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SPECTRAL SHIFT AND MULTIPLICITY OF

THE FIRST EIGENVALUE OF THE MAGNETIC

SCHRÖDINGER OPERATOR IN TWO DIMENSIONS

by László ERDöS 

1. Introduction.

Multiplicity of low lying eigenvalues of Laplace-type operators over
a compact Riemannian manifold M has been of great interest since its
intrinsic relation to topology and geometry. In case of the Laplacian on
functions, the lowest eigenvalue (= 0) is always simple. The second and

higher eigenvalues can have arbitrary degeneracy if dim(M) &#x3E; 3 (see
[CdV86]), but in two dimensions the degeneracy is subject to topological
constraints [C], [Be], [HON].

Another celebrated example is the square of the Dirac operator
(Pauli operator) on a Spin’-bundle, where the index theorem may give a
constraint on the ground state multiplicity. In two dimensions, in particular,
the multiplicity of the zero eigenvalue is at least the total curvature of the
connection, or, with physics terminology, the total flux of the magnetic
field, 4l : = 2~ fM B (Aharonov-Casher theorem, see [AC], ~ES~). Note that
4l is a topological invariant of the Spin’-bundle: it is the Chern number of
the corresponding determinant line bundle.

In this paper we investigate the magnetic Schrodinger operator
(magnetic Laplacian) on a line bundle L over M. First we prove that
the lowest eigenvalue is bounded from above essentially by the average

L1-norm, % of the magnetic field (Theorem 2.1). The constant in

(*) Partially supported by NSF grant DMS-9970323.
Keyivords : Magnetic Laplacian - Multiplicity of the ground state - Riemann surface.
Math. classification : 35P15 - 58J35 - 81Q10.
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the estimate depends on the geometry of M and we show, via an example,
that this dependence is unavoidable (Section 6.2).

We then show that JM B also controls the multiplicity of the lowest
eigenvalue (Theorem 2.2). This answers to a question posed in [CdVT].
A similar question for graphs [CdV97] raises the conjecture that the
constant in this estimate should be universal. Our proof only yields a
constant that depends on the geometry of M, since along the proof we use
the bound on the lowest eigenvalue whose constant is geometrical.

However, our estimate depends on the curvature of the bundle in an
optimal way. Let M = ,S’2 for definiteness, however similar constructions
work for other manifolds as well. The Riemann-Roch theorem easily gives
that the ground state is (~ + I)-fold degenerate for a constant field B on
the nontrivial line bundle with Chern number (D = 2~ fM B. It has been
shown in [CdVT] that if an additive scalar potential is also allowed, then
arbitrarily high multiplicity of the ground state is possible even on the
trivial bundle. A recent example in [BCC] has answered affirmatively to a
question of [CdVT] as to whether an arbitrary degeneracy is possible on
the trivial bundle without scalar potential. In this construction, however,
the Ll-norm of the magnetic field was at least an exponential function of
the multiplicity.

We present a different construction (Section 6.3) with a magnetic
field whose L’-norm is comparable to the ground state multiplicity. This
example shows that the bound JM B ) on the multiplicity is optimal, modulo
geometric constants. In fact the proof works for any fixed multiplicity
pattern of a finite part of the low lying spectrum.

This result is in strong contrast to the case of the Pauli operator
on ,S’2 whose ground state multiplicity is given by the modulus of the
Chern number, unless this number is zero [ES]. From the physical side, this
is another manifestation that inclusion of the spin substantially changes
the spectral properties of the corresponding free kinetic energy operator
(Schrodinger vs. Pauli).

We emphasize that we use only the L’-norm of the magnetic field B in
our estimates (see Remark 3. after Theorem 2.2). Similar results involving
other LP-norms (p &#x3E; 1) are much easier to prove (for example an L2-bound
is given in [BCC]), but such bounds have no apparent topological flavor.
Note that, for example, if B has a definite sign, then
where n is the Chern number of the bundle.
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2. Statement of the results.

Let (M, g) be an oriented compact connected surface without

boundary and with a Riemannian metric g. Let d(x, y) be the distance
function on M and let v9 = *1 be the volume (area) form of the metric g
associated with the orientation of M where * is the Hodge dual. We denote
the Riemannian volume of a set ,5’ c M by IS I = and the geodesic
ball (disk) of radius r about x E M by D (x, r).

Three numbers, C1, C2, C3 &#x3E; 0, will control the geometry of M. We
assume that the Gauss curvature and the injectivity radius i (r) satisfy

Furthermore we assume a positive lower bound on the isoperimetric
constant I(M) of the manifold M,

We recall that

where the infimum is over all closed curves N that separate the manifold M
into two pieces, MI and M2.

