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THE SMALL SCHOTTKY-JUNG LOCUS IN POSITIVE

CHARACTERISTICS DIFFERENT FROM TWO

by Fabrizio ANDREATTA

1. Introduction.

In this paper we investigate the problem of characterizing the ideal
sheaf defining the locus of Jacobians of curves of genus g in the moduli
space of principally polarized abelian varieties of dimension g over any
field of characteristic different from 2. We use the so-called Schottky-
Jung relations. In [vG], Thm 1.6, it is proven that over C the irreducible

component of the locus defined by the Schottky-Jung relations containing
the Jacobians consists only of Jacobians. See also [Dol] and [Do2], Ch. 2.
The idea of B. van Geemen is to reduce the problem to the study of the
Schottky-Jung relations induced to the boundary of the moduli space of
principally polarized abelian varieties and to apply an induction procedure.
We borrow and generalize this idea to prove the following theorem. Let g
be an integer &#x3E; 2. Let I~ be a field of characteristic different from 2. Let Ag
be the moduli space of principally polarized abelian varieties of dimension
g. Let Mg be the moduli space of smooth curves of genus g. Let be

the closed subscheme of ® l~ defined as the scheme theoretic image of

Tig ® I~ via the Torelli map. This is the map which associates to a curve
its Jacobian. Let be the closed subscheme of ® 1~ defined by the

Schottky-Jung relations over k ; see 4.6.

THEOREM. The irreducible component of containing 
is equal to 3g,k- 

’ 

Keywords: Schottky-Jung relations - Theta functions - Mumford’s uniformization.
Math. classification: 14H42.
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The first novelty of our approach is that we work purely algebraically.
In §2 we review the Prym construction for degenerating curves. In §3
we briefly recall the formalism of Mumford’s theta functions. These are
a valuable substitute for the classical theta functions when one does not

work over C. The main difficulty is to deduce the Schottky-Jung relations
between suitable Mumford’s theta functions from the Prym construction.
We overcome the difficulty in §4 following closely an idea of Mumford’s
sketched in [Mu2]. The second novelty is the use in our context of the

recent progress on toroidal compactifications of moduli spaces of polarized
abelian varieties. We refer the reader to [FC] for the construction of

such compactifications. In [FC] a description of degenerating semiabelian
schemes over affine schemes, satisfying suitable conditions, is given in
terms of so-called "degeneration data". It is also proven that the families
described in this way cover the boundary of toroidal compactifications of
moduli spaces of polarized abelian varieties (possibly with extra structure).
The Fourier-Jacobi expansion of theta functions, as reviewed in §5, can
be described in terms of degeneration data. Conversely, the degeneration
data are encoded in the Fourier-Jacobi expansion of theta functions. This
allows us to translate the Schottky-Jung relations, induced to the boundary,
into restrictions on the degeneration data of semiabelian schemes satisfying
these relations. The Fourier-Jacobi expansion enables us also to go deeper
in the boundary than in [vG], where only rank 1 degenerations are used.
The advantage is that we can focus on neighborhoods of points of the
boundary whose abelian part is of low dimension, in our case equal to 2,
and which consequently are easy to handle. This is the main ingredient in
the proof of the extension of Van Geemen’s theorem contained in §7.

Contents.
1. Introduction.
2. The Prym variety.
3. Mumford’s theta functions.
4. The Schottky-Jung relations.
5. Fourier-Jacobi expansion of the Schottky-Jung relations.
6. The heat equation.
7. Van Geemen’s theorem.

Bibliography.
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2. The Prym variety.

In this section we review the Prym construction. This appears
in [Mu4] for covers of smooth curves (over a field) and in [Be] for ad-

missible covers of semistable curves (over a field). We extend it to the case
of families of semistable curves over an integral normal base scheme with
smooth generic fibers. This appears partly in [Be], §6.2, with emphasis
on the Prym variety itself. Since we are interested in the precise relation
between the Prym variety and the Jacobian varieties it arises from, we give
some details. ’

2.1. The setup.

Let S’ be an integral normal scheme with function field K. Assume
that 2 is invertible in S. Let

be a semistable curve over ,S i.e., a proper and flat morphism whose
geometric fibers are reduced, connected, of dimension 1 and have only
ordinary double points as singularities. Suppose that

1 ) f is smooth over K;

2) C has genus 2g - 1 for some positive integer g;

3) there exists an automorphism t of C’,lover ,S’ such that

3.a) t has order 2;

3.b) t acts freely on the smooth part Csm of f ;

3.c) for any geometric point s of S and any ordinary double point
c E Cs fixed by t, the branches of Cs at c are not interchanged
by ¿ s .

Consider the quotient map

Denote by

the induced morphism. Then,

1) by [Be], Lemma 3.1, f defines a semistable curve over S;

2) the morphism 7r restricted to Csm is finite and etale. In particular, f
is smooth over K;
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3) by the Hurwitz formula C has genus g.
Let ,S’° be the open subscheme of S, where f : C - S is smooth.

2.2. Remark. - The morphism 7r is an admissible covering in the
sense of [HM], p. 57. This notion appears already in [Be], p. 157. Its

importance is due to the fact that such coverings arise in the process of

compactifying the moduli space of etale, 2 : 1 coverings of smooth curves
of genus g. See [Be], pp. 180, Part (b) and [HM], §4, Theorem 4.

2.3. The associated Picard varieties.

Consider the fppf sheaves

They are defined by the presheaves associating to an fppf cover T - S
the abelian group of line bundles on C x s T (resp. on C x s T), which are
fiberwise over T of multidegree 0, modulo the line bundles coming from T
by pull-back. By [BLR], Theorem 9.4.1, they are represented by semiabelian
schemes over S i.e., by smooth, separated, commutative group schemes over
S such that the fiber over any geometric point of S is the extension of an
abelian variety by a torus. Note that over the open subscheme S° of S
where f is smooth the semiabelian schemes

are abelian and are endowed with principal polarizations; see [BLR],
Prop. 9.4.4. Finally, let

be the morphism induced by 7r by functoriality of Pic° .

