
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Jean-Marc DRÉZET & Günther TRAUTMANN

Moduli spaces of decomposable morphisms of sheaves and quotients by
non-reductive groups
Tome 53, no 1 (2003), p. 107-192.

<http://aif.cedram.org/item?id=AIF_2003__53_1_107_0>

© Association des Annales de l’institut Fourier, 2003, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2003__53_1_107_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


107
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1. Introduction.

Let X be a projective algebraic variety over the field of complex
numbers. Given two coherent sheaves on X the algebraic group
G = x Aut(0) acts naturally on the affine space W = Hom(E, 0)
by (g, h) . w = h o w o g-1. If two morphisms are in the same G-orbit then
they have isomorphic cokernels and kernels. Therefore it is natural to ask
for good quotients of such actions in the sense of geometric invariant theory.

Keywords: Algebraic quotients - Good quotients - Non-reductive groups - Moduli
spaces.
Math. classification 14L30 - 14D20.
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1.1. Morphisms of type (r, s).
In general S will be decomposable such that G is not reductive.

More specifically let E and T be direct sums

where Mi and Ng are finite dimensional vector spaces and .6i, 0g are simple
sheaves, i.e. their only endomorphisms are the homotheties, and such that

= 0 for i &#x3E; j and 0 for I &#x3E; m. In this case

we call homomorphisms E --&#x3E; T of type (r, s). Then the groups Aut(S)
and Aut(0) can be viewed as groups of matrices of the following type.
The group Aunt(£), say, is the group of matrices

where g2 E GL(Mi) and E Hom(Mi, Mj 0 Ej)).
In the literature on moduli of vector bundles and coherent sheaves

many quotients of spaces P 0) of type (1, 1) by the reductive group
Aut (~ ) x Aut(0) have been investigated, see for example [6], [14], [15],
[20], [26]. The moduli spaces described in this way are the simplest ones,
and this allows to test in these cases some conjectures that are expected to
be true on more general moduli spaces of sheaves (cf. [7], [36]). We think
that the moduli spaces of morphisms of type (r, s) will be as useful to treat
other less simple moduli problems of sheaves. In fact, if one wants to use

the spaces Hom(E, T) as parameter spaces for moduli spaces of sheaves,
which are as close as possible to the moduli spaces, the higher types (r, s)
are unavoidable.

The homomorphisms in a Beilinson complex of a bundle on projective
n-space, for example, have in general arbitrary type (r, s) depending on the
dimensions of the cohomology spaces of the bundle. In several papers, see
[25], [30] for example, semi-stable sheaves or ideal sheaves of subschemes
of projective spaces, are represented as quotients of injective morphisms of
type (r, s), and one should expect that the moduli spaces of such sheaves
are isomorphic to a good quotient of an open subset of the corresponding
space of homomorphisms. In some cases of type (2,1 ) this has been verified
for semi-stable sheaves on P2 in [8].
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In case of type (r, s) there are good and projective quotients if one
restricts the action to the reductive subgroup

This has been shown recently by A. King in [21]. The quotient problem for
of type (r, s) with respect to the full group Aut(S) x Aut(.F)

is however the generic one and indispensable.

Unfortunately the by now standard geometric invariant theory (GIT)
doesn’t provide a direct answer for these quotient problems in case

Aut(£) x Aut(F) is not reductive. There are several papers dealing with
the action of an arbitrary algebraic group like [16], [17], [3], [4] and older
ones, but their results are insufficient for the above problem. The conditions
of [16] are close to what we need, but they don’t allow a concrete description
of the set of semi-stable points in our case and they don’t guarantee good
or projective quotients, see Remark 4.1.2.

1.2. The main idea.

Our procedure is very close to standard GIT and we finally reduce the
problem of the quotient to the one of a reductive group action. We introduce
polarizations A E Qr+s of tuples of rational numbers for the action of G
on the affine space in analogy to the ones of A. King in [21], which are
refinements of the polarizations by ample line bundles on the projective
space PW, and then introduce open sets c of stable

and semi-stable points depending on A and study the quotient problem for
these open subsets. There are chambers in Qr+s such that the polarizations
in one chamber define the same open set, in accordance with the chamber
structure in Neron-Severi spaces of polarizations in the reductive case,
see for example I. Dolgachev-Y. Hu [5] and M. Thaddeus [35]. However, in
contrast to the reductive case, good quotients don’t exist

for all polarizations, see 4.2. As a main achievement we are providing
numerical conditions on the polarizations, depending on the dimensions
of the spaces Mi and Ng, under which such quotients exist. The main

step for that is to embed the group actions G x W - W into an action

G x W - W of a reductive group G and to compare the open sets
and where A is a polarization for the G-action

associated to A.

1.3. Construction of quotients by non reductive groups.

To be more precise, a polarization A is a tuple (À1, ... , Àr, /11, ... , /1s)
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of positive rational numbers, called weights of the factors Mi 0 £i and
Ng 0 respectively, which satisfy - 1, where mi, ng
denote the dimensions of the spaces of the same name. We use then the

numerical criterion of A. King [21], as definition for semi-stability with
respect to the reductive group Gred. An element w E W is (Gred, A)-stable
if for any proper choice of subspaces Mi c Mi, N~ c Nt such that w
maps ) into , we have or semi-

- - -

stable if equality is allowed. Let c A) denote the
set of stable and semi-stable points so defined. If H c G is the unipotent
radical of G, which is generated by the homomorphisms £i and

0g - 0m for i  j and i  m, we say that w is (G, A)-(semi-)stable if
h. w is (Gred, A)-(semi-)stable for any h E H, see 4.1. We thus have open
subsets 1 and c WSS(Gred, A).

The main result of our paper is that there are sufficient numerical and
effective bounds for the polarizations A such that WSS(G, A) admits a good
and even projective quotient and that in addition W S (G, A)
admits a geometric quotient, which is smooth and quasi-projective, see

Proposition 6.1.1 and the results 7.2.2, 7.5.3, and Section 8.

The definitions of good and geometric quotients are recalled in 6.1.
By using correspondences between spaces of morphisms, called mutations,
it is possible to deduce from our results other polarizations such that there
exist a good projective quotient (see [10], [12]).

All this is achieved by embedding the action G x W - W into an
action G x W - W of a reductive group and then imposing conditions
for the equality W SS (G, A) = W n WSS (G, Ã), where A is the associated
polarization. The quotient is then the quotient of the saturated subvariety
GWSS (G, A) c W~(G, A). The quotient will be projective if G ~ W 
doesn’t meet A) . Also for this, numerical conditions can be found
in Section 8.

The idea of embedding the non-reductive action G x W - W into
the action G x W - W is simply to replace the £i by S, using the
evaluation maps ® El - Ei. It is explained in 5.1 and 5.1.1
that this is the outcome when we start to replace the sheaves Ei step by
step and similarly for the sheaves 0g. Since we have to deal everywhere
with the dimensions of the vector spaces Hom(£i, £j) and 
which form the components of the unipotent group H, we have translated
the whole setup into an abstract multilinear setting and related actions by
technical reasons. This gives more general results although we have only
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applications in the theory of sheaves. The reader should always keep in
mind the motivation in 5.1.

The results obtained in the simplest case (morphisms of type (2,1)
or (1,2)) are stated in 1.5. They are characteristic for the general case in
which only the conditions are more complicated.

1.4. Remark on finite generatedness.

One would expect that the quotients of W could be obtained by first
forming the quotient W/H with respect to the unipotent radical H and then
in a second step a quotient of W/H by Gred . However, the actions
of unipotent groups behave generally very badly, [19], and we are not able
to prove that the algebra C[W/H] is finitely generated. This would be an
essential step in a direct construction of the quotient. Of course, the main

difficulty also in this paper arises from the presence of the group H. The
counterexample of M. Nagata [28] also shows that the finite generatedness
depends on the dimensions of the problem. So from a philosophical point of
view we are determining bounds for the dimensions involved under which
we can expect local affine G-invariant coordinate rings which are finitely
generated, and thus to obtain good quasi-projective quotients, even so the
bounds might not be the best. The simple examples 4.2, 4.3 show that
a good quotient WSS(G,A)//G might not exist if the conditions are not

fulfilled.

1.5. Morphisms of type (2,1).
In this case the homomorphisms of sheaves are of the type

where we use the notation m~ for C"~ Q9 S. For this type a polarization
is given by a pair (À1, A2) of positive rational numbers such that

À1m1 + A2M2 = 1. It is determined by the rational number t = M2A2
which lies in ~0,1~ . Writing for and for ~’ for the

moment, our results depend on constants defined as follows: Let

be the linear map induced by the composition map

Tk Q9 (Hom(£l, £2) Q9 Ck) ----+ Q9 (Ck.
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Let K be the set of proper linear subspaces K C (C~
such that for every proper linear subspace F c C~, K is not contained
in ~2) ~ F. Let

1.5.1. THEOREM. - There exist a good projective quotient WSS(t)//G
and a geometric quotient if

In the case of morphisms m10( -2) EB ?7~2~(~1) -~ n10 on projective
spaces the constants have been computed in [12] and we obtain the more
explicit result:

1.5.2. THEOREM. - Let n &#x3E; 2 be an integer. There exist a good
projective quotient and a geometric quotient in

the case of morphisms m10(-2) EB m20(-1) ---t n10 on the projective
space Pn if

1.6. Construction of fine moduli spaces of torsion free sheaves.

In Section 10 we construct smooth projective fine moduli spaces of
torsion free coherent sheaves on Pn using morphisms

 k  (n+ 1 ) 2 ) . More precisely we prove that
for all polarizations, semi-stable morphisms are injective outside a closed

subvariety of codimension &#x3E; 2, hence their cokernels are torsion free sheaves.
A generic morphism is injective and its cokernel is locally free. In this case
we can construct
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distinct smooth projective moduli spaces M1, ... , Mq of such morphisms, of
dimension 2 (n - 1) + k((n + 1 ) 2 - k). Moreover, all the Mi are birational
to each other. For 1  i  q, we construct a coherent sheaf on Mi x I~n,
flat over Mi, such that for every closed point z E Mi, Sjz is isomorphic to the
cokernel of the morphism (*) corresponding to z. We prove that Mi is a fine
moduli space of torsion free sheaves with universal sheaf .6i. In particular,
this means that for every closed point z E Mi, the Kodaïra-Spencer map

- v , n /

is bijective, and for any two distinct closed points Zl, Z2 E the

sheaves Eiz2 are not isomorphic.

1.7. Open problems.

Even in the simplest case of morphisms of type (2,1) we do not
know what all the polarizations are for which a good quotient Wss//G
exists. More generally it would be interesting to find all the saturated open
subsets U of W such that a good quotient (quasiprojective or not) 
exists, or all the open subsets U such that a geometric quotient U/G exists.
The corresponding problem for reductive groups has been studied in [27],
1.12, 1.13, and in [1], [2].

1.8. Organization of the paper.

In Section 2 we describe our problem in terms of multilinear algebra.

In Section 3 we recall results of A. King [21]. The reductive group
actions considered in this paper, the action of Gred on W and that of G
on W, are particular cases of [21]. We also discuss the relation of A-(semi)-
stability in W with that in the projective space PW. But we cannot work

solely on the projective niveau, because the embedding W C W is not
linear.

After defining G-(semi-)stability for the non-reductive group in

Section 4 we describe the embedding in Section 5 and introduce the

associated polarizations. Section 6 contains the step of constructing the

quotient W SS (G, A)//G using the GIT-quotient Wss (G, A)//G of A. King.
Sections 7 and 8 are the hard parts of the paper. Here the conditions

of the weights which define good polarizations are derived. It seems that
the constants appearing in these estimates had not been considered before.

In Section 9 we are investigating a few examples in order to test
the strength of the bounds. Here we restrict ourselves to small type
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(2,1), (2, 2), (3, 1) in order to avoid long computations of the constants
which give the bounds for the polarizations. What we discover in varying
the polarizations are flips between the moduli spaces, as one has to expect
from the general results on the variation of linearizations of group actions,
cf. [32], [5], [35]. In Example 9.2 we have a very simple effect of a flip,
but in Example 9.5 the chambers of the polarizations look already very
complicated.

In Section 10 we define new fine moduli spaces of torsion free sheaves

using our moduli spaces of morphisms.

Acknowledgement. - The work on this paper was supported by DFG.
The first author wishes to thank the University of Kaiserslautern, where
the work was started, for its hospitality.

2. The moduli problem for decomposable
homomorphisms.

Let .6 EÐ £i Q9 Mi and .~’ = Q9 Nt- be semi-simple sheaves as in
the introduction. In order to describe the action of G = Aut (~) x Aut(0)
on W = in greater detail we use the abbreviations

such that we are given the natural pairings

The group G consists now of pairs (g, h) of matrices

with diagonal elements gi E E and



115

Similarly a homomorphism w E 0) is represented by a matrix
w = of homomorphisms

Using the natural pairings, the left action (g, h).w = hwg-1 of G on W is
described by the matrix product

where the compositions Vm,i o and pgj o are compositions as sheaf

homomorphisms but can also be interpreted as compositions induced by the
pairings of the vector spaces above. Thus the group G, the space W and
the action are already determined by the vector spaces Aji, Hfi and the

pairings between them. Therefore, in the following we define G, W and
the actions G x W - W by abstractly given vector spaces and pairings.
The resulting statements can then be applied to systems of sheaves by
specifying the spaces as spaces of homomorphisms as above.

