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ENUMERATING QUARTIC DIHEDRAL EXTENSIONS
OF Q WITH SIGNATURES

by Henri COHEN

1. Introduction and review of known results.
1.1. Notation.

We recall the notation of [7]. Let k be a number field, considered as
our base field, and let (r(k),i(k)) be the signature of k with r(k) + 2i(k) =
[k : Q]. In the present paper k will in fact be a quadratic field (usually
real), but for the moment we do not assume this. Let G be a transitive
permutation subgroup of the symmetric group on n letters S, and let m,
be a subset of the set of the 7(k) real places of k. We denote by C,, the
cyclic group of order n, by V4 = C3 x C the Klein 4-group, and by D4 the
dihedral group of order 8, considered as a transitive subgroup of Sy.

Denote by Fi m,, (G) the set of k-isomorphism classes of extensions
L of k of degree n such that the Galois group of the Galois closure of L
over k is isomorphic to G, and such that the set of real places of k which
ramify (i.e., become complex) in L is exactly equal to my,. We let

1
‘I)k,mw (G,S) = A~(T /I\\s '’
Lerim () VO(L/K))
where as usual 9(L/k) denotes the relative ideal discriminant of L over k,
and N denotes the absolute norm from & to Q. Note that by the conductor-
discriminant formula, we have |d(L)| = |d(k)|"N(0(L/k)), where d(k) and

Keywords: Discriminant counting — Genus character — Quartic reciprocity.
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340 HENRI COHEN

d(L) denote the absolute discriminants of k and L respectively, so that we
can also write

ns 1
B m.. (G, 5) = |d(K)| > AR
LEFk,m (G)

Finally, we set
Nimoo (G, X) = [{L € Fim..(G), M0(L/K)) < X}
= [{L € Fimn, (G), |d(L)] < X - d(k)["}]-

It is clear that Ni m_ (G, X) is the summatory function of the coefficients
of the Dirichlet series ®x m_ (G, s).

In the case where k = Q, we will omit the index k from the notation.
If, instead of specifying the real places which split we specify the signature
(R1, R2) of L (with Ry +2R5 = nl[k : Q]), we will replace the index (k, m,)
by (k, R1, R2), hence simply by (R, Rz) when k£ = Q. Finally if we do not
even specify the signature, we will simply use the index (k,n), or the index
nif k=Q.

1.2. Known results.

When G is abelian and the base field is Q, the analysis is quite
elementary and it is possible to give nice explicit formulas for the &
functions, and efficient algorithms to compute the NV functions. For this, we
refer to [14], [15], and [3]. For completeness, although we will not directly
need them, we give here the formulas for the ® functions for n < 4 since
they cannot easily be found (or not be found at all) in the literature:

1 2 1
@2(02,8)=<1+23+2§) H (1+E>—1

p=1 (mod 2)

1 1 1 —1)-1)/2 1
220(C2,5) = 5 ®2(Co8) + §<1‘§%) 1 (”( )ps )‘5
)

p=1 (mod 2

1 2 2 1
(I)3(C3,s)=—2-(1+-3z) H (1+E)§) -3

p=1 (mod 6)

04(Ca. ) = S22) ((1 Sl 2 __4_)

922s 924s 9211s + 929s
2 1 2
I (i) ()
3s S 2s 4s
p=1 (mod 4) p=+p 2 2
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ENUMERATING QUARTIC DIHEDRAL EXTENSIONS OF Q 341

®40(Cy,5) = ®4(Cy,s) N L(2s,(—4/-))

2 4¢(4s)
—1)(p—1)/4
. ( (142000 1)
p=1 (mod 4) pr+p
02,23)

(
Dy ( 1 3 6 6
¢4(V4’8):___2__+6(1+ﬁ+ﬁ+2_s§>

3 Z
p=1 (mod 2) p= 6

(1)4(‘/21,8) (1)2’0(02,28) @2(02,28)
4 2 T

1 1 2 2
tellam oo

1+2(-1)P-D/2Y 1
11 (1+ + X 2) )——.
p*° 8

p=1 (mod 2)

D40(Va,8) =

Using the methods of [3], we can then compute the corresponding N
functions very efficiently: up to 102° for Cy, up to 1037 for C3, up to 1032
for Cy4, and up to 1036 for V.

When the base field is not Q the situation is more complicated, but
can be handled with some difficulty (see [16], [8] and [9]). We will need in
detail the case of G = Cy which we will recall in the next section. On the
other hand, when the group G is not abelian, the situation is considerably
more difficult even for £k = Q. The case G = S3 and k = Q was settled
by Heilbronn-Davenport in the 1970’s ([11], [12]), and the case of S3 for
general number fields was settled by Datskovsky and Wright [10]. The case
G = A, is still open (although ®4(A4,s) is given in [5] and a precise
conjectural estimate for Ny4(A4,X) is given in [6], incorrectly stated as
being proved, so it is expected that the result is in sight). A lot of work has
been done on the case G = Sy from different directions, and the asymptotic
estimate for Ny(S4, X) has now been obtained in [1] for £k = Q (see also
[17], [18], which hopefully will also be able to settle the case of general
base fields k). In [7], we settled the case G = D4 which is of intermediate
difficulty. In particular, we obtained the following asymptotic results which
we recall here for completeness, since we will not need them:

Set
(Dy) = 3 1 L(1,D)

2 D2 ’
T Sign(D):iD L(2,D)
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342 HENRI COHEN

where the sum is over discriminants D of quadratic fields of given sign and
L(s, D) is the Dirichlet L-function of the quadratic character (D/.). Then
for all €0, as X — oo we have

Ny(D4, X) = (c+(D4) + L(2D4_)) X + 0. (X3/4Fe),

c (D4)

Nyo(Dg,X) = X + O (X3/%F9),

c (D4)

No1(Dy, X) = X + 0. (X3/4F),

C+(D4) " C—(D4)
4 2
where in the last formula the term with coefficient c¢*t(Dy4)/4 (resp.,

¢~ (D4)/2) counts totally complex D4-fields having a real (resp., imaginary)
quadratic subfield.

Note that we have approximately c*(D4) = 0.0197113757 and
¢~ (Dy) = 0.0652292708, hence ¢*(Dy) + ¢~ (D4)/2 = 0.0523260111.

No,z(D4,X) = ( ) X +O€(X3/4+5)’

In [7], we have also explained how to compute Ny(Dy4, X) exactly for
quite large values of X (we reached X = 10'7). Apart from well-known
tricks from the elementary theory of numbers, the key to this computation
was the fact that the characters involved in the formula for Ny(D4, X) are
all genus characters, hence easy to handle.

When we include signature conditions, the characters are not all genus
characters, hence the formulas and algorithms become more complicated.
The purpose of this paper is to give such algorithms, so as to ve aule
to compute exactly the above quantities exactly for large X. We will
again be able to reach X = 107, and in less than twice the time that it
would have taken us without signatures (26 days on a Pentium III 600Mhz
workstation). In fact, due to more efficient programming, this is faster than
the time that it took us in [7] without signatures.

It is notable that the theory behind the algorithms that we will use is
quite interesting, and involves in particular the rational quartic reciprocity
law.

1.3. Reduction to quadratic extensions.

We start by giving a summary of the main results of [7] that we will
need.

ANNALES DE L’INSTITUT FOURIER



ENUMERATING QUARTIC DIHEDRAL EXTENSIONS OF Q 343

THEOREM 1.1. — Let k be a number field. We have
N(2/¢)
b =
k2(C2,8) = 1+ o5 c @) Z N/ Z Lils,0,

where ¢ runs over all integral ideals of k d1v1d1ng 2, x runs over all quadratic
characters of the ray class group Cle(k) modulo ¢, and Li(s,x) is the
Hecke L-function of k for the character .

THEOREM 1.2. — Let ny, be the set of real places of k not belonging
to my,. Then

1)l Dle=l M(2/c¢
Ph,2.me (C2,8) = =m0+ - Z - 2/ ZLk $,X)>
c|2

21(’€)(k(2s 2|‘oo| N(2/c)%s
Coo Dlloo
where § is the Kronecker § symbol, ¢ runs over all integral ideals of k
dividing 2, ¢, runs through all subsets of the real places of k containing n,
and x runs over all quadratic characters of the ray class group Clc_ (k)
modulo ¢2cy,.

From these theorems, it is easy to obtain formulas for the N functions.
We immediately isolate the one that we will need.