2.4. The theta torsors.

After possibly replacing ,S’ with an etale surjective cover, choose an
effective Cartier divisor r, on C x s S° relative to S° whose square is

isomorphic to the dualizing sheaf on C x s S°. Note that 7r* (K) is an effective
Cartier divisor. Its square is isomorphic to the dualizing sheaf on C x s SO;
cf. [Be], Lemma 3.2. Define the theta divisor

on x x s S’° (resp. on y x s by translating the image of the g - lth
symmetric power of C in Picg-1(C x s to x 

Pic° (C x s S° /S°) (resp. the image of the 2g - 2th symmetric power
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of C X s So in : via

translation by -~ (resp. by -7r*(K)). The Riemann-Roch theorem implies
that the divisors and are symmetric. Moreover, they induce
the given principal polarizations on x x s S° and y x s S°. Denote by

the associated symmetric which we rigidify along the identity
element (resp. By [Br], Prop. 2.4, it uniquely defines
a cubical over x x s S° (resp. Y By [MB], Theorem 11.3.3
and [MB], Theorem 11.1.1, there exists a unique cubical £x
(resp. on x (resp. on y) extending (resp. 

2.5. Remark. - The line bundles on a smooth curve whose square
are isomorphic to the dualizing sheaf are called theta characteristics. Hence,
the chosen in the previous section is a theta characteristic. By Riemann’s
singularity theorem, h (C x s S°, K) is a locally free sheaf of rank equal to the
multiplicity of the divisor the identity. We choose K so that the
rank of r (K, C x s is even is a so-called even theta characteristic.

2.6. Remark. - The discussion in 2.4 depends on the choice of the
theta characteristic r~. The definition is needed to get the Schottky-Jung
relations. In general, the dualizing sheaf of C - ,S’ does not admit a theta

characteristic. For example, this is the case if, for some geometric point
s E S, the pull-back of the dualizing sheaf of Cs to the normalization of
some irreducible component of Cs has odd degree. This explains why we
worked over the open subscheme S° . On the other hand:

2.7. PROPOSITION. - Étale locally on S one may choose a line
bundle L (resp. L) over C (resp. C) such that the locus

defines an effective Cartier divisor in Y (resp. X) relative to S. Over S° it
coincides with a translation of (resp. 

Proof. This is the main result of [Be], §2. See, in particular, [Be],
Remark 2.4.

2.8. Remark. - For the reader not familiar with the concept of

cubical torsors, we simply remark that they are a generalization of the
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concept of polarization in the context of abelian varieties to the category
of semiabelian schemes. See [FC], Remark 1.2.4 for a quick introduction
and [Br], Chap. I-III or [MB], Chap. I for a full exposition of the notion of
cubical (Gm-torsors.

2.9. Duals and polarizations.

By [FC], §II.2, there exist a semiabelian scheme xt over ,S’ and a

biextension

extending the abelian scheme XK, dual to xK, and the Poincare biextension
over XK Analogous definitions are given for Y instead of x. Denote
by

the isomorphisms extending the principal polarizations defined over K. By
[FC], Prop. 1.2.7, there exists a unique homomorphism

extending the dual of 

2.10. The norm map.

Let T be a scheme over S. Let L be a line bundle on C x S T, fiberwise
over T of multidegree 0. Let

be the isomorphism induced by flipping the two factors. Define

By descent theory it is a line bundle on the open sublocus of C x s T where
7r x s T is etale. A local computation around the points where 7r is not etale
shows that Nm(L) is a line bundle.

2.11. PROPOSITION. - The Norm map Nm: y ---* X

1 ) is a group homomorphism;

2) satisfies

3) satisfies
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4) is smooth.

Proof. Claim (1) is clear. By [Mu4], p. 328, (i) the equality claimed
in (2) holds over K. Hence, Claim (2) holds. Claim (3) follows from a direct
computation. By (3) we deduce that Nm is surjective both on the levels of
varieties and tangent spaces. Hence, it is smooth.

2.12. The kernel 

Let s E S be a geometric point. Denote by a subscript s the base
change from S’ to s. Let q E Ker(7r;). Suppose that q 7~ 0. Then, q is the
class of a line bundle L on Cs. Since Nms o7r§ = [2], we have that L~ ~ Ocs .
Choose such an isomorphism a. It defines the structure of a Ocs-algebra
on the coherent Ocs-module Dcs 0 L; see [Mu4], p. 326. The associated
scheme

is finite and etale of degree 2. The isomorphism cx defines canonically an
isomorphism ,~: ~* (L) ~ OD. Moreover, for any scheme T over s, any

morphism 1b : T - Cs and any isomorphism ’1: 1b* (L) E# OT, there is a unique
morphism v: T - D of C,-schemes such that = -y. In particular, we

get a morphism of Cs-schemes

which must be an isomorphism.

Vice versa, suppose that 7rs:Cs - C, is étale. Then, 7rs,*(O¿) is

a coherent Oc,,-algebra, locally free of rank 2 as Ocs-module. The map
2-1 Tracer , defines a splitting

as Oc,, -modules. The algebra structure implies that L2 is trivial. Since CS
is connected, L itself is not trivial. We conclude:

2.13. PROPOSITION. - Let

Then, H is a quasi-finite and flat group scheme over S. If s E S is a
geometric point, we have L

1) Hs = 101 if and only if 1rs is not etale;

2) over the open subscheme S’ of S where 7r is 6tale, Z/2Z. We
denote byq the generator.
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2.14. The Prym variety.

Define

as the inverse image via Ay of the identity component of

This is called the Prym variety associated to the covering 7r.

Since Nm, and consequently 7r*,t, is a smooth morphism, the scheme P is a
semiabelian scheme of relative dimension g - 1 over S. Compare with [Be],
§6.2.

For any line bundle L on C, of multidegree 0 fiberwise over S, the line
bundle L2 = (L ® ~* (L)) ® (L ® ~* (L-1 )) is in the image of X x s Ker (7r*&#x3E; ) .
Indeed, L ® ~* (L) _ 7r* (Nm(L)) and Nm (L 0 ¿*(L-1)) is trivial. Hence,
the morphism

is surjective fiberwise over ,5’ and, in particular, it is an isogeny.

