K[X’] and the inclusion X C X’ defines an embedding
K[X’] C K[X] = A. We conclude that G/H should be affinely closed.
In this case ,,4 is of type N by Theorem 2.

LEMMA 1. - If X = G/H is affinely closed, then any invariant
subalgebra in A(H) is finitely generated.

Proof. Suppose that there exists an invariant subalgebra B C

,,4(H) that is not finitely generated. Let fl, f2, ... be a system of generators
of B. Consider the finitely generated subalgebras Bi = 7C[ G f 1, ... , G f &#x3E;],
where  (7/1,.... G f i &#x3E; is the linear span of the orbits G f 1, ... , G f i .
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Infinitely many of the Bi are pairwise different. For the corresponding
varieties X2 : one has natural dominant G-morphisms

We claim that the action G : Xi is transitive for any i. In fact, the
morphism G/H - Xi is dominant and, by Theorem 2, the image of G/H
is closed in Xi.

One may consider any Xi as a homogeneous variety G/Hi, where
Hi is a reductive subgroup of G containing H. The infinite sequence of
subgroups

leads to a contradiction. 0

Remarks. - 1) In the case K = C, Lemma 1 follows also from [La99].
In fact, the article [La99] was the starting point for the present paper.

2) A G-algebra A contains no proper invariant ideals if and only
if the action G : X = Spec is transitive. We have shown that any

G-algebra of type N contains no proper invariant ideals. Moreover, the
group of equivariant automorphisms of the homogeneous space G/H (and
of the algebra A(H), at least if H is observable) is isomorphic to W(H).
Suppose that H is reductive and W(H) is finite. As is obvious from what
has been said any invariant subalgebra in A(H) has the form ,,4(H’), where
H C H’ C G, H’ is reductive and W(H’) is finite, and hence G-algebras of
type N are characterized by property ( * * * ) .

Now consider case (ii). We are going to prove that here ,,4 = K[X]
is an algebra of type HV following the proof of [Br89], Lemme 1.2 (see
also [Po75], Th.4, [Ak77], Th.1 ) . One may assume that X is contained as
a closed G-invariant subvariety in a finite-dimensional G-module V with
origin o. Let be the projective space associated with VEDK, where
G acts trivially on K. Denote by X the closure of X in K). Then
X intersects the hyperplane at infinity P(V). This shows that a maximal
unipotent subgroup U C G has at least two fixed points in X. But the set
of points fixed by a connected unipotent group on a connected complete
variety is connected [Ho69], Th.4.1. This proves that for the open orbit
o C X one has OU i- 0. Let v be a U-fixed vector in C~. The vector v has
the where tvi = x2 (t)vi with Xi E X+(T) for any i and any
t E T. Without loss of generality it can be assumed that the group G is
semisimple and hence all x2 belong to the positive (strictly convex) Weyl
chamber. Find a one-parameter subgroup 0 : K* - T such that
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(1)  8, x2 &#x3E; ) 0 for any i;

(2) there exists a non-zero Xk (denote it by A*) such that  0, x2 &#x3E;= 0

if and only if x2 is a multiple of A*.

Then vl = = ~ v~ , where the corresponding X3 are

multiples of A*, and vl is in X. By assumption on X, one has X = Gvl U 101 -
Let H be the stabilizer of v, in G. The bijective morphism G/H - 0
defines an inclusion K[O] C K[G/H] . Moreover, the subgroup H contains
U and K[G/H] = where w* IT,. 1 for Tl = H rl T [Gr97], p. 98.
This shows that K[G/ H] C A(A) and ,A = K ~X ~ C is a G-algebra of
type HV.

LEMMA 2. - Any invariant subalgebra of the algebra is

finitely generated.

