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1. Introduction.

Let X be a projective algebraic variety over the field of complex
numbers. Given two coherent sheaves £, F on X the algebraic group
G = Aut(€) x Aut(F) acts naturally on the affine space W = Hom(E, F)
by (g,h) -w = how o g~!. If two morphisms are in the same G-orbit then
they have isomorphic cokernels and kernels. Therefore it is natural to ask
for good quotients of such actions in the sense of geometric invariant theory.

Keywords: Algebraic quotients — Good quotients — Non-reductive groups — Moduli

spaces.
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108 J.-M. DREZET AND G. TRAUTMANN

1.1. Morphisms of type (7, s).

In general £ and F will be decomposable such that G is not reductive.
More specifically let £ and F be direct sums

E= P Mi®& and F= P N®F,

1<i<r 1<¢<s

where M; and N, are finite dimensional vector spaces and &;, F, are simple
sheaves, i.e. their only endomorphisms are the homotheties, and such that
Hom(¢&;, &) = 0 for ¢ > j and Hom(Fy, Fp,) = 0 for £ > m. In this case
we call homomorphisms £ — F of type (r,s). Then the groups Aut(€)
and Aut(F) can be viewed as groups of matrices of the following type.
The group Aut(£), say, is the group of matrices

g1 0 A 0
U2,1 92 ' :

0
Upr1 = Urr—1 Gr

where g; € GL(M;) and u;; € Hom(M;, M; ® Hom(E,, &;)).

In the literature on moduli of vector bundles and coherent sheaves
many quotients of spaces P Hom(&, F) of type (1,1) by the reductive group
Aut(€) x Aut(F) have been investigated, see for example [6], [14], [15],
[20], [26]. The moduli spaces described in this way are the simplest ones,
and this allows to test in these cases some conjectures that are expected to
be true on more general moduli spaces of sheaves (cf. [7], [36]). We think
that the moduli spaces of morphisms of type (r, s) will be as useful to treat
other less simple moduli problems of sheaves. In fact, if one wants to use
the spaces Hom(&, F) as parameter spaces for moduli spaces of sheaves,
which are as close as possible to the moduli spaces, the higher types (r, s)
are unavoidable.

The homomorphisms in a Beilinson complex of a bundle on projective
n-space, for example, have in general arbitrary type (r, s) depending on the
dimensions of the cohomology spaces of the bundle. In several papers, see
(25], [30] for example, semi-stable sheaves or ideal sheaves of subschemes
of projective spaces, are represented as quotients of injective morphisms of
type (r, s), and one should expect that the moduli spaces of such sheaves
are isomorphic to a good quotient of an open subset of the corresponding
space of homomorphisms. In some cases of type (2, 1) this has been verified
for semi-stable sheaves on Ps in [§].

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 109

In case of type (r,s) there are good and projective quotients if one
restricts the action to the reductive subgroup

Grea = [ [ GL(M;) x [ GL(IV).

This has been shown recently by A. King in [21]. The quotient problem for
Hom(&, F) of type (r,s) with respect to the full group Aut(€) x Aut(F)
is however the generic one and indispensable.

Unfortunately the by now standard geometric invariant theory (GIT)
doesn’t provide a direct answer for these quotient problems in case
Aut(&) x Aut(F) is not reductive. There are several papers dealing with
the action of an arbitrary algebraic group like [16], [17], [3], [4] and older
ones, but their results are insufficient for the above problem. The conditions
of [16] are close to what we need, but they don’t allow a concrete description
of the set of semi-stable points in our case and they don’t guarantee good
or projective quotients, see Remark 4.1.2.

1.2. The main idea.

Our procedure is very close to standard GIT and we finally reduce the
problem of the quotient to the one of a reductive group action. We introduce
polarizations A € Q"° of tuples of rational numbers for the action of G
on the affine space in analogy to the ones of A.King in [21], which are
refinements of the polarizations by ample line bundles on the projective
space PW and then introduce open sets W*(G,A) C W*5(G, A) of stable
and semi-stable points depending on A and study the quotient problem for
these open subsets. There are chambers in Q"¢ such that the polarizations
in one chamber define the same open set, in accordance with the chamber
structure in Neron-Severi spaces of polarizations in the reductive case,
see for example I. Dolgachev-Y. Hu [5] and M. Thaddeus [35]. However, in
contrast to the reductive case, good quotients W**(G,A)//G don’t exist
for all polarizations, see 4.2. As a main achievement we are providing
numerical conditions on the polarizations, depending on the dimensions
of the spaces M; and Ny, under which such quotients exist. The main
step for that is to embed the group actions G x W — W into an action
G x W — W of a reductive group G and to compare the open sets
Wss(G,A) and W (G, A), where A is a polarization for the G-action
associated to A.

1.3. Construction of quotients by non reductive groups.

To be more precise, a polarization A is a tuple (A1,..., Ay pt1, .-, Us)

TOME 53 (2003), FASCICULE 1



110 J.-M. DREZET AND G. TRAUTMANN

of positive rational numbers, called weights of the factors M; ® & and
Ny ® F; respectively, which satisfy > A\;m; = > pene = 1, where m;,nyg
denote the dimensions of the spaces of the same name. We use then the
numerical criterion of A.King [21], as definition for semi-stability with
respect to the reductive group Greq. An element w € W is (Greq, A)-stable
if for any proper choice of subspaces M; C M;, N, C N, such that w
maps P(M; ® &;) into P(N; ® Fp), we have Y \ym} < >~ penj, or semi-
stable if equality is allowed. Let W*(Gyreq, A) C W*%(Greq, A) denote the
set of stable and semi-stable points so defined. If H C G is the unipotent
radical of G, which is generated by the homomorphisms & — &; and
Fi — Fm for i < j and £ < m, we say that w is (G, A)-(semi-)stable if
h - w is (Grea, A)-(semi-)stable for any h € H, see 4.1. We thus have open
subsets W*5(G, A) C W*%(Greq, A) and W*(G, A) C W35(Greq, N).

The main result of our paper is that there are sufficient numerical and
effective bounds for the polarizations A such that W**(G, A) admits a good
and even projective quotient W**(G, A)//G and that in addition W*(G, A)
admits a geometric quotient, which is smooth and gquasi-projective, see
Proposition 6.1.1 and the results 7.2.2, 7.5.3, and Section 8.

The definitions of good and geometric quotients are recalled in 6.1.
By using correspondences between spaces of morphisms, called mutations,
it is possible to deduce from our results other polarizations such that there
exist a good projective quotient (see [10], [12]).

All this is achieved by embedding the action G x W — W into an
action G X W — W of a reductive group and then imposing conditions
for the equality W**(G,A) = W N W*5(G, A), where A is the associated
polarization. The quotient is then the quotient of the saturated subvariety
GWs(G,A) C W3 (G, K) The quotient will be projective if G - W\G-W
doesn’t meet W*(G, 1~\) Also for this, numerical conditions can be found
in Section 8.

The idea of embedding the non-reductive action G x W — W into
the action G x W — W is simply to replace the & by &; using the
evaluation maps Hom(&,&;) ® & — &;. It is explained in 5.1 and 5.1.1
that this is the outcome when we start to replace the sheaves &; step by
step and similarly for the sheaves F,. Since we have to deal everywhere
with the dimensions of the vector spaces Hom(&;, &;) and Hom(Fy, Frn)
which form the components of the unipotent group H, we have translated
the whole setup into an abstract multilinear setting and related actions by
technical reasons. This gives more general results although we have only

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 111

applications in the theory of sheaves. The reader should always keep in
mind the motivation in 5.1.

The results obtained in the simplest case (morphisms of type (2,1)
or (1,2)) are stated in 1.5. They are characteristic for the general case in
which only the conditions are more complicated.

1.4. Remark on finite generatedness.

One would expect that the quotients of W could be obtained by first
forming the quotient W/ H with respect to the unipotent radical H and then
in a second step a quotient of W/H by G/H = G,eq. However, the actions
of unipotent groups behave generally very badly, [19], and we are not able
to prove that the algebra C[W/H] is finitely generated. This would be an
essential step in a direct construction of the quotient. Of course, the main
difficulty also in this paper arises from the presence of the group H. The
counterexample of M. Nagata [28] also shows that the finite generatedness
depends on the dimensions of the problem. So from a philosophical point of
view we are determining bounds for the dimensions involved under which
we can expect local affine G-invariant coordinate rings which are finitely
generated, and thus to obtain good quasi-projective quotients, even so the
bounds might not be the best. The simple examples 4.2, 4.3 show that
a good quotient W*¥(G,A)//G might not exist if the conditions are not
fulfilled.

1.5. Morphisms of type (2,1).
In this case the homomorphisms of sheaves are of the type
mi&1 @ m282 — 77,1.7:1,

where we use the notation m& for C™ ® £. For this type a polarization
is given by a pair (A, )2) of positive rational numbers such that
Aimi + Aamg = 1. It is determined by the rational number ¢t = mgls
which lies in [0,1]. Writing W**(¢t) for W*° and W*(¢t) for W* for the
moment, our results depend on constants c(k) defined as follows: Let

7: Hom(&y, F1)* @ Hom(&, E2) — Hom(&2, F1)*
be the linear map induced by the composition map
Hom(&;, F1) ® Hom(&y, &) — Hom(&, F1), and

T = 7 ® Ik : Hom(&r, F1)* @ (Hom(&y, &) ®Ck) — Hom(&, F1)* ® Ck.

TOME 53 (2003), FASCICULE 1



112 J.-M. DREZET AND G. TRAUTMANN

Let K be the set of proper linear subspaces K C Hom(&i, &) ® CF
such that for every proper linear subspace F' C C*, K is not contained
in Hom(&1,&) ® F. Let

codim (7, (Hom(&;, F1)* ® K)
olk) = ;lél,)c ( : codim(}() : )

1.5.1. THEOREM. — There exist a good projective quotient W*5(t)//G
and a geometric quotient W*(t)/G if

my dim(Hom (&1, £2)) and 1> dim(Hom (&, £)) c(ma)ms

t
> dim(Hom(&y, &2)) + my ny

In the case of morphisms m;O(—2) & moO(—1) — n1O on projective
spaces the constants have been computed in [12] and we obtain the more
explicit result:

1.5.2. THEOREM. — Let n > 2 be an integer. There exist a good
projective quotient W*5(t)//G and a geometric quotient W*(t)/G in
the case of morphisms m1O(—2) ® maO(—1) — n1O on the projective
space P, if

(n+ 1)mao
(n+ 1)ymg +my '
(n+1)m3(mg — 1)

t >

t> if 2<my<n+l,
2n1(ma(n+1) — 1) ==
12
t>————(n+ )'mz if mg>n+1.

1.6. Construction of fine moduli spaces of torsion free sheaves.

In Section 10 we construct smooth projective fine moduli spaces of
torsion free coherent sheaves on P,, using morphisms

(*) O(-2)®C? — O(-1)® (0@ Ck),

(for 1(n+1)(n+2) < k < (n+ 1)?). More precisely we prove that
for all polarizations, semi-stable morphisms are injective outside a closed
subvariety of codimension > 2, hence their cokernels are torsion free sheaves.
A generic morphism is injective and its cokernel is locally free. In this case

we can construct

= (n+1)2(n+2) B [n+/2€+1]

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 113

distinct smooth projective moduli spaces My, ..., M, of such morphisms, of
dimension 2(n — 1) + k((n +1)? — k). Moreover, all the M; are birational
to each other. For 1 < ¢ < g, we construct a coherent sheaf £ on M; x P,
flat over Mj;, such that for every closed point z € M, &;, is isomorphic to the
cokernel of the morphism (*) corresponding to z. We prove that M; is a fine
moduli space of torsion free sheaves with universal sheaf &;. In particular,
this means that for every closed point z € M;, the Kodaira-Spencer map

.M; — Ext! (&izyEiz)

is bijective, and for any two distinct closed points z1,2zo € M;, the
sheaves &;,,, &;,, are not isomorphic.

1.7. Open problems.

Even in the simplest case of morphisms of type (2,1) we do not
know what all the polarizations are for which a good quotient W**//G
exists. More generally it would be interesting to find all the saturated open
subsets U of W such that a good quotient (quasiprojective or not) U//G
exists, or all the open subsets U such that a geometric quotient U/G exists.
The corresponding problem for reductive groups has been studied in [27],
1.12, 1.13, and in [1], [2].

1.8. Organization of the paper.
In Section 2 we describe our problem in terms of multilinear algebra.

In Section 3 we recall results of A.King [21]. The reductive group
actions considered in this paper, the action of G.oq on W and that of G
on W, are particular cases of [21]. We also discuss the relation of A-(semi)-
stability in W with that in the projective space PW. But we cannot work
solely on the projective niveau, because the embedding W C W is not
linear.

After defining G-(semi-)stability for the non-reductive group in
Section 4 we describe the embedding in Section 5 and introduce the

associated polarizations. Section 6 contains the step 0f~constructing the
quotient W**(G, A)//G using the GIT-quotient W*(G, A)//G of A. King.

Sections 7 and 8 are the hard parts of the paper. Here the conditions
of the weights which define good polarizations are derived. It seems that
the constants appearing in these estimates had not been considered before.

In Section 9 we are investigating a few examples in order to test
the strength of the bounds. Here we restrict ourselves to small type

TOME 53 (2003), FASCICULE 1



114 J.-M. DREZET AND G. TRAUTMANN

(2,1),(2,2),(3,1) in order to avoid long computations of the constants
which give the bounds for the polarizations. What we discover in varying
the polarizations are flips between the moduli spaces, as one has to expect
from the general results on the variation of linearizations of group actions,
cf. [32], [5], [35]- In Example 9.2 we have a very simple effect of a flip,
but in Example 9.5 the chambers of the polarizations look already very
complicated.

In Section 10 we define new fine moduli spaces of torsion free sheaves
using our moduli spaces of morphisms.

Acknowledgement. — The work on this paper was supported by DFG.
The first author wishes to thank the University of Kaiserslautern, where
the work was started, for its hospitality.

2. The moduli problem for decomposable
homomorphisms.

Let £E =P E @ M; and F = @ Fr ® N; be semi-simple sheaves as in
the introduction. In order to describe the action of G = Aut(€) x Aut(F)
on W = Hom(&, F) in greater detail we use the abbreviations

Hy; = Hom(E;, Fy), Aji = Hom(&;,E;), Bme = Hom(Fy, Frn),
such that we are given the natural pairings

Hyj @ Aji — Hy  fori < j,

A ® Ajy — Apy fori < j <k,

B ® Hy; — H,,; for £ < m,
Bpm ® Bpg — By forf<m < n.

The group G consists now of pairs (g, h) of matrices

i 0 0 hy 0 - 0
R h :

g= | @ W EY
: . . 0 : 0
Ur1 - Urpr—1 Gr Us1 - Usis—1 hs

with diagonal elements g; € GL(M;), hy € GL(N;) and
Uji € Hom(Mi, Mj ® A]‘i), Um,e € HOIII(]Vg7 N, ® Bmg)

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 115

Similarly a homomorphism w € Hom(&, F) is represented by a matrix
w = (@y¢;) of homomorphisms

we; € Hom(M;, Ny ® Hy;) = Hom(Hj; ® M;, Ny).

Using the natural pairings, the left action (g, h).w = hwg~! of G on W is
described by the matrix product

-1

hi 0 ... 0 91 0 e 0
. . Y11 o Pir .
vo,1  ho K : . . U1 go
° . : ° . . .
0 <Psl “e. Sosr : i T 0
Vs,1  *+° Uss—1 hs Uryi - Urpr—-1 Gr

where the compositions vy, ¢ © ¢; and ¢g; o u;; are compositions as sheaf
homomorphisms but can also be interpreted as compositions induced by the
pairings of the vector spaces above. Thus the group G, the space W and
the action are already determined by the vector spaces A;;, Bp¢, Hy; and the
pairings between them. Therefore, in the following we define G, W and
the actions G x W — W by abstractly given vector spaces and pairings.
The resulting statements can then be applied to systems of sheaves by
specifying the spaces as spaces of homomorphisms as above.

2.1. The abstract setting.

Let r, s be positive integers and let for 1 <i<j<r,1<f<m<s
finite dimensional vector spaces Aj;, Bme, He; be given, where we assume
that A;; = C and By, = C. Moreover we suppose that we are given linear
maps, called compositions,

Hy®Aj; — Hy for 1<i<j<r, 1<£<s,
Apj® Aj; — Ay for 1<i<j<k<r,
Bne®Hy — Hyy; for 1<i<r, 1<f£<m<s,
Bpm ® Bpyg — Bpe for 1<f<m<n<s

We assume that all these maps and the induced maps
H;; ® Ajy — HZ]» and H,,® Bmne — Hy;

are surjective. This is the case when all the spaces are spaces of sheaf
homomorphisms as above for which the sheaves &£; and F; are line bundles
on a projective space or each of them is a bundle QP (p).

TOME 53 (2003), FASCICULE 1



116 J-M. DREZET AND G. TRAUTMANN

We may and do assume that these pairings are the identities if
i = j, £ = m, etc. Finally, we suppose that these maps verify the
natural associative properties of compositions. This means that the induced
diagrams

Akj b2y Aji ® Ain — Ari ® Ain Bon ® Bppn ® Brg — Bom ® By
1 1 1 !

Apj ® Ajp, ————— Agp Bon ® Bhg —— By

Hpy @ A @ Ajys — Hyy ® Ajs Bpm @ By ® Hyy — By ®@ Hy;

I ! ! !
Hy® Ay —— Hy By ®@Hp; —— Hy

Bre®Hy @ Ajy — Hpj ® Ay
1 l
Bohe® Hyy — Hpyy;

are commutative for all possible combinations of indices.

In our setup we also let finite dimensional vector spaces M; for
1 <i<rand Ny for 1 </{ < s be given and we consider finally the vector
space

W = @Hom(Mi, N, ® Hy;) = @Hom(Hlfi ® M;, Ny)
il i4

where summation is over 1 <4 < r and 1 < ¢ < s. This is the space of
homomorphisms in the abstract setting. The group G and its action on W
are now also given in the abstract setting as follows.