COROLLARY 1.3. — Let k be a quadratic field of discriminant D.
Let pup(n) be the multiplicative arithmetic function such that, when p
is inert pp(p?) = —1, when p is ramified up(p) = —1, when p is split
pp(p) = —2 and pup(p?) = 1, and up(p*) = 0 for all other prime powers
with k > 1. Then

1
Ni2me (€2 X) = ~bmop + 55y D Hp(m)S(X/n?),
1<ngX1/2
where
( 1 [€oo]|—INoo| 9
= > o ZTX(Y/NM/c ),
c|2

Coo DN

with

T(2)= Y x(a).
Na<Z
The sums on x are as above on quadratic characters of the ray class
group Cle_ (k), considered as acting on ideals by the natural extension
(in particular x(a) = 0 if a is not coprime to ¢). Of course i(k) = 0 if D > 0
and i(k) =1if D < 0.

TOME 53 (2003), FASCICULE 2



344 HENRI COHEN

When D < 0 we necessarily have mo, = ), and the above formula
is simply the formula for Ny 2(C2, X). In particular, there is no need to
modify the algorithms given in [7] for computing these numbers, which we
can thus do very efficiently.

When D > 0, i.e., when k is a real quadratic field, the situation is
more complicated because the characters x are not all genus characters.
Recall the definition of such characters, as we used them in [7]. In this
context, we say that a positive or negative integer d is a divisor of D
if d | D and both d and D/d are fundamental discriminants, which will
automatically be coprime. If we define x4(a) = (d/Na), then this always
defines a (quadratic) character on the narrow class group Clo,0o, (k), and
all quadratic characters on the narrow class group are obtained in this way
(exactly once if we identify d with D/d). They are called genus characters.
In addition, they give characters on the ordinary class group if and only
d > 0. When D is a sum of two squares, all divisors d are positive, hence
all these characters are defined on the ordinary class group, and otherwise
exactly half of the divisors d are positive, and only those are defined on the
ordinary class group.

In addition, we know from [7] that the characters modulo a square
divisor of 4, i.e., of the ray class groups Cl(k) for ¢ | 2, are of course first
the genus characters (with d>0), and if either ¢ = 2Z or ¢? = 2Z; and D=
8 (mod 16), also the genus characters multiplied by a single extra character
of the form (c2/Na) with cod >0, and c2 = 8 if D = —4 (mod 16), co = —4
otherwise. These characters are very similar to the genus characters.

When, as here, we add signature conditions, Corollary 1.3 shows that
we need quadratic characters of the ray class groups Clc2¢ (k) and not
only of Cle2(k). There are bad news and good news about this. The bad
news are that the necessary characters x do not all “come from Q”, in other
words do not only depend on the norm of a, hence are more complicated. In
particular they are not genus characters, and this will create complications
for the computations of the sums involved.

Indeed, a crucial property of genus characters is that their L-function
naturally factors as a product of two Dirichlet L-functions corresponding
to the Dirichlet characters (d/.) and ((D/d)/.). This property was one of
the reasons that we were able to perform very efficient computations in [7].
Here this factorization will not occur exactly in this way (although we will
be able to use a similar technique), so the computation will be a little more
complicated.

ANNALES DE L’INSTITUT FOURIER



ENUMERATING QUARTIC DIHEDRAL EXTENSIONS OF Q 345

The good news are that, in a manner analogous to the characters of
Cl2(k) where we needed to introduce a single character (co/Na) to obtain
all the missing ones, the same is true here. To obtain all of the missing
characters, i.e., the quadratic characters of the ray class groups Cl,_ as
above, it is also only necessary to add a single character which we will
denote by ¥, which of course will not be a genus character. This character
will in fact only be necessary when D is a sum of two squares, otherwise it
does not occur. Thus, we spend the next section studying this character.

2. The character V.

Thus let D > 1 be a fundamental discriminant, and assume that
D is a sum of two squares. We write (non uniquely) D = a? + 4b%. For
future reference note that (a,b) = 1. Indeed, if p is a prime dividing
a and b then p? | D, hence p = 2 since D is fundamental. But then
D/4 = (a/2)? + 4(b/2)? is congruent to a square modulo 4, hence D is
not fundamental also in that case, contradiction. This implies also that b
is coprime to D.

When necessary, it will be convenient to take as integral basis of Zj
the pair (1,w) with w = (a + v/D)/2. The norm of w is then equal to —b2.

2.1. Some preliminary lemmas.

Recall that any fractional ideal a of Z; can be written in a unique

way as
D
a=rq (naZ + (#)Z)

with rq € Q 50, N € Z0, and ¢2 = D (mod 4ng). The ideal a is primitive
if and only if rq = 1, and in that case nq is the absolute norm of a. For any
ideal a as above coprime to 2, we set for simplicity dX = (cq + a)/2. We
need a few preliminary results.

LEMMA 2.1. — For any ideal a as above we have ged(ng, dg ,dy ) =
1, using the above notation.

Proof. — Assume p is a prime dividing all three integers. Then p
divides df — d; = a and also divides df dg = (c2 — a?)/4 = b (mod ny),

TOME 53 (2003), FASCICULE 2



346 HENRI COHEN

hence since p divides nq, it follows that p divides b, a contradiction since
(a,b) = 1. O

DEFINITION 2.2. —  We define B* (resp., B~) to be the set of
noninert prime ideals p such that p | d; (resp., p | d, ), where p is the
prime number below p (the letter B stands for “bad”).

LEMMA 2.3.

(1) The set B~ is a set of representatives of the prime ideals (which
are all split) above prime numbers dividing b for the equivalence relation
p =P, where p is the Galois conjugate of p, and B¥ is the set of conjugates
of elements of B~.

(2) In particular the sets B* and B~ are finite, disjoint with the same
cardinality.

(3) If a = ngZ + ((ca + VD)/2)Z is a primitive ideal, then
ged(ng,dg ) = 1 if and only if a is coprime to all prime ideals of B™.
Similarly for *.

Proof. — (1) and (2) First note that if p | b then

(3)= ()= (5) =

p p p

since (a,b) = 1, so all primes dividing b are split. Furthermore, if p € B¥,
then p | (¢p & a)/2 hence p | (c§ — a®)/4 = b* (mod p), so p | b, and
conversely if p = pZ+ ((cp +a)/2)Z is a prime ideal above a prime dividing
b then (c2 —a?)/4 = b2 =0 (mod p), so that p € B~ UB*. By Lemma 2.1

2
it is clear that the sets B~ and B™ are disjoint. Furthermore, note that
- _ gt
&g =~y

so that if p € B~ (resp., BY), then p € B* (resp., B™), proving (1). (2)
follows trivially.

(3) Assume that gcd(ng,dy ) = 1, and let p be a prime ideal dividing
a, necessarily noninert since a is primitive. If p is below p, i.e., is the norm
of p, then p | nq hence p | d; . However, note that since ¢2 = D (mod 4p)
then pZ + ((cq + VD)/2)Z is an ideal of norm p which contains a, hence
is equal to p, so that ¢y = ¢q (mod 2p) hence dy = dy (mod p), so that
p1dy, in other words p ¢ B~ as claimed. Conversely, if none of the prime
ideal divisors of the primitive ideal a are in B, a similar proof using the

ANNALES DE L’INSTITUT FOURIER
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Chinese remainder theorem shows that ged(ng,dq ) = 1. The same proof is
of course also valid for *. ]

LEMMA 2.4.

(1) Any integral primitive ideal a has a (nonunique) decomposition
of the form a = a”a* where a~ and a% are coprime, (nq-,d;_) = 1, and
(na+,d:+) =1.

(2) Let m be a modulus, and let e = +1. Any element @ = ¢ (mod *m)
has a (nonunique) decomposition of the form o = a~a* where a~ =
e (mod *m), a* =1 (mod *m), (n(e-),d(,-) =1, and (n(a+),d&+)) =1

(here for any 8 € k*, (8) = BZx is the principal ideal generated by (3).

Proof. — (1) Define
am = [] p»® and a*=a/a".
peB+

Clearly a~ and a* are coprime. Since B and B~ are disjoint, none of the
prime ideals dividing a~ belong to B~. On the other hand, if p is a prime
ideal dividing a* then by definition p does not belong to B*. Thus (1)
follows immediately from Lemma 2.3 (2).

(2) By the strong approximation theorem, since the sets B* are finite
and disjoint, we can find a~ € k* satisfying the following conditions:

e o =¢ (mod *m).
e For each p € B~ we have vp(a™) = 0.
e For each p € Bt we have vp(a™) = vp(a).

Indeed, note that even if m is not coprime to the ideals of B the
conditions are compatible since @ = ¢ (mod *m). Thus, it is clear that no
prime ideals dividing a~ belong to B~. If we set ot = a/a™, it is also
clear that no prime ideals dividing at belong to B*. We again conclude
by Lemma 2.3 (2). O

2.2. Definition of W.

We can now come to the theorem which allows us to define the
character ¥ that we need.