Proof. Let B be an invariant subalgebra of A(A). It is known that
~3 is finitely generated if and only if the algebra of U-invariants is finitely
generated [Gr97], Th.16.2. But KdimA(A)u - 1, and, by Proposition 2,

C A(A)u is finitely generated. 0

The proof of Theorem 1 is completed. 0

6. Some results on affines embeddings.

The next proposition is a modification of a construction due to

G. Kempf [Ke78].

PROPOSITION 3. - Let G/H be a quasi-affine non affinely closed
homogeneous space. Then G/H admits an affine embedding with a G-fixed
point.

Proof. Let G/H - X be a nontrivial embedding and Y C X
be a proper closed irreducible invariant subvariety. Denote by 11"." fk
generators of K[X] and by gl, ... , gs generators of the ideal I(Y). One
may suppose that the fi form a basis of  G 11, ... , &#x3E; and the gi form
a basis of  Ggl, ..., Ggs &#x3E;. Consider the G-equivariant morphism
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Let Z be the closure of It is clear that Z is birationally isomorphic
to X and is an affine embedding of G/H. But O(Y) - 101 is a G-fixed

point on Z. 0

Proof of Theorem 2. - Suppose that H is a subgroup not satisfying
condition (*). Consider the subgroup HI = v(K*)H. The homogeneous
fiber space G K, where H acts on K trivially and HIIH acts on K by
dilation, is a two-orbit embedding of G/H.

Conversely, we need to prove that if G/Hl is a quasi-affine homoge-
neous space that is not affinely closed and H is a reductive subgroup con-
tained in Hl, then there exists a one-parameter subgroup v : ~f* 2013~ CG(H)
such that v(K*) is not contained in H. By Proposition 3, there exists an
affine embedding G/Hi - X with a G-fixed point o. Denote by xo the
image of eHl in the open orbit on X. Let 1 : K* - G be an adapted (to
xo ) one-parameter subgroup. Consider the parabolic subgroup

P(1) == g exists in G}.t-0

Then P(1) = where L(-y) is a Levi subgroup that is the

centralizer of 1(K*) in G, and is the unipotent radical of P(1). By
[Ke78] (see also [PV89], Th. 5.5), the stabilizer H1 is contained in

P(1). Hence there is an element u E U(1) such that H’ = uHu-1 C L(-Y).
We claim that -y(K* ) is not contained in H’. In fact, assume the

converse. Then uxo for any t E K*. Denote by
ut. Then uxo, so that 1(t)Xo E U(1)Xo. By assumption,
limt-+o 1( t )xo == o On the other hand, the orbit U(-y)xo is contained
in Gxo and is closed in X as an orbit of a unipotent group on an
affine variety [PV89], p.151. (The proof of the latter statement is based

only on the Lie-Kolchin theorem, which holds in arbitrary characteristic

[Hu75], 17.5].) This contradiction shows that 1(K*) is not contained in

H’ and -y(K*) centralizes H’. The one-parameter subgroup conjugated by
u-1 E U(1) to 1(K*), is the desired subgroup v(K*). 0

Now we return to some properties of affine embeddings. Let us recall
that a subgroup Q c G is said to be quasi-parabolic if Q is the stabilizer of
a highest weight vector v in some finite-dimensional irreducible G-module,
say VÀ*. If Pa* is the parabolic subgroup fixing the line  v &#x3E;, then

PROPOSITION 4. - A homogeneous space G/H admits an affines
embedding GIH ---* X such that X = G/H U fol, where o is a G-fixed
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point if and only if H is a quasi-parabolic subgroup of G.

Proof. If H is quasi-parabolic, then X = Gv C is the desired

embedding.

Conversely, as was shown in the proof of Theorem 1, the subgroup H
(up to conjugation) is the stabilizer of a sum of highest weight vectors with
proportional weights. This shows that H is a quasi-parabolic subgroup. 0

Remarks. - 1) Proposition 4 was proved by V. L. Popov [Po75],
Th. 4 and Cor. 5. For a description of complete embeddings with an isolated
fixed point over the field C see [Ak77], Th. 2.