2.2. The group G.

We define G as a product Gp X Ggr of two groups where the left
group G, replaces Aut(€) and the right group G replaces Aut(F) in our
motivation. Let G, be the set of matrices

g 0 ... 0

uzg g2 :
0

Ur,1 ot Upr—1 Gr

)
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QUOTIENTS BY NON-REDUCTIVE GROUPS 117

with g; € GL(Ml) and Uji € Hom(Mi,Mj & A]z) = Hom(A;‘,; & MI,M])
The group law in Gy is now defined as matrix multiplication where we
define the compositions ug; * uj; naturally according to the given pairings
as the composition

Uqg ; ®id i co

Explicitly, if g has the entries g;, u;; and g’ has the entries g;, u}; then
the product

9'=4g

in Gy is defined as the matrix with the entries g/’ = g} o g; in the diagonal
and

Ugi = Uk; © 9i + Z Upj * wji + (g @ 1d) 0 ug;
i<j<k
for 1 < i < k < r. The verification that this defines a group structure on G,
is now straightforward.

As aset G, is the product of all the GL(M;) and all Hom(M;, M;®A;;)
for ¢ < j and thus has the structure of an affine variety. Since multiplication
is composed by a system of bilinear maps it is a morphism of affine varieties.
Hence G, is naturally endowed with the structure of an algebraic group.
The group Gg is now defined in the same way by replacing the spaces M;
and Aj; by Ny and Bpy. Finally G = G x Gg is defined as an algebraic
group.

2.3. The action of G and W.

We will define a left action of Gg and a right action of Gy on W such
that the action of G on W can be defined by (g,h) -w = h-w - g~!. Both
actions are defined as matrix products as described above in the case of
sheaf homomorphisms using the abstract compositions as in the definition
of the group law.

If w has the entries gp; € Hom(H; ® M;, N;) and g € G, has the
entries g; and u;; then w - g is defined as the matrix product

/ ) g 0 0
Y11 0 Prr Pt ot P . .

. . _ . . U211 g2
(p{gl o Psr Ps1 1 Psr 0
Up1 - Upr—1 Gr

TOME 53 (2003), FASCICULE 1



118 J.-M. DREZET AND G. TRAUTMANN
with
Op; = Pei 0 Gi + Z wej *uj;  (if i = r the last sum is 0),
i<j

where ¢g; * u;; is the composition

M; — M; ® Aj; — Ny ®@ Hyj @ Aji — No ® Hy;
or dually the composition

HZ-@Mi ——>H&®A;i®Mi ——>sz®Mj — Np.

The left action of Gg is defined in the same way. In the next two sections
we give an analysis of stability and semi-stability for the action of G
and its natural reductive subgroup Geq. In the reductive case this is due
to A. King.

2.4. Canonical subgroups of G.

We let H;, € GG, and Hr C Gg be the maximal normal unipotent
subgroups of G, and G defined by the condition that all g; = idys, and
all hy = idy,. Then H = H; x Hp is a maximal normal unipotent subgroup
of G. Similarly we consider the reductive subgroups Gp red and Gr red
of G, and G defined by the conditions u;; = 0 and v, = 0 for all indices.
Then Gred = G red X GR red is a reductive subgroup of G and it is easy to
see that G/H = Gyeq. The restricted action of Greq is much simpler and
reduces to the natural actions of GL(M;) on M; and GL(N;) on N

3. Actions of reductive groups.

3.1. Results of A. King.

Let Q be a finite set, I' C @ x @ a subset such that the union of the
images of the two projections of I' is Q). For each a € @, let m, be a positive
integer, M, a vector space of dimension m,, and for each (o, 5) € T, let V,
be a finite dimensional nonzero vector space. Let

Wo= (P Hom(M, ® Vag, Mp).
(a,3)€ET
On W, we have the following action of the reductive group:

Go =[] GL(M.)
acQ

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 119

arising naturally in this situation. If (fg) € Wp and (go) € Go, then
(ga) . (fBa) = (gﬂ o fﬁa o (ga ® id)_l)'
Let (ea)acq be a sequence of integers such that

Z eaMq = 0.

a€Q
To this sequence is associated the character x of Gy defined by

x(9) = [] det(ga) ™

a€Q

This character is trivial on the canonical subgroup of Gy isomorphic to C*
(for every A € C*, the element (g,) of Go corresponding to X is such that
go = A-1id for each «). This subgroup acts trivially on Wy. A point z € Wy
is called x-semi-stable if there exist an integer n > 1 and a polynomial
f € C[Wp] which is x™-invariant and such that f(z) # 0 (f is called
X"-invariant if for every w € Wy and g € G we have f(gw) = x™(g) f(w)).
The point z is called x-stable if moreover

o dim(Gpz) = dim(Go/C*) and
« the action of Gy on {w € Wy, f(w) # 0} is closed.
A. King proves in [21] the following results:

1) A point z = (fga) € Wp is x-semi-stable (resp. x-stable) if and
only if for each family (M]), o € Q, of subspaces M}, C M, which is neither
the trivial family (0) nor the given family (M,) and which satisfies

fﬂa(M; ® Vaﬁ) - Mé
for each («, 8) € ', we have

Z eq dim(M}) <0 (resp. < O0).
a€Q

2) Let W§° (resp. W{§) be the open subset of Wy consisting of
semi-stable (resp stable) points. Then there exist a good quotient

W' — M
by Go/C* which is a projective variety.
3) The restriction of this quotient
W§ — M® = n(Wy)

is a geometric quotient and M? is smooth.

TOME 53 (2003), FASCICULE 1



120 J.-M. DREZET AND G. TRAUTMANN

3.2. Polarizations.

The (semi-)stable points of Wy remain the same if we replace (e,)
by (ceq), ¢ being a positive integer. So the notion of (semi-)stability is fully
described by the reduced parameters (e, /t), where

t= E €aMe,-
a€Q,eq>0

So we can define the polarization of the action of Gy on Wy by any sequence
(ca)aeq of nonzero rational numbers such that

E caMme =0, g CaMeg = 1.
a€EQ a€Q,ce >0

By multiplying this sequence by the smallest common denominator of the c,
we obtain a sequence (e, ) of integers and the corresponding character of Gy.
Therefore the loci of stable and semi-stable points of Wy with respect to Gg
and a polarization Ag = (c,) are well defined and denoted by

WS(GQ, A()) and Wgs(Gg, Ao)

3.3. Conditions imposed by the non-emptiness of the quotient.

If W§ is not empty, the e, must satisfy some conditions. We will derive
this only in the three situations which occur in this paper. Polarizations
satisfying these necessary conditions will be called proper. The first is that
of the action of Geq in 2.4 and the second is that of G and W in Section 5,
and the third is the case in between occurring in 7.4.2.

3.3.1. First case. — Let 1, s be positive integers. We take

Q:{al-"aar7ﬁ1a"')ﬁs}7 F:{al"'aar}x{ﬁla"'aﬂs}-

This is the case of morphisms of type (r,s). For 1 <4 <r, let M), = M,,
if eq, > 0, and {0} otherwise, and for 1 < £ < s, let Mz, = Mpg,. Then if
one e,, is not positive, we have

> eadim(M}) >0
a€Q

and (M) # (M,), so in this case no point of Wy is stable. So we obtain,
if W§ is non-empty, the conditions

€q, >0, forany ¢, and eg, <0, for any /.
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A proper polarization is in this case a sequence
(>\17 s 7)‘7‘7 M1, —,LLS)
of rational numbers such that the A; and the u, are positive and satisfy

Z )\imal = Z Hemg, = 1.

1<i<r 1<e<s

3.3.2. Second case. — This case appears when we use a bigger reductive
group to define the quotient (this is the case of W later on). Let r,s be
positive integers. Here we take

Q = {al"~7a7')/815"'7138}3
I = {(ai,i-1), 2<i <7, (o1, Bs), (Be, Be—1), 2 < £ < s}
Then the necessary conditions for W to be non-empty are:

Z €a,Ma, > 0 for any i, and Z eg,mg, <0 for any m.
i<j<r 1<e<m

To derive the first set of conditions we consider for any 7 the family
(M) for which M, =0if i < j <r and M, = M, for all other v € Q.
Then fop(M ® Vo) C Mj for any f € Wy and any (a,8) € T If f is
stable we obtain

- Z €a,Ma, = Z ey dim(M) < 0.
i<j<r 7€Q
Moreover, if the family (M) is defined by M, =0for1 < j <r, Mg =0
if m < £ < sand M} = M, else, we obtain directly
Z eg,mg, = Z ey dim(M) < 0.
1<e<m v€Q

A proper polarization in this case is then a sequence

(p17 ey Pry 01,00, —'US)
of rational numbers satisfying
D pima, = Y, oemp, =1
1<i<r 1<<s
and
Z pjmea, >0 forany: and Z ogmg, >0 for any m.
i<j<r 1<e<m

We could also drop the normalization condition.
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3.3.3. Third case. — This case is a combination of the first and second
case. It appears in the proof of the equivalence of semi-stability in 7.3.
Here @ is the same as in the previous cases and

r= {(aiaai—l)’ 2 S ) S T, (a17ﬁ4)7 1 S 14 S 8}‘
Now the necessary conditions for Wj to be non-empty are:

Z €a,Ma, >0 for any 4, and eg, < 0 for any £.
1<j<r

The first condition follows as in the second case when we consider
the family (M'Iy) with M(;J =0 for i < j <r and M',v = M, for
all other v € Q. The second condition follows when all M[Y are zero
except M [,e = Mg, for one £. Again a proper polarization in this case is a

sequence (p1, ..., Pr, —li1,-- -, —fe) With
5 e = 3 s, =1
1<i<r 1<¢<s

and

Z pjMa, >0 for any i and e > 0 for any .
1<j<r
3.4. The action of Gy on P(Wj).

We suppose that we are in one of the first two preceding cases and
that there exist stable points in Wy. Let P be a nonzero homogeneous
polynomial, x™-invariant for some positive integer n. The x™-invariance
implies that P has degree n - t where in case 1 (action of Greq on W)

t= E €q,Mq,,

1<:i<lr

and in case 2 (action of G on W)

t= Z ieq,Ma,; — Z (s — L)eg,mg,.

1<i<r 1<¢<s
To see this let A € C* and let g be given by g,, = A~'id and gg, = id
in the first case and by g,, = A7*id and g, = A~3id in the second case.
Then gz = Az and x"(g) = A™ in both cases, such that P(Az) = A" P(z).
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Now we will see that there exist a Go-line bundle £ on P(W}) such
that the set W3* of semi-stable points is exactly the set of points over
P(Wy)**(Go, L), which is the set of semi-stable points in the sense of
Geometric Invariant Theory corresponding to

L = Opwy)(t),

cf. [27], [29], [31]. Here the action of Gg on L is the natural action multiplied
by x. More precisely, the action of Gy on Wy induces an action of this group
on S'Wy and on S*W{ by

(- F)(w) = F(g~'w)

for all g € Gy, w € Wy and F € S*W{, viewed as an homogeneous
polynomial of degree ¢ on Wy. The line bundle space L of L is acted on
by Go in the same way: if £ € L,y then g-§ € L(g,) is the form on
(gw)*® = L4,y given by (g-&)(y) = £(g7'y). We modify now the action
of Gy on L (resp. S*W{) by multiplying with x(g):

gxE=x(9)g-& for &€ Ly, or
g*F=x(g)g-F for F e H'P(Wy),L)=S'W;.

Now P € H°(P(W,), £®") is an invariant section if and only if P is a
homogeneous polynomial of degree tn which satisfies

P(gw) = x"(g)P(w).

From the definition of semi-stable points in Wy and P(W,) with respect to
the modified Go-structure on £ = Opw,)(t), we get immediately

3.4.1. LEMMA. — Assume that W§(Gy, Ag) # 0 and let t be defined as
above in the two cases of Wy. Then the set W§*(Go, Aop) is the cone of the
set P(Wo)**(Go, Op(w,)(t)) as defined in G.L.T.

There are two definitions of stable points in P(Wy), the classical
one, given in [27], [29], and a more recent one, given in [31]. If we take
D. Mumford’s definition, the cone of the set of stable points in P(Wj)
does not coincide with W§ because every point of P(Wy) has a stabilizer
of positive dimension. In fact there is a subgroup of Go/C* of positive
dimension which acts trivially on P(W;). In the first case for example
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such a group is given by go, = Aid and gg, = pid with A\, p € C*. If we
want to keep the coincidence between the sets of stable points for one
and the same group, we would have to consider the action of a smaller
reductive group in order to eliminate additional stabilizers. We will do
this in 3.5 only in the first case. If we take the definition of V.L.Popov
and E.G.Vinberg, then we obtain that the set W3 (Go, Ao) is exactly the
cone of the set P(Wy)*(Go, Opwy)(t)).

3.5. The group G'.

Let G and W be as in Section 2 and let A = (A1, ..., A\p, —pi1, ..., —fhs)
be a proper polarization as in 3.3.1 for the action of Grq on W. It is
then convenient to use the subgroup Gl.q of Greq consisting of elements

((9i), (he)) satistying

H det(g;)** = H det(hg)’st = 1,

1<i<r 1<f<s

where aj; = dim(A;;) and by,e = dim(Bpme).

We consider the action of G4 on £ induced by the modified x-action
of Greq. Now the set W*(Greq, A) of x-stable points of W is exactly the
cone over the locus P(W)*(G..q4, L) of stable points of P(W) in the sense
of Geometric Invariant Theory.

4. Semi-stability in the non-reductive case.

Let G and W be as in Section 2. A character xy on Greq as in King’s
setup can be extended to a character of G. Also the modified action of
Greqa 0n L can be extended to an action of G. Let G’ be the subgroup of G
defined by the same equations as for G._,. It contains H and G, 4, and we

have G'/H ~ G,,.

In the case of the action of G,.q on W a proper polarization is given

by a sequence A1, ..., Ar, 1,. .., ts of positive rational numbers such that
Z Aimy; = Z temng = 1.
1<i<r 1<<s

More precisely, the polarization is exactly the sequence

(Al,...,)\r,—ul,...,—us).
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The parameter A; (resp. pe) will be called the weight of the vector space M;
(resp. Ng). We see that the dimension of the set of possible proper
polarizations is r + s — 2. Let t denote the smallest common denominator of
the numbers A; and pe and x the character of Greq defined by the sequence
of integers (—tAy, ..., —t ., tp,. .., tus). Let

L=Opwy(t) with t= Y mth.

1<i<r

As we have seen, if we consider the modified action of G.eq on L, then the
Xx-semi-stable points of W are exactly those over the semi-stable points of
P(W) in the sense of Geometric Invariant Theory with respect to the action
of Gieq/C* on L. The x'™-invariant polynomials are the Gieq-invariant
sections of L™.

We are now going to define a notion of (semi-)stability for the points
of W with respect to the given action of the non-reductive group G. Let
H C G be the above unipotent group, see also 2.4.

4.1. DEFINITION. — A point w € W is called G-semi-stable (resp.
G-stable) with respect to the (proper) polarization

A=(Alv"w)"r,—l‘l‘l?"'v_;u‘s)

if every point of Hw is Greq-semi-stable (resp. Greq-stable) with respect to
this polarization. We denote these sets by W**(G, A) (resp. W*(G, A)).

For many of the quotient problems for the spaces of homomorphisms
between @ m;&; and @ n; F; and their cokernel sheaves this is a fruitful
notion. In 4.2 we investigate an example with an explicit description of
the open sets W*(G, A) C W*(Ghyeq, A). This example also shows that the
existence of a good quotient depends on the choice of the polarization.

4.1.1. Situation for type (2,1). — In the case of morphisms of type
(2,1) we have u; = 1/ny and the polarization is completely described by
the single parameter ¢t = mgAe. We must have 0 <t < 1.

A polarization such that there exist integers mf, mj, n}, with
0 < nf < m, 0<m, < m; such that min, — min}, mhn, — manj
are not both 0, and that

/

n

Amy + dgmhy = =L
ni
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is called singular. There are only finitely many singular polarizations,
corresponding to the values 0 < t; <ty < --- <t, <1loft Lett; =0,
tp+1 = 1. If A, A’ are polarizations corresponding to parameters t, ¢’ such
that for some ¢ € {0,---,p} we have ¢; < t,t' < t;11, then

W (G, A) = W*(G,\') and W*(G,A) = W*(G,A).

Hence there are exactly 2p + 1 notions of G-(semi-)stability in this case.
Moreover, if myi, mo and n; are relatively prime, and A is a non singular
polarization, we have W**(G,A) = W*(G, A).

In the general case of morphisms of type (r, s), it is not difficult to see
that there are only finitely many notions of G-(semi-)stability.

4.1.2. Remark. — In [16] semi-stability is defined as follows: A point
w € W is semi-stable if there exist a positive integer k and a G’-invariant
section s of £* such that s(w) # 0 (there is also a condition on the action
of H). It is clear that a semi-stable point in the sense of Fauntleroy is
also G-semi-stable with respect to (Ay,..., An, —pi1, ..., —s)- It is proved
in [16] that there exist a categorical quotient of the open subset of semi-
stable points in the sense of [16], but it is not clear that all G-semi-stable
points are semi-stable. Moreover, in the general situation of [16] there is no
way to impose conditions which would imply that the categorical quotient
is a good quotient or even projective. Using Definition 4.1 we are able to
derive a criterion for the existence of a good and projective quotient of W
under the action of G.

4.2. Existence and non-existence of good quotients, an example.

We show here that we cannot expect that a good quotient
W#s(A, G)//G will exist for any polarization A.

We consider morphisms 20(—2) — O(—1) & O on Py. There are
three notions of G-(semi-)stability in this case, two corresponding to non
singular polarizations. For one of the non singular polarizations the quotient
W$(A,G)/G exists and for the other we prove the inexistence of a good
quotient W*(A,G)//G.

