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ENUMERATING QUARTIC DIHEDRAL EXTENSIONS

OF Q WITH SIGNATURES

by Henri COHEN

Ann. Inst. Fourier, Grenoble
53, 2 (2003), 339-377

1. Introduction and review of known results.

1.1. Notation.

We recall the notation of [7]. Let k be a number field, considered as
our base field, and let (r(~), z(A;)) be the signature of k with r (k) + 2i (k) =
[k : ~ ~ . In the present paper k will in fact be a quadratic field (usually
real), but for the moment we do not assume this. Let G be a transitive
permutation subgroup of the symmetric group on n letters Sn , and let m,,,,
be a subset of the set of the r(k) real places of k. We denote by Cn the
cyclic group of order n, by V4 = C2 x C2 the Klein 4-group, and by D4 the
dihedral group of order 8, considered as a transitive subgroup of ,S’4.

Denote by (G) the set of k-isomorphism classes of extensions
L of k of degree n such that the Galois group of the Galois closure of L
over k is isomorphic to G, and such that the set of real places of k which
ramify (i.e., become complex) in L is exactly equal to moo. We let

where as usual denotes the relative ideal discriminant of L over k,
and Ndenotes the absolute norm from k to Q. Note that by the conductor-
discriminant formula, we have Id(L)1 = where d(k) and

Keywords: Discriminant counting - Genus character - Quartic reciprocity.
Math. classification: llR16 - llR29 - llR45 - llY40.
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d(L) denote the absolute discriminants of k and L respectively, so that we
can also write

Finally, we set

It is clear that (G, X) is the summatory function of the coefficients
of the Dirichlet series (G, s).

In the case where 1~ = Q, we will omit the index k from the notation.
If, instead of specifying the real places which split we specify the signature
(R1, R2) of L (with R, +2R2 = n[k : Q ]), we will replace the index (k, 
by (k, Ri, R2), hence simply by (R1, R2 ) when k = Q. Finally if we do not
even specify the signature, we will simply use the index (k, n), or the index
n 

1.2. Known results.

When G is abelian and the base field is Q, the analysis is quite
elementary and it is possible to give nice explicit formulas for the (D

functions, and efficient algorithms to compute the N functions. For this, we
refer to [14], [15], and [3]. For completeness, although we will not directly
need them, we give here the formulas for the 4D functions for n x 4 since
they cannot easily be found (or not be found at all) in the literature:



341

Using the methods of [3], we can then compute the corresponding N
functions very efficiently: up to 1025 for C2, up to 1037 for C3, up to 1032
for C4, and up to 1036 for V4.

When the base field is not Q the situation is more complicated, but
can be handled with some difficulty (see [16], [8] and [9]). We will need in
detail the case of G = C2 which we will recall in the next section. On the
other hand, when the group G is not abelian, the situation is considerably
more difficult even The case G = 63 and I~ = Q was settled
by Heilbronn-Davenport in the 1970’s ([11], [12]), and the case of S3 for
general number fields was settled by Datskovsky and Wright [10]. The case
G = A4 is still open (although (D4 (A4, s) is given in [5] and a precise
conjectural estimate for N4(A4, X) is given in [6], incorrectly stated as
being proved, so it is expected that the result is in sight). A lot of work has
been done on the case G = S’4 from different directions, and the asymptotic
estimate for N4(S4, X) has now been obtained in [11 for 1~ = Q (see also
[17], [18], which hopefully will also be able to settle the case of general
base fields k). In [7], we settled the case G = D4 which is of intermediate
difficulty. In particular, we obtained the following asymptotic results which
we recall here for completeness, since we will not need them:

Set
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where the sum is over discriminants D of quadratic fields of given sign and
L(s, D) is the Dirichlet L-function of the quadratic character (D/ . ) . Then
for all as X - oo we have

where in the last formula the term with coefficient c+(D4)/4 (resp.,
c- (D4)/2) counts totally complex D4-fields having a real (resp., imaginary)
quadratic subfield.

Note that we have approximately c+(D4) = 0.0197113757 and

c- (D4) = 0.0652292708, hence c+(D4) + c- (D4)/2 = 0.0523260111.

In [7], we have also explained how to compute N4(D4, X) exactly for
quite large values of X (we reached X = 1017 ) . Apart from well-known
tricks from the elementary theory of numbers, the key to this computation
was the fact that the characters involved in the formula for N4(D4, X) are
all genus characters, hence easy to handle.

When we include signature conditions, the characters are not all genus
characters, hence the formulas and algorithms become more complicated.
The purpose of this paper is to give such algorithms, so as to be able
to compute exactly the above quantities exactly for large X. We will
again be able to reach X = 1017, and in less than twice the time that it
would have taken us without signatures (26 days on a Pentium III 600Mhz
workstation). In fact, due to more efficient programming, this is faster than
the time that it took us in [7] without signatures.

It is notable that the theory behind the algorithms that we will use is
quite interesting, and involves in particular the rational quartic reciprocity
law.

1.3. Reduction to quadratic extensions.

We start by giving a summary of the main results of [7] that we will
need.
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THEOREM 1.1. - Let k be a number field. We have

where c runs over all integral ideals of k dividing 2, X runs over all quadratic
characters of the ray class group ClC2(k) modulo C2, and is the

Hecke L-function of k for the character x.

THEOREM 1.2. - Let be the set of real places of k not belonging
to moo. Then

where 6 is the Kronecker 6 symbol, c runs over all integral ideals of k

dividing 2, runs through all subsets of the real places of k containing noo,
and X runs over all quadratic characters of the ray class group ClC2coo (k)
mod ulo C2 Coo.

From these theorems, it is easy to obtain formulas for the N functions.
We immediately isolate the one that we will need.