2) The assumption that G is reductive is not essential in Proposition 4,
see [Po75], Th. 3.

PROPOSITION 5. - Let H be an observable subgroup of G.

(1) If either G/H is affinely closed or H is a quasi-parabolic subgroup
of G, then G/H admits only one normal affines embedding (up to G-isomor-
phisms);

(2) if G - K* and H is finite, then there exist only two normal afhne
embeddings, namely K* /H and K/H;

(3) in all other cases there exists an infinite sequence

of pairwise nonisomorphic normal affine embeddings Xi of G/H and
equivariant dominant morphisms Oi.

Proof. Here we give characteristic-free arguments.

(1) The statement is obvious for affinely closed spaces. If H is quasi-
parabolic, then consider the subalgebra B in ,A = corresponding
to a normal affine embedding of G/H. We claim that = Indeed,

K[x] is isomorphic to the polynomial algebra in one variable and Bu
is a graded integrally closed subalgebra. Hence = But QB
implies QAU - and d = 1.

Any element of ,,4 is contained in QB. On the other hand, the algebra
A is integral over [Gr97], Th. 14.3 and = C ,L3. But B is

integrally closed and finally A = B.

(2) is obvious.
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(3) In this case K~G/H~ contains a non-finitely generated subalgebra
of type A(X, Y). One may suppose that X is normal. Then A(X, Y) is

an integrally closed subalgebra in Fix an element g E I(Y)
and generators of K[X]. Extend the sequence go = 

g fn to an (infinite) generating set go, gl, . - . , gn, gn+1 ...
of A(X, Y) . Let Ak be the integral closure of K[ &#x3E;]
in The varieties Xi - Spec Ai are birationally isomorphic to
X and Xi. Infinitely many of Xi are pairwise nonisomorphic.
Renumbering, one may suppose that all Xi are pairwise nonisomorphic.
The chain

corresponds to the desired chain

7. The canonical embedding.

It is easy to check that the intersection of a family of observable

subgroups is again an observable subgroup. Hence, one may define the ob-
servable hull of a subgroup H as the intersection of all observable subgroups
containing H, cf. [PV89], 3.7. It is the minimal observable subgroup con-
taining H. Another (but equivalent) approach to the observable hull may
be found in [Gr97], page 6.

DEFINITION 3. - Let H be a subgroup of G. We say that a
reductive subgroup L is a reductive hull of H if L is a minimal (with
respect to inclusions) reductive subgroup of G containing H.

The intersection of reductive subgroups in general is not reductive,
thus a reductive hull may be not unique (see Example 3 below). Any
reductive hull contains the observable hull.

Let us recall that an observable subgroup H of G is said to be

a Grosshans subgroup if the algebra K[G / H] is finitely generated. The
famous Nagata counter-example to Hilbert’s fourteenth problem provides
an example of a unipotent subgroup in SL32, which is not a Grosshans

subgroup, see [Gr97].
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DEFINITION 4. - Let H be a Grosshans subgroup of G. Let us call
G/77 ~~ X = Spec the canonical embedding of G/H and denote it
as CE(G/H).

It is well-known that the codimension of the complement of the
open orbit in CE(G/H) is &#x3E; 2 and CE(G/H) is the only normal affine
embedding of G/H with this property [Gr97], Th.4.2. If H is reductive,
then CE(G/H) is the trivial embedding. For non-reductive subgroups
CE(G/H) is an interesting object canonically associated with the pair
(G, H).

Fix some notation. There exists a canonical decomposition A’[(7/7f] =
where the first term corresponds to the constant functions

and is the sum of all nontrivial simple G-submodules in K[G / H].

PROPOSITION 6. - Let H be an observable subgroup in G. The
following conditions are equivalent:

(1) a reductive hull of H in G coincides with G;

(2) any afhne embedding of G/H contains a G-fixed point;

(3) K[GIHIG is a subalgebra in K[G/H].
If H is a Grosshans subgroup, then conditions (l)-(3) are equivalent to

(4) CE(G/H) contains a G-fixed point.