2.1. The abstract setting.

Let r, s be positive integers and let for 1  i  j  r, 
finite dimensional vector spaces Aji, Bmf, Hfi be given, where we assume
that Aii = C and = C. Moreover we suppose that we are given linear

maps, called compositions,

We assume that all these maps and the induced maps

are surjective. This is the case when all the spaces are spaces of sheaf
homomorphisms as above for which the sheaves Ei and are line bundles

on a projective space or each of them is a bundle QP(p).
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We may and do assume that these pairings are the identities if

i - j, .e = m, etc. Finally, we suppose that these maps verify the

natural associative properties of compositions. This means that the induced

diagrams

are commutative for all possible combinations of indices.

In our setup we also let finite dimensional vector spaces Mi for

1  i  r and Nf for 1  ~  s be given and we consider finally the vector
space

where summation is over 1  i  r and 1  .~  s. This is the space of

homomorphisms in the abstract setting. The group G and its action on W
are now also given in the abstract setting as follows.

2.2. The group G.

We define G as a product GL x GR of two groups where the left
group GL replaces Aut(E) and the right group GR replaces Aut(F) in our
motivation. Let GL be the set of matrices
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with g2 E GL(Mi) and ujj E Hom(Mi, Mj 0 Hom(Aji 0 Mi, Mj) -
The group law in GL is now defined as matrix multiplication where we
define the compositions u~2 naturally according to the given pairings
as the composition

Explicitly, if g has the entries gi, Uji and g’ has the entries UJi then
the product

in GL is defined as the matrix with the entries g2’ = g’ o gi in the diagonal
and

for 1  i  k  r. The verification that this defines a group structure on GL
is now straightforward.

As a set GL is the product of all the GL(Mi) and all Hom(Mi, 
for i  j and thus has the structure of an affine variety. Since multiplication
is composed by a system of bilinear maps it is a morphism of affine varieties.
Hence GL is naturally endowed with the structure of an algebraic group.
The group GR is now defined in the same way by replacing the spaces Mi
and Aji by 7V~ and Finally G = GL x GR is defined as an algebraic
group.

2.3. The action of G and W.

We will define a left action of GR and a right action of GL on W such
that the action of G on W can be defined by (g, h) ~ w = h . w - g-l. Both
actions are defined as matrix products as described above in the case of
sheaf homomorphisms using the abstract compositions as in the definition
of the group law.

If w has the entries pgj E Hom(Hl*i 0 Mi, N£) and g E GL has the
entries gi and uzj then w - g is defined as the matrix product
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with

where ujj is the composition

or dually the composition

The left action of GR is defined in the same way. In the next two sections
we give an analysis of stability and semi-stability for the action of G

and its natural reductive subgroup Gred In the reductive case this is due
to A. King.

2.4. Canonical subgroups of G.

We let HL c GL and HR c GR be the maximal normal unipotent
subgroups of GL and GR defined by the condition that all gi - idM2 and
all hi = idN~ . Then H = HL x HR is a maximal normal unipotent subgroup
of G. Similarly we consider the reductive subgroups GL,red and GR,red
of GL and GR defined by the conditions Uji == 0 and vmg = 0 for all indices.
Then Gred = GL,red X GR,red is a reductive subgroup of G and it is easy to
see that G/H ~ Gred. The restricted action of Gred is much simpler and
reduces to the natural actions of on Mi and on Ng

3. Actions of reductive groups.

3.1. Results of A. King.

Let Q be a finite set, h C Q x Q a subset such that the union of the
images of the two projections of F is Q. For each a E Q, let ma be a positive
integer, Ma a vector space of dimension ma and for each (a, ~3) E F, let Va¡3
be a finite dimensional nonzero vector space. Let

On Wo we have the following action of the reductive group:
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arising naturally in this situation. If (f3,,) E Wo and (ga ) E Go, then

Let be a sequence of integers such that

To this sequence is associated the character X of Go defined by

This character is trivial on the canonical subgroup of Go isomorphic to C*
(for every A E C*, the element (ga) of Go corresponding to A is such that
ga = A . id for each a). This subgroup acts trivially on Wo. A point x E Wo
is called x-semi-stable if there exist an integer n &#x3E; 1 and a polynomial
f E C[Wo] which is xn-invariant and such that f (x) ~4 0 ( f is called

xn-invariant if for every w E Wo and g E Go we have f (gw) = 
The point x is called x-stable if moreover

. dim(Gox) = dim(Go/(C* ) and

. the action of Go on fw E Wo, f(w) # 01 is closed.

A. King proves in [21] the following results:

1) A point x = Wo is x-semi-stable (resp. x-stable) if and

only if for each family (M~), a E Q, of subspaces M~ C Ma which is neither
the trivial family (0) nor the given family (Ma) and which satisfies

for each (a, {3) E r, we have

2) Let Wôs (resp. Wo ) be the open subset of Wo consisting of
semi-stable (resp stable) points. Then there exist a good quotient

by Go/C* which is a projective variety.

3) The restriction of this quotient

is a geometric quotient and M’ is smooth.
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3.2. Polarizations.

The (semi-)stable points of Wo remain the same if we replace (ea)
by (cea), c being a positive integer. So the notion of (semi-)stability is fully
described by the reduced parameters (ea /t), where

So we can define the polarization of the action of Go on Wo by any sequence
(CaJaEQ of nonzero rational numbers such that

By multiplying this sequence by the smallest common denominator of the ca
we obtain a sequence (ea ) of integers and the corresponding character of Go.
Therefore the loci of stable and semi-stable points of Wo with respect to Go
and a polarization Ao == (ca ) are well defined and denoted by

3.3. Conditions imposed by the non-emptiness of the quotient.

If Wo is not empty, the ea must satisfy some conditions. We will derive
this only in the three situations which occur in this paper. Polarizations
satisfying these necessary conditions will be called proper. The first is that
of the action of Gred in 2.4 and the second is that of G and W in Section 5,
and the third is the case in between occurring in 7.4.2.

3.3.1. First case. - Let r, s be positive integers. We take

This is the case of morphisms of type (r, s). For 1  i  r, let Ma2 = Ma2
if &#x3E; 0, and 101 otherwise, and for 1  .~  s, let Mø£ == M, . Then if
one is not positive, we have

and (M,,,) 54 (Ma ), so in this case no point of Wo is stable. So we obtain,
if Wo is non-empty, the conditions
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A proper polarization is in this case a sequence

of rational numbers such that the Ai and the pg are positive and satisfy

3.3.2. Second case. - This case appears when we use a bigger reductive
group to define the quotient (this is the case of W later on). Let r, s be
positive integers. Here we take

Then the necessary conditions for Wo to be non-empty are:

To derive the first set of conditions we consider for any i the family
(M) for which Ma - 0 if i  j  r and M = My for all other y E Q.
Then 0 C M’ø for any f E Wo and any (a, {3) E r . If f is
stable we obtain

Moreover, if the family (M~) is defined by Ma~ - 0 for 1  j  r, M’,, = 0
if m  .~  s and M§ = M,y else, we obtain directly

A proper polarization in this case is then a sequence

of rational numbers satisfying

and

We could also drop the normalization condition.
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3.3.3. Third case. - This case is a combination of the first and second

case. It appears in the proof of the equivalence of semi-stability in 7.3.
Here Q is the same as in the previous cases and

Now the necessary conditions for Wo to be non-empty are:

The first condition follows as in the second case when we consider

the family (M~) with Ma~ - 0 for i  j  r and M§ = M-y for

all other q E Q. The second condition follows when all My are zero
except M’ ,8,e = M(3£ for one .~. Again a proper polarization in this case is a
sequence (pi ... , pr, -ILl, ..., 7 -Pi) with

and

3.4. The action of Go on P(Wo).
We suppose that we are in one of the first two preceding cases and

that there exist stable points in Wo. Let P be a nonzero homogeneous
polynomial, xn-invariant for some positive integer n. The xn-invariance
implies that P has degree n ~ t where in case 1 (action of Gred on W)

and in case 2 (action of G on W)

To see this let A E C* and let 9 be given by gai = À -1 id and go, = id
in the first case and by ga2 - A-’ id and 9/3£ == À£-8 id in the second case.

Then gx = Az and xn(g) = A" in both cases, such that Ànt P(x).
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Now we will see that there exist a Go-line bundle ,C on P(Wo) such
that the set Wôs of semi-stable points is exactly the set of points over

L), which is the set of semi-stable points in the sense of

Geometric Invariant Theory corresponding to

cf. [27], [29], [31]. Here the action of Go on £ is the natural action multiplied
by x. More precisely, the action of Go on Wo induces an action of this group
on and on by

for all g E Go , w E Wo and F E viewed as an homogeneous
polynomial of degree t on Wo. The line bundle space L of L is acted on
by Go in the same way: if ~ E L(,,,,) E is the form on

(gw)*®t = given by (g . ç)(y) == ç(g-ly). We modify now the action
of Go on L (resp. by multiplying with x(g) :

Now P C £0n) is an invariant section if and only if P is a
homogeneous polynomial of degree tn which satisfies

From the definition of semi-stable points in Wo and with respect to

the modified Go-structure on £ == (t), we get immediately

3.4.1. LEMMA. - Assume that 0 and let t be defined as
above in the two cases of Wo. Then the set is the cone of the

set as defined in G.I.T.

There are two definitions of stable points in P(Wo), the classical
one, given in [27], [29], and a more recent one, given in [31]. If we take

D. Mumford’s definition, the cone of the set of stable points in P(Wo)
does not coincide with Wo because every point of has a stabilizer

of positive dimension. In fact there is a subgroup of Go/C* of positive
dimension which acts trivially on In the first case for example
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such a group is given by and - p id with A, p E C*. If we
want to keep the coincidence between the sets of stable points for one
and the same group, we would have to consider the action of a smaller

reductive group in order to eliminate additional stabilizers. We will do

this in 3.5 only in the first case. If we take the definition of V.L. Popov
and E. G. Vinberg, then we obtain that the set Wo (Go,110 ) is exactly the
cone of the set P(Wo)’(Go, 

3.5. The group G’.

Let G and W be as in Section 2 and let A = (Ai,..., Ar, 
be a proper polarization as in 3.3.1 for the action of Gred on W. It is

then convenient to use the subgroup Gred of Gred consisting of elements
((gi), (h~)) satisfying

where ~ = and bmf = 

We consider the action of Gred on £ induced by the modified x-action
of Gred . Now the set of x-stable points of W is exactly the
cone over the locus of stable points of in the sense

of Geometric Invariant Theory.

4. Semi-stability in the non-reductive case.

Let G and W be as in Section 2. A character x on Gred as in King’s
setup can be extended to a character of G. Also the modified action of

Gred on £ can be extended to an action of G. Let G’ be the subgroup of G
defined by the same equations as for Gred. It contains H and Gred, and we
have G’ /H ^_J Gred .

In the case of the action of Gred on W a proper polarization is given
by a sequence Ai,..., Àr, /11, ... , /1s of positive rational numbers such that

More precisely, the polarization is exactly the sequence
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The parameter Ai (resp. pg) will be called the weight of the vector space Mi
(resp. Np). We see that the dimension of the set of possible proper
polarizations is r + s - 2. Let t denote the smallest common denominator of
the numbers Ai and tit and X the character of Gred defined by the sequence
of integers ( -ta 1, ... , -t~~., ttcl , ... , tl-t,). Let

As we have seen, if we consider the modified action of Gred on £, then the
x-semi-stable points of W are exactly those over the semi-stable points of

P(W) in the sense of Geometric Invariant Theory with respect to the action
of Gred/C* on ,C. The xtn-invariant polynomials are the Gred-invariant
sections of 

We are now going to define a notion of (semi-)stability for the points
of W with respect to the given action of the non-reductive group G. Let
H c G be the above unipotent group, see also 2.4.

4.1. DEFINITION. - A point w E W is called G-semi-stable (resp.
G-stable) with respect to the (proper) polarization

if every point of Hw is Gred-semi-stable (resp. Gred-stable) with respect to
this polarization. We denote these sets by WSS(G, li) (resp. 

For many of the quotient problems for the spaces of homomorphisms
between ~ mi Ei and 0153 and their cokernel sheaves this is a fruitful

notion. In 4.2 we investigate an example with an explicit description of
the open sets W s (G, A) C WS(Gred,A). This example also shows that the
existence of a good quotient depends on the choice of the polarization.

4.1.1. Situation for type (2,1). - In the case of morphisms of type
(2,1) we have = 1/nl and the polarization is completely described by
the single parameter t = M2 A2 - We must have 0  t  1.

A polarization such that there exist integers m~, ni, with
0  n’  nl, 0  m2  mi, such that 

are not both 0, and that
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is called szngular. There are only finitely many singular polarizations,
corresponding to the values 0  t1  t2  ...  tp  1 of t. Let to - 0,
tp+1 == 1. If A, A’ are polarizations corresponding to parameters t, t’ such

that for some i E {0,’ - - p~ we have ti  t, t’  ti+1, then

Hence there are exactly 2p + 1 notions of G-(semi-)stability in this case.
Moreover, if m1, m2 and n1 are relatively prime, and A is a non singular
polarization, we have WS(G,A).

In the general case of morphisms of type (r, s), it is not difficult to see
that there are only finitely many notions of G-(semi-)stability.