COROLLARY 1.3. - Let k be a quadratic field of discriminant D.
Let AD(n) be the multiplicative arithmetic function such that, when p
is inert - - l, when p is ramified /-lD(p) == -1, when p is split
/-lD(p) == -2 and J-lD(p2) == 1, and 1-tD (pk) = 0 for all other prime powers

1. Then

where

with

The sums on X are as above on quadratic characters of the ray class
considered as acting on ideals by the natural extension

(in particular x(a) = 0 if a is not coprime to c). Of course i(1~) = 0 if D &#x3E; 0

andz(A;) = 1 if D  0.
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When D  0 we necessarily have moo == 0, and the above formula
is simply the formula for A~;,2(C2,X). In particular, there is no need to
modify the algorithms given in [7] for computing these numbers, which we
can thus do very efficiently.

When D &#x3E; 0, i.e., when k is a real quadratic field, the situation is
more complicated because the characters X are not all genus characters.
Recall the definition of such characters, as we used them in [7]. In this
context, we say that a positive or negative integer d is a divisor of D

if diD and both d and D/d are fundamental discriminants, which will
automatically be coprime. If we define then this always
defines a (quadratic) character on the narrow class group (k), and
all quadratic characters on the narrow class group are obtained in this way
(exactly once if we identify d with D/d). They are called genus characters.
In addition, they give characters on the ordinary class group if and only
d &#x3E; 0. When D is a sum of two squares, all divisors d are positive, hence
all these characters are defined on the ordinary class group, and otherwise

exactly half of the divisors d are positive, and only those are defined on the
ordinary class group.

In addition, we know from [7] that the characters modulo a square
divisor of 4, i.e., of the ray class groups ClC2 (k) for c 2, are of course first
the genus characters (with d &#x3E; 0), and if either c = 2Zk or c2 = 2Zk and D -
8 (mod 16), also the genus characters multiplied by a single extra character
of the form (c2/Na) with c2d &#x3E; 0, and C2 = 8 if D -= - 4 (mod 16), C2 = -4
otherwise. These characters are very similar to the genus characters.

When, as here, we add signature conditions, Corollary 1.3 shows that
we need quadratic characters of the ray class and not

only of Cl,2 (k). There are bad news and good news about this. The bad
news are that the necessary characters X do not all "come from Q ", in other
words do not only depend on the norm of a, hence are more complicated. In
particular they are not genus characters, and this will create complications
for the computations of the sums involved.

Indeed, a crucial property of genus characters is that their L-function
naturally factors as a product of two Dirichlet L-functions corresponding
to the Dirichlet characters (d/. ) and ((D/d)/.). This property was one of
the reasons that we were able to perform very efficient computations in [7].
Here this factorization will not occur exactly in this way (although we will
be able to use a similar technique), so the computation will be a little more
complicated.
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The good news are that, in a manner analogous to the characters of
ClC2(k) where we needed to introduce a single character (c2/Na) to obtain
all the missing ones, the same is true here. To obtain all of the missing
characters, i.e., the quadratic characters of the ray class groups ClC2coo as
above, it is also only necessary to add a single character which we will
denote by which of course will not be a genus character. This character

will in fact only be necessary when D is a sum of two squares, otherwise it
does not occur. Thus, we spend the next section studying this character.

2. The character ~.

Thus let D &#x3E; 1 be a fundamental discriminant, and assume that
D is a sum of two squares. We write (non uniquely) D = a2 + 4b2. For
future reference note that (a, b) - 1. Indeed, if p is a prime dividing
a and b then p 2 1 D, hence p = 2 since D is fundamental. But then

D/4 = (a/2)2 + 4(b/2)2 is congruent to a square modulo 4, hence D is
not fundamental also in that case, contradiction. This implies also that b
is coprime to D.

When necessary, it will be convenient to take as integral basis of Zk
the pair (1, c,~) with w = (a + The norm of 1J is then equal to -b2.

2.1. Some preliminary lemmas.

Recall that any fractional ideal a of 7~~ can be written in a unique
way as

, - _

with ra E Q &#x3E;0, na E Z&#x3E;o , and D (mod 4na). The ideal a is primitive
if and only if ra = 1, and in that case na is the absolute norm of a. For any
ideal a as above coprime to 2, we set for simplicity d~ == (ca :f: a) /2. We
need a few preliminary results.

LEMMA 2.1. - For any ideal a as above vve have gcd(na, da , 
1, using the above notation.

Proof. Assume p is a prime dividing all three integers. Then p
divides dt - da - a and also divides (ca - a2)/4 - b2 (mod na),
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hence since p divides na, it follows that p divides b, a contradiction since

(a,b)=1. 0

DEFINITION 2.2. - We define B+ (resp., B-) to be the set of
noninert prime ideals p such that p ~ I d+ (resp., p I d-), where p is the
prime number below p (the letter B stands for "bad").

LEMMA 2.3.

(1) The set B- is a set of representatives of the prime ideals (which
are all split) above prime numbers dividing b for the equivalence relation
p == p, where p is the Galois conjugate and B+ is the set of conjugates
of elements of B-.

(2) In particular the sets B+ and B- are finite, disjoint with the same
cardinality.

(3) If a - + ((ca + is a primitive ideal, then

1 if and only if a is coprime to all prime ideals of B-.

Similarly for + .

Proof. (1) and (2) First note that then

since (a, b) = 1, so all primes dividing b are split. Furthermore, if p E B~,
then p I (cp =b a) /2 hence p I (c~ - a2 ) /4 - b2 (mod p), so p b, and
conversely if p = pZ + ( (cp + a)/ 2)Z is a prime ideal above a prime dividing
b then (c~ - a2)/4 - b2 - 0 (mod p), so that p E B- U B+. By Lemma 2.1
it is clear that the sets B- and B+ are disjoint. Furthermore, note that

so that if p E B- (resp., B+), then § (resp., B-), proving (1). (2)
follows trivially.