Proof. (1) ~ (2). Suppose that is an affine embedding
without G-fixed point and the closed G-orbit in X is isomorphic to G/L.
Then L is reductive and by the slice theorem [Lu73] H is contained in a
subgroup conjugated to L.

(2) # (1). If H C L, where L is a proper reductive subgroup in G,
then H is observable in L and for any affine embedding Y the

homogeneous fiber space G *L Y is an affine embedding of G/H without
G-fixed point.

(3) ~ (2). For any affine embedding G/H - X we have 7~[X] =
where Hence is a maximal

G-invariant ideal in K[X] corresponding to a G-fixed point in X.

(2) # (3). Suppose that there are a, b E K[GIHIG such that
ab ~ Let X be any affine embedding with K[X] =
K ~ f l , ... , in]. Consider the subalgebra S of generated by f l , ... , f,,,
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 Ga &#x3E;,  Gb &#x3E;. Then G/~f ~-~ Spec Sand SG is not a subalgebra. But
SG is the only candidate for a maximal G-invariant ideal in S.

(2) ~ (4) and (4) ~ (3) are obvious. 0

Let G be a connected semisimple group and P c G be a parabolic
subgroup containing no simple component of G. Denote by Up the unipo-
tent radical of P.

PROPOSITION 7. - The homogeneous space G/Up satisfies condi-
tions (1)-(4) of Proposition 6.

Proof. It is known that Up is a Grosshans subgroup of G [Gr97],
Th. 16.4. We shall check that K[G/Up]G is a subalgebra in K[G/Up].
For this it is sufficient to find a nonnegative grading on K[GIUp] with

as the positive part.

Let B = T U be a Borel subgroup in G with B C P and let P = LUp,
where L is the Levi subgroup such that T C L and U = (U n L)Up. Denote
by TL C T the center of L. Then TL = It E T ai(t) = 1 where fail is
the set of simple roots corresponding to P. Let 7r : X (T ) --~ X(TL) be the
restriction homomorphism of the groups of characters, and X+ (T) C X (T)
be the set of dominant weights (with respect to B). It is easy to check

that generates a strictly convex cone in X(TL) 0 Q. Fix a one-
parameter subgroup 0 : K* --~ TL so that  0, X &#x3E; is positive for any
X E 

Note that L acts on as (1 * f)(gUp) f (gl Up ) and this
action commutes with the G-action. The L-module K[GIUPIG contains
no trivial L-submodules because of K[G/P] = K. On
any nontrivial irreducible L-submodule TL acts by multiplication by x(t),
t E TL, for some non-zero x E 7r(X’~(T’)). The restriction of the TL-action
to 8(K* ) defines the desired grading. 0

Remark. - Let us recall that a subgroup H in G is called epimorphic
= K. The following generalization of Proposition 7 (and another

way to prove it) was kindly communicated to us by F. D. Grosshans: if H
is a Grosshans subgroup of G normalized by a maximal torus T and T H
is epimorphic in G, then properties (1)-(4) of Proposition 6 hold for G/H.
Conversely, for a subgroup C of G containing T the observable hull is

reductive. Hence C is epimorphic if and only if C is not contained in a
proper reductive subgroup of G. A criterion (in terms of roots) for C to be
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epimorphic may be found in [BB92], Prop. 2.

Suppose that the observable hull Hl of a subgroup H is a Grosshans
subgroup. Denote by L a reductive hull of H. Then H1 C L and the natural
map G/Hi - G/L defines a map G/L. This shows that
the closed orbit in CE(G/Hl ) is isomorphic to GIL. Therefore for any
two reductive hulls L 1 and L2 of H there is an element g E G such that
L2 = In fact, a reductive hull is not unique.