We consider a complex line bundle L over M equipped with a
hermitian scalar product (, ) and a compatible smooth connection V.
The scalar product on sections of L is defined as (~,77) = and

I = (ç, ç)1/2 is the L2-norm of ç. We denote the corresponding Hilbert

space of L2-sections by H. Let

be the curvature of V, then

is a real 2-form on M, which is also called the magnetic field. The intensity
of the magnetic field B E C’(M) is defined by 13 = i.e., B = *{3.
It is well known that the total flux 4l := 2~ is an integer, the Chern
number of L. For M = ,5’2 this number topologically classifies the complex
line bundles over M.
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The magnetic Schr6dinger operator (magnetic Laplacian) Hv = V* V
is defined on L2-sections of L via the Friedrichs extension of its quadratic
form

for a local orthonormal The quadratic form is independent
of the basis.

The bundle L has a canonical complex structure by defining
I I

in a local conformal coordinate system where, with a

real function u. The quadratic forms

are independent of the coordinates, and their selfadjoint extensions define
the positive operators and We have the basic relations:

On a local chart, U c M, we choose a normalized smooth section 0,
(0, 1 (in fact, 0 can be chosen globally on M away from a few points).
From d(~, 0) -- 0 we obtain -ia§ with some real 1-form a. Clearly
da = 0, and a is called the (local) vector potential. Let

where III - III denotes the norm on T*M obtained from the metric g. Then

be the bottom of the L2-spectrum of Hv. By gauge invariance, E depends
only on B in the simply connected case, otherwise it also depends on the
fractional part of the fluxes D - = 2,~ Jc a, j = 1, 2, ... , q. Here Cj ’s are a
basis of nontrivial homology cycles of M.
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As a special case, on a flat trivial bundle with (Dj -- 0 we can assume
that cx - 0 globally. Considering a global normalized parallel section 0
with VO = 0 we then see that Hv is unitarily equivalent to Ho := -L1,
on functions. We use the physics convention that the Laplacian, A, is a
negative operator, i.e., A = - (6d + d6).

Our main results are the following:

THEOREM 2.1 (Ground state energy estimate). - Assume that (M, g)
satisfies (2.1) .

(i) There exists a constant K* depending only on c1, c2 such that

The constant K* goes to zero as ci ---7 0 and c2 - oo.

(ii) The bound (2.5) would not hold in general if K* were not allowed
to depend on c2.

THEOREM 2.2 (Estimate on the multiplicity). Assume that (M, g)
satisfies (2.1) and (2.2). There exists a constant K** depending only
on cl , C2, c3 such that

where, . The constant K** goes to zero as cl ---7 0

and c2 ---7 oo .

THEOREM 2.3. - Given a finite set of positive integers, ..., 

and p &#x3E; 0, there exists a connection V on the trivial line bundle Lo
over ,S’2 with a magnetic = Bvg such that the multiplicity of the

eigenvalue of the magnetic Schrbdinger operator B7* B7 is exactly me for
f = 1, 2,..., k and

In particular, the multiplicity of the ground state can be comparable to the
L1-norm of B on a trivial bundle.
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Remark 1. - A lower bound on E that is comparable with the upper
bound (2.5) is false in general. On a small geodesic disk D of radius ro one
can trivialize L, where ro depends only on cl , c2 . If B is chosen to be zero
on D, then a trial function localized on D shows that E is at most 

i.e., it does not increase with the magnetic field. However, if B has a definite
sign, then E &#x3E; inf m I B by (2.4).

Remark 2. - A smooth trial function and a vector potential chosen

by the Poincar6 formula on D show that E  supm ]B) + K (cl, C2). The
key point in our theorem is that we do not assume any other control on
the magnetic field apart from B E L1(Vg).

Remark 3. - A B-independent Coo trial function localized on a

small geodesic disk D does not give the bound (2.5). This would require a
(local) vector potential a with f D IIIal1l2vg :::; K fD IBlvg but such bound is
not true even in the flat case. The local L2-norm of an appropriate vector

potential can be controlled only by the LP norm of B for any p &#x3E; 1 (Young’s
inequality), but not with p = 1. The point is that the trial function must
be small where B is large, in particular a field can have such a

singularity which forces the trial function go to zero at a point in some sense.
This phenomenon is well known for Dirac delta magnetic fields (see [LW]
for a Hardy inequality with such magnetic field), but it can occur for much
more complicated fields as well where one cannot use the explicit form of
the singularity. See [EV] for more details on this delicate issue for the Pauli
operator.