TOME 53 (2003), FASCICULE 2



348 HENRI COHEN
THEOREM 2.5. — Let a be an ideal coprime to 2 as above, and let
vo - (5) ) (@ fj;)m))-
(1) If a = rqa~a* as in Lemma 2.4, then
vo= (5) () ()

(2) We have ¥(a) # 0, and di and d; can be interchanged in the
definition of ¥ without changing the value of ¥(a).

(3) ¥ is multiplicative on ideals coprime to 2.

(4) If a =1 (mod *400¢001) then ¥(aa) = ¥(a), in other words ¥
defines a quadratic character on the ray class group Clicogoo, -

Proof. — (1) The ideal a/rq being primitive, we can write a =
rqa"at as in Lemma 2.4. In particular, since a* and a~ are coprime and
a/rq is primitive, ng- and n,+ are also coprime and we have ng = ng-ng+,
and for any € = + we have

dg = dg. (mod nge).
Thus
(na, (dg)™) = (na-, (dg) ) (na+, (da)™) = (na+, (da )™)-
To simplify notations, set g = (ng, (dg )*°) = (nq+, (dg )*°). We thus have

— + - - + - - dr
(o) (5) = G o) () = ) ) (52).
But by definition df (congruent to d;r modulo ng+ ) is also coprime to ng+,

and for m | ng+ (which is odd) we have as usual

()5 = () () = (S5
- (M) _ (?_) -1,

m m

since the result is nonzero. Applying this to m = ng+ /g, we obtain finally

() (%) = () () () = () ()

as claimed.

ANNALES DE L’INSTITUT FOURIER



ENUMERATING QUARTIC DIHEDRAL EXTENSIONS OF Q 349

(2) Since a is coprime to 2, so is rq hence (—4/rq) is never 0. The rest
follows trivially from (1). However, we can check it directly: by definition,
dq is coprime to ng/g so the second symbol also nonzero. If the last symbol
is zero, this means that gcd(ng, dg ,di) > 1, contradicting Lemma 2.1. The
symmetry between d; and dg also follows from this and is left to the reader.

(3) To prove (3), we could use the formula given in (1), but we can
also reason directly as follows. Since the symbol (—4/r) is multiplicative, it
is sufficient to prove the multiplicativity of ¥ on primitive ideals coprime
to 2. Thus, for i = 1 and i = 2 let a; = n,Z + ((¢; + VD)/2)Z be two
primitive ideals, with ¢ = D (mod 4n;), and as above set d = (c; +a)/2.
Thus, for ¢ =1 and 7 = 2 we have

Vo) = (n/("d ;°°>) ((ni,di‘c"’))'

On the other hand (see for example [2]), the product ag = a;as is given by
the formula

n1n2 c3 + VD
=d(ZFz z),
as PP + 2
where d = (n1,n2,(c1 + ¢2)/2) and c3 is such that in particular c3 =
¢; (mod 2n;/d) for ¢ = 1,2 (this does not suffice to determine c3 modulo
2n1ny/d?, but is sufficient in this proof). Hence, setting df = (c3 + a)/2
and n3 = nyny/d?, we have

U(a3) = (—74) (ng/(nfds_oo)) ((ng,di?m))'

Now note the following trivial lemma whose proof is left to the reader.

LEMMA 2.6. — Let z, y and z be arbitrary integers. Then

(1) (zy, ) = (z,2°)(y, 2*°) (this is not true in general without the
oo exponent).

(2) (=, (z + 2y)*) = (2,2%).
Setting n; = n;/d, we obtain

TOME 53 (2003), FASCICULE 2



350 HENRI COHEN

v~ (7)) e mas)
- (74)(” 1/ nl,d—“’ Xng/ (nf, dy ”))((na,djgw))((n; 5;°°>)
- (7;) (n /(nl,d—“’ )(nz/(nz,d-"" )<(na,d5;°°)><(ng,d 55*)>
:(74)( it d )<n2/(n2,d- )(<nafl5;°°>>((na,d§;°°>>

= \Il(al)\Il(ag)P,

where (using once again the above lemma)

P= (_74> (d/(dﬁ;“’)) (d/(d(,if_i;w)) ((d,ji;“’)) (u,féw))'

We must show that P = 1.

We first note that (d,d;,d;) = 1. Indeed, assume that p is a prime
dividing all three. Then p divides

_ ¢2—a*> D-a?
dydf =2 =1 - b*> (mod ny),
and p | d | ny hence p | b. On the other hand
a= Cl-;-CQ ——d;—d;,

hence p divides a, a contradiction since (a,b) = 1.

To simplify notation, set e; = (d,d; ~°) and e = d/(e;e2) € Z by what
we have just proved. Thus

_ _ _ - - + +
P=(D)EHE)EE)EO(E)

- () () () - nms
say. Let us show that Py = P; = P, = 1. First, note that
cico+D e+ 2 Z-D c3-D

2 _( 2 )_"1 dn, dn,

Thus
—4d7d; = —cica+ (c1 4+ c2)a—a? =D —a? = b (mod d),
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and since e | d and (e,b) = 1 (otherwise P = 0 which is not the case,
but this can also easily be checked directly) we have Py = (b*/e) = 1 as
claimed.

For P;, we note that

At 01—02)2_ cl+02)2: 01—02)2
4didy; = (a+ 5 ( 3 = (a-+— 3 (mod d),
hence again because P # 0 we have
P = ((a+ (Cle— ‘32>/2)2) -1
1
The same proof is valid for P, by exchanging the indices 1 and 2. This
finishes the proof of the multiplicativity of ¥ on ideals coprime to 2.

(4). By multiplicativity, we must show that if « is a totally positive
element congruent to 1 modulo 4 in the multiplicative sense, then ¥(aZy) =
1. Let r be the content of a, i.e., the unique positive rational number such
that 8 = a/r € Zj, and f primitive, in other words 3/n ¢ Zj, for any integer
nl. Since « is coprime to 2, so is 7, hence we have r = +1 (mod 4) (as for
ideals above, this makes sense even for r ¢ Z). Since r € Q 5, r is totally
positive as an element of k, so that 3 is totally positive and 8 = r (mod 4).
We must thus prove that if 8 is a primitive algebraic integer of Z; with
B =e (mod 4) for e = 1, then ¥(BZ;) =¢.

For this, we write 8 = 873" as in Lemma 2.4 (2). By multiplicativity
we have W(BZyx) = W(B Zk)¥ (BT Zt), so it is sufficient to prove our
statement for 3~ and B*. The proofs being identical (exchanging + and
—), we prove it for § = 7, and we may also assume that 3 is primitive.

Write 8 = (ug +vov/D)/2, so that —e = ((uo — 2¢) +vov/D)/2. The
condition 8 = ¢ (mod 4) can thus be summarized by uyp = 2¢ (mod 4),
vo = 0 (mod 4), and up — 2¢ = voD (mod 8). Setting u = up/2 and
v = vg/4, we can thus write § = u + 2vv/D with the sole condition
u—¢ = 2vD (mod 4) (which implies that u is odd). Since § is primitive
(and u is odd), u and v are coprime, and since 3 is totally positive, we have
u > 2|v|v/D.

Since ( is primitive, the ideal §Zj is also primitive hence

D
BT = ngZ + #Z
where ng = |M(B)| = u? — 42D (since 8 > 0) and cg is any integer such
that (cs + V/D)/2 € BZj or, equivalently, ((cg + VD)/2)B € npgZs. We
compute that
— 929D _
e +2\/5(u —9y/D) = cpu — 2v +§u 2vcﬂ)\/5.
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Since ng is odd, the condition that this belongs to ngZy is thus equivalent
to cgu —2vD =0 (mod ng) and u — 2vcg =0 (mod ng). Thus

cg =u(2v) "' =2vDu™! (mod ng),
the inverses being taken modulo ng, together with the additional condition

that ¢ = D (mod 2). Note that the last two quantities are trivially
checked to be congruent modulo ng.

Since u is odd, to have the parity condition on ¢z we will decree that
the inverse (2v)~! is taken to be an inverse having the same parity as D
(which is possible since ng is odd), and so with this convention we can
choose cg = u(2v)~1.