The following proposition extends to the present case the well-

known facts concerning the Prym construction for smooth curves over an
algebraically closed field contained in [Mu4].

2.15. PROPOSITION. - The following hold:

1. iwe have an eq uali ty of effective Cartier divisors

where is a symmetric divisor on P relative to ,S’° inducing a
principal polarization on 7~ x S,S’°. In particular, there is a symmetric cubical
Gm -torsor L-p over P such that

as symmetric cubical Gm-torsors over P.

2. We have an equality of effective Cartier divisors

Here, try denotes the translation by q on X x s So. In particular, (7r*) * (£y)
is isomorphic to as symmetric cubical 

3. We have a cartesian diagram
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where is the symmetric cubical got by descending C2 x
to ..

4. Let HK be the orthogonal of HK inside X[2]K with respect to the
Weil pairing. The pull back to HK /HK of the cubical torsor descended on
XKIHK from is trivial. In particular, it induces a symplectic structure
on HK /HK . There is an isomorphism

preserving the symplectic structures, such that the kernel x x

yx is the graph of 0.

Proof. - To prove the statements in (1) and (2) concerning the
divisors, we may assume that S’ = Spec(K) and K is algebraically closed.
See [Mu4], Prop. p. 342 for ( 1 ) . See [Mu4], Corollary 5.3 for (2). For the
proof of (3) and (4) over K, see the arguments of [Mu4], p. 330. Let G be
a semiabelian scheme over S. Since ,S’ is normal, the category of symmetric
cubical Gm-torsors over G is equivalent to the category of symmetric cubical
Gm-torsors over GK [Br], Prop. 2.4. By the equivalence of categories just
stated, statements (1), (2), and (3) follow since they hold over K.

2.16. Remark. - For a more geometric and explicit approach in the
case of Mumford’s curves see [vS].

3. Mumford’s theta functions.

In this section we briefly review Mumford’s construction of 2-adic
theta functions as in [Mul]. Since we are interested in degenerations of
theta functions on S, we slightly generalize the approach of Mumford.

3.1. SOME NOTATIONS. - Let A be a semiabelian scheme over S,
abelian over K. be a symmetric Gm-torsor over A. Fix a rigidification

x A 0 --~ A1 of the associated line bundle L. By [Br], Prop. 2.4 we can
consider ,C as a cubical Gm -torsor over A.

3.2. DEFINITION. - Let K(,C) be the Zariski closure in A of the
kernel of the polarization AK - AK induced by £K. By ~MB~, Theo-
rem IV.2.4, it is a group scheme quasi-finite and flat over S.
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3.3. DEFINITION. - Let n be an integer. Define (An,Pn) as the
couple consisting of An = A and the morphism

The is an inverse system via the natural morphisms

defined., for all integers m and n such that m - n, as multiplication by
2n-,. Compare with [Mu1J, Definition 7.1.

For any integer n define the fppf sheaf An [2°°] as the direct limit

where An [2’] is the kernel of multiplication by 2m.

Define the 2-divisible fppf sheaf V(A) as the projective limit over
n eZ:

where the transition morphisms are induced from the morphisms pn,,,,. For
any integer n defines the projection morphism

Define the lattice T(A) inside V(A) by

It acts by translation on V(A). Compare with [Mull, Definition 7.2.

Finally, define r(L) as the direct limit over n E N:

The transition morphisms are defined by the pullbacks of sections via
the morphisms Compare with [Mull, Definition 7.3 and [Mull, §7,
pp. 108-109.

3.4. Remark. - We prefer to deal with V(A) as an fppf sheaf since
we are interested in degenerations of theta functions, while Mumford works
over algebraically closed fields in order to be able to find a basis of the Q2-
topological vector space 

3.5. DEFINITION ([Mul], Definition 7.4). - Define the elements of

the infinite theta group ~(,C) as the pairs of elements (x, where
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0 x is an element of V (A);
o let nx be the smallest integer n for which belongs to the

group I~ (pn (,C)) ; see 3.6. The set tOn In, with n integer such that n &#x3E; nx,
is a compatible system of automorphisms of lifting translation by

p (x) on An.-n

There is a natural action

Moreover, g(L) sits in an exact sequence

such that the torus Gm,s is in the center of g(L). In particular, we get a
skew symmetric pairing

as follows. If X, Y E V (A) and x, y E g(L) are liftings of x, y, then

See § 7, pp. 103-104.

Let v be a non-negative integer. Denote by ~ (pv (,C) ) the finite theta
group on Av defined as in [MB], Theorem IV.2.4(iii). The following hold:

o its fiber over K is the theta group of the line bundle associated

[MB], Theorem IV.2.4(ii).
~ it acts on 

~ it sits in an exact sequence:

[MB], Theorem Iv.2.4(iii);
~ by construction there is a natural surjective homomorphism

of group schemes compatible with the induced action on 

~ the morphism

is an isomorphism. The limit on the RHS is taken over the non-negative
integers n.
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Define

The group is the subgroup of elements of ~(,C) acting trivially on

L(Av,pv*(L))

3.6. Remark ( ~Mul~ , "4 &#x3E; 2" Lemma, Section 7). - If s is a positive
integer [s]*(£) is isomorphic to £s2 and A~s2~ is contained in K(,CS2 ) . Hence,
the integer nx of 3.5 exists.

3.7 DEFINITION ( ~Mul~ , Definition 7.5). - The exact sequence
defined in 3.5 for ~(,C) admits a natural right splitting cr as sets defined as
follows:

Let a = be an element of V(A). Let no be an integer such
that for any n &#x3E; no we have an - 2bn with bn an element in K (pn (,C)) .
For any n &#x3E; no choose cn = above bn such that

1 ~n 1 where ’Øn is any isomorphism of p§ (£) lifting ~-1~
on An. Define

It is an element of 9(,C) above a.