4.1.2. Remark. In [16] semi-stability is defined as follows: A point
w E W is semi-stable if there exist a positive integer k and a G’-invariant
section S of /~ such that ~(~) 7~ 0 (there is also a condition on the action
of H). It is clear that a semi-stable point in the sense of Fauntleroy is

also G-semi-stable with respect to (À1,... , is proved
in [16] that there exist a categorical quotient of the open subset of semi-
stable points in the sense of [16], but it is not clear that all G-semi-stable
points are semi-stable. Moreover, in the general situation of [16] there is no
way to impose conditions which would imply that the categorical quotient
is a good quotient or even projective. Using Definition 4.1 we are able to
derive a criterion for the existence of a good and projective quotient of W
under the action of G.

4.2. Existence and non-existence of good quotients, an example.

We show here that we cannot expect that a good quotient
G) //G will exist for any polarization A.

We consider morphisms 2 C~ ( - 2 ) ~ C7 ( -1 ) ~ 0 on P2. There are
three notions of G-(semi-)stability in this case, two corresponding to non
singular polarizations. For one of the non singular polarizations the quotient
W(A, G) /G exists and for the other we prove the inexistence of a good
quotient Ws (A, G) //G.

Let V be a complex vector space of dimension 3, and P2 = PV. Let

on P2. A polarization for the action of G on W is a triple ( 2 , -jL1, -P2) with
positive numbers pi , p2 satisfying ILl + IL2 == 1. As in 4.1.1 such a polarization
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depends only on pi. There is only one singular polarization, corresponding
to /11 == ~. Hence if we consider only non singular polarizations there
are only two notions of G-(semi-)stability, the first one corresponding to
polarizations such that /11 &#x3E; 2 and the second to polarizations such that
pi  2 . In both cases semi-stable points are already stable. We are going
to show that in the first case has a geometric quotient which is
projective and smooth and that in the second case doesn’t even

admit a good quotient.

The elements x E W and g E G are written as matrices

4.2.1. The case pi &#x3E; 2 . - In this case W8(G,A) has a geometric
quotient which is the universal cubic Z C x pS3V* of the Hilbert
scheme of plane cubic curves in P2 = PV. The quotient map is given by

Remark. - If pi &#x3E; 4 , then /11 &#x3E; 3p2 and the conditions of 1.5.1 (in
the dual case (1, 2)) for a good and projective quotient to exist in this case
are satisfied.

The proof is done in several steps.

1) Claim 1 : Let x E W be as above. Then

(i) x E if and only if z, A z2 ~ 0 in A2V * and ql, q2
are not both zero.

(ii) x E if and only if z, A z2 ~ 0 and det (x) _
in 

Proof of Claim 1. (i) follows easily from the criterion (1) in 3.1. As
for (ii) let x E WS(Gred, A) with 0. Then det (h - x) = 0 for

any h = (Z 1 ~) which implies that E WS(Gred,A). Let conversely
x E Then 0 because otherwise there is a linear form

z E V* with Q1 = zzi and q2 = zz2 and with h = ( z 0 ) the element h . x
is the matrix Z2) which is not in WS( Gred, A).

2) By the result of A. King in 3.1, (3), there is a geometric quotient
which is smooth and projective.



Claim 2:

Here Q* = Ql (1) is the dual of the tautological quotient bundle
over PV. (The dimension of this quotient variety is 13 while dim W = 18
and dim Gred /C* = 5.)

To verify Claim 2 we consider the map

........a.. J,.-

from PV x P(V* 0 S2V*) C P(V* 0 S2V* 0 where

we identify IfD A 2V* with PV via ~z, A z2) ~ (a), zl (a) - z2 (a) - 0. Then
each a(x) E S’2V*) because Q(a) C V* is the subspace of forms
vanishing in (a). It follows immediately that a is a morphism

which is surjective and Gred-equivariant. It induces a morphism of the

geometric quotient to P(Q* 0 S2V*) which is even bijective. Since both,
the quotient and the target are smooth, this is an isomorphism.

3) Since Q* C V* 0 Opv we have an induced homomorphism
Q* 0 S2Y* -~ S3V* 0 It is the middle part of the canonical exact

sequence

of vector bundles on PV. Let Z be the kernel of ev. From the left part of
the sequence we obtain the affine bundle

Here P(Z) = Z is nothing but the universal cubic and the fibres of {3 are
isomorphic to V*.

Claim 3: ) is the inverse image of

under Q and is a geometric quotient with respect to Gred ~

Proof of Claim 3. - Zl 0 q2 - z2 © q1 belongs to 112 Q ~a~ ® V * if and
only if zl q2 - z2 ql = 0, see (ii) of Claim 1.
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4) Let now 7r = (3 o a be the morphism t4~(G,A) 2013~ Z, given by
x H ((a), (zl q2 - where zi (a) = z2 (a) - 0. It is obviously G-equi-
variant and its fibres coincide with the G-orbits. Since a is a geometric
quotient and 03B2 is an affine bundle, then 7r is also a geometric quotient.

Remark. - The variety Z is isomorphic to the moduli space
M = MP2 (3m + 1) of stable coherent sheaves on P2 with Hilbert polynomial

= 3m + 1. This had been verified by J. Le Potier in [24]. The space
W’(G, A) is a natural parametrization of M because any .~ E M can be
presented in an extension sequence 0 - Oc ---t 0 - Cp - 0 where C is
the cubic curve supporting T and p E C, and then .~ has a resolution

This resolution is the Beilinson resolution as can easily be verified.

Moreover, x is (G, A)-stable if and only if .~’ is stable. (If p is a smooth point
of C, then 0 is the line bundle Oc (p) and if p is a singular point of C, then F
is the unique Cohen-Macaulay module on C with the given polynomial.)
There is an obvious universal family .~’ on W8(G, A) x H PV which defines
a G-equivariant morphism W’(G, A) -* M and then a bijective morphism
Z - M, which by smoothness, is an isomorphism. One knows that M
carries a universal family ~. This family can be obtained as the non-trivial
extension

where H = and Z x H Z C Z x PV, or can be obtained as the descent
of the family .~’. More details can be found in [18].

4.2.2 The case pi  1. - We suppose now that the polarization A is
such that pi  2 . In this case an element x of W is G-stable if and only
if Zl, Z2 are not both zero, and if for every z C V*, zz, and q2 - zz2
are linearly independent.

4.2.3. PROPOSITION. - For this polarization there does not exist a

good quotient 

Proof. Let z, be a non-zero element of V*, let q E 
and let x c W be the matrix

Then x is stable.
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CLAIM. - The orbit Gx is closed and ify E is such that Gy
meets Gx, then y E Gx.

Before proving the claim, we will show that it implies Proposi-
tion 4.2.3. The stabilizer of a generic point in A) is isomorphic to C*:
it consists of pairs of homotheties (A, A). It follows that if M = A) //G
exists, then all the fibers of the quotient morphism 1r : A) - M are
of dimension at least dim(G) - 1. Now suppose that the claim is true.

Then this implies that Gx. But the stabilizer Gx of x has
dimension 2: it consists of pairs

with a E C*, (3 E C, and hence has dimension 2. It follows that

 dim(G) - 1, a contradiction.

Proof of the claim. - Let y E such that x E Gy. Let

Then z, is contained in the vector space spanned by z and z2. Hence

by replacing y with an element of Gy we can assume that z = zi and
that Z2 = 0 if Z2 is a multiple of zl.

According to Lemma 4.2.4 there exist a smooth irreducible curve C,
xo E C, and a morphism

such that

can be extended to 0 : C - W, with x. We can write, for

t E 

with
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where A, a, b, c, d are morphisms C and u : ~*. The

morphisms A, a, b, c, d can be extended to morphisms C - Pi U ~ 0, 
denoted by A, a, b, c, d respectively, and u extends to u : C - P(V* 0 C).
Now we use the fact that 9 is defined at xo. The first consequence is

that 6(xo) = 1, c(xo ) = 0, and if z2 ~ 0 then b and d also vanish at xo.
The second is that the morphisms ql , q2 : -~ can be extended

to ql, q2 : C -~ and we have q1 (xo) = q, q2 (xo) = Z2
We will now consider three = 0, X(xo) C*.

Suppose that A(xo) = 0. If z2 # 0, then (1) implies that = q is

a multiple of zl, but this is not true. If z2 = 0 then (2) implies that q2 is a
multiple of zi and (1) implies then that q is also a multiple of zi, which is
not true. Hence we cannot have A(xo) = 0.

Suppose that A(xo) = oo. If Z2 =1= 0, then (1) implies that

and

extend to morphisms C - which vanish at xo. It follows from the

fact that = 0 that u = u(xo) E V*, and that qi = -UZ1. Since q1 =I 0
(by G-stability of y), we 0. But since = d(xo) = 0, this

contradicts the fact that = 0.

If z2 - 0 then we deduce from the fact that = 0 that

q1 E (q2, which contradicts the G-stability of y.

It follows that we have 03B4 = E C*. If Z2 =I 0, using the fact that

a(xo) = 1 and b(xo) = = d(xo) = 0 we see that u = u(xo) E V* and
that z1 = which contradicts the fact that zi 1B 2~2 7~ 0.

Hence we have z2 = 0. It follows from (2) that d(xo) E C* and that
zi = bd (xo ) q2 . By ( 1 ) we see that

extends to C and that

We have, if t =A xo
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It follows thate(xo) is a multiple of zi: E(xo) = zlv. We have then

as claimed.

It remains to show that Gx is closed. This can be proved easily by
computing the stabilizers of all the points in W8(G, A). We see then that Gx
has the maximal possible dimension, hence Gx is closed. D

We now give a proof of the lemma used in the preceeding proposition:

4.2.4. LEMMA. - Let W be a finite dimensional vector space, G a

linear algebraic group acting algebraically on and x E 

Then there exist a smooth curve C, xo c C and a morphism

such that the morphism

extends to 0 : C --+ Wand that O(xo) = x.

Proof. Let n = dim(W), d = dim(Gy). The generic (n - d + 1)-
dimensional affine subspace F C W through x meets Gy on a curve, and
meets in a finite number of points. Hence we can find a curve
X c Gy that meets Gy B Gy only at x. Taking the normalization of X
and substracting a finite number of points or unnecessary components if
needed, we obtain a morphism a : Z -~ Gy (where Z is a smooth curve) and
a point zo C Z such that a(zo) = x and C Gy. Consider now the
restriction of a

There exist a smooth curve Z’ and an etale surjective morphism
ø : Z’ -~ such that the principal Gy-bundle 0* a* G on Z’ is locally
trivial. By considering completions Z’, Z of Z’, Z and an extension of 0
to a morphism Z’ -~ Z we obtain a smooth curve Y, yo E Y and a
morphism ,~ : Y ~ Z such that j3(yo) = zo and that the principal Gy-
bundle T = 13* a* G is defined on and locally trivial. Let U C Y be
a nonempty open subset such that we have a Gy-isomorphism
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Then we can take C = U U ~yo ~, xo = yo, and for t E = U, we have

where Q is the canonical morphism r - G. D

4.3. More general counterexamples of inexistence of
geometric quotients.

Let W be the space of homomorphisms

over IP’ n and let the homomorphism W be given by the matrix

where the zv are homogeneous coordinates. The stabilizer of 00 contains C*
and the pairs

in Aut(O( -2) C C~ ( -1 ) ) x and thus has dimension &#x3E; 2. If

A == (À1, ~2, -I~1) is a polarization with 0  À1, 0  A2  2 , then
it is easy to see that 00 is A-stable in the sense of 4.1. For example

(0, 1, n) is the dimension vector of a 00-invariant choice of
subspaces with + A2M’ - pin’ = ~2 - 2  0. There are however

stable homomorphisms ~ E W with stabilizer C*. Therefore W8(G,A)jG
can never admit the structure of a geometric quotient. We will see in 7.2.2
that a sufficient condition for that in the case of this W is A2 &#x3E; (n + 
or A2 &#x3E; (n + 1 ) / (n + 2) because À1 + a2 = 1.

5. Embedding into a reductive group action.

We will construct an algebraic reductive group G, a finite dimensional
vector space W on which G acts algebraically, and an injective morphism
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compatible with a morphism of groups

The traces of G-orbits on ((W) will be exactly the G-orbits. The space
W is of the same type as those studied in 3.1. We will associate naturally
to any polarization of the action of G on W a character X of G/(~*, i.e.

a polarization of the action of G on W. We will prove that in certain cases a
point w of W is G-(semi-)stable with respect to the given polarization if and
only if ~(w) is x-(semi-)stable with respect to the associated polarization.
The existence of a good and projective quotient of the open set of G-semi-
stable points will follow from this.

5.1. Motivation in terms of sheaves.

The idea for the embedding of W into a space W with a

reductive group action is to replace the sheaves Ei in £ == EÐ(£i 0 Mi)
by Si ® Hom (E1, and dually the sheaves .~~ in ,~’ == 0 Nf )
by 0 and then to consider the induced composed
homomorphisms q(V) for V C 0) = W :

in the bigger space W of all homomorphisms between Hom( £1, S) and
0s © 0s ) * . This space is naturally acted on by the reductive group

However it is not suitable enough for our purpose by two reasons. It does not
allow enough polarizations as in Section 3 for direct sums in order to have

consistency of (semi-)stability and, secondly the group actions G x W - W
and G x W - W don’t have consistent orbits. Both insufficiencies are
however eliminated when we consider the following enlargement of W.
We set

and introduce the auxiliary spaces
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and define

There are distinguished elements

whose components are the natural composition maps. The embedding of W
into W will be defined as the affine map

where is the above composition for a given V E W. The components
of WL and WR will guarantee a compatible action of a reductive group and
at the same time the possibility of choosing enough polarizations for this
action.