Since by assumption dy = (cs — a)/2 is coprime to ng, we have

-1 _
w6z = (Y g

Since u is odd and coprime to v, 2v is coprime to u? — 4v2D. In addition,
since u = € + 2vD (mod 4), we have
u—2av=¢c+2v(D —a)=¢ (mod 4),

since a and D have the same parity. Thus

w620 = (% oan) (imp) (motinly by (55p) #0)
u—2av 4v
u2— 4v2D) (u2—4v2D

) (regroup)

u—2av
(u—2av)(u + 2av

= (
(7
( e(u—2av) )( de ) (W) =1)
= (Siemer

41} . . . .
)— 16b2v2) (@) (periodicity in 4v)

Il

—2av)(u + 2av)—16b2v2 ) \u2—4v2D

u—2av)
—16b202

(%)~

since the symbol is nonzero (so we can get rid of 16b?v?), and since
u — 2avu — 2vv/D > 0. Thus W(BZy) = € as claimed, finishing the proof
of the theorem. Note that we use the convention (a/ — b) = sign(a)(a/b),
which is the only reasonable one if we want to have all the nice properties
coming from quadratic reciprocity, such as the periodicity in b when a is
congruent to 0 or 1 modulo 4. o

) (periodicity in e(u—2av) and u?2 =1 (mod 4))
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Remarks.

(1) As the proof of (3) shows, it is not necessary to use the decompo-
sition of ¥ given in (1) for proving multiplicativity directly. On the other
hand, I have not been able to find a direct proof of (4) without using a*.
This is perhaps to be expected since the construction of a* for an ideal a
is direct, while that of a* uses the approximation theorem which is not
directly “computational”.

(2) If we choose the integral basis (1,w) with w = (a + v/D)/2, then
note that if a = 74(naZ+ ((ca++vD)/2)Z), the Hermite normal form (HNF)
of a on the integral basis is the matrix

(e Y (e %),

Thus the quantity dg = (¢q — a)/2 is completely natural.

(3) It is crucial to note that the character ¥ is not canonical: it is
attached to the decomposition D = a? + 4b®> as a sum of two squares.
Two such characters corresponding to different values of a differ by a
(generalized) genus character, i.e., a character defined on the ray class group
Cly. However the characters corresponding to a and to —a are the same.

2.3. Conductor computations.

In order to apply Corollary 1.3, we need to enumerate the quadratic
characters of Clz._, for ¢ | 2 and ¢, C {009, 001}. Each such character can
be written in a unique way in the form

@ = (57) (5 )@,

where 1 is either equal to 1 or ¥, c is either 1, —4 or 8, and d ranges
through all divisors of D. It is of course understood that x(a) = 0 if a is
not coprime to c.

We must compute the conductor of such a character. More precisely,
we need to compute the smallest modulus of the form ¢?¢,, modulo which
the character can be defined. By abuse of language, we will call it the
conductor of the character, although we have not checked (and do not
need) that it really is the usual conductor.

When ¥ does not occur, the result is in essence given in [7], and is
recalled here. The proof is in any case immediate.
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PROPOSITION 2.7. — When 2 is not inert in k, denote by p one of
the prime ideals above 2 in k. We always denote by d a divisor of D, and

as above we let J .
@ = () (%)

The conductor of x is given as follows:

(1) The component at infinity is equal to cogoo; if D > 0 and d < 0,
and is equal to 1 otherwise (i.e., when D < 0 ord > 0).

(2) The 2-component is equal to 1 if ¢ = 1, and otherwise is equal to
4 if D #8 (mod 16) and to 2 = p? if D =8 (mod 16).

When the character ¥ occurs (thus only for DO sum of two squares),
the result is a little more subtle. We must first fix very precisely the embed-
dings and prime decompositions. We denote by oo the place corresponding
to the real embedding of k which sends v/D to the positive square root,
and by oo; the other place at infinity. Furthermore, when D =1 (mod 8),
we can write 2Zy = pop1 for two prime ideals py and p;, and we choose

_14 VD 1+ VD
po = 27 + %/—_—Z and py =27+ +2‘/_Z.

We then have the following result.

PROPOSITION 2.8. — Assume that D = a® + 4b% is a sum of two
squares, and let
x(@ = (1) (% ) w(@)
Na/\Na
with ¢ = 1 or ¢ = —4. The conductor of x is given as follows:

(1) The component at infinity is equal to cog if ¢ = 1 and to ooy if
c=—4.

(2) The 2-component is equal to 4 if D # 1 (mod 8), to p3 if
D=1 (mod 8) and c=1, and to p? if D=1 (mod 8) and c = —4.

Proof. — Define

where @ is the Galois conjugate of a. It is clear that T is again a quadratic
character of Clyxo,00, and its conductor is equal to the conjugate of the
conductor of ¥. Furthermore, we clearly have

¥ (a)¥(a) = U(NaZy) = (;_é)
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Thus, the character x is either of the form x(a) = (d/Na)¥(a) when ¢ =1
or of the form x(a) = (d/Na)¥(a) when ¢ = —4. Since the conductor of
(d/Na) is equal to 1, to prove the proposition it is thus sufficient to compute
the conductor of ¥ alone. By definition, we know that it divides 400g00;.
We consider separately the infinite and the finite components.

Infinite part of the conductor. — The infinite part of the conduc-
tor of ¥ divides cogooj. Let us see whether ¥ can be defined modulo 400,
for i = 0 or 1. Thus, we take & =1 (mod *4) such that o;(c)) > 0 for the
real embedding o; corresponding to the place co;, and we must see whether
or not all such « satisfy ¥(aZyx) = 1. As usual, without loss of generality
we may assume that « is a primitive algebraic integer which is coprime to
b (so as to use the simplest possible formulas). In addition, we may assume
that Ma) < 0, i.e., o1_;(a) < 0, otherwise the result is trivially true.

Using the computation done in the proof of Theorem 2.5 (4), we can
set o = u + 2vv/D with u and v coprime, v = 1 + 2vD (mod 4), and we
have n, = [Ma)| = —(u? — 4v2D) and c, = u(2v)~! (mod n,), so that

U(aZi) = (——————(ﬁ(f;)j 4;2“1))/)2).

Pursuing the computation done in the proof of Theorem 2.5 (4), where we
saw that u—2av =1 (mod 4), and taking care of the minus sign, we obtain

V(aZy) = (_(::2__24(ng)> (—(u2 fU4U2D)>

_ ( u — 2av )( 4v )
~ \—(u - 2av)(u + 2av) + 166202/ \ —u?2
u—2av\ [ v
- ( 166202 )(?I>
— sign(v) = sign(oo(a) — o1(a).
Thus the conditions go(a) > 0, o1(a) < 0 imply ¥(aZy) = 1, while the
conditions g¢(@) < 0, o01(a) > 0 imply ¥(aZy) = —1. Thus we see that ¥ is

defined modulo 400 and not modulo 400; (hence a fortiori not modulo 4),
so that the infinite part of conductor of ¥ is equal to ocog, as claimed.

Finite part of the conductor. — We know that the finite part
of the conductor of ¥ divides 4. On the other hand, we know that it is
not equal to 1 otherwise ¥ would be a genus character defined on Cly, 00,
which it is not (this is trivially seen, but also follows from the computation
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of the component at infinity since ¥ would then be defined on Cly, = Cl,
hence a fortiori on Clso,, Which it is not). Thus we need to see whether or
not ¥ can be defined modulo p?cogoo; for some prime ideal p of norm 2.
In particular we have D # 5 (mod 8). When D = 8 (mod 16), we note
that 3 = 1 (mod 2) and 3 is totally positive, but ¥(3Z;) = —1, so ¥ is
not defined modulo 2009001, hence the finite part of the conductor of ¥ is
equal to 4 in that case. Thus, from now on assume that D = 1 (mod 8)
and let 2Z = pop1 with po and p; chosen as explained above.

We easily compute that

where 7; is defined modulo 8 so that 2 = D (mod 16) and r; =
(=1)}~* (mod 4) (specifically, when D =1 (mod 16) we can take ry = —1
and r; = 1, and when D =9 (mod 16) we can take ro = 3 and r; = —3).

Let o = (ug 4 vov/D)/2 be totally positive such that a = 1 (mod p?), and
without loss of generality assume also that « is coprime to b and that « is
primitive. Since b is even (trivial), it follows in particular that the norm of
a is odd, and we may apply the simplest formula to compute ¥((a)).