3.8. Remark ([Mul], Lemma 7.3). - If x and y are two elements of

then

3.9. DEFINITION ([Mul], §8, p. 113). - Define the theta morphism

as follows:

If Q is an element of T (L) and a = (an)nEZ is an element let

~,~(a) _ ~Po((~(-a)(~))(~))~ &#x3E;
where the action of a((-a) is defined by the action of g(L) on r(L) (3.5),
the map cpo is defined in 3.l.

In particular, suppose that a, x E V(A). By 3.8
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Compare with Property 8.L

3.10. DEFINITION ([Mul], §2, p. 304). - We define a quadratic
character 

-

as follows. Let 0: L ~ [- 11 * (L) be an isomorphism normalized so that
L(O) - [- 1] * (L) (0) - L(O) is the identity; it exists since L is

symmetric. Define

by L(x) ~ L(-x) = L(x) being multiplication by Note that

PO identifies 
..

By [Mull, Lemma 7.4 the character eL satisfies the following: if x E J(o
and y E T(A) is its image in V (A), then

By the discussion of [Mull, § 7, p. 108, given the polarization on A defined by
.C, the structure as abstract group and the section a: V(A) - g(£:.),
there is a 1-1 correspondence between

1. quadratic characters 

2. line bundles on A defining the given polarization.

3.11. PROPOSITION. - Let g: B --+ A be a morphism of semiabelian
schemes. Let 1: and M ~ g*(£) be symmetric, cubical Gm-torsors with
compatible rigidifications. Let /3A be an element of r(L) and let a = (an)
be an element of V(B). Then,

Moreover,

for any a and b in V(B) and, finally,

for any a 

3.12. ASSUMPTION. Suppose from now until the end of the

section that the base ,S’ is local with maximal ideal I and algebraically
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closed residue field. Suppose that A is an abelian scheme over S. Choose a
compatible system of 2nth roots of unity (~2n) in Os for all non-negative
integers n. Suppose that L has degree 1. be a global section (unique
up to constant) of the associated line bundle L. Write

gA := GBA
We can apply Mumford’s theory of theta functions as in [Mul]. Mumford
works over an algebraically closed field. With our assumptions we can
extend his theory to our context.

3.13. DEFINITION. - Let g be the dimension of A. Define the
bilinear pairing

as follows. Let (a, b) :== alb1 +... + agbg and let V2 be the 2-adic valuation.
Put -y and a equal to 0 if v2 ( (a, b~ ~ &#x3E; 0 and

otherwise. Consider Qg x Qg as a constant Q2-vector space sheaf over S
with the symplectic structure defined by

Define

The symplectic structure on Q~ x Q~ defines a group structure on gg and
an exact sequence:

cf. § 7, p. 106.

Define a full theta structure on (A, L) to be an isomorphism as
sheaves ofQ2-vector spaces over S:

such that cA respects the symplectic structures and sends T(A) to Z~ x Z~.
By 3.12 such isomorphisms exist. Fix one.

The isomorphism cA defines an isomorphism of groups
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see [Mul], Definition 7.8 and the discussion after that. The isomorphism cA
is the unique one compatible with cA and satisfying the following. Let a be
in V(A) and let cA (a) _ (x, l ) . Then

As in [Mull, Lemma 7.4, it follows that for all a E T(A), putting

The group 9g (and, hence, g(L) via cA) acts on Hg as follows:

Recall that 1tg is the unique admissible irreducible representation of weight
1 of 9. ( and hence up to isomorphism. See [Mull, Definition 7.9
and the theorem after it.

The description of the representation theory of the is

given in pp. 114-115, by the following diagram:

where r (L) is defined in 3.3, the map d is defined in 3.9, the isomorphism
is as admissible irreducible weight 1 representations of 9(L) and T is the
unique morphism making the diagram commute.

- - 

3.14. DEFINITION ([Mul], Corollary p. 115). - For all a, b E Q2’
dehne

The element b ~ b ~ ] is in 1-lg. Let a’ E a + Z~ and b’ E b + Z~, then

In particular, (1/2~)Z~ for some non-negati ve integer v, then 8(~;)
does not depend on the choice and 2v~2. The
elements 

_ _ , , _/ r ,,,
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where a and b are chosen representatives in Q~ of the cosets Q~/71~, define
a basis of ~ ( r ( L ) ) . Moreover,

the latter is defined in 3.12.

The group 9(&#x26;) permutes the elements of this basis (up to scalar).
The action is described via the isomorphism cA in 3.13 of 9(&#x26;) 
~g - ~ib by

3.15. Remark. - In particular, the set

is the one fixed by the subgroup X§v defined in 3.5. Remark that

via the isomorphism cA of 3.13. Also

Hence, a full theta structure defines for each integer v a finite theta

structure on (A, pv (,C)~ of type (22v, ... ~ 22v ~ 22v+1 ~ ... , 22v+1 ).

3.16. Theta characteristics.

Consider the following exact sequence:

The sequence admits a canonical right splitting h (as sets!)

The image via h of the set defines a choice of representatives of
the cosets defined by Call x Zg/2’Zg the set of theta
characteristics of order 2v . If (a, b) are 1/2v-theta characteristics let

Finally call a 1 /2"-theta characteristic (a, b) even if x (h(a), h(b)) = 1.
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3.17. Remark. - If a and b are chosen theta characteristics and 0152

and 0 are in Z~, it follows from 3.14

The group ~(pv,C), defined in 3.5 and identified in 3.15 with triples (a, x, l)
with a in and (x, l) in acts as follows:

3.18. Remark. - Let w be the element a a (y) of g(£) with y in
V(A) and a defined as in 3.7. Due to 3.9

See 3.12 for the definition of ~9A . Hence,

span the same vector space v The two sets are translations

by elements of ~ (pv (,C) ) of the element ~9A ~o~ _ 
3.19. PROPOSITION. - Consider two full theta structures CA and

as in 3.13. The two corresponding sets

are the same if and only the two theta structures of level

induced on (A, pv (,C) ) by c~ and c~ as in 3.15, are the same.

4. The Schottky-Jung relations.

In this section we deduce the so-called Schottky-Jung relations for
smooth curves; see 4.6. We follow the idea sketched in [Mu2]. We assume
we are in the situation of §1 with 9 = Spec(K) and K is an algebraically
closed field.