Remark 4. - A version of Theorem 2.3 was obtained in [BCC]
but the constructed magnetic field did not satisfy any effective bound in
terms of the multiplicities. The control (2.7) is important since it shows the
optimality of the bound (2.6). We recall that the construction of [BCC] uses
the fact that a strong magnetic field acts like a strong effective potential
barrier (see also [HH]). In particular, the ground states in different angular
momentum sectors can be localized in space and they can be tuned
independently by a properly chosen field. The separation of the sectors
requires a huge, practically uncontrolled magnetic field. Our construction
relies on a different idea (see Section 6.3).

Remark 5. - For simplicity, we assume that we are in the smooth
category, the connection and the metric are C°. Since the constants

K*, K** are independent of B, only the L1-norm of B is involved in the
estimates. By a limiting argument one can obtain similar results for less
regular connections.
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2.1. Manifold with boundary.

Since the proofs of our main results rely on local arguments, the
theorems can be easily extended to manifolds with boundary. We explain
the necessary technical modifications and we add an extra condition to

control the irregularities of the boundary. This section and Section 5 with
the proofs are independent of the rest of the paper.

The Friedrichs extension of the quadratic form Q in (2.3) defines the
Neumann quadratic form; to obtain the Dirichlet form one has to restrict
Q to sections vanishing at 8M. Our main results are valid for both cases
and we simply use the notations Q and Hv for both boundary conditions.
We will indicate when this distinction is necessary (Section 5).

However, the relations (2.4) hold only for Dirichlet boundary
conditions. Consequently, the lower bound E &#x3E; I (see Remark 1
above) holds for the Dirichlet ground state if B has a definite sign, but it
does not hold for the Neumann case. In fact, the Neumann ground state
can be much smaller than infM IBI even in the flat case, see e.g., [HM].

To state the theorem for manifolds with boundary, we first modify
the second part of condition (2.1) to

(2.8) 1 r, (x) I  ci dx E M, and ~(x) &#x3E; c2, VX E M, with d(x, o~M) &#x3E; c2,

i.e., the bound on the injectivity radius is required only for points away
from the boundary.

The additional assumption is a uniform cone condition. We define the
cones with center x E M, radius r &#x3E; 0 and angle a  7r in as

Let r(x, r, a) be the set of those 7’s such that the exponential map
expx : TXM - M is diffeomorphism on C(x,r,a,¡), its image is disjoint
from aM. We assume that there exists a positive constant c4 &#x3E; 0 such that

THEOREM 2.4. - Let M be a manifold with boundary and we assume

(2.8), (2.2) and (2.9). Let E be ground state of the Dirichlet or Neumann
quadratic form Q. Then the statements of Theorems 2.1 and 2.2 hold with
constants K* and K* * that depend on cl, C2, C3 and c4.
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Remark. - The analogue of Theorem 2.1 at least in the Dirichlet
case does not hold with a constant K* independent of c3 and c4. To see
this, we can consider the flat manifold M C R 2 which is the union of the
disk D = D(0,C2) and the rectangle R = [-N, N] x [8, -8] with N » C2,
0  6 « C2. Let the magnetic field be zero on M B D and uniform on
D with strength Bo &#x3E; 0. The average flux, ,

goes to zero as N - oo for any Bo and 6. On the other hand, an easy
calculation shows that E is at least of order min(Bo, 6-21 as Bo - oo,
6 - 0, independently of N. Roughly speaking, the ground state energy is of
order Bo on the disk D by (2.4), and it is of order 6-2 on M B D.

3. Proof of part (i) of Theorem 2.1.

We construct an appropriate trial section to bound the lowest

eigenvalue. We will not keep track of the exact dependence of the constant
K* on cl , c2, but the fact that K* - 0 as C1 ~ 0, c2 ---7 oo can be easily
seen from the proof.

The core of the proof is a local argument (Section 3.1), the trial section
will be supported on a small geodesic disc and local geometry does not play
much role. A covering argument will complete the proof (Section 3.2).

We first give an intuitive outline of the local argument. For simplicity,
here we assume that B &#x3E; 0. The first identity of (2.4) indicates that the
magnetic energy is large in regions where B is large. The trial section
therefore must be small in these regions. On the other hand, the magnetic
energy is always bounded by below using the diamagnetic
inequality (see (4.2) later). Therefore the major difficulty is that if the

~ B ~ const.} level sets are very complicated, then it may be impossible to
localize a section on them without too large H’ norm.