(3) Assume that gcd(na, da ) = l, and let p be a prime ideal dividing
a, necessarily noninert since a is primitive. If p is below p, i.e., is the norm
of p, then p hence p { d;;. However, note that since c 2= D (mod 4p)
then pZ + ((ca + ~)/2)7~ is an ideal of norm p which contains a, hence
is equal to p, so that cp m ca (mod 2p) hence d- da (mod p), so that
p f d¡;, in other words p ~ B- as claimed. Conversely, if none of the prime
ideal divisors of the primitive ideal a are in B-, a similar proof using the
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Chinese remainder theorem shows that gcd(na, da ) = 1. The same proof is
of course also valid for +. 0

LEMMA 2.4.

(1) Any integral primitive ideal a has a (nonunique~ decomposition
of the form a = a- a+ where a- and a+ are coprime, (na- , da- ) - 1, and
(~+,~) = 1.

(2) Let m be a modulus, and let E - Any element a = E (mod *m)
has a (nonunique) decomposition of the form a - cx-a+ where 
E (mod *m), a+ - 1 (mod *m), (n~a- ) , d~a- ) ) = 1, 1

(here for any ,~ E k*, (,C3) = the principal ideal generated by (3).

Proof. (1) Define

Clearly a- and a+ are coprime. Since B+ and B- are disjoint, none of the
prime ideals dividing a- belong to B-. On the other hand, if p is a prime
ideal dividing a+ then by definition p does not belong to B+. Thus (1)
follows immediately from Lemma 2.3 (2).

(2) By the strong approximation theorem, since the sets B~ are finite
and disjoint, we can find a- E l~* satisfying the following conditions:

~ a- == E (mod *m).
~ For each p E B- we have vp (a-) = 0.

~ For each p E B+ we have vp (a- ) = vp (a).
Indeed, note that even if m is not coprime to the ideals of B+ the

conditions are compatible since a =- E (mod *m). Thus, it is clear that no
prime ideals dividing a- belong to B-. If we set a+ - it is also

clear that no prime ideals dividing a+ belong to B+. We again conclude
by Lemma 2.3 (2). 0

2.2. Definition of ~.

We can now come to the theorem which allows us to define the

character T that we need.
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THEOREM 2.5. - Let a be an ideal coprime to 2 as above, and let

(1) If a = ra a- a+ as in Lemma 2.4, then

(2) We have w(a) 1= 0, and d+ and dQ can be interchanged in the
definition without changing the value of W (a).

(3) T is multiplicative on ideals coprime to 2.

(4) (mod *4ocoool) then w(aa) == w(a), in other words T
defines a quadratic character on the ray class group 

Proof. (1) The ideal a/ra being primitive, we can write a -
ra a- a+ as in Lemma 2.4. In particular, since a+ and a- are coprime and
a/ra is primitive, na- and na+ are also coprime and we have na = na- na+,
and for any e = + we have

Thus

To simplify notations, set, We thus have

But by definition d+ (congruent to da modulo na+ ) is also coprime to 
and for m ~ na+ (which is odd) we have as usual

since the result is nonzero. Applying this to m = na+ /g, we obtain finally

as claimed.
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(2) Since a is coprime to 2, so is ra hence (-4/rQ) is never 0. The rest
follows trivially from (1). However, we can check it directly: by definition,
da is coprime to na/g so the second symbol also nonzero. If the last symbol
is zero, this means that gcd(na, d~, &#x3E; 1, contradicting Lemma 2.1. The
symmetry between da and da also follows from this and is left to the reader.

(3) To prove (3), we could use the formula given in (1), but we can
also reason directly as follows. Since the symbol (-4/r) is multiplicative, it
is sufficient to prove the multiplicativity of T on primitive ideals coprime
to 2. Thus, for i = 1 and i = 2 let ai = ((ci + be two

primitive ideals, with c2 = D (mod 4ni), and as above set 6~ = (c~d:a)/2.
Thus, for i = 1 and i = 2 we have

On the other hand (see for example [2]), the product a3 = al a2 is given by
the formula

where d - (nl, n2, (Cl + c2)/2) and C3 is such that in particular c3 -
ci (mod 2ni/d) for i = 1, 2 (this does not suffice to determine c3 modulo
2n 1 n2 /d2, but is sufficient in this proof). Hence, setting d~ == (c3 ~ a) /2
and n3 = n1n2/d2, we have

Now note the following trivial lemma whose proof is left to the reader.

LEMMA 2.6. - Let x, y and z be arbitrary integers. Then

(1) (xy, = (x, z°° ) ( y, ZOO) (this is not true in general without the
oo exponent.

Setting n’ = ni /d, we obtain
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where (using once again the above lemma)

We must show that P = 1.

We first note that (d, d1 , d2 ) - 1. Indeed, assume that p is a prime
dividing all three. Then p divides

and p I d | n1 hence p | b. On the other hand

hence p divides a, a contradiction since (a, b) = 1.

To simplify notation, set ei = (d, and e = d/(ei62) by what
we have just proved. Thus

say. Let us show that Po = P2 = 1. First, note that

Thus
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and since e ~ I d and (e, b) = 1 (otherwise P = 0 which is not the case,
but this can also easily be checked directly) we have Po - (b2/e) - 1 as

claimed.

For Pl , we note that

hence again because P # 0 we have

The same proof is valid for P2 by exchanging the indices 1 and 2. This

finishes the proof of the multiplicativity of W on ideals coprime to 2.

(4). By multiplicativity, we must show that if a is a totally positive
element congruent to 1 modulo 4 in the multiplicative sense, 
1. Let r be the content of a, i.e., the unique positive rational number such
that ,Q = a/r E Zk and 03B2 primitive, in other words ,Q/n E Zk for any integer
nl. Since a is coprime to 2, so is r, hence we have (mod 4) (as for
ideals above, this makes sense even for r ~ Z). Since r ~ Q &#x3E;0, r is totally
positive as an element of k, so that # is totally positive and ,Q - r (mod 4).
We must thus prove that if ~3 is a primitive algebraic integer of Zk with
,~ * e (mod 4) = c.