A simple computation shows that the above conditions are equivalent
to ug > |vo|\/l_), ug = 2+vor; (mod 8), up and vp even, and (ug/2,v9/2) =
1 with ug/2 # vp/2 (mod 2). Setting u = wup/2 and v = vy/2, this is
equivalent to u > |v|vD, u = 1+ vr; (mod 4), and (u,v) = 1 (the
condition u # v (mod 2) is automatically satisfied since r; is odd). A
similar computation to that made for the infinite part shows that

(ww=! —a)/2 u— av 2v
¥((e)) = u? — Dv? (u2 - U2D) (u2 - sz)‘
We consider the two symbols separately. Note that a is odd and » and v
are of opposite parity hence u — av is odd, and is positive since u > |v|v/D.
Thus, let € = £1 such that e(u —av) =1 (mod 4). Since we have assumed
(u,v) =1 and « coprime to b, we have

<ug:3:D) B ((u - av)(z ; ZZ) - 4'02b2)
- ((u - av;(%;;;)))— 4v2b2) <u2 -—E’U2D)

= (s(u —1av)) (u24€v2) = ge¥ = ¥+,

where the equality (4e/(u? — v?)) = € immediately follows from the fact
that v and v are of opposite parity. Thus, when v is odd this symbol is
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equal to 1. When v is even we have u —av = 1 + v(r —a) = 1 (mod 4)
since r — a is even, hence € = 1, so the symbol is equal to 1 in every case.

Consider now the second symbol. When v is even, 2v = 0 (mod 4)
and v2D is divisible by 2v, hence (2v/(u? — v2D)) = 1. Thus, assume v
odd, hence u even. From u = 1 + vr; (mod 4) we obtain u? — v?D =
1+ 2vr; (mod 8). Let ¢ = £1 = (—1)(*"1/2 such that ev = 1 (mod 4).
We thus have

(u2 —21;2D) - <u2 —2v2D) (u2 ——vv2D) - (1 +22vri) (u2 —vUQD)

= (52 (@=50) (7= ) = (155

We separate the two cases pg and p;. For py, we have r; = —1 (mod 4),

hence 0 N 9
v .
(uQ—ng)ze(l—%):(_l)( 1)/2(1—2'0)'

This depends only on v modulo 4, and we thus see that it is equal to
1 for all v. It follows that ¥((a)) = 1 in that case, as was to be proved. For
p1, we have r; =1 (mod 4), hence

(u2 —21;21)) = 6(1 +22v) - (_1)(11—1)/2(“%).

This is always equal to —1, hence ¥((a)) = —1 in that case, showing
that ¥ cannot be defined modulo p?cogoo;. This terminates the proof of
the proposition. O

We will see in Section 2.5 that these two propositions immediately
give us all the quadratic characters that we will need.

Since the finite part of the conductor of ¥ and associated characters
is different from 4 when D = 1 (mod 8), it is necessary to compute the
value of the extension of ¥ on ideals a which are coprime to py but not
necessarily to p; (which by abuse of notation we will still denote by ¥),
hence which may have even norm. The result is as follows.

PROPOSITION 2.9. —  Assume that D = a® +4b*> =1 (mod 8), let
a be an ideal coprime to pg, and set as usual a = 74(naZ+ ((ca+v'D)/2)Z).
Define vq = va(nq), the 2-adic valuation of nq and

_ Ng ca+\/5
b —T°<§TuZ+ TZ).
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Then b is a primitive ideal coprime to 2, a = p}*b, and we have

W(a) = W(pa) " W(b) with W(py) = (2)(-1)"/%

Proof. — Since a is coprime to pg and Np; = 2, rq is coprime to 2
and we have
vp, (@) = v2(Na) = va(nq) = vq.

On the other hand, since nq/2% is odd, it is clear that a = p}*b where b is
as in the proposition. The given formula follows by multiplicativity. Thus
the only work to be done is to compute ¥(p;). For this, we choose a =
(u—+/'D)/2, where u is a large positive integer such that u = 2—r¢ (mod 8),
where 7y is defined as above in the computation of the finite part of the
conductor. It is clear that for u sufficiently large « is totally positive, and
u = 2 — 17y (mod 8) hence @« = 1 (mod p3). Furthermore « is clearly

primitive, and since 72 = D (mod 16) and 7o = —1 (mod 4), we have
2-D 4-4 :-D
nazN(a):u = TOITO =1—-r9=2 (mod 4).

It follows that « is divisible by p; but not by p?. Thus, if we write
aZy = p1b, then b is coprime to 2 and ¥(aZy) = 1, so that ¥(p;) = ¥(b).
We have b = apo/2, and an explicit Hermite Normal Form computation
gives
b— u? _DZ+ —u+\/D_Z_
8 2
However, we have the following lemma whose easy proof is left to the reader:

LEMMA 2.10. — Let a, b, ¢, and m be integers such that (a,b,c) = 1
and either ¢ or a + b is odd. Then there exists x such that
(ax? 4+ bz +¢,m) = 1.

Using this lemma, if necessary by changing u modulo 8, we may
assume that (u? — D)/8 (which is odd) is coprime to b, so as to use the
simplest formula for ¥(b). Thus

(-u—a)/2
W(p1) = W(0) = (5= j5):
Since u = 2 —rp = —1 (mod 4), to perform the computation more easily
we change if necessary a into —a so that a = —1 (mod 4), hence (—u—a)/2
will be odd. However 72 = D = a? (mod 16) and 1o = a = —1 (mod 4)
together imply that ro = a (mod 8), hence
—u—a _—2+r9—a

g = 5 —1 (mod 4).

Il
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Furthermore, since u is large, (—u — a)/2 is negative. We thus obtain

o0 = (=) (w572
B (<u2 = j))/g) ((a - a)(&i(;))//?z - 2b2)

B (<u2 = i>>/8> ((u +2a)/2)'

Sinceu =2 —19=2—a (mod 8), we can write u =2 —a+ 85 (mod 16)
for 6 = 0 or 1. Thus,

u?—D 1l-a b

2
5 = 3 + 2(5) +2aé (mod 4)
and of course (u+a)/2 =14 46 (mod 8). It follows that
‘I/(pl) — (_1)(a+1)/4+(b/2)2+a6(_1)6 — (_1)(a+1)/4(_1)b/2 — (g)(_l)b/2
a

as claimed. Note that this last formula is invariant under the possible
change a into —a that we made at the beginning. ]

2.4. ¥ and the quartic reciprocity law.

Quite surprising and important for us is that when the norm of the
primitive ideal a is a sum of two squares, then ¥(a) is independent of the
ideal a of norm ng and can be given by quite a different formula. The fact
that this formula coincides with the initial definition is a consequence of
the rational quartic reciprocity law.

We begin by the following lemmas.

LEMMA 2.11. — Let n be an odd positive integer and set
an)= > Ya)
Na=n
a integral

Then
(1) If n is not a sum of two squares, we have a(n) = 0.

(2) If n is a sum of two squares, write n = n'n” where n’ and n”
are coprime and the primes dividing n" are exactly the prime divisors of n
which are both split in k and congruent to 3 modulo 4. Then

a(n) = ( Y 1) U(a) = (Z(-g))\p(a),

Na=n' m|n’
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where a is any primitive integral ideal of norm n'.

Proof. — Recall that an integer n is a sum of two squares if and
only if its prime divisors congruent to 3 modulo 4 have an even exponent
in n. It is clear that a(n) is a multiplicative function Thus it is enough to
compute a(p*) for k& > 1. We will use the crucial result (which is in fact
the only property of ¥ that we use) that for an odd integer m we have
W(mZy) = (—4/m), which follows trivially from the definition. Let k£ > 1.
We consider three cases.

(1) If p is inert, then a(p*) = 0 if k is odd while

— 4\ k/2
o) = 9H22) = ()

if k is even. In particular if k£ is odd (whether p = 3 (mod 4) or not) we
have a(p*) = 0, and if k is even we have a(p*) = 1- ¥(a) for a = p*/27Z;
the unique ideal above p, corresponding to the given formula.

(2) If p is ramified, then p | D, and since D is a sum of two squares
we must have p = 1 (mod 4), so there is no condition for a sum of two

squares. In addition, it is clear that a(p*) = 1- ¥(p*) where p is the unique
ideal above p, corresponding once again to the given formula.

(3) If p is split as pZy = pp, then

¥®) = (=)
Thus .
o) =96 Y (<)
0<j<k

hence if p = 3 (mod 4) we have a(p¥) = 0 when & is odd and a(pF) =
¥(p)¥ =1 when k is even. When p =1 (mod 4), we have

a(p®) = (k+1)- ¥ (p)*,
which corresponds to the given formula and finishes the proof of the lemma.

Although not needed, note also that n” is a square. O

To state the main result of this section, we first recall that b is coprime
to D. Thus if we set

o —a(2b)"! if D=1 (mod 4)
' { —(a/2)b=! if D=0 (mod 4)
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(inverses of course taken modulo D, which exist in both cases), then it is
clear that (2i)> = —4 (mod D), whence the notation (note that when D is
even we have only i> = —1 (mod D/4); evidently it is impossible to have
i2 = —1 (mod 4), a fortiori modulo D; in any event, we will only use 2i in
that case so this does not matter). Note that the choice of the minus sign

is only for aesthetic reasons, see below.
The main theorem of this section is the following.