86

4.1. The setup for I

The notations x and ,Cx are as in 2.3 and in 2.4 with ,S’ = Spec(K).
Since Lx is of degree 1, the associated line bundle has a unique non-zero
section j3 x up to scalar. Choose a rigidification of the associated line bundle
Lx. We freely use the notation of §3. Fix a full theta structure

and an element 7/ of such that

Identify with its image via

We have a surjective morphism

defined by

where stands for the restriction to V(X) via the identification above.
Consider the abelian variety x with the Gm-torsor £x ® Define

1. with the notation of 3.5

2. with the notation of 3.10 and of 3.13

for any x in 

4.2. Remark. - Recall that the definition of i uses a

normalized isomorphism 4 , The

natural choice is that of

where 0: Lx ~ [-1]* a normalized isomorphism. Indeed,
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is the identity assuring that ~ is normalized.

4.3. The setup for the Prym variety P.

The notations P and Lp are as in 2.14 and in 2.15 with ,S’ = Spec(.K) .
The same procedure of 4.1 is applied to /~p and Qp and -Cp. Considering
the abelian variety P with the line bundle define:

2. for any x in 

4.4. The setup for Y = 

The notations Y and ,Cy are as in 2.3 and in 2.4 with ,S’ = Spec(K).
By 2.15, the abelian variety Y is a quotient of x x P and the Gm-torsor

descended to y. Hence,

l.b) the bilinear form e £y on V(Y) is defined by

for all (x, y) and (a, b) in x V(P).
There is a unique monomorphism

such that

) is contained in the Q2-vector space Q2g-l x tol x

. the restriction of ex to

preserves the symplectic structures and coincides with Ep ;

~ the induced isomorphism

coincides with the morphism defined in (5) of 2.15. Here, fi stands
for the orthogonal in Y(X) with respect to the pairing ex.
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Then

I , where A is ~ x id. This
follows from 2.15;

2.b) with the identification above the map ef" on

identified with its image, is defined by

4.5. Theta functions on Pico(C/S), on and on the

Prym variety P.

Choose a non-zero section j3y of As in 3.12 we writedy instead
of ~,~y . We use similar notations for the section j3 x defined in 4.1 and the
section j3p defined in 4.3.

By 2.15 and 3.11, there is a non-zero constant d1 such that for any a
in V(P) we have

Analogously, there is a non-zero constant d2 such that for any b in Y(x)
we have

Equivalently, due to 3.14, we have

and

Let c be an element of (1/2)T(~) and let
Define c’ :_ ~(c) E (1/2)T (x). Then

and

By Hence

By 3.13
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and

Hence, by 3.9,

Since

we conclude by (4.5.1) and by (4.5.2) that

On the other hand we have

by

by (

by (

Analogously

and

Hence, with the notation of 3.14, we get the following:

4.6. PROPOSITION. - Let [~] ] be the set of~-theta characteristics
of P as defined in 3.16. Identify them with 1/2 -theta characteristics [a 0] ] on
x via the map 0 defined in 4.4. Then

4.7. COROLLARY. - We have the following commutative diagram:
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Here

. is the projective space in the coordinates R(a), where (a, b)b

ranges among all the 1/2-theta characteristics satisfying x(a, b) = 1;
. H in stands for the Hurwitz data 7r: C -~ C given by fixing

the 2-torsion defined in 2.1;

. H in ,~4~4’g~’H stands for the choice of the theta characteristic
appearing in the definition 

Proof. Only the level structures remain to be justified. The use of
the (4,8)-level structures is a consequence of 3.19. The (2,4)-level structure
is motivated by the following remark.

4.8. Remark. Let P be a g dimensional abelian variety and ,C an

ample, degree 1 line bundle on P. We have a surjective homomorphism

defined by (01, ~2 ) F--* 01 (9 02-
Let cp : V(P) - Q2’ be a full that structure on (P, L). The vector

space spanned by the theta functions

is an irreductible weight one representation of the As in 3.19,
such representation defines a level (2,4)-theta structure on (P, C)-

Conversely given a level (2,4)-theta structure on (P, £) the above set
of theta functions is canonically defined.

5. Fourier-Jacobi expansion
of the Schottky-Jung relations.

In this section we study the Schottky-Jung relations defined in 4.6
induced to the boundary. See the corollaries of 5.5, where we study the
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Fourier-Jacobi expansion of theta functions. An account on Fourier-Jacobi
or q-expansions can be found in [Ch], §III2, pp. 143-149, with the warning
that we use a basis for the theta functions which is different from Chai’s
one. This forces us to go through the theory to see what happens in our
case.

5.1. A review of some results of Chai.

Let ~ be a rational polyhedral cone contained in 0 R; see

[Ch], §II1.2.4, pp. 146-147. Let v be a non-negative integer. Let E := 
where

~ R is the universal deformation space of a principally polarized
abelian variety with (2 2v 22v ~ 12 2v+l 22v+l )-theta structure
and r marked sections;

~ a ranges among the quadratic forms on (2"~Z~) so that
- the associated bilinear form lies in ~;

- the element ~ i belongs to the maximal ideal of E;

- the element ~ if i ~ j , is in the

maximal ideal of E;

(Denote by the associated bilinear form on 2-vZr with coeffi-
1

cients in E. It is is uniquely defined in terms of the elements 

Then, E is a noetherian excellent domain, complete with respect
to an ideal I and with fraction field K. If v is positive, Spf (E) ap-

pears as a "chart" at the boundary of any toroidal compactification
of the moduli stacks of abelian varieties with theta structure of level

(2~,.... 2~, 22v+1 , 7 ... 12 2v+l whose associated cone decomposition con-
tains ~.