For this, we write 13 =,3-13+ as in Lemma 2.4 (2). By multiplicativity
we so it is sufficient to prove our

statement for ~3- and 0+. The proofs being identical (exchanging + and
-), we prove it for # = (3-, and we may also assume that # is primitive.

Write/3= (uo + vovID) /2, so that ,Q - ~ _ ( (uo - 2E) + voVJ5)/2. The
condition ~3 = ~ (mod 4) can thus be summarized by 2E (mod 4),
vo - 0 (mod 4), and uo - 2E = voD (mod 8). Setting u - uo/2 and
v = vo/4, we can thus write ,~ - u + 2vvID with the sole condition
u - E == 2vD (mod 4) (which implies that u is odd). Since # is primitive
(and u is odd), u and v are coprime, and since ~3 is totally positive, we have
u &#x3E; 

Since # is primitive, the ideal is also primitive hence

where n,~ _ = u2 - 4v2D (since (3 » 0) and c(3 is any integer such
that (c~ + B/D)/2 E or, equivalently, ((c, + @) /2)# E n,Zk. We
compute that
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Since n,~ is odd, the condition that this belongs to is thus equivalent
to c,u - 2vD - 0 (mod n,~ ) and u - 2vco = 0 (mod Thus

the inverses being taken modulo no, together with the additional condition
that c,~ _ D (mod 2). Note that the last two quantities are trivially
checked to be congruent modulo 

Since u is odd, to have the parity condition on c,~ we will decree that
the inverse (2v) - 1 is taken to be an inverse having the same parity as D

(which is possible since n/3 is odd), and so with this convention we can
choose c, = u(2v)-1.

Since by assumption do = (c, - a)/2 is coprime to no, we have

Since u is odd and coprime to v, 2v is coprime to u2 - 4v2D. In addition,
since u = c + 2vD (mod 4), we have

since a and D have the same parity. Thus

since the symbol is nonzero (so we can get rid of 16b2v2), and since
u - 2avu - &#x3E; 0. as claimed, finishing the proof
of the theorem. Note that we use the convention (a/ - b) = sign(a)(a/b),
which is the only reasonable one if we want to have all the nice properties
coming from quadratic reciprocity, such as the periodicity in b when a is
congruent to 0 or 1 modulo 4. 0
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Remarks.

(1) As the proof of (3) shows, it is not necessary to use the decompo-
sition of T given in (1) for proving multiplicativity directly. On the other
hand, I have not been able to find a direct proof of (4) without using a~ .
This is perhaps to be expected since the construction of a± for an ideal a
is direct, while that of cx~ uses the approximation theorem which is not
directly "computational".

(2) If we choose the integral basis (1, c.~) with w - (a + VD-) /2, then
note that if a = ra (naZ + ((ca + V-D-) /2)Z), the Hermite normal form (HNF)
of a on the integral basis is the matrix

Thus the quantity (ca - a)/2 is completely natural.

(3) It is crucial to note that the character 41 is not canonical: it is

attached to the decomposition D = a 2 + 4b2 as a sum of two squares.
Two such characters corresponding to different values of a differ by a

(generalized) genus character, i.e., a character defined on the ray class group
C14. However the characters corresponding to a and to -a are the same.

2.3. Conductor computations.

In order to apply Corollary 1.3, we need to enumerate the quadratic
characters of ClC2coo for c 2 and C {ooo, Each such character can

be written in a unique way in the form

where 0 is either equal to 1 or c is either 1, -4 or 8, and d ranges
through all divisors of D. It is of course understood that x(a) - 0 if a is
not coprime to c.

We must compute the conductor of such a character. More precisely,
we need to compute the smallest modulus of the form c 2c,, modulo which
the character can be defined. By abuse of language, we will call it the

conductor of the character, although we have not checked (and do not
need) that it really is the usual conductor.

When T does not occur, the result is in essence given in [7], and is
recalled here. The proof is in any case immediate.
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PROPOSITION 2.7. - When 2 is not inert in k, denote by p one of
the prime ideals above 2 in k. We always denote by d a divisor of D, and
as above we let 

The conductor of X is given as follows:

(1) The component at infinity is eq ual to 000 001 if D &#x3E; 0 and d  0,
and is equal to 1 otherwise (i.e., when D  0 or d &#x3E; 0~.

(2) The 2-component is equal to 1 if c = 1, and otherwise is equal to
4 8 (mod 16) and to 2 = p2 if D - 8 (mod 16).

When the character W occurs (thus only for DO sum of two squares),
the result is a little more subtle. We must first fix very precisely the embed-

dings and prime decompositions. We denote by o0o the place corresponding
to the real embedding of k which sends ~D to the positive square root,
and by ool the other place at infinity. Furthermore, when D - 1 (mod 8),
we can write 2Zk = P0P1 for two prime ideals po and pi , and we choose

and

We then have the following result.

PROPOSITION 2.8. - Assume that D - a 2+ 4b2 is a sum of two

squares, and let 
..

with c = 1 or c = -4. The conductor of X is given as follows:

(1) The component at infinity is equal to 000 if c = 1 and to 001 if
c = -4.

(2) The 2-component is equal to 4 if D ~ 1 (mod 8), to p2 if

D - 1 (mod 8) and c = 1, if D - 1 (mod 8) and c = -4.

Proof. Define

where a is the Galois conjugate of a. It is clear that T is again a quadratic
character of 

1 
and its conductor is equal to the conjugate of the

conductor of Furthermore, we clearly have
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Thus, the character X is either of the form x(a) _ when c = 1

or of the form x(a) = (d/Na)W(a) when c = -4. Since the conductor of
(dljva) is equal to 1, to prove the proposition it is thus sufficient to compute
the conductor of W alone. By definition, we know that it divides 4000 001-
We consider separately the infinite and the finite components.