5.1.1. Remark. - One might hope to be able to do induction on r
and/or s by simply replacing Mr-1 0 Mr 0 £r by (Mr-1 ® Mr 0
Hom(£r-1, £r)) 0 £r-1 and keeping the other Sz for i  r - 1. But then we

drop the information about the homomorphisms Ei --&#x3E; Er. Therefore we are
lead to replace allei, i &#x3E; 2, by £1 at a time, i.e. by

where Aji = Moreover, in order to keep the information of the
homomorphisms Ei for 2  i  j we consider also the spaces

together with the maps Pi Q9 Ai,i-1 - Pi-1 in the following. The reader
may convince himself that only because of this the actions of the original
group is compatible with the action of the bigger reductive group. It is a
beautiful outcome that then we are able to compare the semi-stability with
respect to related polarizations in Section 7.

5.2. The abstract definition of W.

The above motivating definition of the space W can immediately be
turned into the following final definition using the spaces .4~ and Bml!



136

and the pairings between them. For any possible z and £ we introduce the
spaces

and we denote by pi and qi their dimensions. For 1  i and  s we let

be the canonical morphisms, defined as follows. On the component Mj Q9 Aji
of Pi, the map gz is the map

induced by the composition map of the spaces A. The map qg is defined in
the same way. As in 5.1 we set

and

In order to define the embedding ( we define the operator -y as follows.
G iven w = (Øfi) E Wwith Øfi E Hom ( Mi , Nf 0 we let

be the linear map defined by the matrix for which each qgz (w) is
the composed linear map

where the first map is induced by the second by the composition
(D Ail - H£l and the third by the dual composition ~~ 0 
The map ( can now be defined by
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5.2.1. LEMMA. - The linear map ~ is injective and hence the

morphism ( is a closed embedding of affine schemes.

Proof. From the surjectivity assumptions in 2.1 we find that dually
the composition

is injective. Now it follows from the definition of 1’Ri (w) that Oti can be
recovered from by shifting Ail to its dual. 0

5.3. The new group G.

We consider now the natural action on W as described in 3.1 in the

general situation, where the group is

To be precise, this action is described in components by

with

and with gi E GL(Pi), hg E GL(Q~). The first and third expression describe
the natural actions of GL on WL and of GR on WR.

There are also natural embeddings of GL, GR, G into GL, GR, G
respectively. For that it is enough to describe the embedding of GL in GL .
Given an element 9 E GL,
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with gi C GL(Mi) and ujz E we define 0L,i (g) E GL (Pi)
as the matrix

with respect to the decomposition of Pi with the following components:
® id on M~ 0 Aji and for i  j  k the map Ukj is the composition

where the second arrow is induced by the given pairing. In case j = i we

have 9i = g2 and Uki = Now we define the map

It is then easy to verify that 6L is an injective group homomorphism and
defines a closed embedding of algebraic groups. With this embedding we
consider GL as a closed subgroup of GL. In the same way we obtain a
closed embedding OR of GR C GR. Finally we obtain the closed embedding
0 = (0L, 0R) of G C G.

5.3.1. LEMMA. - The subgroup GL C GL (respectively GR C GR) is
the stabilizer of the distinguished element (Ç2, ..., E WL (respectively
( r¡1, ... , E WR).

Proof. It is enough to prove the statement only for GL because
nf duality. The fact that GL stabilizes (~2, ... , gr) is an easy consequence
of the properties of the composition maps. The converse can be proved by
induction on r. It is trivial for r = 1. Suppose that r &#x3E; 2 and that the

statement is true for r - 1. Let (-y1, ... , 1’r) be an element of the stabilizer
of (~2? - -’ çr)’ When we replace the space W by W’, corresponding to the
spaces M2,..., Mr and the same spaces N.~ and similarly WL by WL, then
(~2,... ? 1’r) is an element of the stabilizer of (~3, ... , ~), so by the induction
hypothesis it belongs to GL and there exist an element
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such that (~y2, ... , ?7r) = (g’). Let now E GL(P1) have the components

Identity 1’1 o ~2 = ~2 0 -y2 then shows that Yji = 0 for j  i, yii = gi for 2  i

and ujz for 2  j  i. Now let gi = yll, yjl, for 2  j  r,

which are linear mappings Then

is an element of GL and we have (’)11, ... , = BL (g) . 0

Remark. - Since the action of GL on WL is linear, it is clear that we
have an isomorphism

GLIGL -- GL(~2, - - ., ~r), and similarly 

We will use this fact in Section 8.

Using the associativity of the composition maps it is again easy to

verify that the actions of G on W and G on W are compatible, i.e. that

the diagram

is commutative, in which the horizontal maps are the actions. In addition
we have the

5.3.2. COROLLARY. - Let w, w’ C W. Then wand w’ are in the same

G-orbit in W if and only if ((w) and ((w’) are in the same G-orbit in W.

Proof. It follows from the compatibility of the actions that if

g - w - w’ in W then also 0(g) - ((w) = ((~) in W by the last

diagram. Conversely, if g E G and g - ((~) = ((~~) then g stabilizes
(~2, ~ ~ ~ , ~r, y, ~ ~ - ~ ~s-1) by the definition of ( in 5.2. By Lemma 5.3.1

gEG. a
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5.4. The associated polarization.

In 3.3.1 and 3.3.2 we had introduced polarizations for the different
types of actions of Gred on W and of G on W. In the following we
will describe polarizations on W and W which are compatible with the
morphism (: W ---t W. Their weight vectors are related by the following
matrix equations and determine each other. The entries of the matrices are

just the dimensions of the spaces Aji and 
In the sequel we will use the following notation: the dimension of a

vector space will be the small version of its name. So

A proper polarization of the action of G on W is a tuple

where Az and pg are positive rational numbers such that

We define the new sequence of rational numbers a1, ... , ar, /~i,..., (38 by
the conditions

Then we have
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In particular the tuple A = (01521,"’, 0152r, - (31, ... , - (3s) is a polarization
on W such that ai is the weight of Pi the weight of Qg. It is called
the associated polarization on W. It is compatible with ( in the following
sense: If Mi C Mi, and N~ C N,~ are linear subspaces, and if the subspaces
of Pi and Qg are defined by

respectively then we have

If the set of stable points in W with respect to the associated pola-
rization is non-empty then by 3.3.2 the weights satisfy the conditions

Equivalently the conditions may also be written as

Substituting the weights of the original polarization on W, we can
reformulate these conditions. In the cases treated in the examples they
reduce to the following.

5.4.1. Weight conditions. - Let W be of type (r, s) and let

A = (À1, ... , Àr, - J-l1, ..., be a proper polarization of W with positive
Ai and pi. If the set W (G, A) of stable points of W with respect to the
associated polarization A is non-empty, then in case of
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5.5. Comparison of invariant polynomials.

In the following we assume that A == o~, 2013/~i,..., -/38) is

the polarization on W associated to the polarization A = (À 1, ... , 7 Ar,
-/11"", -/18)’ The semi-stable locus W88(G, ~1) with respect to this

polarization is more precisely defined by the character X associated to it as
in 3.1. If q is lowest common denominator of 0~1,..., ar, ,Ql , ... , ,C3s , we have

for an element g E G with components gi and hi. By the matrix
relations between the polarizations q is also a common denominator of

Ai , ... , Ar , such that, if p denotes the lowest, we have q = pu
for some u. The character X with respect to the given polarization can be
defined by

where the gi (resp. hi) are the diagonal components of g (resp. h), see 2.2.
Now the relations between the polarizations imply by a straightforward
calculation that

If F is a Xm-invariant polynomial on W it follows that

i.e. that F o ( is a xum-invariant polynomial on W. As a consequence we
obtain the

5.5.1. LEMMA. - One has ~-1 (WSS (G, l1) ) C i. e. if

w E W and ((w) is G-semi-stable in W with respect to the polarization
A = (ai , ... , a~., -,~31, ... , - /3s) then w is G-semi-stable in W with respect
to the polarization A = (A, 7... Àr, -JL1,.", 7 -As) (in the sense of 4.1).

Proof. There exist a xm-invariant polynomial F on W such that

F(~(w)) ~ 0. Then

for any element (g, h) in the unipotent subgroup H C G. This means that
w is G-semi-stable. 1:1



143

5.5.2. Remark. - When we consider the subgroup G’ C G defined by
the condition

det(gl) = 1,
we have C G’ as follows from the definition of G’ in 3.5. With respect
to these groups the semi-stable points are those over the semi-stable loci
in P(W) (resp. P(W)), with respect to the line bundles

where t and t is defined as in 3.4 in the different cases endowed with the
modified action defined by the characters. However, we cannot compare

and P(W) directly because the morphism ( does not descend.

We need the analogous statement of Lemma 5.5.1 also in the case of
stable points. For that it is more convenient to use the subspace criterion (1)
of A. King in the case of Gred and G. This gives also another proof in the
semi-stable case.

5.5.3. LEMMA. - With the same notation as in the previous lemma

Proof - Let w = be a point of W with maps Mi 0 Hf*i ~ N£
and suppose that w is not G-stable with respect to the polarization A.
We can assume that it is not Gred-stable, too. Then there are linear

subspaces Mi C Mi and N~ C Ng for all i and £ such that the family
((Mi’)), (A~)) is proper and such that

t t

With these subspaces we can introduce the subspaces PI C Pi and Q~ c Qg
as

ZJ 

They form a proper family of subspaces and satisfy

çi(PI 0 Ai,i-1) C C 0 Bf+1,f) C Q§
for the possible values of i and .~. But by the definition of the spaces and
because A is the associated polarization, the formulas of 5.4 imply the
dimension formula

1 o ~

This states that also ~(w) is not G-stable. 0
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In Section 7 we will derive sufficient conditions for the equality

In the following section we show how this equality implies the existence
of a good and projective quotient using the result for

Wss(G, Ã)//G from Geometric Invariant Theory.

6. Construction and properties of the quotient.

We keep the notation of the previous sections and let A be the
polarization on W associated to the polarization A on W. We do not
require that they are proper here, but we will do that later for the

examples. In addition we introduce the saturation

of the image of W with respect to the action of G.

6.1. Construction of the quotient.

6.1.1. PROPOSITION. - Let W and W together with their G- and

G-structure be as in Section 2 and 5, let A be a polarization for (W, G) and
11 be the associated polarization for (W, G).

1) If ~-1 (WS (G,11) ) = W’(G, A), then there exist a geometric
quotient MS by G, which is a quasi-projective non-
singular variety.

2) If in addition

then there exist a good quotient ~ M, such that M is a normal

projective variety, MS is an open subset of M, and l~) ~ MS is the
restriction of ~r.

We recall here the definition of a good and a geometric quotient of
C.S. Seshadri, see [29], [27]. Let an algebraic group G act on an algebraic
variety or algebraic scheme X. Then a pair of a variety and a

morphism X ~ Y is called a good quotient if
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(i) p is G-equivariant (for the trivial action of G on Y) ;

(ii) cp is affine and surjective;

(iii) if U is an open subset of Y then cp* is an isomorphism
where the latter denotes the ring of G-invariant

functions;

(iv) if Fl, F2 are disjoint closed and G-invariant subvarieties of X then
cp ( F2 ) are closed and disjoint.

If in addition the fibres of cp are the orbits of the action and all have

the same dimension, the quotient (p, Y) is called a geometric quotient.
As usual we write XIIG for a good quotient space and X/G for a

geometric quotient space.

Proof. We will prove the second statement first, assuming that
the conditions of (1) and (2) are satisfied. We use the abbreviations

Wss (G, A), WSS - Wss (G, l1) and similarly WS for the subsets

of the stable points. By the result of A. King, 3.1, there exist a good
projective quotient of Wss by the reductive group G. So there exist also
a good and projective quotient of the closed invariant subvariety Z rl BVss
which we denote by

By assumption (2) C We let 7r be the

composition

We know already that M is projective. We will then verify that (7r, M) is
the good quotient of the proposition. We consider first the commutative
diagram

in which p is the projection and /-t is defined by (g, g~(w). There is
an action of G on G x W ss by g - (g, w) = (gO(g)-l, g - w) and it follows
that [L is G-equivariant.



146

CLAIM. - The morphism p is a geometric quotient of G x W" by G.

Proof of the claim. - We show first that the fibres of J1 are

the G-orbits. So let (g, w), (g’, w’) be two elements in G x Wss such
that p(g, w) = J1(g’,w’). Then ~(w) - g-lg’((w’). By Lemma 5.3.1
g - g-1 g’ E G and g . (g, w) = (g’, w’ ) . The claim will be proved if

we show that p has local sections. For this it suffices to use the remark

following Lemma 5.3.1 and a local section of the quotient map G - G/G.
Now we are going to verify the four properties of a good quotient

for 7r. Clearly (i) is satisfied by the definition of 7r.