5.1.1. The degeneration data.

Over ,5’ = Spec(E) we have, as in [Ch], §III.2, p. 143:

1. an abelian scheme B and a principal polarization A: B - Bt;
2. an extension G of B by a split torus T of rank r and character group

X(T). Denote by 7r: G - B the projection map. Let

be the morphism such that A oj: X(T) - B’ defines G as an extension
of B by T;
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3. an isomorphism Y - (B ’ -’ (B X(T) as constant group
schemes over S’ and a group homomorphism

such that the following diagram commutes:

4. an ample line bundle LB on B, rigidified above the identity element
of B, inducing the polarization -A.

5. a theta structure of level (22V, ... , 22v ~ 12 2v+l ... , 22v+1 ) on [2V]* (LB );
6. a symmetric ample sheaf data a: -1 (8) with respect

to t.

5.1.2. The quotient.

As in loc. cit., we use Mumford’s construction to get the couple
(X, Lx) consisting of

i. the semiabelian scheme X, "quotient" of G by Y;

ii. the ample symmetric line bundle Lx over X, "quotient" of LG :=

7r*(LB) by Y with
- a rigidification ~po : Lx above the identity element of X

)-theta level structure 
over the non-empty open subset U of S’ where X is an abelian
scheme.

Denote by ,CB (resp. £x) the cubical Gm-torsors on G (respec-
tively X) associated to LB (resp. Lx); see 2.8 for this notion.

5.1.3. Properties of Mumford’s uniformization.

For later purposes we note the following. Define

G ---&#x3E; Gi

as the push-forward of G by the character ei for every i = l, ... , r. Let

Gi (K) be the composition of l and the natural map G - Gi
Then,
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. G x s XQ as, where as is the complement of the scheme
theoretic image of Spec (.

o the divisor associated to the section ij (ej) of the 
coincides with the divisor (q2 i ) ;

. if i # j , the divisor associated to the section of the (Gm,s-bundle
j * ( Gi ) coincides with the divisor (

5.2. Example: the case of Jacobians.

As an example, let Co be an irreducible semistable curve over k = k
with singular points Qi , ... , Let

o V = Spec(A) be the universal deformation space of Co;
o C - V be the (algebraization of) the universal (formal) curve over V;
o for each i = 1, ... , r,

be the completion of C at Qi;

~ ’ : Spec (A/ (ql , ... , q~. ) ) ; I
~ Dj (resp. D) be the desingularization of C’ := C x v V’ along the singu-

lar section of Ci extending Qi for every z = 1,..., r (resp. Qi , ... , Qr);
~ Pi and Ri be the sections of Dj over Qi for every i;

~ Q : V - C be a smooth section;

. X := PiC°(C/V)j
w LX be the line bundle associated to the theta divisor on X i.e., the

translation of the image of in Picg-1(CjS) by - (g - 1 ) Q.
By [FC] the couple (X, Lx) can be "uniformized" i.e., obtained by

pulling-back via V - ,S’ (more precisely, to a cover of V) Mumford’s
construction described in 5.1 for a suitable ,S’ (choosing a (22v,..., 22v,
2~+B level structure on [2v]* (x)).

5.2.1. Properties.

The following is known [An]:
1. 

2. B x s V’ ^--’ PicO(Ð/V’);
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3. LB x s V’ is the line bundle associated to the theta divisor of

defined translating the image of the (g-r-1)th symmet-
ric power of D in Picg-r-1 (ÐjV’) by the point -(g-r-1)Q Xv V’;

4. the character group X(T) is canonically isomorphic to 

5. the map j x s V’ is defined (up to a non canonical choice of sign) by
sending Qi to Pi - I~i;

6. the divisor of V associated to the section of the 

j * (Gi) coincides with the divisor qi = 0 with multiplicity 1;
7. if i ~ j, the element qi,i qg§ is invertible in V;
8. Gi x s V’ ~ Pico(Ði/V’).

In particular, it follows from 5.1 that

6’. the element extends to an element of Gi 

7’. if i ~ j, the element extends to an element of Gi (V).

Finally,

9. x~ V’ coincides with the difference of Pj and Ri (as sections
of Di -----&#x3E; V’

5.3. Relations between 2-divisible groups on G and on X via

Mumford’s construction.

We use the notations of 3.3 and of 5.1. As explained in [Ch], § 111.5,
pp. 69-70, we have, for any non-negative integer n, exact sequences:

and
r -. ’i B

We have also the exact sequence

In the notations of 3.3 we get exact sequences:

and

and
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By [MB], Theorem IV.2.4(iv) and (v), the morphisms appearing in these
exact sequences are compatible with the symplectic pairings defined in 3.5.
Define the etale sheaf

Analogous sequences exist for the infinite theta groups associated to
/~ over X, to ,CB over B, to over G and to the restriction of 1r*(£)
to T.

For i = 1,..., 2g, denote by ei the standard vector of Qg x Qg with 1
at the ith component and zeroes at the other components. Choose a full
theta structure

as in 3.13 such that

identifies I

identifies I

. 
identifies

In particular, this determines a splitting

Also, we get that any 1/2n-theta characteristic (a", b") E X

of Xk factors accordingly as

5.4. DEFINITION. - Let J1 be an element of V(XK). Call it a

vanishing cycle if it belongs to V (YK). Call it orthogonal to a vanishing
cycle if it belongs to 

5.5. The Fourier-Jacobi expansion of theta functions via
Mumford’s construction.

The notation is as in 5.1. By [Ch], Lemma III.2.3.1 and [FC], Theorem
III.6.2, there is a 1-1 correspondence between

~ the couples consisting of a section t of the line bundle [2~]* (LB ) and
an element y of 1 Y/2-Y

~ the sections of ~2v~* 
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Similarly, one gets a description of the theta group of [2"]* (Lxf )
(resp. its action on global sections) in terms of the theta group of

[2V]* (resp. its action on the global sections). Define the isomorphism
(~ as the composite

Let w" := (a,a~,y~) be an element of Let w = (o~,~,~)
be the image of w" via the map CJ.’ ( ~2v~ *,CXK ) ~ C.~’ ( ~2~’~ *,CBK ) defined in 5.3.
Let t be a section of ~2v~ * (LBK ) and let y be an element of 
Define as the associated section of Then,

(5.5.1) w" o ~9t,y = 

See 3.13 for the definition of ~(-, -).
In [Ch], Lemma 111.2.3.1 it is proven that Fourier-Jacobi expansion

of the value of at the rigidification of Lx above the identity element
of X is

In particular, we get a natural action of the theta on

q-expansions

5.6. Relations between theta functions on G and on X via

Mumford’s construction.