Infinite part of the conductor. - The infinite part of the conduc-
tor of T divides oooool. Let us see whether can be defined modulo 400,
for i = 0 or 1. Thus, we take cx = 1 (mod *4) such that ai (a) &#x3E; 0 for the

real embedding cr~ corresponding to the place ooi, and we must see whether
or not all such a = 1. As usual, without loss of generality
we may assume that a is a primitive algebraic integer which is coprime to
b (so as to use the simplest possible formulas). In addition, we may assume
that N(a)  0, i.e.,  0, otherwise the result is trivially true.

Using the computation done in the proof of Theorem 2.5 (4), we can
set a = u + 2vvID with u and v coprime, u = 1 + 2vD (mod 4), and we
have na = IN(a) _ -(u2 - 4V2 D) and Co = u(2v)-1 (mod n,), so that

Pursuing the computation done in the proof of Theorem 2.5 (4), where we
saw that u - 2av - 1 (mod 4), and taking care of the minus sign, we obtain

Thus the conditions ao (a) &#x3E; 0, 91 (a)  0 imply W(aZk) = 1, while the
conditions ao (a)  0, &#x3E; 0 imply w(aZk) == -1. Thus we see that is
defined modulo 400o and not modulo 4001 (hence a fortiori not modulo 4),
so that the infinite part of conductor of W is equal to ooo, as claimed.

Finite part of the conductor. - We know that the finite part
of the conductor of T divides 4. On the other hand, we know that it is

not equal to 1 otherwise T would be a genus character defined on 
which it is not (this is trivially seen, but also follows from the computation
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of the component at infinity since T would then be defined on 
hence a fortiori on C14,,, which it is not). Thus we need to see whether or
not can be defined modulo p2 ~0~1 for some prime ideal p of norm 2.
In particular we have D 0 5 (mod 8). When D - 8 (mod 16), we note
that 3 =- I (mod 2) and 3 is totally positive, so W is

not defined modulo 2000001, hence the finite part of the conductor of T is

equal to 4 in that case. Thus, from now on assume that D - 1 (mod 8)
and let 2Zk = p0p1 with po and .p 1 chosen as explained above.

We easily compute that

where ri is defined modulo 8 so that r2 = D (mod 16) and ri -
(mod 4) (specifically, when D - 1 (mod 16) we can take ro = -1

and rl = 1, and when D - 9 (mod 16) we can take ro = 3 and rl = -3).
Let a = (uo + vovID)/2 be totally positive such that a = 1 (mod p2 ), and
without loss of generality assume also that cx is coprime to b and that a is
primitive. Since b is even (trivial), it follows in particular that the norm of
cx is odd, and we may apply the simplest formula to 

A simple computation shows that the above conditions are equivalent
to Uo &#x3E; uo - 2-+-vori (mod 8), uo and vo even, and (uo/2, vo/2) _
1 with uo/2 ~ vo/2 (mod 2). Setting u - uo/2 and v = vo/2, this is

equivalent to u &#x3E; 1 + vri (mod 4), and (u, v) - 1 (the
condition u ~ v (mod 2) is automatically satisfied since ri is odd). A
similar computation to that made for the infinite part shows that

We consider the two symbols separately. Note that a is odd and u and v
are of opposite parity hence u - av is odd, and is positive since u &#x3E; 

Thus, such that E (u - av) = 1 (mod 4). Since we have assumed
(u, v) = 1 and a coprime to b, we have

where the equality (4EI(u2 - v2)) = Ev immediately follows from the fact
that u and v are of opposite parity. Thus, when v is odd this symbol is
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equal to 1. When v is even we have u - av = 1 + v(r - a) = 1 (mod 4)
since r - a is even, hence E - 1, so the symbol is equal to 1 in every case.

Consider now the second symbol. When v is even, 2v = 0 (mod 4)
and v2D is divisible by 2v, hence (2v/(u2 - v2D)) - 1. Thus, assume v

odd, hence u even. From u - 1 + vri (mod 4) we obtain u2 - v2 D -
1 + 2vri (mod 8). Let e = ±1 = (-1)O-1)/2 such that Ev - 1 (mod 4).
We thus have

We separate the two cases po and pi. For po, we have ri - -1 (mod 4),
hence

A

This depends only on v modulo 4, and we thus see that it is equal to
1 for all v. It follows = 1 in that case, as was to be proved. For

pi , we have ri - 1 (mod 4), hence

This is always equal to -1, in that case, showing
that T cannot be defined modulo pioooool. This terminates the proof of
the proposition. 0

We will see in Section 2.5 that these two propositions immediately
give us all the quadratic characters that we will need.

Since the finite part of the conductor of wand associated characters
is different from 4 when D - 1 (mod 8), it is necessary to compute the
value of the extension of T on ideals a which are coprime to po but not

necessarily to p 1 (which by abuse of notation we will still denote by W),
hence which may have even norm. The result is as follows.

PROPOSITION 2.9. - Assume that D = a2 + 4b2 = 1 (mod 8), let
a be an ideal coprime to po, and set as usual a = 

Define va = v2 (na), the 2-adic valuation of na and
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Then b is a primitive ideal coprime to 2, a = prab, and uTe have

Proof. Since a is coprime to po and Npl = 2, r, is coprime to 2
and we have

On the other hand, since nQ/2va is odd, it is clear that a = pla b where b is
as in the proposition. The given formula follows by multiplicativity. Thus
the only work to be done is to compute x(p1). For this, we choose a =

(u-VD-)12, where u is a large positive integer such that u - 2-ro (mod 8),
where ro is defined as above in the computation of the finite part of the
conductor. It is clear that for u sufficiently large a is totally positive, and
u - 2 - ro (mod 8) hence a * 1 (mod ppo). Furthermore a is clearly
primitive, and since ro = D (mod 16) and ro = -1 (mod 4), we have

It follows that a is divisible by pi but not Thus, if we write

then b is coprime to 2 = 1, so that W(p1) == w(b).
We have b == a.po/2, and an explicit Hermite Normal Form computation
gives 

- -

However, we have the following lemma whose easy proof is left to the reader:

LEMMA 2.10. - Let a, b, c, and m be integers such that (a, b, c) = 1
and either c or a + b is odd. Then there exists x such that

+ c, 777,) = 1.