Proof of (ii). It is clear that 7r is surjective. The morphism 7r is affine
because 7r = 7ro o ( and 7ro and ( are affine.

Proof of (iii). Let U C M be an open subset. Then

since 7r is G-invariant. Conversely let Then f o p E
, and since p is a geometric quotient, f o p descends to

an , which is G-invariant. Now again f descends
because vro is a good quotient. This proves equality O(U) = C~ (~r-1 ( U) ) G .

Proof of (iv). Let Fl , F2 be disjoint, closed, G-invariant subvarieties
of WSs. Then are disjoint, closed and G-invariant

subvarieties of G x WSS. Since p is a good quotient, JL(p-1(F1))’ 
are disjoint, closed and G-invariant in Finally, since 7ro is a good
quotient, are disjoint and closed subvarieties
of M. But 7ro o /-t (p- 1 (Fi)) - 7r (Fi), which proves (iv).

The normality of M follows from the fact that is smooth

and 7ro is a good quotient, [27], with respect to the reductive group G.
That 7r becomes a geometric quotient on the open set W’ of stable points
follows from the fact that the G-orbits in G((WS) = Z n WS intersect W’
in G-orbits. In particular the stabilizers of w in G and of ((w) in G are
isomorphic, such that all orbits have the same dimension.

The proof of (1) is a modification of the above. In any case 7ro

induces the geometric quotient On Mo with Mo open in M.

Now G((W’) = Z n WS is a 7ro-saturated open subset of Z n W’, such
that we obtain a geometric quotient # MS with MS C Mo
open. By the same arguments as above applied to the diagram related
to G x WS ---t we conclude that W S is a geometric
quotient. D
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Remarks. 1) The idea of this proof comes from [34], and has already
been used in [13] and [8].

2) If the second condition of (2) is not satisfied, we cannot even prove
that admits a good quasi-projective quotient, because Z n WSS
might not be saturated. Of course the projectivity of the quotient depends
on this condition.

6.2. S-equivalence.

We suppose that the hypotheses of Proposition 6.1.1 are satisfied,
with polarization A for (W, G) and associated polarization 11 for (W, G).

It is easy to define the Jordan-H6lder filtration of G-semi-stable
elements of W with respect to t1 (cf. [21] for a more general situation).
Using the preceding results we can also define a Jordan-Hölder filtration of a
G-semi-stable element of W with respect to A. Let w = A).
Then there exist a positive integer p, an element h E H and filtrations

with

for each j, such that h - w = satisfies

and that if

is the induced morphism, then is G-stable with respect to A for any j.
This filtration and h need not be unique, but p is unique and the too,
up to the order and isomorphisms. Conversely, an element of W having such
a filtration is G-semi-stable with respect to A. We say that two elements

and (O’i) of are S-equivalent if they have Jordan-Holder
decompositions (03,i) (cPZ) respectively of the same length, and if there

exist a permutation a of {I, ... , p~ such that is isomorphic to 
for any j.

The following result is also easily deduced from 6.1.1.
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6.2.1. PROPOSITION. - Let w, w’ E WSS(G,A). Then 7r (w’) if
and only if w and w’ are S-equivalent.

It follows that the set of closed points of M is exactly the set of
S-equivalence classes of elements of WSS.

7. Comparison of semi-stability.

We are going to investigate conditions for the weights of the

polarizations under which a (semi-)stable point w C W is mapped to a
(semi-)stable point ~(w) E W. For the estimates we need the following
constants which depend on the dimensions Tni and the composition
maps Q9 Ail 2013~ Hi1’

7.1. Constants.

Let IC be the family of proper linear subspaces

such that K is not contained in EÐ2::;i MI Q9 Ail for any family (M/) fl (Mi)
of subspaces. For any we let the map

be induced by the maps Ail ø H~1 -~ associated to the composition
maps, which are supposed to be surjective, see 2.1.

We introduce the constant

with Q9 Similarly we define the

constants di (n1, ... , ns _ 1 ) in the dual situation. Let

- ,- - ,-

be induced by the maps BsR Q9 H§j - He2 and let L be the family of proper
subspaces
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which are not contained in for any family (N~) ~ (~) of
subspaces. Then we define

7.1.1. LEMMA. - If mi  mi for all i &#x3E; 2, then

Proof. It will be sufficient to assume that mi = mi for all i except
one, m2  m2 say. Then let Mi be vector spaces of dimensions m2 and

suppose that

For any K E J’C we consider the subspace

Then codim(K) = codim(K) and also 

0 = 0 

because 6f is a direct sum of the surjective operator 0 such

that ~(~2 ® A21 0 equals ~2 0 H,*2 and

Therefore = P£(K). Once we have shown that also K belongs to the
- f -

analogous family IC, the lemma is proved. To see this let M2 C M2 and
-1 C Mi for i &#x3E; 3 be subspaces such that

Then in particular

and thus L2 C M2. But then M2 = L2 0 M~ with M2 - M2 f1 M2 and it
follows that

Since K E IC we obtain Mi = Mi for all i and then also M2 = M2. D
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7.2. Study of the converse I.

_ 

Let A == (~1, ... Àr, 2013/~i,..., -~s) be a polarization on W and let
A == (al , ... , 0152r, - (31, ..., -(38) be the associated polarization on W (the
associated polarization has been defined in 5.4). We had shown in 5.5.1
and 5.5.3 that if w E W and ~(w) is (semi-)stable in W with respect to G
and A, then so is w with respect to G and A. We are going to derive
sufficient conditions for the converse, i.e. whether ~(w) is (semi-)stable if w
is (semi-)stable.

In the sequel we are going to use the following notation:

Given a family M’ = (M§) of subspaces Mi C Mi we set

and call a subspace PI C Pi saturated if there is such a family with

P’ == Pi(M’). Note that in this case Li = Li Aim’. Similarly we
introduce the spaces for a subfamily and call

them saturated.

Let w = be given and assume that (((w) is not semi-stable with
respect to A. Then there exist linear subspaces P’ C Pi and Q’ C Qg
such that

and such that

where as before the small characters denote the dimension of the spaces.
If there were subspaces MI c Mz and N~ c NR and

Q~ - as in 5.5.3, then 0 C Q~ would imply that
0 c N~ and we would have

and w would not be semi-stable. In the following we are going to

construct families M", N" of subspaces Mi’ C Mi and N~’ C Ng such
that Pi (M") and Q1 = Qi (N") are as close to Pi’, Q’ as possible and
such that there is a useful estimate for
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. Step l. - We can assume that PI has a decomposition

and such that XT = 0. To derive this, we remark that for a subspace S of
a direct sum E o F of vector spaces there exist a linear map E ~ F such
that the isomorphism ( u 1 0) 1 of E EB F transforms ,S’ into S’’ C S", where S/
is the projection of ,S’ in E and S" = ,S’ n F. Using this and descending
induction on i we can find an element h E HL C GL, see 2.4, such that the
truncations GL(Pi), see 5.3, map Pi onto a direct sum MI e Xi
for any i. Since C P’-1 we easily derive that

for all possible i. We put

-.,

Note 0. 

. Step 2. - Let Ml", ... M," be subspaces of M1, ..., Mr respectively
such that

is minimal over PI for any i. Then Mi C M:’ since these spaces are the first
components Pi(M") respectively and we have Mi = Mr. We let

. Step 3. - We are going to define the subspaces N~ C Nr C Ng as
images.

Let P, 0 H~1 ~~~ Ng be the map which is the sum of the composed
maps

Then we define

It follows N~ C N§’ for any .~.
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. Step 4. - If the weights Of are supposed to be positive, we may
assume that

for £  s. Otherwise we could choose subspaces Q/ f c Q’ f by descending
induction as images. Then - would improve the

assumption on the choice of the spaces Pi and Q’. Now it follows that for
any .~,

because P{ Q9 Hs 1 is mapped to Q9 Bs~ and the maps qg are

the identity on the spaces Note that we even have Q’ C 
since factorises through NL 0 B*sl as follows from the

1 81 - 

sl

definition of Nl’ .

7.2.1. LEMMA. - Suppose that all {31,..., {3s &#x3E; 0, and let A =
03A3 .. 03A3

Proof. Let Since X, is
not contained in a direct sum with spaces smaller than Mi// we get

By Lemma 7.1.1 and above definitions we get

The map sends e onto N~’ by definition of and

also maps i onto .7,v,’. Therefore, since Ml",
we have a surjection
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and the dimension estimate

Now we can derive the estimate of the lemma. If there is no summation

condition it is understood that the sum has to be taken over all indices of

the given interval. We have

Substituting for Aj in the third sum and replacing the first by

and using the definition of ~2 we get

Now using the assumed estimate for the first sum and the derived estimate
for n~ - n~ we get

7.2.2. COROLLARY. - Suppose that s = 1, let A = (Ai,..., -1/nl)
and let A be the associated polarization (01521, ..., 0152r, -1/ n1)’ If all a2 &#x3E; 0

and if

then

Remarks. 1) Note that by the normalization of the polarizations we
must have = 1 such that 1/nl is the only possible value for =,31.
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2) If all cxi &#x3E; 0, then the necessary conditions for Ws (G, A) =~- 0 and
Ws (G, ~1) ~ ~ are both satisfied, see 5.4. The condition of the corollary is
an extra condition.

Proof. Let us first assume that ((w) is not semi-stable and

let the spaces Pf and Q’ 1 be as at the beginning of 7.2. The only
~3, = 1/n1 is positive. Let the other spaces be chosen as in 7.2.

The difference reduces to and since

0 Hi1) = Q’, this difference is zero. Therefore

Since all the ai are positive we have

Moreover, ~2 induces a surjection

because M1 - Therefore we obtain the dimensions estimate

(~2 - P2)a21 &#x3E; a1 - pl. It follows that

Since A2 = a2lxl + a2 &#x3E; (a21 ~nl )cl (m2, ... , mr) the last expression is

non-negative. This proves the case of semi-stability. For the case of stability
we assume that w is stable and that ((w) is already semi-stable. If ((w)
were not stable, we would find subspaces PI and Ni as in 7.2 such that
E a2 pi - /11 ni = 0 and such that at least one P’ is different from Pi. Now
let the spaces Milf and 7V/ be constructed as above. Then we have

where si = pi = and where we use that s1.

If the family M" is different from M, then 0 &#x3E; A, and if it is equal,
then A = 0. In order to obtain a contradiction we have to show that M"

is different from M. Assume that it is not. Then si = dim(Pi/P’) and we
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must have si = 0 for i &#x3E; 3 and (cl /nl )a21 ) = 0. If also sl - 0,
then by the above estimate also s2 = 0, contradicting the choice of the P’ .
Therefore 0 and A2 = (cl /nl )a21. But then A = a2 (s2 - and

we have s2a21 - sl . From this it is easy to see that Pf = Pi (M) where
MZ =Mi for i i= 2 andM2 =M2 i= M2. Then we have

which contradicts the stability of w. 0

7.3. Study of the converse II.

We keep the notation of 7.2 and compare the (semi-)stability of points
in W and W in two steps, each reducing to the case s = 1. We consider the
intermediate space

and the maps

Here (1 is defined by

where is the map defined by w = (ofi) as in 7.2. The map (2 is

defined by

where now Qs is induced by the tuple (11,...,1s) as the
sum of the compositions

which are induced by the 7f and the pairings Bsf It is obvious

that

Note that both (1 and (2 are injective by the same reason as for (.
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On V the group GL x GR acts naturally and we have the embedding

see 5.3. It follows as in Section 5 that (i is compatible with the group
actions and that w, w’ E W are on the same G-orbit if and only if

are on the same GL x GR orbit. Similarly we have the
group embedding GL x GR --+ GL x GR = G and (2 is equivariant and
satisfies the analogous statements for the orbits. Given the polarization
A = (Ai,..., ~r, -~C1, - .. , 7 -p,) for (W, G) we consider the polarization
A = (al, ... , ar, 2013/~) for (V, GL x GR) where the ai are defined
as in 5.4. As in 5.5.1, 5.5.3 it is easy to show that

and similarly that

Note that as for WSS, WS, we have unipotent sub-orbits in VSs and VS,
see 4.1. We are going to show that in all four cases equality holds under
suitable conditions on the weights of the polarizations. Then the same is
true for (.

7.4. Estimate for (1.

Let w = (ofi) in W be given and assume that (1 (w) is not semi-stable.
Then there are linear subspaces PI C Pi and N~ C 7V~ and a unipotent
element h E HR such that for (,~, ... , -~’) = h. ( ,1, ...... y,) we have

for all i &#x3E; 2 and all .~, and such that

We may assume that h = id because HR acts on W in the same way and
we can replace w by h - w. Moreover, we may assume that all N~ are equal
to 0 since all pg &#x3E; 0. Now we proceed as in 7.2 replacing the
spaces Qg by Ng. Therefore we find subspaces MI C MI’ C Mi such that
M1 = and such that
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and the family M" is minimal with this property. We denote

and let

As in 7.2.1 we consider the surjection

where E£ C Zg are the same, and we get the estimate

, -" , , B - . - , /

for any l. The estimation of the discriminant A is now simpler than in 7.2.

7.4.1. LEMMA. - With the above notation

where Cg (m) = Cg (m2, ... , mr ) .