Let V be a complex vector space of dimension 3, and Py = PV. Let
W = Hom(20(-2),0(-1) & O)

on Ps. A polarization for the action of G on W is a triple ( % , — 1, —fi2) with
positive numbers ji1, po satisfying p1+ps = 1. Asin 4.1.1 such a polarization
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depends only on ;. There is only one singular polarization, corresponding
to py = % Hence if we consider only non singular polarizations there
are only two notions of G-(semi-)stability, the first one corresponding to
polarizations such that pu; > % and the second to polarizations such that
p1 < % In both cases semi-stable points are already stable. We are going
to show that in the first case W*(G, A) has a geometric quotient which is
projective and smooth and that in the second case W*(G, A) doesn’t even
admit a good quotient.

The elements z € W and g € G are written as matrices

(1 _ a 0
III——(ql QQ> and g_(o’(z IB))
where 21,22 € V*, q1,q2 € S?V*, 0 € GL(2), o, € C* and z € V*.

4.2.1. The case py > 3. — In this case W*(G, A) has a geometric
quotient which is the universal cubic Z C PV x PS3V* of the Hilbert
scheme of plane cubic curves in P, = PV. The quotient map is given by

T — ((21 A z2), (z1q2 — qul))-

Remark. — If 7 > %, then p; > 3z and the conditions of 1.5.1 (in
the dual case (1,2)) for a good and projective quotient to exist in this case
are satisfied.

The proof is done in several steps.
1) Claim 1: Let € W be as above. Then

(i) £ € W*(Greq, A) if and only if z; A z2 # 0 in A2V* and qq, g2
are not both zero.

(ii) x € W*(G,A) if and only if 21 A 22 # 0 and det(z) =
2192 — 2241 7é 0in SSV*.

Proof of Claim 1. — (i) follows easily from the criterion (1) in 3.1. As
for (ii) let z € W*(Ghred, A) with det(x) # 0. Then det(h-z) = det(x) # 0 for
any h = (1 9) which implies that also h - © € W#(Grea, A). Let conversely
x € W5(G,A). Then det(x) # 0 because otherwise there is a linear form
z € V* with ¢; = 22, and ¢3 = 2z, and with h = (_12(1) the element h - x

is the matrix (f]l zg) which is not in W*(Greq, A).

2) By the result of A.King in 3.1, (3), there is a geometric quotient
W (Gred, A)/Grea which is smooth and projective.
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Claim 2 Ws(Gred,A)/Gred = (Q* & S2V*).

Here Q* = Q!(1) is the dual of the tautological quotient bundle
over PV. (The dimension of this quotient variety is 13 while dim W = 18
and dim Gyeq/C* = 5.)

To verify Claim 2 we consider the map
21 22 a
95:( )'—>(<Z1/\22>7<z1 ® g2 — 22 ® q1))
qa QG2

from W*(Greq,A) to PV x P(V* ® S2V*) C P(V* ® S?2V* ® Opy) where
we identify PA2V* with PV via (21 A 22) < (a), 21(a) = z2(a) = 0. Then
each a(z) € P(Q7,, ® S2V*) because @7, C V™ is the subspace of forms
vanishing in (a). It follows immediately that o is a morphism

W*(Greda, A) — P(Q* ® S*V™)

which is surjective and Gieq-equivariant. It induces a morphism of the
geometric quotient to P(Q* ® S2V*) which is even bijective. Since both,
the quotient and the target are smooth, this is an isomorphism.

3) Since Q* C V* ® Opy we have an induced homomorphism
Q* ® S2V* — S3V* ® Opy. It is the middle part of the canonical exact
sequence

0-AQQV* — Q" ®S*V* — S3V* @ Opy —— Opy(3) = 0

of vector bundles on PV. Let Z be the kernel of ev. From the left part of
the sequence we obtain the affine bundle

P(Q* ® SV )\P(A2Q* @ V*) -5 P(2) C PV x PS3V*.

Here P(Z) = Z is nothing but the universal cubic and the fibres of 3 are
isomorphic to V*.

Claim 3: W*(G,A) C W*(Greq, A) is the inverse image of
P(Q* ® S?V*)\P(A?Q* @ V*)
under o and a)Ws(G,A) is a geometric quotient with respect t0 Gred-

Proof of Claim 3. — 21 ® g2 — 2o ® q; belongs to AZQZ‘@ ® V* if and
only if z1q2 — 22¢1 = 0, see (ii) of Claim 1.
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4) Let now m = o a be the morphism W*(G,A) — Z, given by
z — ((a), (z192 — 22q1)), where 2z1(a) = z2(a) = 0. It is obviously G-equi-
variant and its fibres coincide with the G-orbits. Since « is a geometric
quotient and (3 is an affine bundle, then 7 is also a geometric quotient.

Remark. — The variety Z is isomorphic to the moduli space
M = Mp,(3m+1) of stable coherent sheaves on P, with Hilbert polynomial
xF(m) = 3m + 1. This had been verified by J. Le Potier in [24]. The space
W$(G, A) is a natural parametrization of M because any F € M can be
presented in an extension sequence 0 - O¢ — F — C, — 0 where C is
the cubic curve supporting F and p € C, and then F has a resolution

0—20(-2) =5 0(-1) 0 — F — 0.

This resolution is the Beilinson resolution as can easily be verified.
Moreover, z is (G, A)-stable if and only if F is stable. (If p is a smooth point
of C, then F is the line bundle O¢(p) and if p is a singular point of C, then F
is the unique Cohen-Macaulay module on C' with the given polynomial.)
There is an obvious universal family F on W*(G, A) x g PV which defines
a G-equivariant morphism W*(G,A) — M and then a bijective morphism
Z — M, which by smoothness, is an isomorphism. One knows that M
carries a universal family £. This family can be obtained as the non-trivial
extension

O_QOZXHZ'_)S_)OAﬁov
where H = PS3V* and Z xyg Z C Z x PV, or can be obtained as the descent
of the family . More details can be found in [18].

4.2.2 The case p1 < % — We suppose now that the polarization A is
such that pu; < % In this case an element x of W is G-stable if and only
if z1, 29 are not both zero, and if for every z € V*, q; — 223 and g — 225

are linearly independent.

4.2.3. PROPOSITION. — For this polarization there does not exist a
good quotient W*(G, A)//G.

Proof. — Let z; be a non-zero element of V*, let ¢ € S2V*\2;V*,
and let x € W be the matrix
G )
q 2/

Then z is stable.
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CLAM. — The orbit Gz is closed and ify € W*(G, A) is such that Gy
meets Gz, then y € Gzx.

Before proving the claim, we will show that it implies Proposi-
tion 4.2.3. The stabilizer of a generic point in W*(G, A) is isomorphic to C*:
it consists of pairs of homotheties (A, A). It follows that if M = W*(G,A)//G
exists, then all the fibers of the quotient morphism 7: W*(G,A) — M are
of dimension at least dim(G) — 1. Now suppose that the claim is true.
Then this implies that 7=1(n(z)) = Gz. But the stabilizer G, of z has
dimension 2: it consists of pairs

a 0 a 0
((B a)’ ( Bz1 a))
with @ € C*, 8 € C, and hence has dimension 2. It follows that

dim(r!(r(z))) < dim(G) — 1, a contradiction.

Proof of the claim. — Let y € W*(G, A) such that z € Gy. Let

y = ( z ZQ)
Qo g/
Then z; is contained in the vector space spanned by z and z2. Hence

by replacing y with an element of Gy we can assume that z = 2; and
that 29 = 0 if 29 is a multiple of z;.

According to Lemma 4.2.4 there exist a smooth irreducible curve C,
zg € C, and a morphism

0:C\{zo} — G
such that
0:C\{zo} — W, t+— 0(t)y

can be extended to §:C — W, with 8(zg) = z. We can write, for
te C\{l‘o},

= (a(t)z +b(t)ze  c(t)zr +d(t)ze
o) = ( a1(t) g2(t) )
with
(1) a1(t) = A(t) (a(t)qr + b(t)gz + u(t)z1),
(2) g2(t) = A(t)(c(t)qr + d(t)g2 + u(t)22),
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where A, a, b, ¢, d are morphisms C\{zo} — C and uw:C\{zo} — V*. The
morphisms A, a, b, ¢, d can be extended to morphisms C — P; = CU {0, oo},
denoted by X, @, b, ¢, d respectively, and u extends to @:C — P(V* @ C).
Now we use the fact that § is defined at zo. The first consequence is
that @(zo) = 1, &(xo) = 0, and if zp # 0 then b and d also vanish at xp.
The second is that the morphisms qi, gs : C\{zo} — S?V* can be extended

to 1,32 : C — S2V*, and we have §1(zo) = g, @2(z0) = 23.

We will now consider three cases: A(zg) = 0, X(zg) = 00, A(zo) € C*.

Suppose that A(xg) = 0. If 25 # 0, then (1) implies that g; (zo) = q is
a multiple of z;, but this is not true. If zo = 0 then (2) implies that ¢ is a
multiple of 2% and (1) implies then that g is also a multiple of z1, which is
not true. Hence we cannot have A(zg) = 0.

Suppose that A(z¢) = co. If 23 # 0, then (1) implies that
p:C\{mo} — S°V*,  tr— a(t)qr + b(t)gz + u(t)z:
and
n:C\{zo} — S?V*, t+— c(t)q + d(t)ga + u(t)z

extend to morphisms C — S?V* which vanish at xg. It follows from the
fact that p(xo) = 0 that u = u(xo) € V*, and that ¢y = —uz;. Since g1 # 0
(by G-stability of 3), we have u # 0. But since &(x¢) = d(xo) = 0, this
contradicts the fact that n(zg) = 0.

If z2 = 0 then we deduce from the fact that p(zo) =0 that
q1 € (g2, V*21), which contradicts the G-stability of y.

It follows that we have § = A(zg) € C*. If 22 # 0, using the fact that
@(xg) = 1 and b(xo) = &(xo) = d(z0) = 0 we see that u = u(x) € V* and
that zf = buzo, which contradicts the fact that z; A 29 # 0.

Hence we have zp = 0. It follows from (2) that d(zp) € C* and that
22 = 6d(z0)qe- By (1) we see that

€:C\{zo} — S?V*, t+— b(t)ge +ut)z
extends to C and that
1
€(wo) = 5(1 —q1-
We have, if t # x¢
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It follows that e(xg) is a multiple of z1: €(xo) = z1v. We have then

1 Zl 0 Zl O
= —-q-—z1v and =< ):( )eGm
n=51mA Y QG2 59— 210 53(1%) 2
as claimed.

It remains to show that Gz is closed. This can be proved easily by
computing the stabilizers of all the points in W?*(G, A). We see then that G,
has the maximal possible dimension, hence Gz is closed. O

We now give a proof of the lemma used in the preceeding proposition:

4.2.4. LEMMA. — Let W be a finite dimensional vector space, G a
linear algebraic group acting algebraically on W,y € W and z € Gy\Gy.
Then there exist a smooth curve C, xp € C' and a morphism

0:C\{zo} — G
such that the morphism
0:C\{zo} — W, t+—6(t)y
extends to § : C — W and that 0(z) = z.

Proof. — Let n = dim(W), d = dim(Gy). The generic (n — d + 1)-
dimensional affine subspace ' C W through 2 meets Gy on a curve, and
meets Gy\Gy in a finite number of points. Hence we can find a curve
X C Gy that meets Gy\Gy only at z. Taking the normalization of X
and substracting a finite number of points or unnecessary components if
needed, we obtain a morphism o : Z — Gy (where Z is a smooth curve) and
a point zp € Z such that a(zp) = x and a(Z\{20}) C Gy. Consider now the
restriction of «

Z\{z} — Gy~ G/G,.

There exist a smooth curve Z’' and an etale surjective morphism
¢: 2" — Z\{z} such that the principal Gy-bundle ¢*a*G on Z’ is locally
trivial. By considering completions Z’, Z of Z',Z and an extension of ¢
to a morphism Z’ — Z we obtain a smooth curve Y, yo € Y and a
morphism (:Y — Z such that [(yo) = 2o and that the principal G-
bundle I' = 8*a*G is defined on Y \{yo} and locally trivial. Let U C Y be
a nonempty open subset such that we have a Gy-isomorphism

v: Ty ~U x Gy.

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 133

Then we can take C' = U U {yo}, o = yo, and for t € C\{zo} = U, we have

0(t) = v (v~ (t,e)),

where 1 is the canonical morphism I" — G. O

4.3. More general counterexamples of inexistence of
geometric quotients.
Let W be the space of homomorphisms
O(-2) @ O(-1) — C" @ O(1)

over P, and let the homomorphism ¢9 € W be given by the matrix

2z 2
22z, 22
2022 0
2022 0

where the z, are homogeneous coordinates. The stabilizer of ¢g contains C*

and the pairs
1 0 I, —al,
azg 1)’ 0 I,

in Aut(O(—2) ® O(—1)) x GL(C?") and thus has dimension > 2. If
A = (A1, A2, —p1) is a polarization with 0 < A1,0 < A2 < %, then
it is easy to see that ¢y is A-stable in the sense of 4.1. For example
(mf,mb,n') = (0,1,n) is the dimension vector of a ¢g-invariant choice of
subspaces with Aymj + Aamb — pan’ = Ag — % < 0. There are however
stable homomorphisms ¢ € W with stabilizer C*. Therefore W*(G,A)/G
can never admit the structure of a geometric quotient. We will see in 7.2.2
that a sufficient condition for that in the case of this W is Ay > (n + 1))

or A2 > (n+1)/(n + 2) because Ay + A2 = 1.

5. Embedding into a reductive group action.

We will construct an algebraic reductive group G, a finite dimensional
vector space W on which G acts algebraically, and an injective morphism

(W —W
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compatible with a morphism of groups
0:G— G.

The traces of G-orbits on (W) will be exactly the G-orbits. The space
W is of the same type as those studied in 3.1. We will associate naturally
to any polarization of the action of G on W a character x of G/C*, i.e.
a polarization of the action of G on W. We will prove that in certain cases a
point w of W is G-(semi-)stable with respect to the given polarization if and
only if ((w) is x-(semi-)stable with respect to the associated polarization.
The existence of a good and projective quotient of the open set of G-semi-
stable points will follow from this.

5.1. Motivation in terms of sheaves.

The idea for the embedding of W into a space W with a
reductive group action is to replace the sheaves & in & = P(&; ® M;)
by & ® Hom(&1,&;) and dually the sheaves F; in F = @(F; @ Ny)
by Fs ® Hom(F;, Fs)* and then to consider the induced composed
homomorphisms v(®) for & € Hom(E, F) = W:

& ®H0m(51,5) — & —>]:—>fs®H0m(-7:7]:s)*

in the bigger space W of all homomorphisms between £; ® Hom(&;, £) and
Fs @ Hom(F, Fs)*. This space is naturally acted on by the reductive group

G = GL(Hom(&1,£)) x GL(Hom(F, Fy)*).

However it is not suitable enough for our purpose by two reasons. It does not
allow enough polarizations as in Section 3 for direct sums in order to have
consistency of (semi-)stability and, secondly the group actions G x W — W
and G x W — W don’t have consistent orbits. Both insufficiencies are
however eliminated when we consider the following enlargement of w.
We set

P, = Hom(&;,E) and @, = Hom(F,Fp)*,

and introduce the auxiliary spaces

WL = @ HOHI(PZ' ® Hom(gi_l,&), Pi-l),
1<i<r

Wg = @ Hom (Qr41 ® Hom(Fy, Foi1), Qr),
1<i<s
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and define

W =W, EBHom(Sl Q P, Fs ® Qs) b Whg.
There are distinguished elements

({27""€T)€WL7 (nh"')ns—l)EWR

whose components are the natural composition maps. The embedding of W
into W will be defined as the affine map

W W, @ (€, &),7(®), (1,2 nem1)),

where (®) is the above composition for a given ® € W. The components
of Wi, and Wg, will guarantee a compatible action of a reductive group and
at the same time the possibility of choosing enough polarizations for this
action.

5.1.1. Remark. — One might hope to be able to do induction on r
and/or s by simply replacing M,_1 ® &1 ® M, ® & by (M,_1 & M, ®
Hom(&,-1,&,)) ® £-—1 and keeping the other &; for i < r — 1. But then we
drop the information about the homomorphisms &; — &,.. Therefore we are
lead to replace all £;,7 > 2, by &; at a time, i.e. by

P& =M OMRQ@An ® - DM, ® A1) R &,

where A;; = Hom(&;, £;). Moreover, in order to keep the information of the
homomorphisms &; — &; for 2 < i < j we consider also the spaces

P=M;®M;11®Ai11,;D - OM, QA

together with the maps P; ® A;;_1 — P;_; in the following. The reader
may convince himself that only because of this the actions of the original
group is compatible with the action of the bigger reductive group. It is a
beautiful outcome that then we are able to compare the semi-stability with
respect to related polarizations in Section 7.

5.2. The abstract definition of W.

The above motivating definition of the space W can immediately be
turned into the following final definition using the spaces Hy;, A;; and B,
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and the pairings between them. For any possible ¢ and ¢ we introduce the
spaces

P’i: @ M]®Agz and QZZ @ Nm®Bz(m’

i<j<r 1<m<e
and we denote by p; and g¢ their dimensions. For 1 < ¢ and £ < s we let
3
P®A;; 1 ——P; and Quy1® Brp1s — Qq

be the canonical morphisms, defined as follows. On the component M; ® A;;
of P;, the map &; is the map

(M; @ Aji) @ Ajio1 — M; @ Aj iy

induced by the composition map of the spaces A. The map 7, is defined in
the same way. As in 5.1 we set

W, = EB Hom(P; ® A;i—1, Pi—1),

1<i<r

Wpg = EB Hom(Qe+1 ® Boyie, Qe),
1<i<s

and

W =W, @ Hom(P1,Qs ® Hs1) © Wr.