Using this lemma, if necessary by changing u modulo 8, we may
assume that (u2 - D)/8 (which is odd) is coprime to b, so as to use the
simplest formula for W(b) . Thus

, , ,

Since u = 2 - ro - -1 (mod 4), to perform the computation more easily
we change if necessary a into -a so that a - -1 (mod 4), hence (-u - a)/2
will be odd. However ro - D - a2 (mod 16) and ro = a - -1 (mod 4)
together imply that ro - a (mod 8), hence
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Furthermore, since u is large, (-u - a)/2 is negative. We thus obtain

Since u * 2 - ro = 2 - a (mod 8), we can write u -= 2 - a + 8b (mod 16)
for 6 = 0 or 1. Thus,

and of course (u + a) /2 - 1 + 46 (mod 8). It follows that

as claimed. Note that this last formula is invariant under the possible
change a into -a that we made at the beginning. 0

the quartic reciprocity law.

Quite surprising and important for us is that when the norm of the

primitive ideal a is a sum of two squares, is independent of the
ideal a of norm na and can be given by quite a different formula. The fact
that this formula coincides with the initial definition is a consequence of

the rational quartic reciprocity law.

We begin by the following lemmas.

LEMMA 2.11. - Let n be an odd positive integer and set

Then

(1) If n is not a sum of two squares, we have a(n) = 0.

(2) If n is a sum of two squares, write n = n’n" where n’ and n"
are coprime and the primes dividing n" are exactly the prime divisors of n
which are both split in k and congruent to 3 modulo 4. Then
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where a is any primitive integral ideal of norm n’.

Proof. Recall that an integer n is a sum of two squares if and

only if its prime divisors congruent to 3 modulo 4 have an even exponent
in n. It is clear that a(n) is a multiplicative function Thus it is enough to
compute a(p~) for k ) 1. We will use the crucial result (which is in fact
the only property of T that we use) that for an odd integer m we have

(-4/m), which follows trivially from the definition. Let k ) 1.
We consider three cases.

(1) If p is inert, then = 0 if k is odd while

if 1~ is even. In particular if k is odd (whether p - 3 (mod 4) or not) we
have a(pk) = 0, and if k is even we have a(pk) ==" 1 - T(a) for a = 
the unique ideal above p, corresponding to the given formula.

(2) If p is ramified, then p ~ D, and since D is a sum of two squares
we must have p - 1 (mod 4), so there is no condition for a sum of two
squares. In addition, it is clear that = where p is the unique
ideal above p, corresponding once again to the given formula.

(3) If p is split as pp, then

Thus

hence if p - 3 (mod 4) we have = 0 when k is odd and 

~ (~) ~ = 1 when k is even. When p - 1 (mod 4), we have

which corresponds to the given formula and finishes the proof of the lemma.

Although not needed, note also that n" is a square. 11

To state the main result of this section, we first recall that b is coprime
to D. Thus if we set
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(inverses of course taken modulo D, which exist in both cases), then it is

clear that (2i)2 = -4 (mod D), whence the notation (note that when D is
even we have only i2 = -1 (mod D/4) ; evidently it is impossible to have
i2 = _I (mod 4), a fortiori modulo D; in any event, we will only use 2i in
that case so this does not matter). Note that the choice of the minus sign
is only for aesthetic reasons, see below.

The main theorem of this section is the following.

THEOREM 2.12. - For any odd positive integer n, and witll the
above choice of 2i (see remark below), we have

where the pair (x, y) is identified with the pair (-x, -y) (but not with the
pairs (-x, y) and (x, -y)).

Proof. The representations of n as a sum of two squares being
multiplicative, in the same way as the symbol (DI (x + 2iy)), it follows that
both sides are multiplicative functions of n. In addition, by Lemma 2.11
both sides vanish when n is not a sum of two squares. Thus we may assume

that n = p’ for some prime p. Assume first that p - 3 (mod 4), so that in
particular p is unramified and k is even. In this case the only solution to
x2 + 4y2 = p~ is given by y = 0 and x = pk/2, so that the right hand side
is equal to (D/p)k/2. On the other hand, by Lemma 2.11 the left hand side
is equal to (-1)k/2 if p is inert and to 1 if p is split, which is indeed equal
to (Dlp)k/2.

From now on, assume that p - 1 (mod 4), and write

(where 2i is of course the number defined above modulo D). The decom-
positions p k = x2 + 4y 2 are in one-to-one correspondence with exponents
j with 0 x j x k under the formula x + 2iy = (u + 2iv)j (u - 2iv )k-j. This
of course corresponds to the 1~ + 1 ideals above p k in the (i), not in
k. Assume first that p is unramified. We then have

so the right hand side is equal to
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When p is inert, this is equal to 0 when k is odd and to 1 when k is even,
corresponding to the formula given for a(n) in Lemma 2.11.

When p is split, this is equal to which is equal to
when k is even, hence equal to a(n), and to (1~ -~-1) (D/ (u + 2iv) ) when

k is odd. We must thus prove that in this case w(p) == (D/(u + 2iv)), and
this is of course the heart of the matter. For the moment let us postpone
this.