Proof. By replacing dimensions and inserting the estimate for

n~ - n~ as in 7.2 we get

7.4.2. COROLLARY Let A = (A,,..., -J-l1,"’, -J-ls) be a polari-
zation for W and let A = (01521,"’, ar, -~c1, ... , be the associated

polarization for V as in 7.3. If all 0152i &#x3E; 0 and

then

Proof. The proof is the same as for 7.2.2, because the spaces PI
and Pi (M") are defined in the same way and we thus get the estimate
(a2 - p2)a21 &#x3E;_ Pl . D
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7.5. Estimate for (2.

The analogous estimate for (2 follows by duality while we can assume
that s = 1 or r = 1. The proof could be done by formally transform it into
a dual situation which is similar to that of 7.4, but it is better to keep direct
track of the weights. Let (x2, ... , xr, 11, ...18) be given in W L 0 V and
assume that its image under (2 is not semi-stable. Then there are subspaces
PI C Pi and Q’ C Qg such that

where q is defined as in 7.3, and such that

We assume that all ai &#x3E; 0, and then we may assume that Pf is maximal, i.e.
the inverse image of P’-1 0 Ai,i-1 under Pi - Pi-1 0 Ai,i-1 for i &#x3E; 2, and

similarly Pi in P, under Pi I Hs1’ As in 7.4 we can find subspaces
N~ C Nf such that

We choose subspaces N2 C N’ which are maximal such that

We have Ns’ = N§. We let Pl" be the inverse image of under

Then Pi’ C Pf. Furthermore we let inductively P" c Pf
be the inverse images for i &#x3E; 2. Then we have injections

and induced by factorization the images

The induced injections

imply for i &#x3E; 2 the dimension estimates
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Next we consider the homomorphism

We have and consider the subspace

By the definition of the constant di (n) = d1 (n1, ... , ns-1) we get

where

Further we have a surjective map

which is induced by the map and the induced surjection

Now we can estimate the discriminant in

7.5.1. LEMMA. - Let all the ai be non-negative and let

Then

Proof. Since we also have

with the same steps as in the previous proofs we get

Inserting the assumption on the first difference and the estimate for p2 - p"
we get the result. D
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As in the previous cases we obtain the

7.5.2. COROLLARY. - In the above notation let all 0152i &#x3E; 0, and all
&#x3E; 0, and let

Then

Proof. In the notation of 7.5 there is a surjection

because 7V~ = N.,. Therefore (o-S _ 1 - Ps-1)bs,s-1 &#x3E; as - If the

condition of the corollary is satisfied, then A &#x3E; 0 follows, where we
use = + Os-1. 0

Combining the results of 7.4.2 and 7.5.2 we get the

7.5.3. PROPOSITION. - Let A = (~1, ... , ~~., -,~1, ... , -~S) be a

polarization for (W, G) and let l1 = (01521,...,0152r,-{31,...,-{3s) be the

associated polarization for (W, G). Suppose that all a2 &#x3E; 0, and all {3£ &#x3E; 0

and that

Then

8. Projectivity conditions.

The projectivity of the quotient in 6.1.1 depends on the second
condition in (2), i.e. whether the boundary Z B Z of the saturated set
contains no semi-stable points of W. Again this condition depends on the
chosen polarization and conditions for the weights. In order to derive these
conditions in some cases we describe the boundary in terms independent of
the group action.
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8.1. Saturated boundary.

The elements of W are tuples vv = of

linear maps

If w E Z, there are an element w E W and automorphisms pi E Aut(Pi),
ai E such that

Here id stands for the different identities of the spaces A, B and H. We
let :Fi respectively ~i be the mapping

induced by xi respectively ~i for i &#x3E; 3. From the relations between the xi
and gz it follows easily that for each i &#x3E; 3 the composition X2 o F3 0 ... o x2
has a factorization

where the vertical map is the surjection induced by the pairings. This
follows from the commutative diagrams induced by the automorphism p2
and because ~2 o ~3 o ... 0 Çi admits such a factorization for each i &#x3E; 3.

We put x21 - X2. By the dual description for the maps yt we are given
factorizations

-

of the maps § . By similar arguments there
are also factorizations
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for all i &#x3E; 2 and dually factorizations

for all t. Moreover, there are further factorizations of the induced composed
maps

and dually

All these factorizations are based on mappings induced by the pairings. All
factorization conditions are independent of the chosen automorphisms. One
can rediscover the original components Ofi of w from or if 

and yl = qg for all j and all l. In fact we have

8.1.1. LEMMA. - Let w - W. Then

w E Z if and only if
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Proof. If w C Z, the three conditions are satisfied by the above,
where rank xi is the dimension of the image of gz and rank yf is the rank of qg
as the map B~+1,~ ® Qg . Let conversely w satisfy these conditions.
We proceed by descending induction to find automorphisms pi by which
the xi can be identified with the Çi . Note that the factorization conditions
are maintained under automorphisms. Since xr has maximal rank it is an
injection Mr Q9 Ar,r-1 - Mr-1 ED Mr Q9 Ar,r-1 = Pr-1. Hence we can find an
automorphism of such that pr-i 0 x, becomes gr . Let us assume
now that modulo some automorphisms pr-i? - we for

j &#x3E; i. We are going to find an automorphism Pi-1 such that o x2 = ~i.
Because of the rank condition we can assume that Q9 the

image of xi in Now using all the xz o 0 ... o gk we find that xi
has a factorization through the standard map

induced by the pairings. Now the rank condition implies that xi induces
an automorphism on Mj 0 This can be used to make x2 the

identity via an automorphism pi_ 1. Now xi - ~i . By the analogous dual
procedure we can also find automorphism ~,~ E Aut(Qg) such that we can
assume that yi = Tlf. Finally the factorizations or resulting
from 3) and 3*) yield mappings i or from which we get Of i as

composition

It follows from the special type of the ~i and qg that these are original
components of an element w = inducing ~y(~) == q. D

8.1.2. COROLLARY. - With the same notation as in 8.1.1, if w C ZBZ,
then

1) rank xi  rank gz and rank qg with strict inequality for at
least one i or .~, and

2), 2* ), 3), 3* ) of 8.1.1 are satisfied,.

Proof. All conditions are closed and thus hold for points in Z.
If w E Z B Z then by 8.1.1 equality in 1) cannot hold for all i and f . D

We are going to derive effective sufficient conditions for the

projectivity of the quotient in the cases (2, 1), (2, 2), (3, 1).
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8.1.3. PROPOSITION. - Let the polarizations A and ~1 be as in

Proposition 7.5.3 and let Z = G((W). Then ZBZ contains no semi-stable
point in the following cases:

Proof. We present only the case (ii), case(i) is an easier version

of (ii). Let (x2, 7? Y1) E Z B Z and let us assume that rank x2 is not maximal.
Let K be the kernel of M2 0 A21 -~ P, and let M2 C M2 be the smallest

subspace such that K is contained in M2 0 A21. We put P2 = M2 ,

and consider

By definition pi - dim(M2 0 A21/K). Diagram (L2) reduces in our case,
with M2 replaced by M2, to

and q22 vanishes on 82(K Q9 H21 ) because K is the kernel of x2 . Therefore

In order to estimate q’ we consider diagram (L21 ) enlarged by the
commutative square of induced pairings
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Again the map ~12 vanishes on 61 (K (g) and we get

Now we have the estimate

Therefore the condition cxl &#x3E; (m2 ) + 02 C2 (m2 ) would be sufhcient,
because a2P’ 2 &#x3E; 0. We modify the last estimate as follows. Since the weights
in case ( 2, 2 ) are related by

and since we have A2 - a2i Ai &#x3E; 0 and p2a21 - P’ &#x3E; 0, we get the estimate

This shows that A &#x3E; 0 if x2 is degenerate and the first condition of (ii) is

satisfied. In case rank y, is not maximal the second condition follows by the
dual procedure. 0

8.2. The case (3,1).
In order to derive a similar result in case (3,1 ) we introduce the

additional constant c3 (m3 ) analogous to ~3(7773): = ci (o, m3 ) in 7.1. Let

be the linear map induced by the pairing and let /C be the family of all
proper subspaces .K C M3 0 A32 which are not contained in M3 Q9 A32 for
any subspace M3 C M3 different from M3. We put

For brevity we write



166

8.2.1. PROPOSITION. - Let (r, s) = (3,1), let A == (~1,~2,~3,-~!)
be a polarization for (W, G) and 11 = (al, a2, be the associated

polarization for (W, G), and assume that all ai &#x3E; 0 (in this case pi - 1/ n1)’
If

then Z B Z contains no semi-stable point.

Moreover, condition 1) may be replaced by any of the conditions

Remark. - Z B Z contains no semi-stable point also in each of the

following cases:

This can be seen by a direct estimate of the discriminant A after substituting
for q’ in the following proof.

Proof. Let (X2, X3, ’Y) E Z B Z. We distinguish the following cases of
degeneracy of x2 and x3.

Case 1: x3 is injective. - Then by the proof of 8.1.1 we can assume
that x3 - ~3 is the canonical embedding and that x13 and x2 have a
factorization x2 in the following diagram:

Here also ~3 is the canonical embedding. Moreover it is easy to verify that
in this case also the composed map -y o (x2 0 id) admits a decomposition
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Here K = 0 since ~2 cannot be injective by the assumption on
its rank. We choose subspaces M2, M3 such that

and such that these subspaces are minimal with this property. Now we
consider the spaces

and their discriminant

By the definition of the constant cl (m2, and the diagram

we obtain the estimate

where by the definition of Pf we have p~ == + ~~3~31 ~ 1~. Inserting
this we obtain

If À1 &#x3E; 0, conditions 2) and 3) imply that A &#x3E; 0. If, however,
pici we have the direct estimate

This proves the proposition in the first case.

Case 2: X3 is not injective. - Here we let K denote the kernel of x3
and we choose a subspace M3 C M3 such that K C M3 ® A32 and M3
is minimal with this property. Then we consider the subspaces
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We have the exact sequences

where L denotes the kernel of z13. From the factorization properties
restricted to the spaces PI and Q~ we extract the following commutative
diagram of surjections:

From this we get again the estimates

where p; - and p2 = k. Let 0  t  1 be a real

number. Then we have Substituting this into the
discriminant we get

Now condition 1) enables us to find t with

such that the first two terms of the estimate are non-negative. Therefore
A &#x3E; 0, and again (X2,X3,7) is not semi-stable.

In order to show that 1) can be replaced by one of (i), (ii) or (iii) we
substitute cx2 and p’ and get after cancelation
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If cx2 &#x3E; then by a direct estimate we get A &#x3E; 0. Therefore we may
assume that a2 &#x3E; 0. Since in addition i  we get

This shows that 1) can be replaced by (i). In the same way one shows that 1)
can be replaced by (ii), using the other estimate of q’. That finally 1) can
be replaced by (iii) can be shown by substituting first p’ /a32 and
canceling a2p2 and then substituting p’ &#x3E; pi/a21 to get

8.3. Proof of Theorems 1.5.1 and 1.5.2.

Theorem 1.5.1 is an immediate consequence of Proposition 6.1.1,
Corollary 7.2.2 and Proposition 8.1.3. Theorem 1.5.2 follows immediately
from Theorem 1.5.1 and 9.1. D

9. Examples.
9.1. Constants.

We give here some constants (cf.7.1) used in the examples. The
following result is proved in [12], Prop. 6.1.

9.1.1. PROPOSITION. - For homomorphisms of type

on a projective space of dimension n we have

9.1.2. LEMMA. - For homomorphisms of type

on the projective space the constant cl (1,1) is dim(V)/ dim(Sd-1V).
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Proof. We put s(p) = dim(SPV). The homomorphisms 61 of 7.1
reduces here to the canonical map

If K is a proper subspace which is not contained in one

of the summands, it contains elements ( f , g) with f # 0 or elements ( f , g)
0. But since f 0 SdV ---t S’2V is surjective, the map 6(K) - 

is surjective. Hence codim(6(K))  ~(1). If K contains an element (0, g)
0, then 6(K) = V. For then 6(K) contains V, and since

6(K) - S2 V is surjective, if follows that 6(K) = C V. Therefore, if

codim(6(K) ) &#x3E; 0, there is a basis of K with 

linearly independent, i.e. dim(K)  s(d - 2) or codim(K) &#x3E; s(d - 1).
Therefore cl ( l,1 )  s(l)ls(d - 1). But now we can find subspaces
which realize this bound. For any z C V* we let K be the space of all

( f , f z), f E Then K ^--’ Sd-2 V* and it follows also that in this case

b(K) ’~ Then codim(8(K))/ codim(K) = 1). ° D

9.2. First example of type (2,1).
We use the abbreviation m.~ for 0 .~’ for a sheaf and a positive

integer and consider here homomorphisms

over P2 of type (2, 1). The polarization A = (À1, A2, -j,l1) is supposed to
be proper for W and W, i.e. Ai &#x3E; 0 and az &#x3E; 0 for all i. The only
constant involved here is cl(Tn2) = c( 1 ) = 0. Therefore the conditions
of 7.2.2 and 8.1.3 are automatically satisfied by a2 = A2 - 3A, &#x3E; 0. Hence

all the quotients of WSs (G, A) will be good and projective under this
condition. Since 2À1 + A2 = 1 and 3pi = 1, we can replace the polarization
by the rational number t = A2 &#x3E; 3 (cf. 9.3). The numerical condition for
(semi-)stability then becomes

where (m1, m2, n) is the dimension vector of a (01, §2 )-invariant sub-family
of vector spaces, such that 2, m2  1, n  3. One can easily check
that t = 3 is the only value for which A might be zero, and this is the
case for the values (o,1, 2) and (2, 0,1). And indeed, the homomorphisms 0
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given by matrices

with generically chosen entries and linear forms zi are semi-stable and not
stable for t - 3

9.2.1. The case t &#x3E; ~. - It is easy to show that in this case (01, 02)
is t-stable if and only if

. CP2 is nowhere zero,

. for any (~1,~2) = ~ ’ with h E H and any 1-dimensional

subspace M1 C C2 we have ~1 (M1 (®C~(-2)) ~ 0.