THEOREM 2.12. — For any odd positive integer n, and with the
above choice of 2i (see remark below), we have

a(n) = Z (:c —i—D2iy)’

z2+4y%=n

where the pair (z,y) is identified with the pair (—z, —y) (but not with the
pairs (—,y) and (z,~)).

Proof. — The representations of n as a sum of two squares being
multiplicative, in the same way as the symbol (D/(x + 2iy)), it follows that
both sides are multiplicative functions of n. In addition, by Lemma 2.11
both sides vanish when n is not a sum of two squares. Thus we may assume
that n = p* for some prime p. Assume first that p = 3 (mod 4), so that in
particular p is unramified and k is even. In this case the only solution to
x? 4 4y? = p* is given by y = 0 and z = p*/2, so that the right hand side
is equal to (D/p)*/2. On the other hand, by Lemma 2.11 the left hand side
is equal to (—1)¥/2 if p is inert and to 1 if p is split, which is indeed equal
to (D/p)*/>.

From now on, assume that p =1 (mod 4), and write
p =u? + 4v® = (u + 2iv)(u — 2iv) (mod D)

(where 2i is of course the number defined above modulo D). The decom-
positions p*¥ = 22 + 432 are in one-to-one correspondence with exponents
j with 0 < j < k under the formula z + 2iy = (u + 2iv)’ (u — 2iv)*~J. This
of course corresponds to the k + 1 ideals above p* in the field Q (i), not in
k. Assume first that p is unramified. We then have

(u —Dm) - (u+D2iv) (%)’

so the right hand side is equal to

() G)

0<j<k
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When p is inert, this is equal to 0 when k is odd and to 1 when k is even,
corresponding to the formula given for a(n) in Lemma 2.11.

When p is split, this is equal to (k+1)(D/(u+2iv))¥, which is equal to
k+1 when k is even, hence equal to a(n), and to (k+1)(D/(u+2iv)) when
k is odd. We must thus prove that in this case ¥(p) = (D/(u + 2iv)), and
this is of course the heart of the matter. For the moment let us postpone
this.

When p is ramified, then p divides D so p divides either u + 2¢v or
u — 2iv, but not both, otherwise p would divide u which is absurd. For
example, let us choose v so that p divides u — 2iv and hence does not
divide u + 24v. Thus since z + 2iy = (u + 2iv)? (u — 2iv)*~7 (mod D) and
p | D, it follows that (D/(z+ 2iy)) = 0 for 0 < j < k, hence the right hand

side is equal to
D k
(u + 2iv) ’

Since the left hand side is equal to ¥(p)*, as in the split case we must thus
prove that ¥(p) = (D/(u + 2iv)).

The theorem is thus reduced to the following proposition.

PROPOSITION 2.13. — Let p = 1 (mod 4) be a prime number,
and write p = u? + 4v?, where when p | D the signs of u or v are
chosen so that p { u + 2iv. Assume that there exists an integer ¢ such
that ¢ = D (mod 4p). Then

(557 = (o)

where the + sign is chosen so that p {1 (¢ &+ a)/2 (such a choice is always
possible, and if both are possible any one can be taken).

Proof. — Assume first that D = ¢ is a prime congruent to 1 modulo
4 and different from p. By a version of the rational quartic reciprocity law
given in [13], Theorem 5.7, we know (with our notations) that in suitable
number fields we have

((\/6 + c)/2) B (u + v\/——4)
p q ’

thus giving the result by replacing /g by ¢, v/—4 by 2i, and applying the
quadratic reciprocity law (q being positive and congruent to 1 modulo 4).
Note that the result in that case is also equal to

(.G
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When D = g = p, the proposition clearly reduces to the equality
2a P
(5)-(2)
which is true by quadratic reciprocity since p =1 (mod 4).

When D = 8, we choose 2i = —4 and the proposition is thus

equivalent to /3
2+1 8
( p+ ) - (u — 2'0)

for any prime p = 1 (mod 8). By a special case of Scholz’s biquadratic
reciprocity law (see [13] Proposition 5.8) and by [13] Proposition 5.4, we

have
(\/ij 1) _ (%)4 (1’5))4 = (—1)P-1)/8 (%)4 — (—1)(P-/8+v/2,

We must thus simply check that when p =1 (mod 8), i.e., when v is even
we have

p—1 v _ (u—2v)2-1
3 +2_ 3 (mod 2),

which is an immediate verification.

Finally, for arbitrary D it is immediately checked that both sides
of the equality of the proposition are multiplicative in D, hence the
proposition follows in general. a

Remarks.

(1) As we have already mentioned, the character ¥ is not canonical,
but depends on the particular choice of decomposition D = a? 4 4b%. The
same is true in Theorem 2.12: the sum a(n) depends on ¥, and the quantity
2¢ occurring in the right hand side (equal to —ab™!) also depends on this
decomposition. The theorem would thus not be correct for another choice
of 7.

(2) The choice of 2i = —ab™! (instead of 2i = ab™!) is due to the fact
that if we write p = ¢? + 4d? in the above proposition (which we have not
done to avoid notational confusions with the letters ¢ and d already used
with a different meaning), then the right hand side of the formula reads

(3 = (=) - () G=se)

and the ad — bc is more reminiscent of the rational quartic reciprocity law.
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The case of even norms can be handled very simply thanks to the
following supplementary proposition.

PROPOSITION 2.14. — Let D = a? + 4b®> = 1 (mod 8), and let
i = —a(2b)~! as above. Then

W(on) = (2) (-1 = (12=).

Proof. — By [13], we know that for any prime p = a? + 4b*> =
1 (mod 4) we have
(2) ab
=) =4
p/4

It is easy to see that this formula extends by multiplicativity to any
D = a?> +4b> = 1 (mod 4), and when D = 1 (mod 8), b is even so
that this reduces to 9

=) = (=12

(D)4 (=1)

On the other hand, it is clear that

(2) = oo — oo o (£).

Thus,

U(py) = (%)(*1)"/2 = (%)4 - ((1 }L)i)z)4 - (%ﬁ) - (1-?@')

using quadratic reciprocity, since D is positive and congruent to 1 modulo
8, proving the proposition. O

COROLLARY 2.15. — Let D = a% +4b?> = 1 (mod 8), and denote
by abuse of notation by ¥ the character extended to Clyzo0,00,- For any
(odd or even) positive integer n we have

wm =Y va= ¥ (xfzy)

Na=n 22 +y%=n

Proof. — Indeed, by the above proposition, we have

az(n) = Z (mfzy)

z2+y2=n
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where (because of multiplication of z + iy by the units of Z[¢]) we must
identify the pair (z,y) with the pairs (—-z, —y), (—y,z) and (y, —z). The
result follows by choosing a suitable system of representatives for this
equivalence relation. Of course, when n is odd, we can decide instead as we
have done above that y is even, and in that case we recover the identification
of the theorem. ]

2.5. The quadratic characters of Clc_.

As we will see in the next theorem, all the characters of Clc_ for
¢ ]2 and ¢ C {00g,001} can be written in a unique way in the form

x@ = (57) (5 ¥ (@,

where 9 is either equal to 1 or belongs to a 2-element set which can be
either {1, ¥} or {1, U}, where

c is either equal to 1 or belongs to a 2-element set {1,c2}, and d ranges
through all divisors of D such that the sign of cd is either equal to positive
(written s = 1) or arbitrary (written s = £1). The result thus only depends
on the ranges of ¢, s, and %, hence can be written as follows.