Let (3 B K be the unique non-zero section (up to scalar) of 

Let (a", b") be a 1/2v-theta characteristic of (Xk, Lxk) (3.16). Factor
a" = (a’, a) and b" = (b’, b) as in 5.3. Then,
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by

In conclusion we get the formula

5.7. COROLLARY (cf. [vG], Lemma 2.4). - Suppose that Y = 
In particular, y E is a vanishing cycle in the sense of 5.4. Let
a" - (a’, 0) and b" = (b’, 6) with 6 = 0,1 and x(a", b") = 1. Then

- - - - - -

5.8. COROLLARY (cf. [vG], Proof of Lemma 2.5, [Dol], Proof of
Lemma 3.1.1). - From 5. 7, using the same notations, we have the fol-

lowing equality mod q4:

5.9. COROLLARY (cf. [Dol], Proof of Corollary 3.1.3). - Let Y =
Zy. Let a’ = (E, c’) and b’ - (T, T’) such that E’ = 0, 1 and T’ = 0, 1. Suppose
that x(a", b") = 1. Then

f _ f _ n -1

5.10. COROLLARY (cf. [Dol] Proof of Corollary 3.1.2). - Suppose
that Y = Zy. -Let a" = (a’, a) and b" = (b’, b) with x(a", b") = 1. Then
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Corollary 5.10 has the following geometric interpretation.

5.11. DEFINITION. - Define

by

where (a", b") run through the 1/2-theta characteristics such that

5.12. Remark. - Let S be as in 5.1 with v = 1. Let a(s) be the
closed subscheme of S defined = 0. By 5.10 the map d2,g is defined
on the whole of S’. The image of is contained in the locus defined

by the elements

The restriction of to 9(9) is the composite of and the embedding

defined by

with

Even more can be said. 

5.13. LEMMA. The following hold:

i) the intersection with empty;
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ii) the intersection of the scheme theoretic closure (S) with
Z(l,b) is the scheme theoretic image of 8(8) via the composite of 
and the embedding P"9 - 1 ~ 

Proof. Let (X, L) be an abelian variety with (4,8)-level structure.
By 3.17 the following equality of theta nulls holds:

Since d2,g has no base points, we conclude that (i) holds. The inclusion
’d2,9 (o~(,S’)) C Z(l,b) is given in 5.12. Consider the equations

Since b~ ~ ] 2 (Ij (y)) is invertible in ,S’ for some (a’, b’) and 2 is invertible
in S, we conclude from 5.10 that = 0. This proves (ii).

6. The heat equation.

One of the main ingredients in the proof of Van Geemen’s theorem is
the heat equation. The paper [We2] gives a substitute of the heat equation
for abelian varieties over fields of any characteristic different from 2. We

show in this section how Welter’s approach can be translated into properties
of Mumford’s theta functions.

6.1. A review of some results of G.E. Welters.

Fix an abelian variety X over an algebraically closed field k and a
line bundle L with a global section s on X. Denote by

the differential operators of order n on L [We2], §1.9, p. 178. In [We2],
Formula 1.14, the following commutative diagram with exact rows is

defined: _(1’B 1 - (9~ ~ÔB- -

Taking the hypercohomology of the columns we get a map
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see [We2], Formula 1.13. By [We2], Proposition 1.2, the first group classifies
infinitesimal deformations of X as an abelian variety, while the second
group classifies infinitesimal deformations of the triple (X, L, s).

6.2. Remark. - We work in the category of schemes over k. Let E
be an artinian local k-algebra E. Among the deformations of X (resp. of
(X, L, s) ) to E there always exists a distinguished one i.e., the pullback of X
(resp. (X, L, s)) via the morphism k ---t E. In particular, the deformations
to the dual numbers over k, the so-called "infinitesimal deformations", are
not simply a principal homogeneous space under (resp. under

They are completely classified by this cohomology group!

6.3. Remark. - If we suppose that = 0, we get as in [We2],
Formula 3.4,

Remark that S2Tx(0) == S2Tx,0. Choose elements 8 /8zi , ... , span-

ning it. For any 82/8xi8xJ in denote by the corresponding
element of The infinitesimal deformation s + of the sec-

tion s associated to has the property that

6.4. Remark. - A sufficient condition to guarantee that = 0

is that the divisor defined by s is invariant under ~-l~ on X i.e., that s is
symmetric. Summarizing we get the following:

6.5. PROPOSITION. - Let r be a positive integer and let X be
an abelian variety over the algebraically closed field k with a tlleta level
structure of type (2r .... 2r, 2r+1, ... , 2r+’) on L. Let the tangent space of
X at 0 be spanned by 

" -

and let

be the universal deformation space of X over k with the theta structure.

Then, for all (a, b) theta characteristics of level 1/2’ in the sense of 3.16,
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we have

6.6. COROLLARY. - Let Ig,k be the ideal defining the closure of the
image Let X be an abelian variety over k with line bundle
L and a (2, 4)-structure on it such that ~92 ( ~X~ ) is a smooth point in the

image The k-vector space -

coincides with the subspace

The notation stands for the multiplicity of s at 0.

Proof. The proof is formally the same as in [vG], Proposition 2.10.

6.7. PROPOSITION. - Let X = Pico(Cjk) be the Jacobian of a
smooth projective curve. Let L be a line bundle on X with (2, 4)-level
structure compatible with the canonical polarization on X. The zero locus
of the sections s E roo is known to coincide with the surface C - C . :=

the following cases:

1. g = 3;

2. k = C and g &#x3E; 5 ;

3. k = C, g = 4 and C is hyperelliptic.