In order to define the embedding ¢ we define the operator - as follows.
Given w = (¢g;) € Wwith ¢g; € Hom(M;, Ny ® Hy;), we let

y(w) € Hom(P1, Qs ® Hyy) = Hom(P; ® Hy, Qs)

be the linear map defined by the matrix (74 (w)), for which each 7y (w) is
the composed linear map

M, ® Aiyn — Ny ® Hyy ® Ay — Ny ® Hpg — Ny ® B, ® Hyy,

where the first map is induced by ¢y;, the second by the composition
Hy; ® A;1 — Hyp and the third by the dual composition Hyy — B, ® Hg.

The map ¢ can now be defined by

W W, wi— (&, &), 7(w), (01,1 71s1)).
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5.2.1. LEMMA. — The linear map < is injective and hence the
morphism ( is a closed embedding of affine schemes.

Proof. — From the surjectivity assumptions in 2.1 we find that dually
the composition

Hpy — Hp ® Aj; — B3, ® Hg ® A}

is injective. Now it follows from the definition of ~p(w) that ¢y can be
recovered from -y, (w), by shifting A;; to its dual. a

5.3. The new group G.

We consider now the natural action on W as described in 3.1 in the
general situation, where the group is

G =G xGg, with G,= [] GL(P), Gr= ][] GL(Q).

1<i<r 1<<s
To be precise, this action is described in components by

gic102i_140(g: ®id)™, hyopo (g1 ®id)™Y, heoyeer1 o (heyr ®id)™?,
with

zi—1,; € Hom(P, ® 4;;—1,P;—1), % € Hom(P; ® H};,Qs),

Yeoe+1 € Hom(Qpi1 ® Bey1,e, Qr)

and with g; € GL(F;), he € GL(Q;). The first and third expression describe
the natural actions of Gr, on Wy, and of Gg on Wp.

There are also natural embeddings of G,Ggr,G into Gr,Ggr,G
respectively. For that it is enough to describe the embedding of G, in Gp.
Given an element g € G,

a1 0 0
U211 g2
g =
0
Upr1l - Urpr—1 Gr
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with g; € GL(M;) and uj; € Hom(M;, M;® Aj;) we define 87, ;(g) € GL(F;)
as the matrix

G 0 .0

e
0
ﬂr,i 'ar,r—l gr

with respect to the decomposition of P; with the following components:
g; =9; ®id on M; ® Aj; and for ¢ < j < k the map iix; is the composition

M; ® Aji — My ® Ag;j ® Aji — Mg ® Ag,

where the second arrow is induced by the given pairing. In case j = i we
have §; = g; and x; = ug;- Now we define the map

Gy, i>G’L by g'-—‘)(eL,lg""agL,’rg)‘

It is then easy to verify that 6 is an injective group homomorphism and
defines a closed embedding of algebraic groups. With this embedding we
consider G, as a closed subgroup of Gp. In the same way we obtain a
closed embedding 0 of Gg C Gg. Finally we obtain the closed embedding
0= (9[,,93) of G C G.

5.3.1. LEMMA. — The subgroup G, C G, (respectively Ggr C Gg) is
the stabilizer of the distinguished element (&2, . ..,&.) € W, (respectively

(7717 R 7773—1) € WR)

Proof. — It is enough to prove the statement only for G because
of duality. The fact that G, stabilizes (£,...,&,) is an easy consequence
of the properties of the composition maps. The converse can be proved by
induction on r. It is trivial for » = 1. Suppose that r > 2 and that the
statement is true for r — 1. Let (71,...,7,) be an element of the stabilizer
of (&,...,& ). When we replace the space W by W', corresponding to the
spaces Mo, ..., M, and the same spaces Ny and similarly Wy, by W], then
(y2,-..,7r) is an element of the stabilizer of (&3, ..., &), so by the induction
hypothesis it belongs to G7, and there exist an element

92 0 e 0

’ us,2 g3 ' :
g =

0

Ur2 - Urr—-1 Gr
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such that (ve,...,7,) = 07.(¢9'). Let now y; € GL(P;) have the components
M; ® Ain 25 M ® Ajy forall 1<ij<r
Identity v; 0 &2 = &2 0 y2 then shows that y;; = 0 for j <4, y;; = ¢; for 2 <¢

and y;; = uj; for 2 < j < 4. Now let g1 = yu1, uj1 = y;1, for 2 < j <,
which are linear mappings M; — M; ® A;;. Then

U211 g2 ' :
g =
0
Ur1 *° Urr—1 Gr
is an element of G, and we have (v1,...,v) = 0L(g). |

Remark. — Since the action of G, on W, is linear, it is clear that we
have an isomorphism

GL/GL >~ GL(€2, . 7§r)7 and similarly GR/GR ~ GR(T]l, . ,T)sﬂl).

We will use this fact in Section 8.

Using the associativity of the composition maps it is again easy to
verify that the actions of G on W and G on W are compatible, i.e. that
the diagram

GxW ——W

ol

GXW —W

is commutative, in which the horizontal maps are the actions. In addition
we have the

5.3.2. COROLLARY. — Let w,w’ € W. Then w and w' are in the same
G-orbit in W if and only if ((w) and {(w') are in the same G-orbit in W.

Proof. — 1t follows from the compatibility of the actions that if
g-w = w in W then also 6(g) - {(w) = {(w') in W by the last
diagram. Conversely, if g € G and g - ((w) = ¢((w’) then g stabilizes
(€a, -, &,m,  +,ns—1) by the definition of ¢ in 5.2. By Lemma 5.3.1
ged. O
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5.4. The associated polarization.

In 3.3.1 and 3.3.2 we had introduced polarizations for the different
types of actions of Greq on W and of G on W. In the following we
will describe polarizations on W and W which are compatible with the
morphism ¢: W — W. Their weight vectors are related by the following
matrix equations and determine each other. The entries of the matrices are
just the dimensions of the spaces A;; and Biye.

In the sequel we will use the following notation: the dimension of a
vector space will be the small version of its name. So

m; = dim(M;), ng=dim(N,), p; =dim(P;),
gm = dim(Qm), a;; = dim(Aj;), bme = dim(Be), ete.
A proper polarization of the action of G on W is a tuple
A= ()\1,...,)\7»,—/11,...,—/1,‘9),

where A; and py are positive rational numbers such that

D oami= Y pene=1.

1<i<r 1<4<s
We define the new sequence of rational numbers ay, ..., ., B1,...,8s by
the conditions
)\1 1 0 T 0 (03]
I - ; :
Ar ar 1 Qpr—1 1 Qr
B L by - bs B
. o 1 . .
: : N :
s 0 e 0 1 /Bs

Then we have

1= Y Ami= > opi and 1= > png= Y PBeqe

1<i<r 1<i<r 1<e<s 1<e<s
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In particular the tuple A= (a1, ++,ar, =1, +,—Ps) is a polarization
on W such that o; is the weight of P; and — (3, the weight of Q. It is called
the associated polarization on W. It is compatible with ¢ in the following
sense: If M C M;, and N; C N, are linear subspaces, and if the subspaces
of P; and QQ, are defined by

P =@ M®A;, and Q=D N; @B},

1<j <m

respectively then we have

Z \im;, = Z a;p;, and Z pemy = Z Be qp-

1<i<r 1<i<r 1<0<s 1<£<s

If the set of stable points in W with respect to the associated pola-
rization is non-empty then by 3.3.2 the weights satisfy the conditions

Z oajp; >0 forany? and Z Bege > 0 for any m.

i<j<r 1<e<m

Equivalently the conditions may also be written as

Zajpj>0 for2<i<r and 1—2 Beqe >0 for2<m<s.
1<j<r m<€<s

Substituting the weights of the original polarization on W, we can
reformulate these conditions. In the cases treated in the examples they
reduce to the following.

5.4.1. Weight conditions. — Let W be of type (r,s) and let
A= (A,..., \r,—1,...,—ps) be a proper polarization of W with positive

A; and pg. If the set W*¥(G, A) of stable points of W with respect to the
associated polarization A is non-empty, then in case of

e type (2,1): A2 —anA1 >0,

. type (3,1): {)\3 — agz A2 + (@32a21 — azi) A1 > 0,

A1(my + agima + agims) < 1,

e type (2,2): Ay —ag A >0, n1 — b21u2 > 0.
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5.5. Comparison of invariant polynomials.

In the following we assume that A= (a1,...,0r,=01,...,—Bs) is
the polarization on W associated to the polarization A = (Ay,..., A,
—f{1,...,—ps). The semi-stable locus W*(QG, K) with respect to this
polarization is more precisely defined by the character X associated to it as
in 3.1. If g is lowest common denominator of o, ..., ar, 81, ..., 3, we have
x(g) = ( IT det(gs)™) ( T] det(ne)
1<ilr 1<¢<s

for an element g € G with components g; and h,. By the matrix
relations between the polarizations ¢ is also a common denominator of
Alyeey Apy b1, - -, ths, such that, if p denotes the lowest, we have ¢ = pu
for some u. The character x with respect to the given polarization can be
defined by

x(g,h) = ] det(g)™* J] det(he)re,

1<i<r 1<e<s

where the g; (resp. h¢) are the diagonal components of g (resp. h), see 2.2.
Now the relations between the polarizations imply by a straightforward
calculation that

X (6(g,h)) = x(g,h)*.

If F is a X™-invariant polynomial on W it follows that

F(C((g,h) - w)) = F(6(g, h) - ¢(w)) = x(g, )" F ({(w)),

i.e. that F o ( is a x*™-invariant polynomial on W. As a consequence we
obtain the

5.5.1. LEMMA. — One has ("} (W?®(G,A)) C W*(G,A), ie. if
w € W and ((w) is G-semi-stable in W with respect to the polarization
A= (a1y...,ar,—01,...,—fBs) then w is G-semi-stable in W with respect
to the polarization A = (A1,..., Ar, —pi1,...,—ps) (in the sense of 4.1).

Proof. — There exist a X™-invariant polynomial F on W such that
F(¢(w)) # 0. Then

F(¢((g,h) - w)) = F(¢(w)) #0

for any element (g, h) in the unipotent subgroup H C G. This means that
w is G-semi-stable. |
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5.5.2. Remark. — When we consider the subgroup G’ C G defined by
the condition

det(g1) = det(hs) =1,
we have §(G’") C G’ as follows from the definition of G’ in 3.5. With respect

to these groups the semi-stable points are those over the semi-stable loci
in P(W) (resp. P(W)), with respect to the line bundles

L = Opw)(t) an L= Opw)(t),
where ¢ and t is defined as in 3.4 in the different cases endowed with the
modified action defined by the characters. However, we cannot compare
P(W) and P(W) directly because the morphism ¢ does not descend.

We need the analogous statement of Lemma 5.5.1 also in the case of
stable points. For that it is more convenient to use the subspace criterion (1)
of A.King in the case of Greq and G. This gives also another proof in the
semi-stable case.

5.5.3. LEMMA. — With the same notation as in the previous lemma
(Y (W?(G,A)) C WH(G,A).

Proof. — Let w = (¢¢;) be a point of W with maps M; ® Hj; LEN Ny

and suppose that w is not G-stable with respect to the polarization A.
We can assume that it is not Greq-stable, too. Then there are linear
subspaces M; C M; and N; C Ny for all ¢ and ¢ such that the family
((MY)), (INy)) is proper and such that

¢ui(M;® Hj;) C N; and Y X\imj— > pgny > 0.
% I

With these subspaces we can introduce the subspaces P; C P; and Q, C Q,
as

Pl=PMeA; and Q,=EPN,,®B;,.
1<j m<¢t
They form a proper family of subspaces and satisfy
&i(P ® Aijim1) C Py, y(w) (P ® Hj;) C Q5 me(Qpy1 ® Besr,e) C Qf
for the possible values of ¢ and ¢. But by the definition of the spaces and
because A is the associated polarization, the formulas of 5.4 imply the
dimension formula

S ip, = > Bedp =D Nimi— Y peny > 0.
i i ¢
This states that also ¢(w) is not G-stable. m]
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In Section 7 we will derive sufficient conditions for the equality
C_l(WS(G,K)) =W?*(G,A) and C_l(WSS(G,X)) = W?(G, A).

In the following section we show how this equality implies the existence
of a good and projective quotient W?*°(G,A)//G using the result for
W?$(G, A)//G from Geometric Invariant Theory.

6. Construction and properties of the quotient.

We keep the notation of the previous sections and let A be the
polarization on W associated to the polarization A on W. We do not
require that they are proper here, but we will do that later for the
examples. In addition we introduce the saturation

Z=G((W)cW
of the image of W with respect to the action of G.

6.1. Construction of the quotient.

6.1.1. PROPOSITION. — Let W and W together with their G- and
G-structure be as in Section 2 and 5, let A be a polarization for (W, G) and
A be the associated polarization for (W, G).

1) If ¢("Y(W5(G,A)) = W*(G,A), then there exist a geometric
quotient W*(G,A) — M?* of W* by G, which is a quasi-projective non-
singular variety.

2) If in addition
YW (G,R)) = W*(G,A) and (Z\Z)NW*(G,R) =0,

then there exist a good quotient W**(G, A) — M, such that M is a normal

projective variety, M® is an open subset of M, and W*(G,A) — M?* is the
restriction of .

We recall here the definition of a good and a geometric quotient of
C.S. Seshadri, see [29], [27]. Let an algebraic group G act on an algebraic
variety or algebraic scheme X. Then a pair (p,Y) of a variety and a
morphism X -2 Y is called a good quotient if
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(i) ¢ is G-equivariant (for the trivial action of G on Y);
(i)
(iii) if U is an open subset of Y then ¢* is an isomorphism

Oy (U) = Oy (p~tU)%, where the latter denotes the ring of G-invariant
functions;

 is affine and surjective;

*

(iv) if Fy, F» are disjoint closed and G-invariant subvarieties of X then
@(F1), p(Fz) are closed and disjoint.

If in addition the fibres of ¢ are the orbits of the action and all have
the same dimension, the quotient (p,Y") is called a geometric quotient.

As usual we write X//G for a good quotient space and X/G for a
geometric quotient space.

Proof. — We will prove the second statement first, assuming that
the conditions of (1) and (2) are satisfied. We use the abbreviations
Wes = W5s(G, ), W = W*5(Q, K) and similarly W¢, W* for the subsets
of the stable points. By the result of A.King, 3.1, there exist a good

. projective quotient of W*® by the reductive group G. So there exist also
a good and projective quotient of the closed invariant subvariety Z N W*¢
which we denote by

ZNW* 120, M.

By assumption (2) G((W**) = ZNW? = ZNW?S. We let 7 be the
composition

WSS <, G¢(W**) LN VS

We know already that M is projective. We will then verify that (w, M) is
the good quotient of the proposition. We consider first the commutative
diagram

G x W L Ge(we)

| |

we — T M

in which p is the projection and u is defined by (g, w) — g{(w). There is
an action of G on G x W% by g - (g,w) = (gf(g9)~',g - w) and it follows
that p is G-equivariant.
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CrAaM. — The morphism p is a geometric quotient of G x W$ by G.

Proof of the claim. — We show first that the fibres of u are
the G-orbits. So let (g, w),(g’,w’) be two elements in G x W*® such
that u(g,w) = p(g,w’). Then ((w) = g lg'¢(w'). By Lemma 5.3.1
g=g'g € Gand g-(g,w) = (g/,w'). The claim will be proved if
we show that p has local sections. For this it suffices to use the remark
following Lemma 5.3.1 and a local section of the quotient map G — G/G.

Now we are going to verify the four properties of a good quotient
for . Clearly (i) is satisfied by the definition of .

Proof of (ii). It is clear that 7 is surjective. The morphism 7 is affine
because m = 7y o ¢ and 7 and ( are affine.

Proof of (iii). Let U C M be an open subset. Then
o) c O(x  (U))°
since 7 is G-invariant. Conversely let f € O(x~}(U))¢. Then fop €
O(G x 71(U))¥, and since p is a geometric quotient, f o p descends to

an f € O(u(G x m~(U))), which is G-invariant. Now again f descends
because g is a good quotient. This proves equality O(U) = O(zn~1(U))€.

Proof of (iv). Let Fy, F; be disjoint, closed, G-invariant subvarieties
of Ws. Then p~!(Fi),p !(F:) are disjoint, closed and G-invariant
subvarieties of G x W*¢. Since u is a good quotient, u(p~!(Fy)), u(p~1(F2))
are disjoint, closed and G-invariant in G{(W*#). Finally, since g is a good
quotient, moou(p~1(F1)), moou(p~!(F2)) are disjoint and closed subvarieties
of M. But mg o u(p~1(F;)) = w(F;), which proves (iv).

The normality of M follows from the fact that G{(W**) is smooth
and 7 is a good quotient, [27], with respect to the reductive group G.
That m becomes a geometric quotient on the open set W* of stable points
follows from the fact that the G-orbits in G((W*) = Z N W?* intersect W*
in G-orbits. In particular the stabilizers of w in G and of {(w) in G are
isomorphic, such that all orbits have the same dimension.

The proof of (1) is a modification of the above. In any case mg
induces the geometric quotient ZN'W* =% My with M, open in M.
Now G(¢(W*®) = Z N W? is a mp-saturated open subset of Z N W?, such
that we obtain a geometric quotient G{(W*) =% M*® with M* C M,
open. By the same arguments as above applied to the diagram related
to G x W® — G((W?*) we conclude that W* " M® is a geometric
quotient. a
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Remarks. 1) The idea of this proof comes from [34], and has already
been used in [13] and [8].

2) If the second condition of (2) is not satisfied, we cannot even prove
that W**(G, A) admits a good quasi-projective quotient, because Z N W**
might not be saturated. Of course the projectivity of the quotient depends
on this condition.

6.2. S-equivalence.

We suppose that the hypotheses of Proposition 6.1.1 are satisfied,
with polarization A for (W, G) and associated polarization A for (W, G).