The first condition says that coker(02) is isomorphic to the universal
quotient bundle Q on P2, and the second that CP1 induces a 2-dimensional
subspace of It follows that the sets of stable points are
the same for t &#x3E; 3 , which we denote by W+ . Moreover, from the above
characterization of stable homomorphism we deduce that the geometric
quotient M+ = W+~G is isomorphic to the Grassmannian

which is smooth of dimension 26. There is an interesting subvariety Z C M+
which consists of the images of the homomorphisms

which belong to W¡. These are those (§1, for which the induced

homomorphism 20(-2) - Q is not injective. We will see next that

Z is isomorphic to the non-stable locus of Mo below and is smooth of

dimension 10.

9.2.2. The case t = 3 . We write for ~F~( §). When considering
the matrix representations we find that W§ C and that the remaining
part Was B W¡ consists of those homomorphisms for which rP2 is zero in

exactly one point. Such homomorphisms are equivalent to matrices
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where z, w are independent linear and f, g are independent quadratic forms.
Note, however, that W~ intersects the non-stable locus of Wôs in matrices
equivalent to those of type (1). But the orbit closures in Wôs of both
types (1) and (2) of matrices contain the direct sums

of independent linear and quadratic forms. From that it follows that the
induced morphism

of the quotients is bijective and moreover an isomorphism by Zariski’s main
theorem, because both spaces are normal. The points of the non-stable
locus Mo B Mo are represented by matrices of type 3). It is again routine to
deduce from this observation that

The subvariety Z C M+ corresponds to this set under the isomorphism.
We can also identify the set Mo of stable points with Gr(2, HOQ(2)) BZ.

9.2.3. The case 3  t  ~. Similarly to the case W+ we find that
here W S = is independent of t and that W S C W ôS. The remaining
part consists now of all homomorphisms which are equivalent to a matrix of
type (1). Note that now homomorphisms of type (2) are contained in W’.
The induced morphism

is again surjective but not injective over Mo BMô. Let Y be the inverse
image of Mo B Mo . Then Y consists of the points which are represented by
matrices of type (2) which are not equivalent to matrices of type (3). It is
easy to check that the restricted morphism

is bijective and therefore also an isomorphism by Zariski’s main theorem.
We are going to verify that Y is a divisor in M-. There is a morphism
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which assigns to the class of (01, ~2 ) the point x at which Ø2 is degenerate.
In this case

where Z~~ is the ideal sheaf of x. For such (01, §2) we are given an exact
diagram 

-

such that (Ø1, ~2 ) corresponds to a 2-dimensional subspace h C jH~(0(2) 0
l~ (3)). The condition of defining an element of Y is that h is neither

contained in nor in H° (C~ (2) ) s for any section s of C~ 
We let Ux C Gr(2, H° (C~(2) ® Z~ (3) ) denote the open subvariety of such r.
By assigning to r the class of (02, Ø2) where Ø1 is defined by a lifting
in the above diagram, we get a morphism M- whose image is the
fibre Yx = p-1 (x) . The morphism

Ux --~-’ Yx

is nothing but the quotient of Ux by the algebraic group Aut (0 ® Z-x ( 1 ) ) .
It follows that Yx is a variety of dimension 23. Using the techniques of this
paper for this quotient, we can even prove that Y is smooth. Finally Y has
dimension 25 and thus is a divisor in the irreducible and normal variety M_ .

Remarks. 1) One would like to interpret the matrices of type (2) as
representing extensions of the sheaves coker( f , g) and Ix ( 1 ) - coker ( ~ ) .
Indeed a matrix of type (2) defines such an extension, but this extension is
isomorphic to the direct sum.

2) The above correspondence between (01, Ø2) and r indicates that
the quotient spaces considered here are spaces of coherent systems as in [23].
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9.2.4. The flip. The diagram M- - Mo ~ M+ can be interpreted
as a flip. It is induced by the inclusions WS C Was D W+. The orbits
of stable points of type (2) in Ws and of type (1) in W+ don’t intersect
in Was but so do their closures in Was. Thus the fibres of M- - Mo
and Mo ~-- M+ correspond to the two different types of semi-stable orbits
in Was defining the same points in Mo BMô.

9.3. General homomorphisms of type (2,1).
In a more general situation of type (2,1) we consider homomorphisms

over A polarization in this case is determined by the rational number
t = M2A2 with 0  t  1 and 1 - t = m1À1, /11 = 1/ni. A A-(semi-)stable
homomorphism is then called t-(semi-)stable. We write and 

for A) and A). In terms of t the conditions are

The constant c1 (m2 ) is given in Proposition 9.1.1. Such polarizations exist
if and only if

In order to measure t-stability we introduce the numbers

and call (rl , r2 , s 1 ) 0-admissible if there are subspaces Ml C Mi,
M2 C C N1 of dimensions mi, m2, ni such that 0 maps
Mf 0 0 (- 2) ~ M2 0 0 (- 1) into Nf 0 0. Then 0 is t-(semi-)stable if and
only if for any 0-admissible proper triple (rl, r2, Sl), i.e. a triple which is
neither (0, 0, 0) or ( 1,1,1 ), we have

A polarization t is called critical if there are proper triples with Ot - 0.
Thus the critical values of t are the rational numbers

where we may assume 0,1 and thus r1 i- r2. We let tmax be the
maximal critical value if there are such with 0  t  1 and put tmax = 0
otherwise. If t is not critical we have W s (t) = 
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9.3.1. LEMMA. - Suppose that m2 and nl are relatively prime and
that tmax  t  1. Then (~ = (Ø1, 02) is t-stable if and only if

1) Ø2 is stable with respect to the group GL(M2) x GL(N1).
j

2) For any 1-dimensional ) M1, and any h in

Hom(Ml Q9 C~(-2), M2 0 C~(-1)) the map

is not zero.

Proof. By the characterization of stability in Section 3 the

homomorphism cP2 is stable if and only if for any proper pair M2 C M2,
Ni C N1 of 02-admissible subspaces r2  sl . Now let (01, 02 ) be stable.
If c/J2 were not stable there would be a proper §2-admissible pair (r2, sl )
with s,  r2. But then si  r2 because are supposed to be

relatively prime. Then sl /r2  t because sl /r2 is a critical value and thus
r2t - sl &#x3E; 0, contradicting the stability of (~l, §2) . Condition 2) is

trivially satisfied if (~1, (~2) is t-stable, because otherwise (1, 0, 0) would be
admissible with Ot - 1 - t &#x3E; 0. We have to show now that conversely
1), 2) imply that (~1, §2) is t-stable. For this let (r1, r2, sl) be a proper
(~1, §2)-admissible triple. If r1  r2 and r2 = 0, there is nothing to prove.
If r2 &#x3E; 0 then r2  S1 by 1) and we have t(r2 - ri)  sl - r1 and hence

At  0. If however r2  r1 we have At  0 in case r1  si. Since the case

r2 is only possible if s 1 = r2 = 0 and then r1 = 0 by 2), we can assume
that r2  Sl  rl. But then

because the fraction is a critical value, and last inequality is the inequality
At  0. D

Now we are able to describe the space M+ = for tmax  t

which is independent of t. According to the lemma can only be

non-empty if there are stable morphisms 02. This is the case if and only if

where a (n) = -1 (n + 1 + V~-(-n +-l) 2 - -4- ), see [6]. We restrict ourselves
now to the case where in addition to the previous conditions on ni, m2
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we have n1 &#x3E; nm2 and (~1,7~2) == 1. Then a stable cP2 is injective
and a subbundle (except at finite number of points in case nl = nm2,
see [6], [9]). The quotient space of this space of stable homomorphisms by
GL(M2) x GL(N1) is denoted by N = N(n + 1, m2, nl). It is a smooth

projective variety and there is a universal sheaf E on N x Pn. For x C N
let Sx denote the fibre sheaf representing x. Since it is the cokernel of the

representing homomorphism 02, we get

Therefore p.E(2) is locally free on N where p denotes the first projection of
N x Now M+ can be non-empty only if

If conversely this is the case for any stable CP2 and any subspace
M1 C HO£x(2) where x = [02 1, there is a lifting CP1: M1 © O(-2) - N1 Q90
of . , and ( I satisfies (1), (2) of the lemma. It follows
now easily by considering corresponding families that

where GrN denotes the relative Grassmannian. It is more difficult to

characterize the other moduli spaces M(t) = for the intervals

between the critical values or for the critical values and to interpret the

flips between them.

9.4. Example of type (2,2).
We consider now a simple example of type (2, 2) on P3 of

homomorphisms

Again the polarizations A = (A, 1 A21 -p2) are supposed to be proper
for W and W such that we have Ai &#x3E; 0, pg &#x3E; 0 and

All constants c£ (m2) and dz(ni) are again zero, because M2 = n1 - 1.

Then by the above conditions also the conditions for Proposition 7.5.3 and
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Proposition 8.1.3 are satisfied, such that there exist a good and projective
quotient for any polarization satisfying the conditions. Since
we have À1 + A2 = 1 and + 3/-L2 - 1, the polarization A is determined
already by A2 and for which the above conditions become

Next we derive the conditions for the occurrence of true semi-stable points.
If (m1,m2,n1,n2) is the dimension vector of a 0-invariant sub-family we
have to consider the equation

By inserting all possible dimension vectors we get the six conditions

If one of these is satisfied, there might be non-stable points in W" (G, A). In
the following Figure 1 the lines with the equations (2) are shown together
with the rectangle (1) (lower right), for the points of which we get good
and projective quotients.

Figure 1

The homomorphism 0 defined by the matrix
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where the zi are homogeneous coordinates of P3, is easily verified to be
G-stable for each polarization A in the rectangle (1). Therefore the moduli
spaces are not empty. On each of the three lines in the rectangle (1) each
point defines one and the same open set and hence one and the

same moduli space with semi-stable and non-stable points. Similarly, on
each of the four open triangles we have one and the same moduli space,
which is a smooth projective geometric quotient. Each of the seven spaces
has dimension 77. The reader may also verify that the moduli space for an
open triangle admits a morphism to the moduli space of each of its edges,
thereby defining a chain of flips.

9.5. More general homomorphisms of type (2,2).

More general homomorphisms for which we know the constants

explicitly are homomorphisms of type

over P3, say. By Proposition 9.1 the constants are here

Let W be the space of those homomorphisms. A proper polarization
A == (À1, A2, 2013/~i, ~~2) for W satisfies

with al, ~2, J.-l1, p2 positive. We will also assume that a2 &#x3E; 0, $1 &#x3E; 0, i.e.

~2 &#x3E; 4Ai and J.-l1 &#x3E; 4/~2. These four conditions can be replaced by

9.5.1. CLAIM. - There are polarizations A such that (G, t1) admits
a good and projective quotient in the following cases:
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Proof. - The conditions of 7.2.2 for the equivalence of (semi-)stability
become

and the conditions of 8.1.3 for the projectivity of the quotient become

The first condition of (3) follows already from the first of (2). After replacing
Ai and p2 conditions (2) and (3) are equivalent to

Using (1) for ~2, we find that (4) has a solution (À2,JL1) if the system

has a solution pi. For this we distinguish the cases n2  8, n2 = 8, 8  n2.

If n2  8 the first inequality of (5) has a solution  2 if m 1  6.

If n2 = 8, then 6, which is case (i’). If n2 &#x3E; 8, the first inequality
of (5) reduces to

Then (5) has a solution III if and only if

These inequalities reduce to

They are all satisfied if we suppose (ii) of the claim. D
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Figure 2. Here the horizontal axis represents m2À2 and the vertical
axis represents n1111 for m 1 = 3 an d n2 = 5.

In Figure 2 the lines of the critical values of the polarizations, i.e. of
the pairs (A2, pi) are shown together with the small region of those pairs
which satisfy the sufficient conditions (4) for the existence of a good and
projective quotient, based on the values m1 = 3 and n2 = 5.

9.6. Example of type (3,1).
As an example of type (3,1 ) we consider only the space of

homomorphisms

over P3. We assume again that all Ai and all a2 are positive. Then the
conditions of 7.2.2 together with the normalization of the polarization are

As additional condition for the projectivity of the quotient we use

condition (a) of the remark following Proposition 8.2.1. Since in this case
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both the constants c3 ( 1 ) and are zero, this condition is just A1 &#x3E; 0

and is already satisfied by our assumption.
For homomorphisms of the above type the condition A3  5 is

necessary if W’(G, A) 54- 0. For if 0 - (~1, ~2, ~3 ) is an element of W

then Ø3 has degree 1 and thus contains at most 4 independent components.
Then m 1 = m2 == 0 and m3 - 1, n 1 - 4 is a choice of dimensions of

0-invariant subspaces and the discriminant becomes A = A3 - 5 i
By 9.1.2 the value of cl ( 1,1 ) is -1. Now it is easy to see that there

exist polarizations A which satisfy the above inequalities. That 
is then indeed non-empty follows from the existence of generic matrices
as in 9.4. Moreover there are again regions of polarizations for which the
sets are the same and which are responsible for flips.