Finally,
...,... C .. ’I /"’I . ’J 7 7 ,. , ’I - r ’")

,-o .J

Proof. Claim (1) follows from [Wel], Proposition 4.17. In loc. cit.
one assumes k = C, but the proof of the case g = 3 is purely cohomological
and works also in positive characteristic. Claims (2)-(4) are the contents
of [Wel], Corollary 2.5. This result is based on work of M. Teixidor who
works C. The author does not know whether the result holds in

positive characteristic or not.
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7. Van Geemen’s theorem.

In this section we extend Van Geemen’s theorem to the case of fields

of characteristic different from 2. See 7.6. We follow closely the idea of
[vG]. The main technique of [vG] is the study of the behavior of the
Schottky-Jung relations deduced in 4.6 for degenerating abelian varieties.
The degenerations allowed are semiabelian schemes which geometrically
have torus rank at most 1. With the techniques developed so far we go
deeper into the boundary than [vG]. This allows us to reduce to boundary
points for which the results of [We 1 hold also in positive characteristics.

7.1. DEFINITION. - Let g be a positive integer. Let k be a fields of
characteristic different from 2. Define

as the closure of the intersection over all Hurwitz data H of the images via
the for~etful map

of the loci

see 4.7 for the notation.

7.2. Remark. - To justify the presence of "small" see [Dol] or [Do2],
where C big g,C is defined as in our definition replacing the word intersection

g,

with the word union.

7.3. PROPOSITION. - The boundary of the small Schottky locus in
the minimal compactification of Ag Q9 k is contained in the union of the
small Schottky loci of lower dimension.

Proof. It follows from the following:

7.4. LEMMA. - The notations and assumptions are as in 5.9. Let

g &#x3E; 2. Assume that XK satisfies the Schottky-Jung relations (4.6). Then,
B satisfies the Schottky-Jung relations.

Proof. Assume that ~y9 [Xk] is in the image of 792,g-1. By 5.9,
putting q 2 = 0, we see that ~y9 degenerates to By 5.13, the
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intersection of the image of 792,g-1 with the hyperplanes Z(l,b) is the image
of ~2,~-2. Hence, is in the image of ~2,~-2 aS wanted.

7.5. LEMMA. - The notations and assumptions are as in 5.8.
Assume that

1. satisfies the Schottky-Jung relations (4.6);
2. d2,g-i in the smooth locus of the image of ~2,~-1. ·

Then, j(y) lies in the closed subscheme Too of BK defined in 6.6.

Proof. Let F be a homogeneous polynomial vanishing on the
image of d2,g- i . Then

We conclude by 6.6.

7.6. THEOREM (See [vG], Theorem 1.6). - Let g be a positive
integer bigger than 1. Let k be a fields of characteristic different from 2.

Then, the closure in Ag of the locus of Jacobians Jg,k is an irreducible
component of 

Proof. We can suppose that k is algebraically closed. For g x 3
the statement is clear since is equal to ,A9 Q9 k. We may assume that
g&#x3E;4. By 4.6 we know that

Let ,~4.94’~~ -~ be compatible toroidal compactifications of A(4,8) and 
see [FC], Theorem IV.5.7 for the construction. Let

be the closures of and in Let x be a k-valued point of

9 ® I~ corresponding to a semiabelian scheme with abelian part of
dimension 2. Let ,S’ := Spec(A) - ,~4~4’8~ ® 1~ be a chart at the point x
as in 5.1 2.

We choose x so that the semiabelian scheme Xx is the Pic° of an
irreducible curve Co. We use the results of 5.2 with r := g - 2. Fix two
distinct indices t and s in ~1, ... , r}. Then,
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. the character group of the torus T is identified with ZQ1 ZQr;

. is invertible in ,S’ and, hence, extends to an S-valued

point of Gs.

Define the ideal := Let ,S’t,s . :== with

:= A/It,s. Denote by Kt,s the fraction field of At,s. Let Gt,s :==

By 5.1 we have it(et) E Gt Hence, the period map ZQt -
induced by t is well-defined. By Mumford’s construction [FC],

Ch. III it is the uniformization datum of a unique 3-dimensional semiabelian
scheme

By properties of Mumford’s construction [FC], Theorem III.10.2,
1. the abelian part of the semiabelian scheme X x s Spec(Ks,t) extends

to a semiabelian scheme Xt,s over S’t,s of dimension 4. Its uniformizing
datum is the datum

induced by the period map t;

2. the semiabelian scheme Xt,s St,s degenerates for qs,s = 0 to
an extension of a 3-dimensional abelian scheme and a 1-dimensional

torus. The uniformization datum of its completion along qs,s = 0 has
abelian part equal to the base change of Xt to St,s 
Since the moduli space M3 of curves of genus 3 maps dominantly to

the moduli space of principally polarized abelian varieties of dimension
3, we conclude that Xt = Pic° (Ct /St,s ) for a geometrically irreducible
semistable curve Ct - St,s of genus 3. By 5.2 the base change Ct x st,s
Spec (k(x)) coincides with the desingularization of Co at Qi for i 7~ t. Since
Ks,t maps dominantly to we deduce that d2,3 ([Ct]) is a smooth point
Of 192,3 (A3,k (4,8)).of 192,3 3,k

Let ((0,..., 0), (03B4s,u),(0,..., 0)) 6 V (B K) x V(Tk) x V (Y K) be the
1/2-theta characteristic corresponding to the orthogonal of the vanishing
cycle defined by es EYe in the notation of 5.5. Consider the

degeneration of Xt,s x St,s St,s (qt,t ) along the divisor qs,s = 0. By 6.6 and
7.5 a necessary condition for a degeneration to be inside is that

j (Q s) E Xt (,S’t,s) lies on the surface Ct - Ct C Xt = P ico (Xt/ S¡,s).
Let as := Spec (A/ (ql, 1, . - - , qr,r))’ It is a complete intersection in S

of codimension r. It is equal to V’ in the notation of 5.2. Varying t with



105

t ~ s, with the notation of 5.2 and in virtue of 7.3, we conclude that a

degeneration to x inside must satisfy

for every s = 1,..., r. We conclude from 5.2 that the intersections of the

image of 85 in Ag with and with n as coincide. Hence, by
codimension considerations, we get that as claimed.
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