It is easy to define the Jordan-Holder filtration of G-semi-stable
elements of W with respect to A (cf. [21] for a more general situation).
Using the preceding results we can also define a Jordan-Hélder filtration of a
G-semi-stable element of W with respect to A. Let w = (¢pg;) € W**(G, A).
Then there exist a positive integer p, an element h € H and filtrations

M)={0}cM}C---CcMP=M,
Ny ={0} C N; C--- C N} = Ny,
with

> Nidim(M7) =Y pp dim(N7)
i ¢
for each j, such that h - w = (¢y;) satisfies
¢i(Hj; ® M) C N,
and that if
G Hjy ® (M] /M]™") — N} /N~

is the induced morphism, then (¢§i)g,~ is G-stable with respect to A for any j.
This filtration and h need not be unique, but p is unique and the (¢ii), too,
up to the order and isomorphisms. Conversely, an element of W having such
a filtration is G-semi-stable with respect to A. We say that two elements
(¢ei) and (¢p;) of W**(G,A) are S-equivalent if they have Jordan-Holder
decompositions (qbgi), (¢Z) respectively of the same length, and if there
exist a permutation o of {1,...,p} such that (¢"),; is isomorphic to (qﬁzi(j ))
for any j.

The following result is also easily deduced from 6.1.1.
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6.2.1. PROPOSITION. — Let w,w’ € W**(G, A). Then n(w) = w(w') if
and only if w and w' are S-equivalent.

It follows that the set of closed points of M is exactly the set of
S-equivalence classes of elements of W3S,

7. Comparison of semi-stability.

We are going to investigate conditions for the weights of the
polarizations under which a (semi-)stable point w € W is mapped to a
(semi-)stable point {(w) € W. For the estimates we need the following
constants which depend on the dimensions m; and the composition
maps Hy; ® Ay — Hpy.

7.1. Constants.
Let K be the family of proper linear subspaces
K C:e}},ﬂfié§z4ﬂ
2<i
such that K is not contained in @,; M; ® Ai1 for any family (M) # (M)
of subspaces. For any ¢ we let the map
P M ® A4 ® Hy, > P M ® Hy,
2<i 2<i

be induced by the maps A;; ® Hj; — Hj; associated to the composition
maps, which are supposed to be surjective, see 2.1.

We introduce the constant

ce(ms, ..., my) = sup pe(K)

KekK
with pe(K) = codim(6,(K ® H};))/codim(K). Similarly we define the
constants d;(ni,...,ns—-1) in the dual situation. Let

8,
P N; © Hy; —— P N; ® B ® H,
£<s £<s

be induced by the maps By, ® H}; — Hj; and let £ be the family of proper
subspaces

LcEPN; ® By

l<s
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which are not contained in @, , N; ® B for any family (N;) # (N;) of
subspaces. Then we define
codim(6) (L ® HY,))

di(n) = di(na,. .., ne_1) = : -
(n) (m ns-1) ilélz codim(L)

7.1.1. LEmMA. — If m; < m; for all i > 2, then
ce(ma,...,m;) < ce(Ma,...,My.).

Proof. — It will be sufficient to assume that m; = m; for all ¢ except
one, my < Mg say. Then let M; be vector spaces of dimensions m; and
suppose that

M2=L2€9M2 and M,:Mz for i>3.
For any K € K we consider the subspace
I?:(L2®A21)®Kc(1\712®A21)@(€BM1®AJ'1)-
2<j

Then codim(K) = codim(K) and also
codim (8,(K ® Hy;)) = codim (6,(K ® Hy))

because &, is a direct sum of the surjective operator A;; ® Hy; — Hy, such
that 8¢(Ls ® A21 ® H};) equals Ly ® Hy, and

80(K ® H}y) = (Lo ® Hyy) @ 6o(K ® Hyy).

Therefore ps(K) = ps(K). Once we have shown that also K belongs to the
analogous family X, the lemma is proved. To see this let M ,2 C My and
M ; = M! C M; for i > 3 be subspaces such that

K C @M; ® Ai,l-
2<i
Then in particular
Lo® As C M’Q ® A2

and thus Lo C My. But then My = Ly @ M} with M} = My N My and it
follows that

K cPM® 4.
2<4

Since K € K we obtain M] = M; for all ¢ and then also M; = M,. O
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7.2. Study of the converse 1.

Let A = (A\1,...A\r,—pi1,...,—ps) be a polarization on W and let
A= (a1,...,ar,—01,...,—0s) be the associated polarization on W (the
associated polarization has been defined in 5.4). We had shown in 5.5.1
and 5.5.3 that if w € W and ¢{(w) is (semi-)stable in W with respect to G
and 1~\, then so is w with respect to G and A. We are going to derive
sufficient conditions for the converse, i.e. whether ((w) is (semi-)stable if w
is (semi-)stable.

In the sequel we are going to use the following notation:
Given a family M’ = (M]) of subspaces M/ C M; we set
P(M') =P M) Aji
(AY]
and call a subspace P! C P; saturated if there is such a family with
P} = P;(M’'). Note that in this case ), a;p; = >, \ymj. Similarly we

I
introduce the spaces Q(N') for a subfamily N’ = (N;) of (N,) and call
them saturated.

Let w = (¢¢;) be given and assume that ((w) is not semi-stable with
respect to A. Then there exist linear subspaces P} C P; and @, C Q,
such that

£i(P{ ® Aii1) C Py, v(w)(Py ® H) CQf, ne(Qpyq ® Beyr,e) CQp
and such that

Zaipé - Zﬂe% >0,
5 ¢

where as before the small characters denote the dimension of the spaces.
If there were subspaces M] C M, and N; C N, with P/ = P,(M’) and
Q) = Q¢(N') as in 5.5.3, then v(w)(P] ® H};) C Q) would imply that
wei(M] ® Hp;) C Ny and we would have

Sami = peny=> aipi— > Begy >0,
7 £ 7 2

and w would not be semi-stable. In the following we are going to
construct families M", N" of subspaces M C M; and N} C N such
that P/’ = P;(M") and Q) = Q¢(N") are as close to P/, ()} as possible and
such that there is a useful estimate for

n "
E Aimy; — Z ey .
i ¢
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o Step 1. — We can assume that P, has a decomposition

i<j

and such that X, = 0. To derive this, we remark that for a subspace S of
a direct sum E @ F of vector spaces there exist a linear map E — F such
that the isomorphism (i ?) of E @ F transforms S into S’ & S”, where S’
is the projection of S in E and §” = S N F. Using this and descending
induction on ¢ we can find an element h € Hy, C G, see 2.4, such that the
truncations 6r, ;(h) € GL(F;), see 5.3, map P/ onto a direct sum M; & X;
for any 4. Since &; (P} ® A;,i—1) C P/_; we easily derive that

@MJI ®Aji Cc X; C @MJ ®Aﬁ

i<j 1<j
for all possible i. We put

p; = codim (@M]’ ® Aj,-,Xi> = codim(Pi(M’), P)).
i<j
Note that p,. = 0.
o Step 2. — Let M7,... M}’ be subspaces of My, ..., M, respectively
such that
Pi(M") > P

is minimal over P/ for any i. Then M C M’ since these spaces are the first
components of P/ C P;(M") respectively and we have M] = M{'. We let

o= Z(m}' — mj)aji = codim (P;(M'), P,(M")).
i<j
o Step 3. — We are going to define the subspaces N; C N/ C N; as
images.
Let P, ® Hy; pelw), N, be the map which is the sum of the composed
maps

M; ® Ay ® HYy — M; ® Hj, —225 N,.
Then we define
Ny = ve(w) (P ® Hpy) = ¢ (M1 ® Hpy) + ve(w)(X1 ® Hpy),

NY = yo(w) (PL(M") ® H},) = ¢or (M ® Hfy) + ) (M © H;).
25

It follows N, C N/ for any ¢.
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e Step 4. — If the weights §; are supposed to be positive, we may
assume that

Yw) (Pl @ Hy) = Q) and 7(Qp ;1 ® Beyye) = Qp

for £ < s. Otherwise we could choose subspaces C,_)/e C @) by descending
induction as images. Then —3%, 8,4, > —> Beq, would improve the

assumption on the choice of the spaces P; and Q). Now it follows that for
any £,

Q7 C Qe(N")
because P; ® H} is mapped to @,<.N, ® B}, and the maps 7, are
the identity on the spaces N].. Note that we even have Q, C Q¢(N')

since ¢ pipnz, factorises through @, , N ® Bj, as follows from the
definition of V.

7.2.1. LEMMA. — Suppose that all 8;,...,8s > 0, and let A =
Yo Aml = >, ueny. Then

A>D"Begp— Y e+ Y ailos—pi) = Y pece(ma, ..., mp) (o1 — p1).
¢ ¢ 5 ¢

Proof. — Let Yy = 6¢(X1 ® H}}) C Zy = @y; M|’ ® Hy;. Since X is
not contained in a direct sum with spaces smaller than M/ we get

codim(Yy, Ze) < co(ml, ..., m") codim (Xl, DM e Aﬂ).

2<3

By Lemma 7.1.1 and above definitions we get
codim(Yy, Zp) < ce(msy,...,m)) ( Zmé’ail - p’l)
1<i

= cg(ma, .. .,mT)(Z(mg' —m})a; — pl).

2<4

The map Y, ¢¢; sends (M’ ® Hy,) ® Z, onto Ny’ by definition of N and
also maps (M{ ® H;,) ® 6¢,(X1 ® Hy;,) onto N;. Therefore, since M] = My,
we have a surjection

Zo| Yy — Né’/Né
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and the dimension estimate

ny —mny < cg(ma,... ,mr)(Z(mg' —m;)a; — pl).
2<i

Now we can derive the estimate of the lemma. If there is no summation
condition it is understood that the sum has to be taken over all indices of
the given interval. We have

A= Z/\ m"—Zmn
—Z)\m —meﬂ-Z)\ mj —mj ZM("@""D-
¢

Substituting for A; in the third sum and replacing the first by

Z)\m -—Zaldlm(@M'@Aﬁ) Zal — pi)

1<j

and using the definition of o; we get

A= Za,pz ZNZ”[""ZO% gj z Z/Ll(nll,_nle)‘

£

Now using the assumed estimate for the first sum and the derived estimate
for nj — nj we get

A>Zﬂqu Zmng+2al(oz pi)
—ZIMZCZ ma,...,m )(Gl—pl) Oa
7.2.2. COROLLARY. — Suppose that s = 1, let A = (A\1,..., Ar, —1/n1)

and let A be the associated polarization (o, ...,a,, —1/n;y). If all a; > 0
and if

then

CT'W(G,A) = W*(G,A) and ("'W3(G,A) = W*(G,A).

Remarks. 1) Note that by the normalization of the polarizations we
must have pin; = 1 such that 1/n; is the only possible value for p; = (.
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2) If all o; > 0, then the necessary conditions for W* (G,A) # 0 and
W?#(G, A) # () are both satisfied, see 5.4. The condition of the corollary is
an extra condition.

Proof. — Let us first assume that ((w) is not semi-stable and
let the spaces P/ and Q) be as at the beginning of 7.2. The only
81 = 1/n; is positive. Let the other spaces be chosen as in 7.2.

The difference Y Brq, — > pen) reduces to g¢j/ny — n)/ns, and since
N{ = ~v(w)(P] ® H},) = @, this difference is zero. Therefore

1
A> Zai(gi —pi) — Ecl(mz, ooymy) (o1 — p1).

Since all the «; are positive we have

Zai(Ui —pi) > ai(o1 — p1) + az(o2 — p2).

(2

Moreover, &, induces a surjection
PQ(M”) ® Azl/Pé ® A21 — Pl(M”)/Pll

because M; = Mj'. Therefore we obtain the dimensions estimate
(o2 — p2)ag1 > o1 — p1. It follows that

1 «
A > <_ —cl(mQa"‘va)+al + —2>(01 _,01)
n a21

Since Ao = agia1 + az > (az1/ni)ci(ma,...,m,) the last expression is
non-negative. This proves the case of semi-stability. For the case of stability
we assume that w is stable and that {(w) is already semi-stable. If {(w)
were not stable, we would find subspaces P/ and N as in 7.2 such that

> a;p; — pinf = 0 and such that at least one P} is different from P;. Now
let the spaces M’ and N’ be constructed as above. Then we have

c1 c S1
A > Zaisi - —5 2 Zaisi + (>\2 - —1021) — >0,
i 1 2<i ™ 421

where s; = 0; — p; = dim(P;(M")/P}), and where we use that saag; > s1.
If the family M” is different from M, then 0 > A, and if it is equal,
then A = 0. In order to obtain a contradiction we have to show that M"
is different from M. Assume that it is not. Then s; = dim(P;/P/) and we
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must have s; = 0 for ¢ > 3 and s;(A2 — (¢c1/n1)az1) = 0. If also s; = 0,
then by the above estimate also sy = 0, contradicting the choice of the P;.
Therefore s; # 0 and A2 = (¢1/n1)az1. But then A = aa(s2 — s1/a21) and
we have spaz; = s;. From this it is easy to see that P} = P,(M) where
M; = M; for i # 2 and ]sz = M} # M,. Then we have

Zaﬂ%i - [L1nll = Z)\ip; — uln’l =0
i i
which contradicts the stability of w. O

7.3. Study of the converse II.

We keep the notation of 7.2 and compare the (semi-)stability of points
in W and W in two steps, each reducing to the case s = 1. We consider the
intermediate space

V=W,& @ Hom(P1 ® H;;, N;)

1<¢<s
and the maps
W 1 C2

Here (; is defined by

wi— (€2, , & 11 (W), .., 75 (W),

where ,(w) is the map defined by w = (¢¢;) as in 7.2. The map (3 is
defined by

(1’2,...,.’Er,’)’1,...,73) — ('T27‘"71'7‘7777717"'7773*1)?

where now v: Py ® HY — Q; is induced by the tuple (v1,...,7s) as the
sum of the compositions

Pi®H}Y — N;® Hpn ® H}; — N; ® B},

which are induced by the vy and the pairings Bsy ® Hyy — Hj. It is obvious
that

¢=¢0G.
Note that both ¢; and (s, are injective by the same reason as for (.
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On V the group G x Gr acts naturally and we have the embedding

G =G x Gr -2, G x Gp,

see 5.3. It follows as in Section 5 that {; is compatible with the group
actions and that w,w’ € W are on the same G-orbit if and onmly if
G (w), 1 (w') are on the same Gy X Gg orbit. Similarly we have the
group embedding G X Gg — G X Gg = G and (; is equivariant and
satisfies the analogous statements for the orbits. Given the polarization
A= (A, 0 A —p1,...,—ps) for (W,G) we consider the polarization
A= (o1, ...,00,—p1,...,—ps) for (V,Gr x Gr) where the o; are defined
asin 5.4. Asin 5.5.1, 5.5.3 it is easy to show that

IV (G x Gr,A) C W*(G,A), (T'VE(GL x Gr,A) C W3(G,A)
and similarly that
(YW (G,A) € V(G x Gg,A), ('W3(G,A) C V¥(GL x Gr,A).

Note that as for W*5, W5, we have unipotent sub-orbits in V*° and V?,
see 4.1. We are going to show that in all four cases equality holds under
suitable conditions on the weights of the polarizations. Then the same is
true for (.

7.4. Estimate for (;.

Let w = (¢y;) in W be given and assume that {; (w) is not semi-stable.
Then there are linear subspaces P, C P; and Ny C N; and a unipotent
element h € Hg such that for (v,...,7.) = he(71,---,7s) we have

£i(P{®Aii1) C P, and (P, ® Hyy) C Ny

for all ¢ > 2 and all ¢, and such that
Zaip; - Z,ugnz > 0.
i ‘

We may assume that h = id because Hg acts on W in the same way and
we can replace w by h - w. Moreover, we may assume that all N; are equal
to ve(P{ ® H};) since all py, > 0. Now we proceed as in 7.2 replacing the
spaces Q¢ by N;. Therefore we find subspaces M] C M/’ C M, such that
M| = M{' and such that

P/=M]®X,;, P(M')cCP cP(M

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 157

and the family M"’ is minimal with this property. We denote
pi = codim(P;(M’), P]), o; = codim(P;(M'), P;(M"))

and let

Ny =7 (Pi(M") ® Hy;) D N,.
As in 7.2.1 we consider the surjection

Zy/Ye — N{ /Ny,
where Y, C Z, are the same, and we get the estimate
ny —ny < ce(ma,...,m;)(o1 — p1)

for any ¢. The estimation of the discriminant A is now simpler than in 7.2.

7.4.1. LEMMA. — With the above notation
A= ZMmg - ZM”}' > Zai(ai - pi) — Z#ew(m)(ffl — p1)
i ¢ i ¢
where cg(m) = ce(ms, ..., my).

Proof. — By replacing dimensions and inserting the estimate for
ny —ny as in 7.2 we get

A= ZO&;’M - Zﬂené + Zai(ai —pi) — Zue(ng —ny)
i ¢ i ¢

> ai(oi — pi) = Y pece(m)(o1 — p1)- o

i ¢
7.4.2. CoroLLARY. — Let A = (\q, ..., Ar, —41,. .., —lis) be a polari-
zation for W and let A = (ay,...,Qr,—p1,--.,—Hs) be the associated

polarization for V as in 7.3. If all o; > 0 and
A2 > ag Zue ce(m)
)
then
(TIVE(GLxGR,A) = W*(G,A) and ({'V*(GLxGgr,R)=W?*G,A).

Proof. — The proof is the same as for 7.2.2, because the spaces P/
and P;(M") are defined in the same way and we thus get the estimate

(o2 — p2)az1 = o1 — p1. ]
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7.5. Estimate for (5.

The analogous estimate for (5 follows by duality while we can assume
that s = 1 or » = 1. The proof could be done by formally transform it into
a dual situation which is similar to that of 7.4, but it is better to keep direct
track of the weights. Let (za,...,Zr,v1,...7s) be given in W @V and
assume that its image under (s is not semi-stable. Then there are subspaces
P] C P; and Q) C Qy such that

Iz(P,, ®Aii—1) C Pi/—l’ ’Y(Pi, ® H) C Q;a 772(Q2+1 ® Bey1,e) C Qle7

where 7 is defined as in 7.3, and such that
> aipi—> Begy > 0.
i [}

We assume that all @; > 0, and then we may assume that P/ is maximal, i.e.
the inverse image of P ; ® A}, ; under P, — P;_; ® A}, , fori > 2, and

2,0—1
similarly P| in P; under P; — Qs ® Hs1. As in 7.4 we can find subspaces
N; C Ng such that

Q; = N;® X, and hence (Q./Q})* = (Ne/Np)* & Xo.
We choose subspaces N, C N; which are maximal such that

Qe(N") C Q) C Qe(N').