THEOREM 2.16. —  Denote by C (resp., S, resp., P) the range of
values of ¢ (resp., s, resp., ), all having only one or two elements. Denote
by p a prime ideal above 2 in k when 2 is not inert. Then the quadratic
characters of Clez._ for ¢ | 2 and ¢, C {009,001} are summarized by the
following diagrams:

e If D < 0 then P =1, hence we give the pair (C, S):

D =5 (mod 8)|D =1 (mod 8)| D =8 (mod 16)| D =12 (mod 16)
ct [(1,1) (1,1) 1,1) (1,1)
Clp2| (0,0) (1,1) ({1,-4},1) (1,1)
Ch, ({1, -4} 1 [({1,-4hLD) ({1, -4}1) ({1,8},1)

e If D > 0 is not a sum of two squares, then P = 1, hence we give
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the pair (C, S):

HENRI COHEN

DZZ 149D £ a1 407 D7éa2+4b D £ a7 4b?
5 (mod 8) |1 (mod 8) |8 (mod 16) [12 (mod 16)
Cl (1,1) (1,1) (1,1) (1,1)
Clo, (1,1) (1,1) (1,1) (1,1)
Cloogoo, || (1,%1) (1,£1) (1,+1) (1, 1)
Clye (0,0) (1,1) ({1,-4}1) [(1,1)
Clpzom (0,@) (171) ({1 4}71) ( )
Clp2ooooo1 (@,@) (Lil) ({1 4}’:*:1) (Lil)
Cly ({1,-4}1) [({1,-4}1) [({1,-4}1) [({L,8},1)
Clio, J({L,-4}1) [({1,-4},1) [({1,-4}1) [({1,8},1)
Cl4ooo<>01 ({1» 4}ai1) ({17_4}7i1) ({1 4}ai1) ({178}v:t1)

e If D > 0 is a sum of two squares, then the sign indication s is
superfluous since all divisors d of D are positive, hence we give here the
pair (C, P) instead. We choose cog to be the place corresponding to the
embedding from k into R sending v/D to the positive square root, and oo
to be the other one.

D=a*+4b* |[D=a’>+4b> |D=a”+4b*
5 (mod 8) 1 (mod 8) 8 (mod 16)
Ci (1,1) (1,1) (1,1)
Clo, (1,1) (1,1) (1,1)
Cloogoo; || (1,1) (1,1) (1,1)
Clyz @,0) (1,1) (1,1)
Clp20<>1 ((Z),(Z)) * (17 1)
ClP2°00001 (@76) * ({17"4}7 1)
Cly (1,1) (1,1) (1,1)
Cl4000 (1,{17\11}) (11{17\11}) (17{1’\11})
Cl4ool (17{17‘11}) (17{17\1,}) (1’{1"1/})
Cl4000001 ({17 —4}7 {1’ \Il}) ({1’ _4}7 {1’ ‘I/}) ({17 _4}’ {17 \Il})

In the above diagram, the special cases for D = 1 (mod 8) marked
with a * must be treated with special care as follows. Let 2Zy = pop1 be
the prime ideal decomposition of 2, where the numbering is chosen so that

-1+vD 1+\/5Z
2 2

(here the \/D is the same as that used for defining ¥, in other words 2w —a
if we take (1, (a + v/D)/2) as integral basis). Then we have the following

———7Z and p =22+

p022Z+
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supplementary diagram, which fills in the * cases of the above diagram:
D = o? + 4b?
1 (mod 8)
Clyz2o, (1,{1,v})
Clpgool (1,1)

Clpfoo(, (1,1)

C’lp%001 (1,{1,9})
Clpgoooool (17 {17 \II})
Clpfoooool (17 {17 ‘IJ})

Proof. — The case D < 0 (and also the case D > 0 with no infinite
component) has been dealt with in [7], hence we assume that D > 0.

For any number field k, denote by m,, a subset of the set of real
places of k, by ny, the set of real places not belonging to me., and by i(k)
the number of complex places of k. By [7] Proposition 4.9, we know that

72(Clan,,) = r2(Clm_ ) + i(k) + |nools
where 1y denotes the 2-rank.

In our case, we have i(k) = 0, and if ¢ denotes the number of distinct
prime numbers dividing D, we know by genus theory that

T2(Cloogoo;) =t —1 and 7r(Cl) =t —1-4,

where 6 = 1 if D is not a sum of 2 squares, § = 0 otherwise. The genus
characters (i.e., the quadratic characters of Clo,00, Or of Cl) are classical
and by [7], we also have a complete description of the quadratic characters
modulo 4.

To prove the above theorem, it is thus sufficient to exhibit the
characters modulo 400900; and to compute their conductors. We consider
two cases.

e D is not a sum of 2 squares. Then our rank formula gives

7‘2(014000001 ) =t.

Thus, we have the ¢t — 1 independent genus characters (d/Na) for all prime
discriminant divisors d | D but one (in the sense explained above), and
the additional independent character (cz/Na) given in [7], in other words
with cg = —4 if D # —4 (mod 16) and ¢; = 8 if D = —4 (mod 16). The
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conductors of these characters are easily computed and have been given in
Proposition 2.7, and give the second diagram of the theorem.

e D = a® + 4b% is a sum of 2 squares. Then our rank formula gives
72(Clisogeo,) =t + 1.
Thus, we have the same t independent characters as above, and we need
an additional one to obtain the rank t 4 1. This is of course the character
¥ which we have shown to be well defined on the ray class group Clycooo,
and which is easily seen to be Fy-multiplicatively independent of the ¢
others. This gives the last line of the diagram. As in the previous case,
the rest of the diagram is filled by computing explicitly the conductors of
the characters, which we have done in Proposition 2.8, finishing the proof
of Theorem 2.12. Note of course that the main part of the proof was the
computation of the conductors, performed in Propositions 2.7 and 2.8. O

Remark. — Since there are so many special cases in this theorem,
it is easy to make an error. We have checked the correctness of the above
tables in two ways. First, by computing thousands of numerical examples in
each entry of the tables, and checking that the 2-rank of the corresponding
ray class group is exactly equal to the number of quadratic characters.

Second, by using the above tables as explained in this paper to
compute the number of D4-extensions with signatures, and comparing the
results with results obtained in an independent manner, for example using
the number field tables of [5].

3. Computational methods and results.

To compute Nj 2.m,. (C2, X), we use Corollary 1.3, which reduces to
the computation of the sums T}, (Z) for the quadratic characters x of Clz_,
which are given by the above theorem. When the character does not involve
¥, these sums can be efficiently computed using the method explained
in [7], which works in this slightly more general setting without change
(the essential point is the use of the method of the hyperbola). When the
character x involves W, then we first note that sums on ¥ and on T are
equal, since the map sending an ideal to its Galois conjugate is a bijection on
ideals of fixed norm. Furthermore, using Theorem 2.12 and Corollary 2.15,
these sums are reduced to the computation of

D/d d
Z <x+2iy)<x—2iy)

z244y?<X
z odd
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(where we choose y > 0 and z > 1 if y = 0) and of

> (26

a:2+y2§X
>0, y>0

(when D = 1 (mod 8)). It is not necessary (and not really possible nor
useful) to use the method of the hyperbola on what is in fact a circle
problem. On the other hand, to speed up the computation by orders of
magnitude, it is essential to use the following method. We start by summing
on y (for y < v/X/2 in the first sum, and y < v/X in the second), and we
then sum on |z| < /X — 4y? in the first sum, and on 0 < z < /X — 32
in the second. To compute these sums, we use the following lemma, which
insures that we never sum more than D/2 terms:

LEMMA 3.1. — Let D and d be as above, in particular positive
fundamental discriminants such that D/d is a fundamental discriminant
coprime to d, and let y, z be integers.

(1)

> (L)) -0

0<z<D

(2) Let e =0 or e = 1. Then

T (65 E6ER) -3,

where k =0 if D=0 (mod 4) and k = (-=1)* if D=1 (mod 4).

Proof. — (1) Since D/d and d are coprime, we can find m such that
y+m(D/d) =z (mod d)
(m = (z—y)(D/d)~! (mod d)). Thus

D/d\/ d D/d d
2 (m)(HZ) :0; <x+y+m(D/d))(w+y+m(D/d))

0<x<D <x<D

D
= > (x+y+m(D/d)) =0

0<z<D

since the sum of a nontrivial character over a period is equal to zero.
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(2) Here, we set z = —y. Using the same m = (—2y)(D/d)~! (mod d)
as in (1), we find in the same way
Z D/d d \ Z D
0saeD (:z:-{—y)(:r-—y) 0se<D (:r+t)
z=¢ (mod 2) z=¢ (mod 2)
with ¢t = y + m(D/d). Similarly,
5 D/d\; d \ _ 5 D
0saeD (m—y)(w+y) 0cash (:r—t)
z=e (mod 2) r=e (mod 2)

for the same ¢ (this would not be true if z was not equal to —y).