Exam ple 3. - Let G - SLn, L = S’On , and H be a maximal
unipotent subgroup of L. It is clear that L is a reductive hull of H. One
has H C U for some maximal unipotent subgroup U in G. There exists
a subgroup Hl such that H C Hl C U, dim Hl - dim H + 1 and H is a
normal subgroup of Hl . Consider an element hl E HI B H. Then h1l Lhl
is another reductive hull of H.

8. The case of positive characteristic.

If we follow the proof of Theorem 1 over any algebraically closed field
K, also the two cases, (i) and (ii), will appear. The consideration of case (ii)
and the proof of Lemma 2 go on without any changes. On the other hand,
for every cv E X+(T) the submodule E(w) contains a simple G-submodule
having highest weight w, but E(w) may be not simple, and a G-algebra of
type HV is not determined by the semigroup P.

Example 4. - Suppose that char K = 2, G = SL2 (K) and G acts on
A = as in Example 1. Then the invariant subalgebras 
or are not of the form A(P, A).

The author does not know a "constructive" description of G-algebras
of type HV in the case char K &#x3E; 0.

For case (i), we need to find an analog of affinely closed spaces in
positive characteristic. Suppose that G acts on an affine variety X. The
orbit Gx of a point x E X is not determined (up to G-isomorphism) by
the stabilizer H = Gx, and it is natural to consider the isotropy subscheme
H’ at x, with H as the reduced part, identifying Gx and G/H’. There is a
natural bijective purely inseparable and finite morphism 7r : G/H - G/H’
[Hu75], 4.3, 4.6.

PROPOSITION 8. - The homogeneous space G/H is afhnely closed
if and only if G/H’ is aflinely closed.
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Proof. 1) Note that K(G/H)ps C 7r*K(G/H’) and K[G/H]PS C
for some s &#x3E; 0, where p - char K if char K &#x3E; 0 and p = 1

otherwise. If G/H is not affinely closed, then there is a nontrivial affine
embedding G /H - X. The algebra C := K[X] n 7r* K( G / H’) is finite over

Hence C is finitely generated, and X’ :== SpecC contains G/H’ as
an open subset:

On the other hand, the morphism -x’ : X - X’ defined by the inclusion
C C K[X] is finite. This shows that G/H’ ~ X’.

2) Suppose that G/H’ admits a non-trivial affine embedding G/H’ ~
X’. Consider the integral closure B of K[X’] in the field K(G/H). The
variety X = Spec B carries a G-action with an open G-orbit isomorphic to
G/H, and the finite morphism X - X’ is surjective, hence X is a nontrivial
embedding of GIH. D

DEFINITION 5. - A reductive subgroup H of the group G is

strongly affinely closed if for any affine G-variety X and any point x E X
fixed by H the orbit Gx is closed in X.

Below we list some results concerning case (i). It follows from the

proof of Theorem 1 that:

(1) if H is reductive and any invariant subalgebra in K[G/H] is

finitely generated, then G/H is affinely closed;

(2) if G/H is strongly affinely closed, then any invariant subalgebra
in is finitely generated.

The following notion was introduced by Serre, cf. [LS03].

DEFINITION 6. - A subgroup D c G is called G-completely re-
ducible (G-cr for short) if whenever D is contained in a parabolic subgroup
P of G, it is contained in a Levi subgroup of P.

For G = SL(V) this notion agrees with the usual notion of complete
reducibility. In fact, if G is any of the classical groups then the notions

coincide, although for symplectic and orthogonal groups this requires the
assumption that char K is a good prime for G. The class of G-cr subgroups
is wide. Some conditions which guarantee that certain subgroups satisfy
the G-cr condition may be found in [McN98], [LS03].
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The proof of Theorem 2 implies:

(3) if H is not contained in any parabolic subgroup of G, then G/H
is strongly affinely closed;

(4) if H does not satisfy (*), then G/H is not affinely closed;

(5) if H is a G-cr subgroup, then G/H is affinely closed iff G/H is
strongly affinely closed iff H satisfies (*).