10. Construction of fine moduli spaces of torsion free
sheaves.

Let n,k be integers such that n &#x3E; 2 and

Let V be a vector space of dimension n + 1, Pn = P(V). We will study in
this chapter morphisms of sheaves on Pn of type

Let f 1 : C2 ---t V* the linear map induced For semistable morphisms
(with respect to a given polarization) f 1 is non zero. So it is of rank 1 or 2.

Morphisms 4D such that f 1 is of rank 2 are called generic, and those such
that f 1 is of rank 1 are called special.

10.1. Generic morphisms.

Suppose (D2) is a generic morphism. Let P = Im(f1)
and Pn-2 C Pn be the linear subspace of zeroes of linear forms in P. Then
4&#x3E;1 is isomorphic to the canonical morphism

hence we have 0(-3), and IPn-2(-I) (the ideal sheaf
of twisted by O( -1)). Let
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be the restriction of ~2 to It vanishes on JID n-2 and induces a linear

map

10.1.1. LEMMA. - If lf is semi-stable (for some polarization) then f’
is injective.

Proof - Let I~o = C Ck . Then Im( 1&#x3E;’) C 0 Q9 Ko. The
morphism

induced by (D vanishes on C7 ( - 3 ) = Hence it induces a morphism

where is the inclusion. Since (- 1), 0) = Hom(O( -1),0),
we can (by replacing 4) by an element of its Hom( O( -1),0 0 C’)-orbit)

’II-’’’’’ . - -

suppose that W2 = 0. It follows that Im( (
/ /

and since

~ is semi-stable, we have Ko = i.e. f’ is injective. 0

Note that we have taken k  (n + 1)2 = ~(2p~_~(3)), to allow the
injectivity of f’.

Suppose that f’ is injective. Let K = Im( f’). then 16’ is isomorphic to
the canonical morphism

It is easy to see that P and K depend only on the G-orbit of ~. Conversely,
suppose P and K are given. We can define an element ( ~ 1, ~2 ) of W
associated to P and K as follows: let (zl , z2 ) be a basis of P. Let

(zlqli + be a basis of K, with qli, q2i E S2V*. Using this
basis we can identify K and I~* with (C~ . We define

by C" -~ V*, (A, F-4 Azi - pz2 and
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10.1.2. LEMMA. - Let K C Ho(’P,,,-2(3)) a linear subspace of
dimension k. Then 4)K is injective outside of a closed subvariety of
codimension 2.

Proof. Let x E Then V K is non injective at x if and only if all
the elements of K (which are homogeneous polynomials of degree 3) vanish
at x. Suppose that ~K is non injective on an irreducible hypersurface S.
Then all the polynomials in K vanish on S. Let f be an irreducible equation
of S. Then all the elements of K are multiple of f. It follows that f is of
positive degree d  3, and K C But this in impossible since

10.1.3. LEMMA. - (~1, ~2) E W be defined by P C V* and
Suppose that there exist a polarization such is

semi-stable. Then (D is generically injective and coker(lF) has no torsion.
Moreover, if K is generic, 4) is injective.

Proof. Lemma 10.1.2 implies that 03A6 is injective outside a closed
subvariety of codimension &#x3E; 2. It follows that (D is generically injective and
that coker(03A6) has no torsion. To prove that 03A6 is injective for a generic K,
it suffices to find such that 4) is injective. Let (zl , z2 ) be a basis of P.
Let Q1, ... , (resp. q...... be linearly independant elements of 
that have no common zeroes in Pn, with r + s = k (this is possible since

It is easy to see that for such a K, 4) is injective. 0

10.2. The obvious moduli space of morphisms and its
universal sheaf.

Let P C V* a plane, IIDn-2 C Pn the subspace defined by P and
K C (3)) a linear subspace of dimension k. Let S (P, K) = 
where + is a morphism associated to P and K. Since the G-orbit of 03A6

is determined by P and K, E(P, K) is well defined. We will give another
construction of E(P, K).

Let 0K = It is a torsion free sheaf according to

Lemma 10.1.2.
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10.2.1. LEMMA. - We have Extl (C~~n_2 (-1), .~’K) ^_J C, and the non-
trivial extension by C~~n_2 (-1) is isomorphic to ~(P, K).

Proof. The exact sequence

implies H° ( . Using the exact sequence

we obtain the exact sequence

From (*) we get
where iK is the inclusion K E S3Y* . From the exact sequence

we deduce the exact sequence

where 0 comes from the multiplication

/-1: S2V* 0 P C S2V* 0 V* -~ S3V*.

The kernel of p is canonically isomorphic to A2p-L (9 V* and it is easy to
see that ix is contained in the image IK*. It follows that we have an
exact sequence

and that Ext 1

The last assertion follows from the commutative diagram with exact
rows and columns:
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Let M be the projective variety of pairs (P, K), where P is a plane of
V * and K C Ho (3)) is a vector subspace of dimension I~ (P,,, - 2 being
the codimension 2 linear subspace of defined by P). We can view M
as a moduli space for generic morphisms. We will give a construction of a
universal sheaf E on M x Pn, i.e. E is flat on M and for every (P, K) E M,

is isomorphic to the cokernel of a generic morphism associated
to (P, I~) . It is also possible to define a universal morphisms whose cokernel
is isomorphic to E, but we will see this more generally in 10.4.

Let Gr(2, V*) be the grassmannian of planes in V* and q : M -~
Gr(2, V*) be the obvious projection. Let U be the universal subsheaf of
0 x V* on Gr(2, V*). Let

be the projections. Then we have a canonical obvious morphism of vector
bundles on M x 

... , ,- , , " - - ,-

--, B , , ,

Let P be its cokernel. It is a flat family of sheaves on For every

(P, K) E M we have OPn-2’ Let K be the universal sheaf

on M x such that = K. Then we have a canonical obvious

morphism of vector bundles on M x P n,

v z , - , B -II 
. - -

Let F be its cokernel. Then for every (P, K) E M, is the sheaf that

was noted FK before. By Lemma 10. 2 .1, the sheaf (7p(0(-l)), 0)
is a line bundle L on M. Then we have a universal extension

- , " , , . -.- , .

on M x Pn. Then using Lemma 10.2.1 it is easy to see that for every

(P, K) E M, is isomorphic to the cokernel of a generic morphism
associated to (P, K).

10.3. Special morphisms.

Let + = (~ 1, 1b2) be a special morphism. Let f1: C2 --+ V* the

associated application of rank 1. Let H be the hyperplane of Pn defined by
Im ( f 1 ) . We have an exact sequence

Let

be the linear map induced by ~2’
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10.3.1. LEMMA. - If 4$ is semi-stable (for a given polarization) then
~2 is injective.

Proof. Let Ci , C2 be the two factors C of We can

suppose thet ker(f1) == C1. Let

be the restrictions of ~2? defined by q1 i, ... , ,S’2V * . Let (Zi, * * *, 
be a basis of V*, such that z, is an equation of H. By using
the action of Hom ( C7 ( -1 ) ® (~2 , C~ ® (~~ ) on W we can assume that

Now ~2 is not zero on c1: otherwise we would have qli E and

C C~ 0 with

and this would contradict the semi-stability of (D. Hence, by considering the
action of GL(2), it suffices to prove that ~2 does not vanish on (C2. Suppose
it does. Then vanishes on 0(-2) 0 C2, because q2i E ~(~2? - - - ? 
and again C 0 0 Ck’, with 1~’  dim(,S’2V*)  k, which contradicts
the semi-stability of D

10.3.2. LEMMA. - Suppose that 16 is semi-stable with respect to

some polarization. Then it is injective outside of a closed subvariety of
codimension &#x3E; 2, and has no torsion.

Proof. It suffices to prove the first statement. Let x E Pn and
u C (C2 such that u) = 0. Then we have either u E (~1 or u tt CC1
and x E H. Suppose that V is not injective at all points of an irreducible
hypersurface D ~ H. Then the same is true for Suppose that
this morphism is defined by quadratic forms ql , ~ ~ ~ , qk. These forms vanish
on D, hence they are all multiple of an equation of D. It follows as in the
proof of 10.3.1 that C 00 Ck’, with 1~’  k, which contradicts the

semi-stability of ~.

Now it remains to prove that (D2 is generically injective on H,
but this follows easily from the fact that ~2 is defined by an injection
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10.4. Fine moduli spaces of torsion-free sheaves.

10.4.1. DEFINITION. - Let S be a smooth variety, 0 a coherent sheaf
on S x IfDn, flat on S. We say that S is a fine moduli space of sheaves with
universal if the following properties are verified:

(i) For every closed point s E S the Kodaira-Spencer map

is bijective.

(ii) For every closed points with s, =,4 s2, and not

isomorphic.

(iii) For every flat family E of coherent sheaves on Pn parametrized
by an algebraic variety T, and for any closed points s E S, t E T such

that 0s £r St, there exist an open neighbourhood U of t in T, and a

morphism f : U ---+ S such that f (t) = s and

For example moduli spaces of stables sheaves admitting a universal
sheaf are fine moduli spaces of sheaves.

10.4.2. Application of Theorem 1.5.2. - Polarizations for morphisms

are defined by pairs (A,, A2) of positive rational numbers such that

y2 + 1 (so here y2 is associated to (] ( -1) and y1 to C7 0 

By Theorem 1.5.2, there exist a projective good quotient of the open
subset Wss of semi-stable points as soon as

The critical polarizations in our range are given by

Let
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(where ~x~ denotes the integer part of x). Then we obtain exactly q moduli
spaces of morphisms corresponding to non critical values: M1,..., Mq, i
where for 1  i  q,

with p = i + 2 (n + 1 + k)], E being a sufficiently small positive rational
number. We have Mq = M (cf. the end of 10.2).

10.4.3. Fine moduli spaces. - Suppose that we choose a polarization
such that t is not a critical value. In this case we have = W~, and the
stabilizer in G of the points of W’ is the canonical subgroup isomorphic to
C. Let M(t) = and 7r: WS ---t M(t) be the quotient map. On WS xJIDn
we have a universal morphism

(where p2 is the projection W S x such that 0 = coker(W) is a
flat family of torsion free sheaves on Pn parametrized by WS (this is a con-
sequence of Lemmas 10.1.3 and 10.3.2). There is a canonical action of G
on ,~’ such that C acts by multiplication.

Recall that a G-sheaf.6 on W S x descends to M(t) x Pn if there exist
a coherent sheaf S’ on M(t) x Pn and a G-isomorphism (7r x Ip~ )* (S’) £r S.

10.4.4. THEOREM. - There exist a G-line bundle L on M(t) x Pn
such that 0 .C descends to M(t). Let E be the corresponding sheaf
on M(t) x Pn. Then M(t) is a fine moduli space of sheaves on Pn with
universal sheaf E.

Proof. On WS we have a canonical action of G on the bundles

OW8 0 (C2, L = OWs and OWs Q9 Ck. On these bundles C acts as ordinary
multiplication by scalars. Let Ao, B0 be the G-bundles

(where pyv is the projection W~ x On these bundles C acts

trivially. We can multiply the universal morphism with Pw (L-1 ) and we
obtain a new universal morphism
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Now it is easy to see that the bundles Ao, Z3o descend to M(t) x Pn either
directly from our construction of the quotient, or by using the more general
results of [10], 2.3. Let A = B = 80/G. The G-morphism ~o also
descends and we get a universal morphism of vector bundles on M(t) x 

We define now £ = and it is clear that 1[* (£) ~ 0 0 L-1.

Now we prove that the Kodaira-Spencer map of E at z E M(t) is

bijective. Let w E ~r-1 (z). Then we have a commutative diagram

The tangent map T7r is surjective because M(t) is a geometric
quotient. So it suffices to prove that oz is surjective and that

dim(Ext1(£z,£z)) = dim (M (t) ) . Consider the exact sequence

It is well-known that (up to a sign) is the composition

of maps induced by the preceeding exact sequence. Now the result follows

easily from the exact sequence

We must now verify that if z1, z2 E M(t) are distinct closed points,
then Ez~ and SZ2 are not isomorphic. This follows from the more general
following result: if two injective morphisms of vector bundles on 

have isomorphic cokernels, then they are in the same orbit.

The property (iii) of the definition of a fine moduli space is easily
verified. D
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It follows that the q moduli spaces of morphisms M1, ... , Mq , with
their corresponding universal sheaves, are also fine moduli spaces of torsion
free sheaves on The moduli space Mq is the same as the obvious one M
(cf. 10.2), and the corresponding universal sheaf is the same (up to an
element of Pic(M)) as E.

These examples are generalizations of the case of P2 (with k = 7) that
was treated in [11]. But in this case our results are not needed, because we
get only two fine moduli spaces: one is the obvious moduli space and the
other is the corresponding moduli space of stable sheaves on JP&#x3E; 2.

On n &#x3E; 3, our moduli spaces are new. We don’t know if the

corresponding moduli space of stable sheaves is among them.

Remark. - It is not hard to prove that all the moduli spaces

M1, ... , Mq are distinct.
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