Thus, if we set

Se(t) = Z (a:?—t)’

0<z<D
z=e (mod 2)

the sum to be computed is equal to Sc(t) + S:(—t).
We clearly have Sy(t) + S1(t) = 0.
Assume first that D =0 (mod 4). Then

so- ¥ - 2 G)

t<ax<t+D t<x<t+D
z=t (mod 2) z=t+1 (mod 2)

since the sum over a period is zero. When t is even, all the terms in the
first sum are zero, while when ¢ is odd, all the terms in the second sum are
zero, giving the result in that case. In fact this proves the stronger result
valid only when D =0 (mod 4):

D/d\/ d
2 G)E) =
rz=e (mod 2)

Assume now that D =1 (mod 4). Changing x into D — z, we have

Se(t) = > (5%”) = > (x]zt)

1<e<D 1<z<D
z=1—¢e (mod 2) z=1—¢ (mod 2)
D D
= Sl—s(—t) + (7)6D,1—5 - (?)60,1—6

= 5.0+ (1(D),

where 6,5 = 1 if a and b have the same parity, 0 otherwise.
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Thus, our sum is equal to

0 (F) =0 (o) = 0 (5)(5)

as claimed. o

In the sequel, we fix y, and to simplify notation we set

- (24

and we also set fT(z) = f(z) + f(—=z).

so that

COROLLARY 3.2. — Let
SX)= > f(@) and S(X)= > f(z).
|lz|<X 0<z<X
z=1 (mod 2)

Then
(1) Write X = ¢qD +1r with 0 <7 < D. Then

1
S(X) = E ff(z) and S2(X E f(z) =
o<a<r O<z<r
r=¢gD+1 (mod 2)

where "' indicates that the term = = 0, if present, must be counted with

coefficient 1/2 (i.e., f(0) instead of f*(0)).

(2) Let e =0 ore =1, and assume 0 < 7 < D as in (1). Then

! /

S ff@) == ). ff@) and Si(r)=- > f(-

o<z<r 0<z<D—r 0<z<D-r
z=e (mod 2) z=D—¢e (mod 2)

Proof. — (1) Note first that Lemma 3.1 (2) can be rewritten

Y@= (g):

0<z<D
z=e (mod 2)
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Write z = jD + n. We thus have
SX)= Y [

[US2 9, ¢
z=1 (mod 2)

> Yo @+ Y @)

0<y<q—1 jD<z<(j+1)D qD<z<qD+r
=1 (mod 2) z=1 (mod 2)
— + +
= > (=) + > [ (x)
0<j<q—1 0<z<D o<z<r
z=jD+1 (mod 2) z=qD+1 (mod 2)
-(£) T ot Y re.
0<j<g—1 o<z<r

z=qD+1 (mod 2)
When ¢D is even, we thus have
SX)= Y [,
o<z<r

z=1 (mod 2)

while when ¢D is odd, we have

5(X) = —(%) + Y ),
zEOOS(Izngon 2)

proving the first formula. The formula for S;(X) follows trivially from
Lemma 3.1 (1).

(2) We write

’

orf@= Y ffe- Y

O<z<r 0<z<D r<z<D
z=e (mod 2) z=e (mod 2) z=¢ (mod 2)

= ((—1)6(%) e ))(y) - X e
e=D-¢ (mod 2)

since f*(D —z) = f*(z). By considering the four different cases (D and e
odd or even), we see that this is equal to

’
-y ()
0g<z<D—r
r=D—¢e (mod 2)

as claimed.
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The second sum is done similarly and is simpler:

S =Y f@= Y f@)- > f@=- > f(-2

o<z<r 0<z<D r<z<D 0<z<D-r
proving the corollary. a

Thus, using (1) and (2) when r > D/2, we can always reduce the
computation of the sums S and S to sums of at most D/2 terms. Note
also that for y = 0, we use the equalities

> 3 X - ¥ 3

1<e<X I<z<r 1<z<D-r
z=1 (mod 2) z=qD+1 (mod 2) z=¢qD+14+D (mod 2)

which immediately follow from the above corollary. There is of course no
3 since (%) =0.

Putting all this on a computer, we have computed the values of
Nyy 7y (D4, 10%) for 1 < k < 17. The computation of N, (D4, 1017)
(for all pairs (r1,72)) required in total 26 days CPU time on a Pentium
ITT 600Mhz workstation. We give the results in the following table where,
for completeness, we also give the corresponding results for N, ,,(Cy, X),
Ny (Va, X), and Ny, r, (I, X), where

Nryrs (I, X) = NT1,T2(C47 X)+ 3Ny, ,ry (Va, X) + 2Ny, i, (D4a X).
In signature (0, 2), we separate the cases where the quartic fields contain a

real quadratic field from those which contain a complex quadratic field. In
that case, we have

Nifo(I, X) = 2Ng, (D4, X) 4+ No2(Va, X) + No2(Cy, X)

and

Noo(I, X) = 2Ny 5(D4, X) + 2No 2(Va, X).

More complete tables of Ny, ,,(Cy, X) and N, r,(Vs, X), which are much
easier to compute, can be found in [4]. For the reader’s convenience, we
also recall the corresponding tables without signature.
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X || Na(Ca, X) | Na(Va, X) Ny(Dy, X) Ny(I, X)
10! fo 0

102 (o

10 |1 24 73

10* (|10 47 413 977

105 |32 243 4764 10289

108 || 113 1014 50496 104147

107 | 363 4207 516399 1045782

108 || 1168 16679 5205848 10462901

109 [13732 64316 52225424 104647528

1010 1 11930 242710 522889160 1046518380
101! (| 38045 901557 5231249258 10465241232
1012 || 120925 3306085 52321107488 104652254156
1013 || 383500 11982067 | 523242546935 1046521423571
101411215198 |43017383 | 5232538688240 10465207643827
1015 || 3848219 | 153156284 | 52325790887461 | 104652045091993
1016 || 12180240 | 541382988 |523259337279192 |1046520310887588
1017 || 38542706 | 1901705324 | 5232598410033780 | 10465202563726238
X |l N4,0(Ca, X) | Na,o(Va, X) | Na,o(D4, X) Nyo(I, X)

10t |0 0 0 0

102 o 0 0 0

10° Jo 0 1 2

10* |6 6 25 74

10% |15 42 379 899

106 | 59 196 4486 9619

107 || 182 876 47562 97934

108 || 586 3603 486314 984023

10° | 1867 14249 4903607 9851828

1019 1 5966 54940 49188349 98547484

101 | 19017 207295 492454432 985549766
10'2 | 60456 769284 4926654580 9855677468
1013 || 191736 2814497 49274156836 98556948899
1014 | 607589 10181802 | 492769145545 985569444085
1015 11 1924160 36478693 | 4927790007755 | 9855691375749
106 || 6090130 129620531 | 49278249627160 |98556894206043
1017 || 19271385 457321963 | 492783730187748 | 985568851612770
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X || N2,1(Ds, X) N2,1(I, X)

10t |0 0

10?

10? 12

10* |93 186

10° || 968 1936

108 |1 9772 19544

107 {98413 196826

108 (| 984708 1969416

10° | 9852244 19704488

1010 || 98546786 197093572

10! | 985536549 1971073098

1012 |1 9855572218 19711144436

10'3 || 98556488881 197112977762

10 || 985567509497 1971135018994

105 || 9855683662056 | 19711367324112

1016 || 98556864596086 | 197113729192172

1017 || 985568739794773 | 1971137479589546
X || No2(Cs, X) | No2(Va, X) | No2(Ds, X) No,2(I, X)
10t jlo 0 0 0
102 o 0 0 0
103 |1 8 17 59
104 |14 41 295 717
105 |17 201 3417 7454
108 | 54 818 36238 74984
107 | 181 3331 370424 751022
108 | 582 13076 3734826 7509462
109 | 1865 50067 37469573 75091212
1010 |1 5964 187770 375154025 750877324
1011 | 19028 694262 3753258277 7508618368
1012 || 60469 2536801 37538880690 75085432252
1013 | 191764 9167570 375411901218 750851496910
104 | 607609 32835581 | 3754202033198 7508503180748
1015 | 1924059 116677591 | 37542317217650 | 75084986392132
1016 || 6090110 411762457 | 375424223055946 | 750849687489373
1017 || 19271321 | 1444383361 | 3754245940051259 | 7508496232523922
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X | Ng (D, X) Nifp(1, X) Np (D4, X) Ny (1, X)

10! flo 0

102 {0 0

10% |lo 17 50

10* |27 99 268 618

10% || 395 1008 3022 6446

108 |[ 4512 9896 31726 65088

107 |[ 47708 98928 322716 652094

108 | 486531 986720 3248295 6522742

10° |[ 4904276 9860484 32565297 65230728

1010 || 49190647 98575028 325963378 652302296

1011 |l 492464630 985642550 3260793647 6522975818

1012 || 4926673909 9855945088 32612206781 65229487164

1013 || 49274235813 98557830960 326137665405 652293665950

104 || 492769387400 985572217990 3261432645798 6522930962758

1015 |[ 4927790822970 9855700247590 32614526394680 65229286144542

1016 | 49278252225484 | 98556922303535 | 326145970830462 |652292765185838

1017 || 492783738112277 | 985568939879236 | 3261462201938982 | 6522927292644686
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