When p is ramified, then p divides D so p divides either u + 2iv or
u - 2iv, but not both, otherwise p would divide u which is absurd. For
example, let us choose v so that p divides u - 2iv and hence does not

divide u + 2iv. Thus since x + (u + (mod D) and
p ~ D, it follows that (D/(x + 2iy)) = 0 for 0  j  k, hence the right hand
side is equal to

Since the left hand side is equal as in the split case we must thus

prove that (D/(u + 2iv)).
The theorem is thus reduced to the following proposition.

PROPOSITION 2.13. - Let p = 1 (mod 4) be a prime number,
and write p - u2 + 4v2, where when p I D the signs of u or v are
chosen so that p + 2iv. Assume that there exists an integer c such
that c2 - D (mod 4p). Then

where the ::1: sign is chosen so that p { (c ~ a)/2 (such a choice is always
possible, and if both are possible any one can be taken).

Proof. - Assume first that D = q is a prime congruent to 1 modulo
4 and different from p. By a version of the rational quartic reciprocity law
given in [13], Theorem 5.7, we know (with our notations) that in suitable
number fields we have

thus giving the result by replacing ~ by c, 4 by 2i, and applying the
quadratic reciprocity law (q being positive and congruent to 1 modulo 4).
Note that the result in that case is also equal to
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When D = q = p, the proposition clearly reduces to the equality

which is true by quadratic reciprocity since p = 1 (mod 4).
When D - 8, we choose 2i = -4 and the proposition is thus

equivalent to

for any prime p - 1 (mod 8). By a special case of Scholz’s biquadratic
reciprocity law (see [13] Proposition 5.8) and by [13] Proposition 5.4, we
have

We must thus simply check that when p == 1 (mod 8), i.e., when v is even
we have 

- - , 11 -

which is an immediate verification.

Finally, for arbitrary D it is immediately checked that both sides
of the equality of the proposition are multiplicative in D, hence the

proposition follows in general. 0

Remarks.

(1) As we have already mentioned, the character T is not canonical,
but depends on the particular choice of decomposition D = a2 + 4b2. The
same is true in Theorem 2.12: the sum a(n) depends on ~, and the quantity
2i occurring in the right hand side (equal to also depends on this

decomposition. The theorem would thus not be correct for another choice
of i.

(2) The choice of 2i = -ab-1 (instead of 2i = is due to the fact

that if we write p = c2 + 4d2 in the above proposition (which we have not
done to avoid notational confusions with the letters c and d already used
with a different meaning), then the right hand side of the formula reads

and the ad - bc is more reminiscent of the rational quartic reciprocity law.
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The case of even norms can be handled very simply thanks to the

following supplementary proposition.

PROPOSITION 2.14. - Let D == a2 + 4b2 - 1 (mod 8), and let
i = -a(2b) -1 as above. Then

Proof. - By [13], we know that for any prime p = a 2 + 4b 2 -
1 (mod 4) we have 

-

It is easy to see that this formula extends by multiplicativity to any
D == a2 + 4b2 == 1 (mod 4), and when D _ 1 (mod 8), b is even so

that this reduces to 
~

On the other hand, it is clear that

Thus,

using quadratic reciprocity, since D is positive and congruent to 1 modulo
8, proving the proposition. 0

COROLLARY 2.15. - Let D = a2 + 4b2 - 1 (mod 8), and denote
by abuse of notation by T the character extended to For any

(odd or even) positive integer n we have

Proof. Indeed, by the above proposition, we have
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where (because of multiplication of x + iy by the units we must

identify the pair (X, Y) with the pairs (-x, -y), (-y, x) and (y, -x). The
result follows by choosing a suitable system of representatives for this

equivalence relation. Of course, when n is odd, we can decide instead as we
have done above that y is even, and in that case we recover the identification

of the theorem. 0

2.5. The quadratic characters of Clc2c ~.

As we will see in the next theorem, all the characters of for

c 2 and C {ooo, ~1} can be written in a unique way in the form

where 1/J is either equal to 1 or belongs to a 2-element set which can be

either {1, W) our 11, W}, where

c is either equal to 1 or belongs to a 2-element c2 ~, and d ranges
through all divisors of D such that the sign of cd is either equal to positive
(written s = 1) or arbitrary (written s = ~ 1 ) . The result thus only depends
on the ranges of c, s, and 1/J, hence can be written as follows.

THEOREM 2.16. - Denote by C (resp., S, resp., P~ the range of
values of c (resp., s, resp., ~), all having only one or two elements. Denote
by p a prime ideal above 2 in k when 2 is not inert. Then the quadratic
characters of ClC2coo for c 2 and are summarized by the
following diagrams:

then P = 1, hence we give the pair (C, S) :

~ If D &#x3E; 0 is not a sum of two squares, then P = 1, hence we give
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the pair (C, S) :

~ If D &#x3E; 0 is a sum of two squares, then the sign indication s is

superfluous since all divisors d of D are positive, hence we give here the
pair (C, P) instead. We choose ooo to be the place corresponding to the
embedding from k into R sending vfi5 to the positive square root, and ool
to be the other one.

In the above diagram, the special cases for D - 1 (mod 8) marked
with a * must be treated with special care as follows. Let 2Zk = P0p1 be
the prime ideal decomposition of 2, where the numbering is chosen so that

and

(here the B/D is the same as that used for defining T, in other words 2w - a
if we take (1, (a + as integral basis). Then ure have the following
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supplementary diagram, which fills in the * cases of the above diagram:

Proof. The case D  0 (and also the case D &#x3E; 0 with no infinite

component) has been dealt with in [7], hence we assume that D &#x3E; 0.

For any number field k, denote by moo a subset of the set of real
places of k, by noo the set of real places not belonging to moo, and by 
the number of complex places of k. By [7] Proposition 4.9, we know that

where r2 denotes the 2-rank.

In our case, we have = 0, and if t denotes the number of distinct

prime numbers dividing D, we know by genus theory that

where 6 = 1 if D is not a sum of 2 squares, 6 = 0 otherwise. The genus
characters (i.e., the quadratic characters of or of Cl) are classical
and by [7], we also have a complete description of the quadratic characters
modulo 4.