Example 5. - The following example kindly produced by George J.
McNinch on our request shows that the group W(H) = Nc(H)1 H may be
unipotent even for reductive H. Let L be the space of (n x n)-matrices and
H be the image of SLn in G = SL(L), acting on L by conjugations.

If p = char Kin, then L is an indecomposable S’Ln-module with 3
composition factors, cf. [McN98], Prop. 4.6.10 a). It turns out that 
is a one-dimensional unipotent group consisting of operators of the form
Id +aT, where a E K, and T is a nilpotent operator on L defined by
T(X) = tr(X)E.

For example, in the simplest case p = 2, we have PSL2 C
SL4, NG (H) = HCG (H) (because H does not have outer automorphisms),
CG (H) is connected, and W (H) !2--- (K, +). In this case H is contained in a
quasi-parabolic subgroup, hence G/H is not strongly affinely closed.

9. Problems.

In this section we collect some problems that follow naturally from
the discussion above.

PROBLEM 1. - Suppose that char K0. Classify all affinely closed
homogeneous spaces. Is it true that any affinely closed space is strongly
affinely closed ?

PROBLEM 2. - Let G be a linear algebraic group. Characterize all
G-algebras A such that any invariant subalgebra in A is finitely generated.

This class of algebras seems to be much wider than in the reductive
case.

PROPOSITION 9. - Let G be a reductive group, S’ be a unipotent
group, H C G be a subgroup satisfying condition (*), and F c S’
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be any closed subgroup. Then any G x S-invariant subalgebra in ,,4 -

K[(G x s)/(H x F)] is finitely generated.

Proof. Fix the notation: K[GIH], A2 = B is an
invariant subalgebra in .~4 = 0 ~2- It is clear that AS = 0 K = ,A1.

It is sufficient to prove that 13 contains no proper invariant ideals.

(After this we complete the proof following the proof of Lemma 1.)
Let I C 13 be an invariant ideal. By the Lie-Kolchin theorem, IS =1= 0.

Hence Is is a non-zero ideal in ,t3 fl But any invariant subalgebra in
contains no proper G-invariant ideals. Therefore, we have Is = ,~3 n 

and Is contains constants, thus I = B. 0

This proof shows that (G x s) / (H x F) is an affinely closed homoge-
neous space.

PROBLEM 3. - Characterize all aflinely closed homogeneous spaces
of a linear algebraic group G.

The last problem concerns canonical embeddings. Let us recall that
the modality of a G-variety X is the maximal number of parameters in a
continuous family of G-orbits on X, or, more formally,

modG (X ) = maxycx tr.degK(Y)c,
where Y runs through all closed irreducible invariant subvarieties in X.

PROBLEM 4. - Let H be a Grosshans subgroup of a reductive group
G. Find the modality of CE(G/H). In particular, characterize Grosshans
subgroups H of G such that CE(G/H) contains a finite number of G-orbits.

One may suppose that a reductive hull of H is G. Indeed, if a reductive
hull of H is L, then, by the slice theorem, CE(G/H) - G *L CE(L/H)
and modG(CE(G/H)) = modL(CE(L/H)).

Example 6. - Let G = SLn and H be the unipotent radical of the
maximal parabolic subgroup in G corresponding to the first (n - 2) simple
roots. It is clear that Kn x ... x Kn ((~ - 1) copies) with the
diagonal G-action. This space is covered by finitely many locally closed G-
invariant subsets where is the set of (n x (n -1))-matrices
of rank 1~ with linearly independent columns il ... , ik. An orbit in 
depends on k(n - 1 - k) parameters, which are the coefficients of linear
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expressions of the remaining n - 1 - 1~ columns in terms of the columns

i 1, ... , i ~ . Hence the maximal number of parameters is

and
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