We have N = N.. We let P|' be the inverse image of Qs(N"') under
P, — Qs ® Hy;. Then P{’ C P{. Furthermore we let inductively P’ C P!
be the inverse images for 1 > 2. Then we have injections

(P//P)® Aii-1 — P_,/P,
and induced by factorization the images
P//P'®@A;; 1®...8 Ay —» (P{/P])® Ay — P[/P/.
The induced injections
P//P — (P{/P]') ® A},
imply for ¢ > 2 the dimension estimates
p; = p; < aq(py — py)-
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Next we consider the homomorphism

* * 6;/ * *
Zy = PNe/NY)* @ Hyy, —— EP(Ne/N)* @ Boy @ Hy.
<s <s

We have X, C @, ,(Ne/Ny')* ® B, and consider the subspace
Y, = 6Y (X, ® HY) C Z4.
By the definition of the constant dy(n) = di(nq,...,ns-1) we get
dim(Z, /Y1) < dy(n) codim(X,) = d1(n)(os — ps)

where
oy = codim(QZf(N/N’), Q}T(N/N”)) ,

pe = codim (Q7 (N/N'), (Qe/Q7)")-

Further we have a surjective map

Z /Y1 — (P/P)"/(P/P))"

159

which is induced by the map Q} ® H;; — P and the induced surjection

Q(N/N")® H} — (P/P/)*, since N = N. So we get

Pll _Pal < di(n)(os — ps)-

Now we can estimate the discriminant in
7.5.1. LEMmMA. — Let all the «; be non-negative and let
A= oupl = > peny.
i )
Then

A> Zﬂz(az —pe) — Zaiaildl(n)(os — ps)-
¢ i

Proof. — Since ), a;p; = Y, peng we also have
A= pelne—ny) =Y oulps — 1Y)
¢ i

with the same steps as in the previous proofs we get

A= "oup, =Y Beds+ Y Belor— pe) = Y i — pY)-
i l £ i

Inserting the assumption on the first difference and the estimate for p} — p/

we get the result.
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As in the previous cases we obtain the

7.5.2. CoroLLARY. — In the above notation let all ; > 0, and all
Be > 0, and let

ps—1 > bse_1di(n) Y i

Then

(W (G, A) = V*(G xGg,A) and ¢ '"W?*(G,A) = V¥(G xGg, A).
Proof. — In the notation of 7.5 there is a surjection

(Qs-1(N")/Qs-1)" ® Bs,s-1 — (Qs(N')/Q4)"

because N = N|,. Therefore (05-1 — ps—1)bss—1 > 05 — ps. If the
condition of the corollary is satisfied, then A > 0 follows, where we
use ptg—1 = Bsbs,s—1 + Bs—1. O

Combining the results of 7.4.2 and 7.5.2 we get the

7.5.3. PRoPOsITION. — Let A = (Aq,..., Ap,—t1,...,—l4s) be a
polarization for (W,G) and let A= (a1,...,0r,—f1,...,—Bs) be the
associated polarization for (W, G). Suppose that all a; > 0, and all 3; > 0
and that

A2 > ag Zuece(m) and frs—1 > bss—1d1(n) Zai as1.
¢ 3

Then

(YW (G,A) = W*(G,A) and ¢"'W?*(G,A) = W*(G, ).

8. Projectivity conditions.

The projectivity of the quotient in 6.1.1 depends on the second
condition in (2), i.e. whether the boundary Z\Z of the saturated set
contains no semi-stable points of W. Again this condition depends on the
chosen polarization and conditions for the weights. In order to derive these
conditions in some cases we describe the boundary in terms independent of
the group action.
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8.1. Saturated boundary.
The elements of W are tuples w = (x2,...,Zr,7,¥1,...,Ys—1) Of
linear maps

P® A1~ Py, PP®HN Qs Qey1 -5 By, ® Q.

If w € Z, there are an element w € W and automorphisms p; € Aut(F;),
o¢ € Aut(Qg) such that

;= pi—10&i0(p; ' ®id), ¥ = o10v(w)o(py ' ®id), ye = (id ®cr)ompooyyy .

Here id stands forNthe different identities of the spaces A, B and H. We
let Z; respectively &; be the mapping

P®R®A; 1Q®.. A1 — P_1QAi_1;2®...0 Ay

induced by x; respectively &; for ¢ > 3. From the relations between the z;
and &; it follows easily that for each 7 > 3 the composition zo 0 Z30...0%;
has a factorization

P®A ;- 1® - QAy —— P

l T1a

P, ® An

where the vertical map is the surjection induced by the pairings. This
follows from the commutative diagrams induced by the automorphism p;
and because & o éz, o---0 §~1 admits such a factorization for each i > 3.
We put z9; = zo. By the dual description for the maps y, we are given
factorizations

B, ® Qe

[

Qs —— B5,_1® - ®B;,®Q

Yes

of the maps gy 0 --- 0 yYs—2 0ys_1 for £ < s — 2. By similar arguments there
are also factorizations

z1,.®id ~
Pi®Ai1®H;1 —”P1®H:1 I Qs

(Lq) l
P,®H};

Vs
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for all ¢ > 2 and dually factorizations

(Ry) /

PP—Q;®H, ———>B*5®Q4®Hs1
vy

Q, ® Hy

for all £. Moreover, there are further factorizations of the induced composed

maps
¥s. ®id Yes
POH;®Bsyy —— Qs ®Bsy —— Q¢
(Les) l Dy,
P, H*
and dually

7, Qe ® Hy;

(Ba) / [

P,—— P1® A} ] Q¢ ® Hp ® A7)
L1,

All these factorizations are based on mappings induced by the pairings. All
factorization conditions are independent of the chosen automorphisms. One
can rediscover the original components ¢p; of w from &4 or Wy, if x; = §;
and yg = 7 for all j and all £. In fact we have

8.1.1.LEMMA. — Let w = (Z2,...,Zr,7,Y1,---,Ys—1) € W. Then
w € Z if and only if

1) rankz; = )2, ;mja;;—1  fori>2;

1*) rank yp = Zkgz bey1gng for < s—1;

2) 25 0 L3 0 - - 0 T; has a factorization P; ® A;; —% Py fori > 3;

2*) Jgo- - -0fs_20Ys_1 has a factorization Q, 2% B*,@Q, for £ < s—2;
3) v o (z1; ® id) has factorizations (L;) and (Lyg;);

3*) (yes ® id) o v has factorizations (Ry) and (Ry;).
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Proof. — If w € Z, the three conditions are satisfied by the above,
where rank x; is the dimension of the image of §; and rank y, is the rank of 7,
as the map Q41 — Bj 11,6 ® Q. Let conversely w satisfy these conditions.
We proceed by descending induction to find automorphisms p; by which
the x; can be identified with the &. Note that the factorization conditions
are maintained under automorphisms. Since x, has maximal rank it is an
injection M, ® Ay -1 — M, 1 ®M, @A, ,_1 = Pr_1. Hence we can find an
automorphism p,._1 of P._; such that p,_1 o x, becomes &,. Let us assume
now that modulo some automorphisms p,_1,...,p; we have z; = §; for
j > 1. We are going to find an automorphism p;_; such that p,_; o x; = &;.
Because of the rank condition we can assume_ that EBI<JM ® Aj i1 is the
image of z; in P;_;. Now using all the z; o fz+1 o---0¢& we find that x;
has a factorization through the standard map

P®A ;1 — @Mj ® Ajic1 —— M;_1 @ @Mj ®Aji1

1<j i<j
induced by the pairings. Now the rank condition implies that Z; induces
an automorphism on @is j M; ® A;;_1. This can be used to make Z; the
identity via an automorphism p) ;. Now z; = ;. By the analogous dual
procedure we can also find automorphism o, € Aut(Q;) such that we can
assume that y, = 7. Finally the factorizations (Lg;) or (Ry;) resulting
from 3) and 3*) yield mappings ®y; or Wy from which we get ¢p; as
composition

Mi®HZi‘—*Pz‘®Héi&’Qé—»NZ~

It follows from the special type of the & and 7, that these are original
components of an element w = (¢¢;) inducing y(w) = 7. |

8.1.2. COROLLARY. — With the same notation asin 8.1.1, ifw € Z\Z,
then

1) rank z; <rank¢; and rank y, < rankn, with strict inequality for at
least one i or ¢, and

2), 2%), 3), 3*) of 8.1.1 are satisfied.

Proof. — All conditions are closed and thus hold for points in Z.
If w € Z\Z then by 8.1.1 equality in 1) cannot hold for all i and £. O

We are going to derive effective sufficient conditions for the
projectivity of the quotient in the cases (2,1), (2,2), (3,1).
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8.1.3. PROPOSITION. — Let the polarizations A and A be as in
Proposition 7.5.3 and let Z = G((W). Then Z\Z contains no semi-stable
point in the following cases:

(1) (r,s) =(2,1) and Ay > c1(ma)agi i ;
(ii) (r,s) =(2,2) and
Az > (prci(me) + pa(ca(me) — barci(mz))as,
p1 > (M(di(n1)) — da(ni)azi) + Aedz(ng))bar.
Proof. — We present only the case (ii), case(i) is an easier version

of (ii). Let (x2,7v,%1) € Z\Z and let us assume that rank z is not maximal.
Let K be the kernel of My ® A1 — P; and let M}, C M, be the smallest

subspace such that K is contained in M} ® Ag;. We put Py = M},

Pl =22(M;® Az1), Q3 =7(P{®H3), Q)=y:1(Q)® Ba)
and consider
A = ayp| + copy — B4y — Bagh.

By definition p{ = dim(MJ4 ® As1/K). Diagram (L2) reduces in our case,
with M, replaced by M}, to

M ® Ay @ Hy —229 Pl o Hy —— Qb

M;®H
and ~y22 vanishes on 82 (K ® Hj;) because K is the kernel of z5. Therefore

¢ < dim(M; ® H3,/6:(K ® Hs;)) < co(mi)p).

In order to estimate ¢; we consider diagram (Lg;) enlarged by the
commutative square of induced pairings

M} ® Az ® Hjy ® By —» M} ® H, ® By %> Q; ® Bn —" Qf

| |

M} ® Ay ® Hfy —2—» M} ® Hf,
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Again the map &5 vanishes on 6;(K ® Hf;) and we get
¢y < dim(Mj; ® Hiy/61(K ® Hfp)) < c1(ms)p).

Now we have the estimate
A > appy + (a1 — Brea(mz) — Baca(m2))pl.

Therefore the condition a; > B1¢1(m2)+B2c2(ms2) would be sufficient,
because agp) > 0. We modify the last estimate as follows. Since the weights
in case (2,2) are related by

)\1 = 0q, M2 = ﬂ27
A2 = az10q + g, p1 = B1 + Baba1,

and since we have Ay — a21 A1 > 0 and phao; — p} > 0, we get the estimate

A2
A > (-(‘L—z—l- — /,Llcl(mg) — ,UQCQ(TT’LQ) + Mzcl(mg)b21>pll.
This shows that A > 0 if z5 is degenerate and the first condition of (ii) is
satisfied. In case rank y; is not maximal the second condition follows by the
dual procedure. 0

8.2. The case (3,1).
In order to derive a similar result in case (3,1) we introduce the
additional constant c(m3) analogous to cs(ms): = ¢1(0,m3) in 7.1. Let

M3 ® Asy ® Hiy —— M3 ® His

be the linear map induced by the pairing and let K be the family of all
proper subspaces K C M3 ® Asy which are not contained in M4} ® As, for
any subspace M} C M3 different from M3z. We put

, _ codim(7(K ® H7,)) .
cs(ms) = ISQ?,)C codim(K)

For brevity we write
cy = c3(ms), c3=cz(ms)=c1(0,m3), c1=ci(ma,ms).
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8.2.1. ProprosITION. — Let (r,s) = (3,1), let A = (A1, A2, A3, —f11)
be a polarization for (W,G) and A = (a1, a2, a3, —p1) be the associated
polarization for (W, G), and assume that all c; > 0 (in this case p1 = 1/n1).
If

1) agcs + Aicy > picscs,
2) A2 > agipycy,
3) A3 > asipca,
then Z\Z contains no semi-stable point.
Moreover, condition 1) may be replaced by any of the conditions
(1) Az > piczaszs + asziAg,
(ii) A3 > picsaszy + azaae,
(ii) Az > picsazzas;.
Remark. — Z\Z contains no semi-stable point also in each of the
following cases:
(a) A1 2> pics,
(b) as > pich,
(c) as > picsasi or ag > p1cyasy.
This can be seen by a direct estimate of the discriminant A after substituting
for ¢} in the following proof.
Proof. — Let (x2,23,7) € Z\Z. We distinguish the following cases of
degeneracy of x5 and x3.

Case 1: 3 is injective. — Then by the proof of 8.1.1 we can assume
that z3 = &3 is the canonical embedding and that z;3 and zo have a
factorization Z2 in the following diagram:

M3 ® Asp ® Aoy AN (Mo ® M3 ® Azp) @ Agy —2— Py

! T2
M3®A31C“L> My ® Aoy & M3 ® Az

Here also £} is the canonical embedding. Moreover it is easy to verify that
in this case also the composed map v o (Z3 ® id) admits a decomposition

(My® Agy @ Hy) @ (M3 ® Azt @ Hy) 25 (Mo Hip) & (Ms ® Hiy) — Q1.
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Here K = Ker(Z;) # 0 since Z cannot be injective by the assumption on
its rank. We choose subspaces M3, M3 such that

K C M;® A2 & Mj ® Asy

and such that these subspaces are minimal with this property. Now we
consider the spaces

Py =Ms, P,=M;®(M3® Az), P| =13(P,® Az1), Q) =~(P{ ® Hjy)
and their discriminant
A = oqpy + azpy + azpy — Piq;.

By the definition of the constant c;(m4, m5) and the diagram

(M}, ® Aoy & M5 Q® As1) @ Hfy — P/ ® Hf; —» Q]

i /

M, ® Hy, & Mj ® H{5
we obtain the estimate

qi <a (m,27 mg)pll <a (m2a m3)pll7

where by the definition of P| we have p} = mbag + mjas; — k. Inserting
this we obtain

A > (uer — M)k + (A2 — prcrag)my + (A3 — prcrasy)ms.

If uic; — A1 > 0, conditions 2) and 3) imply that A > 0. If, however,
A1 > pyc; we have the direct estimate

A > (A1 — p1c1)py + azpy + aspy > 0.
This proves the proposition in the first case.

Case 2: z3 is not injective. — Here we let K denote the kernel of z3
and we choose a subspace Mj C Mj such that K C Mj ® A3y and Mjy
is minimal with this property. Then we consider the subspaces

Py =Mz, Py=x3(M3® Asz), P| =12(P;® An), Qy=(P] ® Hfy).
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We have the exact sequences
0— K — Mj® Agy —> P; — 0,
0—>L—>M§®A31&P{—>O,

where L denotes the kernel of z;3. From the factorization properties
restricted to the spaces P} and @} we extract the following commutative
diagram of surjections:

M} ® Ay ® Hfy —— P{@ Hj

/ l‘” l’

Y13

Mé®A32®A21®HI1 Mé@Hf3 _— Qll
\ T'r T»Yn
M; ® Asz ® Hfy, —— P, ® Hf,

From this we get again the estimates

q1 < cs(m)p < cs(ms)p) and  qf < c3(ms)ph < c3(ms)ph,

where p] = mbass — £ and php = mbazy; — k. Let 0 < t < 1 be a real
number. Then we have ¢] < tchph + (1 — t)cgp). Substituting this into the
discriminant we get

A > (M = (1= t)ues)py + (@2 — tuicy)py + azmg.
Now condition 1) enables us to find ¢ with

A
1 <t< (05]

I- = 7
HicC3 HiC3

b

such that the first two terms of the estimate are non-negative. Therefore
A > 0, and again (x2, x3,7) is not semi-stable.

In order to show that 1) can be replaced by one of (i), (ii) or (iii) we
substitute o; and p) and get after cancelation
A= -l —azk+ /\3mg — /qui
> ~Mif — agk + A3mj — pacy(mzazz — k)
=~ Al + (p1ch — a2)k + (A3 — pichase)ms.
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If ap > pych, then by a direct estimate we get A > 0. Therefore we may
assume that pich — as > 0. Since in addition £ < mhasy, we get

A > (A3 — p1c3asz — aziA1)my.

This shows that 1) can be replaced by (i). In the same way one shows that 1)
can be replaced by (ii), using the other estimate of ¢f. That finally 1) can
be replaced by (iii) can be shown by substituting first m% > p)/azz and
canceling agp), and then substituting p}, > p}/az1 to get

as2a21 A > A\ip(asza1 — as1) + (As — piczazaan )p). d

8.3. Proof of Theorems 1.5.1 and 1.5.2.

Theorem 1.5.1 is an immediate consequence of Proposition 6.1.1,
Corollary 7.2.2 and Proposition 8.1.3. Theorem 1.5.2 follows immediately
from Theorem 1.5.1 and 9.1. O

9. Examples.

9.1. Constants.

We give here some constants (cf.7.1) used in the examples. The
following result is proved in [12], Prop. 6.1.

9.1.1. ProprosITiON. — For homomorphisms of type
(M ® O(-2)) & (M2 ® O(—1)) — N1 ® O
on a projective space of dimension n we have

m(m — 1)

_ MM ifm< 1
o(m) — 4 2mn T 1) =) tm=n+l,
1 - n—+1_ ifm>n+1
2(n+2) - '

9.1.2. LEMMA. — For homomorphisms of type
M @O(-d)®O0(-2)pO(-1) — Ny ® O
on the projective space PV the constant c1(1,1) is dim(V)/ dim(S%1V).
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Proof. — We put s(p) = dim(SPV’). The homomorphisms §; of 7.1
reduces here to the canonical map

(842v* @ SV @ SV — SV e V.