To prove the above theorem, it is thus sufficient to exhibit the

characters modulo 4000001 and to compute their conductors. We consider
two cases.

~ D is not a sum of 2 squares. Then our rank formula gives

Thus, we have the t - 1 independent genus characters (d/Na) for all prime
discriminant divisors diD but one (in the sense explained above), and
the additional independent character (c2 /.JVa) given in [7], in other words
with C2 = -4 if D 1= -4 (mod 16) and c2 = 8 if D - -4 (mod 16). The
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conductors of these characters are easily computed and have been given in
Proposition 2.7, and give the second diagram of the theorem.

9 D = a2 + 4b2 is a sum of 2 squares. Then our rank formula gives

Thus, we have the same t independent characters as above, and we need
an additional one to obtain the rank t + 1. This is of course the character

which we have shown to be well defined on the ray class group 
and which is easily seen to be F2-multiplicatively independent of the t
others. This gives the last line of the diagram. As in the previous case,
the rest of the diagram is filled by computing explicitly the conductors of
the characters, which we have done in Proposition 2.8, finishing the proof
of Theorem 2.12. Note of course that the main part of the proof was the
computation of the conductors, performed in Propositions 2.7 and 2.8. 0

Remark. - Since there are so many special cases in this theorem,
it is easy to make an error. We have checked the correctness of the above

tables in two ways. First, by computing thousands of numerical examples in
each entry of the tables, and checking that the 2-rank of the corresponding
ray class group is exactly equal to the number of quadratic characters.

Second, by using the above tables as explained in this paper to

compute the number of D4-extensions with signatures, and comparing the
results with results obtained in an independent manner, for example using
the number field tables of [5].

3. Computational methods and results.

To compute Nk,2,moo(C2,X), we use Corollary 1.3, which reduces to
the computation of the sums TX(Z) for the quadratic characters x of Clc2 ,
which are given by the above theorem. When the character does not involve

these sums can be efficiently computed using the method explained
in [7], which works in this slightly more general setting without change
(the essential point is the use of the method of the hyperbola). When the
character x involves then we first note that sums on IQ and on W are
equal, since the map sending an ideal to its Galois conjugate is a bijection on
ideals of fixed norm. Furthermore, using Theorem 2.12 and Corollary 2.15,
these sums are reduced to the computation of
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(where we choose y &#x3E;, 0 and x &#x3E; 1 if y = 0) and of

(when D - 1 (mod 8)). It is not necessary (and not really possible nor
useful) to use the method of the hyperbola on what is in fact a circle

problem. On the other hand, to speed up the computation by orders of

magnitude, it is essential to use the following method. We start by summing
on y (for y x in the first sum, and y  in the second), and we
then sum X - 4y2 in the first sum, and on 0  x  X - y2
in the second. To compute these sums, we use the following lemma, which
insures that we never sum more than D/2 terms:

LEMMA 3.1. - Let D and d be as above, in particular positive
fundamental discriminants such that D/d is a fundamental discriminant
coprime to d, and let y, z be integers.

(2) Let E == 0 or E == 1. Then

where k = 0 if D = 0 (mod 4) and k = ( -1 ) ~ if D =- 1 (mod 4).

Proof. (1) Since D/d and d are coprime, we can find m such that

(mod d)). Thus

since the sum of a nontrivial character over a period is equal to zero.
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(2) Here, we set z = -y. Using the same m = (-2y)(D/d)-1 (mod d)
as in (1), we find in the same way

with t = y + m(D/d). Similarly,

for the same t (this would not be true if z was not equal to -~) .

Thus, if we set

the sum to be computed is equal to + SE;( -t).
We clearly have So (t) + = 0.

Assume first that D - 0 (mod 4). Then

since the sum over a period is zero. When t is even, all the terms in the
first sum are zero, while when t is odd, all the terms in the second sum are

zero, giving the result in that case. In fact this proves the stronger result
valid only when D - 0 (mod 4):

Assume now that D - 1 (mod 4). Changing x into D - x, we have

where = 1 if a and b have the same parity, 0 otherwise.
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Thus, our sum is equal to

as claimed.

In the sequel, we fix y, and to simplify notation we set

so that

and we also set

COROLLARY 3.2. - Let

and

Then

where r indicates that the term x = 0, if present, must be counted with
coefficient 1/2 (i.e., f (0) instead of j+(O)).

and assume 0  r  D as in (1). Then

and

Proof. (1) Note first that Lemma 3.1 (2) can be rewritten
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Write x = j D ~ n. We thus have

When qD is even, we thus have

while when qD is odd, we have

proving the first formula. The formula for S’2 (X) follows trivially from
Lemma 3.1 (1).

(2) We write

since f + (D - x) = f + (x) . By considering the four different cases (D and -
odd or even), we see that this is equal to

as claimed.
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The second sum is done similarly and is simpler:

proving the corollary. 11

Thus, using (1) and (2) when r ~ D/2, we can always reduce the
computation of the sums Sand 52 to sums of at most D/2 terms. Note
also that for y = 0, we use the equalities

which immediately follow from the above corollary. There is of course no

Putting all this on _a computer, we have computed the values of

Nrl,r2(D4,10k) for 1 ~ 17. The computation of Nrl,r2(D4, 1017)
(for all pairs (ri, r2)) required in total 26 days CPU time on a Pentium
III 600Mhz workstation. We give the results in the following table where,
for completeness, we also give the corresponding results for Nrl,r2 (C4, X), I

and Nrl ,~2 (I , X ), where

In signature (0, 2), we separate the cases where the quartic fields contain a
real quadratic field from those which contain a complex quadratic field. In
that case, we have

and

More complete tables of and Nrl,r2(V4,X), which are much
easier to compute, can be found in [4]. For the reader’s convenience, we
also recall the corresponding tables without signature.
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