If K is a proper subspace of S4=2V* @ S?~1V* which is not contained in one
of the summands, it contains elements (f, g) with f # 0 or elements (f, g)
with g # 0. But since f ® SV — S2?V is surjective, the map §(K) — S?V
is surjective. Hence codim(§(K)) < s(1). If K contains an element (0, g)
with g # 0, then §(K) = S?V @ V. For then §(K) contains V, and since
8(K) — S?V is surjective, if follows that §(K) = S?V @ V. Therefore, if
codim(6(K)) > 0, there is a basis (f1,91),. .-, (fk, gx) of K with fi,... fx
linearly independent, i.e. dim(K) < s(d — 2) or codim(K) > s(d — 1).
Therefore c¢;(1,1) < s(1)/s(d — 1). But now we can find subspaces
which realize this bound. For any z € V* we let K be the space of all
(f, f2), f € 842V*. Then K = S4-2V* and it follows also that in this case
8(K) = S?V. Then codim(§(K))/ codim(K) = s(1)/s(d — 1). a

9.2. First example of type (2,1).

We use the abbreviation mF for C™ ® F for a sheaf and a positive
integer and consider here homomorphisms

20(—2) & O(~1) 222,

30

over Py of type (2,1). The polarization A = (A1, A2, —p1) is supposed to
be proper for W and W, i.e. A; > 0 and «a; > 0 for all . The only
constant involved here is c¢;(m2) = ¢(1) = 0. Therefore the conditions
of 7.2.2 and 8.1.3 are automatically satisfied by as = Ay — 3A\; > 0. Hence
all the quotients of W*(G,A) will be good and projective under this
condition. Since 2A; + A2 = 1 and 3u; = 1, we can replace the polarization
by the rational number ¢t = Ay > £ (cf. 9.3). The numerical condition for
(semi-)stability then becomes

A= l:—tml + tmg — 17’L<0 (SO),
2 3

where (m1, m2,n) is the dimension vector of a (41, ¢2)-invariant sub-family
of vector spaces, such that m; < 2,mg < 1,n < 3. One can easily check
that ¢t = % is the only value for which A might be zero, and this is the
case for the values (0, 1,2) and (2,0,1). And indeed, the homomorphisms ¢
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given by matrices

* x 0 0 0 =z
*x 29 and 0 0 =z
* % 23 x % 23

with generically chosen entries and linear forms z; are semi-stable and not
stable for t = 2.

9.2.1. The case t > 2. — It is easy to show that in this case (¢1, ¢2)
is t-stable if and only if

e 9 is nowhere zero,

e for any (¢1,v2) = h- (¢1,¢2) with h € H and any 1-dimensional
subspace M; C C? we have 1 (M;(®0(-2)) # 0.

The first condition says that coker(¢#;) is isomorphic to the universal
quotient bundle @ on P3, and the second that ¢, induces a 2-dimensional
subspace of H°Q(2). It follows that the sets W*(¢) of stable points are
the same for ¢ > %, which we denote by W7{. Moreover, from the above
characterization of stable homomorphism we deduce that the geometric
quotient My = W3 /G is isomorphic to the Grassmannian

My = Gr(2,HQ(2))

which is smooth of dimension 26. There is an interesting subvariety Z C M
which consists of the images of the homomorphisms

0 0 z1
(1) 0 0 z9
*x k% 23

which belong to W$. These are those (¢1,¢2) for which the induced
homomorphism 20(—2) — @ is not injective. We will see next that
Z is isomorphic to the non-stable locus of My below and is smooth of
dimension 10.

9.2.2. The caset = 2. — We write W§* for W**(2). When considering
the matrix representations we find that W§ C W3*® and that the remaining
part W3°\W3 consists of those homomorphisms for which ¢ is zero in
exactly one point. Such homomorphisms are equivalent to matrices

(2)

*
*
g

o 8 w

*
*
f
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where z, w are independent linear and f, g are independent quadratic forms.
Note, however, that W7 intersects the non-stable locus of W§* in matrices
equivalent to those of type (1). But the orbit closures in W§* of both
types (1) and (2) of matrices contain the direct sums

0
0

0
(3) 0
g

O 8w

f

of independent linear and quadratic forms. From that it follows that the
induced morphism

M+ —>M0

of the quotients is bijective and moreover an isomorphism by Zariski’s main
theorem, because both spaces are normal. The points of the non-stable
locus M\ Mg are represented by matrices of type 3). It is again routine to
deduce from this observation that

Mo\M§ =P, x Gr(2, H°O(2)).

The subvariety Z C M, corresponds to this set under the isomorphism.
We can also identify the set M of stable points with Gr(2, H°Q(2))\Z.

9.2.3. The case % <t< % — Similarly to the case W§ we find that
here W* = W*(t) is independent of ¢ and that W* C W§*. The remaining
part consists now of all homomorphisms which are equivalent to a matrix of
type (1). Note that now homomorphisms of type (2) are contained in W=.
The induced morphism

M_——>M0

is again surjective but not injective over Mo\ M. Let Y be the inverse
image of Mo\ M. Then Y consists of the points which are represented by
matrices of type (2) which are not equivalent to matrices of type (3). It is
easy to check that the restricted morphism

M_\Y = Mg

is bijective and therefore also an isomorphism by Zariski’s main theorem.
We are going to verify that Y is a divisor in M_. There is a morphism

Y -2 P,
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which assigns to the class of (¢1, ¢2) the point = at which ¢» is degenerate.
In this case

coker(¢s) 2 O @ I.(1)

where Z, is the ideal sheaf of z. For such (¢1,¢2) we are given an exact
diagram
0

.

20(~2) o

T T

0 — 20(-2) ® O(-1) 2u®)

such that (¢1, ¢2) corresponds to a 2-dimensional subspace I' C H°(O(2) &
Z.(3)). The condition of defining an element of Y is that I' is neither
contained in H°Z,(3) nor in H°(O(2))s for any section s of O @ Z,(1).
We let U, C Gr(2, H°(O(2) ® Z,(3)) denote the open subvariety of such T.
By assigning to I' the class of (¢, ) where ¢y is defined by a lifting
in the above diagram, we get a morphism U, — M_ whose image is the
fibre Y, = p~*(z). The morphism

U, —» Y,

is nothing but the quotient of U, by the algebraic group Aut(O & Z,(1)).
It follows that Y, is a variety of dimension 23. Using the techniques of this
paper for this quotient, we can even prove that Y is smooth. Finally Y has
dimension 25 and thus is a divisor in the irreducible and normal variety M_.

Remarks. 1) One would like to interpret the matrices of type (2) as
representing extensions of the sheaves coker(f,g) and Z,(1) = coker(?).
Indeed a matrix of type (2) defines such an extension, but this extension is
isomorphic to the direct sum.

2) The above correspondence between (¢1, ¢2) and I' indicates that
the quotient spaces considered here are spaces of coherent systems as in [23].
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9.2.4. The flip. — The diagram M_ — My & M, can be interpreted
as a flip. It is induced by the inclusions W2 C W§* D Wi. The orbits
of stable points of type (2) in W* and of type (1) in W3 don’t intersect
in W§?® but so do their closures in W§°. Thus the fibres of M_ — M,
and My < M, correspond to the two different types of semi-stable orbits
in Wg?® defining the same points in Mo\ Mj.

9.3. General homomorphisms of type (2,1).
In a more general situation of type (2, 1) we consider homomorphisms
m10(-2) @ maO(-1) — n O

over P,,. A polarization in this case is determined by the rational number
t=moh with0 <t <1land1l—t=myA,p =1/n;. A A-(semi-)stable
homomorphism is then called ¢-(semi-)stable. We write W*¢(t) and W*(t)
for W*¢(G, A) and W*(G, A). In terms of ¢ the conditions are

Cy (mQ)

The constant ¢;(mg) is given in Proposition 9.1.1. Such polarizations exist
if and only if

(n+ 1)mg and &> (n 4+ 1ymg

I1>t> —————~
(n+ mg +my 1

ny > (n 4 1)macy(ms).

In order to measure t-stability we introduce the numbers

m my ni

m ma n—l
and call (ry,72,51) ¢-admissible if there are subspaces M{ C M,
M5 C My, N{ C N; of dimensions mj,m5,n} such that ¢ maps
M; ® O(-2) & M3 ® O(—1) into N{ ® O. Then ¢ is t-(semi-)stable if and
only if for any ¢-admissible proper triple (r1,72, 1), i.e. a triple which is
neither (0,0,0) or (1,1, 1), we have

Ay = (1—t)7‘1 +irg —s1 <0 (_<_ 0).
A polarization t is called critical if there are proper triples with A; = 0.
Thus the critical values of ¢ are the rational numbers
s§1—1N

where we may assume s; # 0,1 and thus r1 # r9. We let tmax be the

maximal critical value if there are such with 0 < t < 1 and put tp.x = 0
otherwise. If ¢ is not critical we have W*(t) = W*°(¢).
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9.3.1. LEMMA. — Suppose that mo and n; are relatively prime and
that tmax < t < 1. Then ¢ = (¢1, ¢2) is t-stable if and only if

1) ¢9 is stable with respect to the group GL(M>) x GL(Ny).

2) For any 1-dimensional subspace C SN My, and any h in
Hom(M; @ O(—2), M2 @ O(—1)) the map

(pr+hopz)oj:O(=2) — N1 ®O
is not zero.

Proof. — By the characterization of stability in Section 3 the
homomorphism ¢, is stable if and only if for any proper pair M4 C Mo,
N{ C Nj of ¢y-admissible subspaces ry < s1. Now let (¢, p2) be stable.
If ¢o were not stable there would be a proper ¢o-admissible pair (r2, s1)
with s; < 79. But then s; < ry because msy,n; are supposed to be
relatively prime. Then s;/rs < t because s1/rq is a critical value and thus
A; = rot — 51 > 0, contradicting the stability of (¢1, ¢2). Condition 2) is
trivially satisfied if (41, ¢2) is t-stable, because otherwise (1,0, 0) would be
admissible with Ay = 1 — ¢ > 0. We have to show now that conversely
1), 2) imply that (¢1, ¢2) is t-stable. For this let (r1,72,s1) be a proper
(¢1, p2)-admissible triple. If r; < r9 and ro = 0, there is nothing to prove.
If ro > 0 then r < s by 1) and we have t(ro — r1) < s; — r1 and hence
A; < 0. If however 79 < r; we have A; < 0 in case r; < 7. Since the case
s1 < 7o is only possible if s; = 75 = 0 and then r1 = 0 by 2), we can assume
that ro < s1 < r1. But then

T — S
T — T2

because the fraction is a critical value, and last inequality is the inequality
A <O0. O

Now we are able to describe the space My = W*(t)/G for tmax < t
which is independent of t. According to the lemma W?*(t) can only be
non-empty if there are stable morphisms ¢5. This is the case if and only if

ni
—<___

1
o e < o(n)

where o(n) = 3(n+ 1+ /(n+1)? —4), see [6]. We restrict ourselves
now to the case where in addition to the previous conditions on ni,my
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we have ny > nmg and (n;,mg) = 1. Then a stable ¢, is injective
and a subbundle (except at finite number of points in case n; = nma,
see [6], [9]). The quotient space of this space of stable homomorphisms by
GL(M;) x GL(Ny) is denoted by N = N(n + 1,mg,n;). It is a smooth
projective variety and there is a universal sheaf £ on N x P,,. For x € N
let £, denote the fibre sheaf representing x. Since it is the cokernel of the
representing homomorphism ¢,, we get

2
hO&,(2) = (n + 1)(”1—(";—) - mz).
Therefore p,£(2) is locally free on N where p denotes the first projection of
N x P,,. Now M, can be non-empty only if

ni(n+2) mz).

m1§(n+1)( 5

If conversely this is the case for any stable ¢ and any subspace
M, C H°E,(2) where z = [¢2], there is a lifting ¢; : M; @ O(=2) —» N; ®O
of M1 ® O(-2) — &, and (¢1, ¢2) satisfies (1), (2) of the lemma. It follows
now easily by considering corresponding families that

M, = Gry (my, p.£(2))

where Grpy denotes the relative Grassmannian. It is more difficult to
characterize the other moduli spaces M(t) = W*5(t)/G for the intervals
between the critical values or for the critical values and to interpret the
flips between them.

9.4. Example of type (2,2).

We consider now a simple example of type (2,2) on P3 of
homomorphisms

0(-2) ® O(-1) -5 0 ® 30(1).

Again the polarizations A = (A1, A2, —p1, —2) are supposed to be proper
for W and W such that we have A\; > 0, ug > 0 and

A2 > 4)\; and w1 > 4.

All constants cy(m2) and d;(ny) are again zero, because mg = n; = 1.
Then by the above conditions also the conditions for Proposition 7.5.3 and
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Proposition 8.1.3 are satisfied, such that there exist a good and projective
quotient W**(G,A)//G for any polarization satisfying the conditions. Since
we have A\; + A2 = 1 and uy + 3uz = 1, the polarization A is determined
already by Az and 1, for which the above conditions become

4 3
(1) 1>>\2>g and ?>1—;1,1>0.

Next we derive the conditions for the occurrence of true semi-stable points.
If (m1, mg,n1,n2) is the dimension vector of a ¢-invariant sub-family we
have to consider the equation

1
A= (1 - )\g)ml 4+ Aoy — ping — = (1 — ,ul)ng = 0.

3
By inserting all possible dimension vectors we get the six conditions
3 3 3
2 1—puy=-A l—pp1=—=A+ — k=1,2,3).
(2) = A 1 A 2+k ( ,2,3)

If one of these is satisfied, there might be non-stable points in W*¢(G, A). In
the following Figure 1 the lines with the equations (2) are shown together
with the rectangle (1) (lower right), for the points of which we get good
and projective quotients.

1—m

~jw
T
'
I
I
'
'
'
h
'
'
'
'
v
)
\
'
'
'
'
'
A
d
'
'
'
'

A2

0 =S|
Figure 1

The homomorphism ¢ defined by the matrix
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where the z; are homogeneous coordinates of Ps, is easily verified to be
G-stable for each polarization A in the rectangle (1). Therefore the moduli
spaces are not empty. On each of the three lines in the rectangle (1) each
point defines one and the same open set W*°(G, A) and hence one and the
same moduli space with semi-stable and non-stable points. Similarly, on
each of the four open triangles we have one and the same moduli space,
which is a smooth projective geometric quotient. Each of the seven spaces
has dimension 77. The reader may also verify that the moduli space for an
open triangle admits a morphism to the moduli space of each of its edges,
thereby defining a chain of flips.

9.5. More general homomorphisms of type (2,2).

More general homomorphisms for which we know the constants
explicitly are homomorphisms of type

m10(=2) ® 20(~1) — 20 & n20(1)
over P3, say. By Proposition 9.1 the constants are here
1 4
c1(2) = d2(2) = > and c2(2) =d;1(2) = =

Let W be the space of those homomorphisms. A proper polarization
A = (A1, Ag, —p1, —p2) for W satisfies

miA +2 2 =1, 2p; +ngpa =1

with Ay, Ag, p1, o positive. We will also assume that as > 0,81 > 0, i.e.
Ao > 4); and pg > 4ps. These four conditions can be replaced by

4 1 1
<A< = and <p < -

1
(1) 8+ my 2 8+ ny 2

9.5.1. CLAIM. — There are polarizations A such that W**(G, A) admits
a good and projective quotient in the following cases:

(i) my <6 and ne < 8,
(i) my <6 and ng = 8,

(ii) 8 <mj3 + 3 < ng and 8my + 8 < Tns.
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Proof. — The conditions of 7.2.2 for the equivalence of (semi-)stability
become

4 16
(2) Ay > = (1 +4p2) and py > n (422 — 15X7)

and the conditions of 8.1.3 for the projectivity of the quotient become

4 4
(3) Az > 7 and 3 > '7-)\2-

The first condition of (3) follows already from the first of (2). After replacing
A1 and po conditions (2) and (3) are equivalent to

7
an)\z > (no — 8)u1 + 4,

7
(4) —myp1 > (4mg + 30)A2 — 15,

Using (1) for A2, we find that (4) has a solution (Ag, py) if the system

7”2 16
> (ny— 8)u1 +4, 1> —m—
Sam; = M= OmAd m> g

(5)

has a solution ;. For this we distinguish the cases no < 8, ng = 8, 8 < ns.
If ny < 8 the first inequality of (5) has a solution p; < % if mp; < 6.
If no = 8, then my < 6, which is case (i'). If ny > 8, the first inequality

of (5) reduces to

Tng — 4m; — 32
6 > > :
(6) (ns —8)(m1 +8) ="~ ny+8

Then (5) has a solution y; if and only if

7Tl2 — 4m1 —-32 > 0,
(777,2 —4mq — 32)(’!7,2 + 8) > 4(n2 — 8)(m1 + 8),
7(77’L2 —4my — 32) > 16(”2 — 8)

These inequalities reduce to
g > 4m; + 32, Tng >8my +8, 33n2 > 28m; + 96.
They are all satisfied if we suppose (ii) of the claim. m|
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0 1

Figure 2. Here the horizontal axis represents ma Ao and the vertical
axis represents nyuy for my = 3 and ng = 5.

In Figure 2 the lines of the critical values of the polarizations, i.e. of
the pairs (Ag, p1) are shown together with the small region of those pairs
which satisfy the sufficient conditions (4) for the existence of a good and
projective quotient, based on the values m; = 3 and ny = 5.

9.6. Example of type (3,1).
As an example of type (3,1) we consider only the space of
homomorphisms

O(—4) ® O(~2) ® O(—1) — 50

over P3. We assume again that all A; and all a; are positive. Then the
conditions of 7.2.2 together with the normalization of the polarization are

1
AtA+A3=1, = Z’

4
A2 > 10Ay, A2 > 361(1,1) Az —4Xg + 200 > 0.

As additional condition for the projectivity of the quotient we use
condition (a) of the remark following Proposition 8.2.1. Since in this case
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both the constants c3(1) and c§(1) are zero, this condition is just Ay > 0
and is already satisfied by our assumption.

For homomorphisms of the above type the condition A3 < g— is
necessary if W*(G,A) # 0. For if ¢ = (¢p1,¢2,d3) is an element of W
then ¢3 has degree 1 and thus contains at most 4 independent components.
Then m; = my = 0 and m3 = 1,n; = 4 is a choice of dimensions of

¢-invariant subspaces and the discriminant becomes A = A3 — %

By 9.1.2 the value of ¢;(1,1) is % Now it is easy to see that there
exist polarizations A which satisfy the above inequalities. That W*(G, A)
is then indeed non-empty follows from the existence of generic matrices
as in 9.4. Moreover there are again regions of polarizations for which the
sets W*%(@G, A) are the same and which are responsible for flips.

10. Construction of fine moduli spaces of torsion free
sheaves.

Let n,k be integers such that n > 2 and
(n+1)(n+2)
2

Let V be a vector space of dimension n + 1, P,, = P(V). We will study in
this chapter morphisms of sheaves on P, of type

<k<(n+1)>2

O = (;,0,):0(-2)®C% — O(-1) ® (0O ® CF).

Let f, :C? — V* the linear map induced by ®;. For semistable morphisms
(with respect to a given polarization) f; is non zero. So it is of rank 1 or 2.
Morphisms @ such that f; is of rank 2 are called generic, and those such
that f; is of rank 1 are called special.

10.1. Generic morphisms.

Suppose that ® = (&1, ®;) is a generic morphism. Let P = Im(f;)
and P,_o C P, be the linear subspace of zeroes of linear forms in P. Then
®; is isomorphic to the canonical morphism

O(-2)® P — O(-1)

hence we have ker(®1) ~ O(-3), and Im(®;) ~ Zp, ,(—1) (the ideal sheaf
of P,,_» twisted by O(—1)). Let

¥:0(-3) — O0xC*
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be the restriction of @4 to ker(®;). It vanishes on P,,_, and induces a linear
map

f:CF — H(Tp,_,(3)).
10.1.1. LEmMaA. — If ® is semi-stable (for some polarization) then f’
is injective.

Proof. — Let Ko = ker(f')* C CF. Then Im(9’') C O ® Ky. The
morphism

O(-2)®C? — O(-1) ® (0 ® C*/Ky)
induced by ® vanishes on O(—3) = ker(®;). Hence it induces a morphism

(¥1,92) : Tp,_,(=1) — O(~1) & (O ® C*/Ko)

where 1) is the inclusion. Since Hom(Zp, ,(—1),0) = Hom(O(-1),0),
we can (by replacing ® by an element of its Hom(O(-1), O ® C*)-orbit)
suppose that 15 = 0. It follows that Im(®) C O(-1) & (O ® Ky), and since
® is semi-stable, we have Ky = C*, i.e. f’ is injective. O

Note that we have taken k < (n + 1) = h®(Zp, ,(3)), to allow the
injectivity of f'.

Suppose that f’ is injective. Let K = Im(f’). then ®’ is isomorphic to
the canonical morphism

oK :0(-3) — O K.

It is easy to see that P and K depend only on the G-orbit of ®. Conversely,
suppose P and K are given. We can define an element (®;,®3) of W
associated to P and K as follows: let (z1,22) be a basis of P. Let
(21q1: + 2202i)1<i<k be a basis of K, with gi;,q2; € S*V*. Using this
basis we can identify K and K* with C*. We define

®;:0(-2) ® C* — O(-1)
by C2 — V*, (\, i) = Az1 — puze and

$,:0(-2)®C? — 0K ~0g®Ct

over 7 € P, by @2, (22 ® (A, 1)) = (Aqai(z) + ”qli($))1gi§k‘
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10.1.2. LEmmA. — Let K C H°(Zp, ,(3)) a linear subspace of
dimension k. Then ®k Is injective outside of a closed subvariety of
codimension 2.

Proof. — Let « € P,,. Then ®k is non injective at x if and only if all
the elements of K (which are homogeneous polynomials of degree 3) vanish
at z. Suppose that ®x is non injective on an irreducible hypersurface S.
Then all the polynomials in K vanish on S. Let f be an irreducible equation
of S. Then all the elements of K are multiple of f. It follows that f is of
positive degree d < 3, and K C §3~4V*.f. But this in impossible since

(n+1)(n+2)

dim(K) > 5

= dim(S%V™*). ]

10.1.3. LEMMA. — Let ® = (®1,®;) € W be defined by P C V* and
K C H%(Zp,_,(3)). Suppose that there exist a polarization such that ® is
semi-stable. Then ® is generically injective and coker(®) has no torsion.
Moreover, if K is generic, ® is injective.

Proof. — Lemma 10.1.2 implies that & is injective outside a closed
subvariety of codimension > 2. It follows that ® is generically injective and
that coker(®) has no torsion. To prove that ® is injective for a generic K,
it suffices to find a K such that ® is injective. Let (21, 22) be a basis of P.
Let q1,- -+, qr, (resp. g}, - -,q.) be linearly independant elements of S2V*
that have no common zeroes in P,, with r + s = k (this is possible since
2n+2<k<(n+1)?%). Let

K= (@ =)o (@ =)
1<i<r 1<j<s

It is easy to see that for such a K, ® is injective. O

10.2. The obvious moduli space of morphisms and its
universal sheaf.

Let P C V* a plane, P,_o C P, the subspace defined by P and
K C H°(Zp,_,(3)) alinear subspace of dimension k. Let £(P, K) = coker(®),
where ® is a morphism associated to P and K. Since the G-orbit of ®
is determined by P and K, £(P, K) is well defined. We will give another
construction of £(P, K).

Let Fx = coker(®g). It is a torsion free sheaf according to
Lemma 10.1.2.
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10.2.1. LEMMA. — We have Ext'(Op__,(—1), Fx) ~ C, and the non-
trivial extension of Fx by Op,_,(—1) is isomorphic to E(P, K).

Proof. — The exact sequence
* 0-0(-3) 0K — Fx—0
implies H*(Fx (1)) ~ V*®QK*, H'(Fk (1)) = {0}. Using the exact sequence
0—-IZp, , — 0O —0p, ,—0
we obtain the exact sequence
0 - Hom(O(-1),Fx) =V*" Q@ K*
— Hom(Zp, ,(—1),Fx) — Ext*(Op, ,(-1),Fx) — 0.
From (*) we get H?(Fk(2)) ~ S?V* ® K*, H'(Fk(3)) ~ S*V* ® K*/Cik,
where i is the inclusion K € S3V*. From the exact sequence
0—0(-2) —0O0(-1)®P* —TIp,_,—0
we deduce the exact sequence
0 — Hom(Zp, ,(—1),Fx) — S?°V* ® PL @ K* - $3V* @ K* [Cik
where 6 comes from the multiplication
p:S*V* @ Pt c S2vro Vvt — SV
The kernel of y is canonically isomorphic to A2P+ ® V* and it is easy to

see that i is contained in the image of u ® Ix«. It follows that we have an
exact sequence

0—-V*"® K" — ker() — Cix — 0
and that Ext'(Op,_,(—1), Fx) ~ C.
The last assertion follows from the commutative diagram with exact
rows and columns:
0 0 0
! 1 !

0—— O-3) — O®K* ——— Fx —— 0

|

0 — 0(-2)®C? — 0(-1)® (0 K*)— EP,K) — 0

! ! l

0 — Ip,_,(-1) —— O(-1) — Op,_,(-1)—0

| ! !
0 0 0
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Let M be the projective variety of pairs (P, K'), where P is a plane of
V*and K C H(Zp, ,(3)) is a vector subspace of dimension k (P,_2 being
the codimension 2 linear subspace of P, defined by P). We can view M
as a moduli space for generic morphisms. We will give a construction of a
universal sheaf E on M x P, i.e. E is flat on M and for every (P, K) € M,
E(p k) is isomorphic to the cokernel of a generic morphism associated
to (P, K). It is also possible to define a universal morphism whose cokernel
is isomorphic to E, but we will see this more generally in 10.4.

Let Gr(2,V*) be the grassmannian of planes in V* and ¢:M —
Gr(2,V*) be the obvious projection. Let U be the universal subsheaf of
O x V* on Gr(2,V*). Let

pm:MxP,-M, p,:MxP,-P,
be the projections. Then we have a canonical obvious morphism of vector
bundles on M x P,,,

5 (0(-1) U — 0.
Let P be its cokernel. It is a flat family of sheaves on P,. For every
(P,K) € M we have Ppgy=Op,_,. Let K be the universal sheaf
on M X P, such that Kp ) = K. Then we have a canonical obvious
morphism of vector bundles on M x P,,,

3 (0(-3)) — K.
Let F be its cokernel. Then for every (P, K) € M, F(p k) is the sheaf that
was noted Fx before. By Lemma 10.2.1, the sheaf £zt  (P®p3(O(—1)), F)
is a line bundle L on M. Then we have a universal extension
0= F —E—Pep3(0(-1) @ pp(L) — 0
on M x P,,. Then using Lemma 10.2.1 it is easy to see that for every

(P,K) € M, E(p ) is isomorphic to the cokernel of a generic morphism
associated to (P, K).

10.3. Special morphisms.

Let ® = (®;,®;) be a special morphism. Let f;:C? — V* the
associated application of rank 1. Let H be the hyperplane of P,, defined by
Im(f1). We have an exact sequence

0— O(-2) — O(=2) ® C2 -2 O(=1) — Op(~1) — 0.
Let
,:C? — H°(Oy(2))®Ck
be the linear map induced by ®.
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10.3.1. LemMA. — If ® is semi-stable (for a given polarization) then
®, is injective.

Proof. — Let C;, Cy be the two factors C of C® C = C2?. We can
suppose thet ker(f;) = Cy. Let

®y:0(—2)C; — ORCF (i=1,2)

be the restrictions of ®,, defined by q14, -+, qx; € S2V*. Let (21, -, 2nt1)
be a basis of V*, such that 2; is an equation of H. By using
the action of Hom(O(—~1)®C2,0®CF) on W we can assume that

g1, 592k € S2<22, . ,Zn+1>,

Now @, is not zero on Cy: otherwise we would have ¢1; € z;V*, and
Im(®;) C O ®C¥, with

k' <n+1+dim(S%(zs, -, 2p41)) < dim(S?V*) <k,

and this would contradict the semi-stability of ®. Hence, by considering the
action of GL(2), it suffices to prove that ®, does not vanish on C. Suppose
it does. Then ®, vanishes on O(—2) ® Ca, because qz; € S?(22, ..., 2nt1),
and again Im(®3) C O ® C¥', with k¥’ < dim(S2V*) < k, which contradicts
the semi-stability of ®. O

10.3.2. LEmma. — Suppose that ® is semi-stable with respect to
some polarization. Then it is injective outside of a closed subvariety of
codimension > 2, and coker(®) has no torsion.

Proof. — It suffices to prove the first statement. Let z € P,, and
u € C? such that ®;(z2 ® u) = 0. Then we have either u € C; or u & C;
and z € H. Suppose that ® is not injective at all points of an irreducible
hypersurface D # H. Then the same is true for ®p(_2)gc,. Suppose that
this morphism is defined by quadratic forms ¢, - - -, g&. These forms vanish
on D, hence they are all multiple of an equation of D. It follows as in the
proof of 10.3.1 that Im(®2) C © ® C¥', with k' < k, which contradicts the
semi-stability of ®.

Now it remains to prove that ®, is generically injective on H,
but this follows easily from the fact that &, is defined by an injection
C? - H°(Oy(2)) ® CF. O
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10.4. Fine moduli spaces of torsion-free sheaves.

10.4.1. DEFINITION. — Let S be a smooth variety, F a coherent sheaf
on S x P, flat on S. We say that S is a fine moduli space of sheaves with
universal sheaf F if the following properties are verified:

(i) For every closed point s € S the Kodaira-Spencer map
ws : TyS — Ext!(Fy, Fs)
is bijective.
(ii) For every closed points sy, sy € S with 81 # sa, Fs, and Fs, are not
isomorphic.

(iii) For every flat family £ of coherent sheaves on P, parametrized
by an algebraic variety T, and for any closed points s € S, t € T such
that F; ~ &, there exist an open neighbourhood U of t in T, and a
morphism f : U — S such that f(t) = s and

(f x I, )"(F) = & (cf. [11)).

For example moduli spaces of stables sheaves admitting a universal
sheaf are fine moduli spaces of sheaves.

10.4.2. Application of Theorem 1.5.2. — Polarizations for morphisms
O(-2)C? — O(-1) @ (0 ® C¥)
are defined by pairs (A, A2) of positive rational numbers such that

A2 + A1k = 1 (so here )y is associated to O(—1) and \; to O ® C¥).

By Theorem 1.5.2, there exist a projective good quotient of the open
subset W*° of semi-stable points as soon as

n+1

t=dg> — 1~ .
2T n+l+k

The critical polarizations in our range are given by

1 kK n+l+k (n+1)(n+2)
= — = =1—- —, —_— < - .
M 2p b= 2p 2 <Ps 2

Let

(n+1)(n+2) [n+1+k

1
2 N
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(where [x] denotes the integer part of z). Then we obtain exactly ¢ moduli
spaces of morphisms corresponding to non critical values: My, .-, M,
where for 1 <1 < g,

1
M; = M(¢t) for t:1——2—p—e

with p =71 + [% (n+ 1+ k)], € being a sufficiently small positive rational
number. We have My, = M (cf. the end of 10.2).

10.4.3. Fine moduli spaces. — Suppose that we choose a polarization
such that t is not a critical value. In this case we have W** = W5, and the
stabilizer in G of the points of W* is the canonical subgroup isomorphic to
C.Let M(t) = W#/G,and m: W* — M (t) be the quotient map. On W* xP,
we have a universal morphism

¥:p3(0(~2)) ® C* — p3(0(-1)) @ (0 & CH)

(where po is the projection W* x P, — P,,) such that F = coker(¥) is a
flat family of torsion free sheaves on P,, parametrized by W* (this is a con-
sequence of Lemmas 10.1.3 and 10.3.2). There is a canonical action of G
on F such that C acts by multiplication.

Recall that a G-sheaf € on W? x P, descends to M (t) x P, if there exist
a coherent sheaf £ on M (t) x P, and a G-isomorphism (7 x Ip,_ )*(') ~ E.

10.4.4. THEOREM. — There exist a G-line bundle £ on M(t) x P,
such that F ® L descends to M(t). Let £ be the corresponding sheaf
on M(t) x P,. Then M(t) is a fine moduli space of sheaves on P, with
universal sheaf £.

Proof. — On W* we have a canonical action of G on the bundles
Ows @ C2, L = Ows and Ows @ CF. On these bundles C acts as ordinary
multiplication by scalars. Let Ag, By be the G-bundles

Ao = (p5(0(-2)) ® C*) @ piy (L71),
By = (p3(0(-1)) ® (0 C*)) @ piy (L7)

(where pw is the projection W* x P,, — W?). On these bundles C acts
trivially. We can multiply the universal morphism with p}, (L~!) and we
obtain a new universal morphism

\I’O:.AO — Bo.

ANNALES DE L’INSTITUT FOURIER



QUOTIENTS BY NON-REDUCTIVE GROUPS 189

Now it is easy to see that the bundles Ag, By descend to M (t) x P, either
directly from our construction of the quotient, or by using the more general
results of [10], 2.3. Let A = Ay/G, B = By/G. The G-morphism ¥, also
descends and we get a universal morphism of vector bundles on M (t) x Py,

U:A— B

We define now € = coker(¥), and it is clear that 7*(£) ~ F ® L™1.

Now we prove that the Kodaira-Spencer map of £ at z € M(t) is
bijective. Let w € m~1(z). Then we have a commutative diagram

TW —I s T,M(t)

ool Lo

Ext'(Fy,F») =— Ext'(£,,E,)

The tangent map Tw is surjective because M(t) is a geometric
quotient. So it suffices to prove that w, is surjective and that
dim(Ext'(&,,&,)) = dim(M (t)). Consider the exact sequence

0— Agy = O(—2) ® C?2 — By, = O(-1) ® (0 ® CF) — F,, — 0.
It is well-known that (up to a sign) w,, is the composition
Hom( Aoy, Bow) — Hom(Agy, Fu,) — Ext!(Fu, Fu)

of maps induced by the preceeding exact sequence. Now the result follows
easily from the exact sequence

0 — End(F,) — End(Byy) — Hom(Aow, Bow)/ End(Agy,)
—s Ext!(Fy, Fu) — 0.

We must now verify that if 21,22 € M(t) are distinct closed points,
then £,, and &,, are not isomorphic. This follows from the more general
following result: if two injective morphisms of vector bundles on P,,,

0(-2)®C™ — (O(-1) ®C™) & (O ®C™)

have isomorphic cokernels, then they are in the same orbit.

The property (iii) of the definition of a fine moduli space is easily
verified. |
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It follows that the ¢ moduli spaces of morphisms My, .-, My, with
their corresponding universal sheaves, are also fine moduli spaces of torsion
free sheaves on IP,,. The moduli space M, is the same as the obvious one M
(cf. 10.2), and the corresponding universal sheaf is the same (up to an
element of Pic(M)) as E.

These examples are generalizations of the case of Py (with k = 7) that
was treated in [11]. But in this case our results are not needed, because we
get only two fine moduli spaces: one is the obvious moduli space and the
other is the corresponding moduli space of stable sheaves on Ps.

On P,, n > 3, our moduli spaces are new. We don’t know if the
corresponding moduli space of stable sheaves is among them.

Remark. — It is not hard to prove that all the moduli spaces
My, - - -, My are distinct.
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