The key idea is that locally the trial section will be a function f of the
form f = e h where the real function h is a specific solution to Oh = B.
In the flat noncompact case, M = R~, the solution would be

Notice that if B is very large near a point x, then with this choice h(x) would
be very negative, hence f (x) would almost vanish. Such function therefore
properly takes into account the possible local "peaks" of B. The calculation
of the energy will show that this intuition is also correct quantitatively.
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Several technicalities are necessary to carry this idea through. First,
we have to remove the assumption B &#x3E; 0 by treating the positive and
negative parts separately. Second, we need to localize the problem on a
sufficiently small geodesic disk D where the local geometry is almost flat.
Third, we have to use the Green’s function, G(x, y), of this disk instead
of the Green’s function, 2,~ of the flat plane. We will need only
that G(x, y) behaves essentially logarithmically near the diagonal x = y
and away from the boundary. Finally, we have to estimate the L2 norm
of f = eh from below. We will show that fD e2h is comparable with
e2 max h using that h is subharmonic. This argument requires that maxD h
be attained away from the boundary of the disk. In order to ensure this,
we will modify the magnetic field B to B = Bx - Bo. Here X is a cutoff
function supported near the center of D and Bo is a strong, essentially
uniform magnetic field within the support of x. The trial function will
eventually be constructed from the solution of Oh = B. If Bo is sufficiently
large, then h will be large near the center of the disk and the maximum will
be attained away from the boundary. On the other hand, the additional
field Bo is regular with a total flux 0(1). For such fields it will be easy to
argue that they change the energy only by an 0(1) amount.

3.1. Trial function on a small geodesic disk.

The goal of this section is to prove the local version of part (i) of
Theorem 2.1:

PROPOSITION 3.1. Assume that the manifold (M, g) satisfies (2.1 ) .
Let Ro : - -1 min{c2, C- 112 1 and let D = D(m, R) C M be a geodesic disk
of radius R  Ro about m E M. Let  1 be fixed and suppose that

Let

be the bottom of the spectrum of the magnetic operator Ho restricted
onto D with Dirichlet or Neumann boundary conditions. Then there exists
a constant K, depending only on ~o, ci and c2 such that
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Convention. - In this proof letters K 2, ... denote specific positive
constants depending only on and ci , c2 from (2.1). The letter K denotes
a generic positive constant, depending on C1, c2, whose value may change
from line to line. Universal positive constants are denoted by (const.).

Proof of Proposition 3.1. - The proof is given in the following
subsections. D is simply connected since Ro  c2. The line bundle L is

therefore trivial, L = D x C, and for any connection V there exists a

global vector potential a on D. We know that the spectrum of Ho is

gauge invariant, i.e., E(D) indeed depends only on the magnetic field. The
Neumann ground state is lower than the Dirichlet one, so we will construct
a low energy Dirichlet trial section.

Fix a number 0  o  7 R. We define six concentric geodesic disks
C D about m with 1, 2,..., 6. They will

play the following roles. The additional magnetic field Bo will be essentially
uniform on DI and supported on D2, smoothly cut-off in between. The
maximum of h will be attained on D2. The trial function f will be equal to eh
on D3, supported on D4 and smoothly cut-off in between. The magnetic
field B will be cut-off between D4 and D5. Finally the Green’s function
of D will be approximated by the logarithm of the distance function on D6.

Let be Co cutoff functions for j - 3, 4, with Xj = 1

on Dj, supp(:
We let sy (x) - d(x, y) be the Riemannian distance function and

let s(x) := denote the distance from the center m of D. We also

introduce the notation for the arc-length measure inherited from vg.
For a set D C M with regular boundary we use the notation for

the og-measure of the boundary aD. Finally, let G(x, y) be the Green’s
function of the Laplacian on D (see, e.g., Theorem 4.17 of [A], but with our
sign convention for A). In particular it has the following properties: G is
smooth on D x D away from the diagonal, G(x, y) = G(y, x), G(x, y) = 0
if x E aD, and finally AyG(z, y) = 8x; more precisely

where p E C2 (D) rl C(D) (v is the outward normal).
We collected a few standard results from Riemannian geometry at the

end of the proof in Section 3.1.6. These will be used with proper reference
below.



1843

3.1.1. Modification of the magnetic field. - Let B+ 2 (1 B + B)
and B- :== ~ B) be the positive and negative parts of B. We choose
a smooth, increasing real function k(t) for t &#x3E; 0 such that

and (

We define the following smooth functions:

where F~ &#x3E; 0 is chosen as

with some constant -y to be determined later (see Lemma 3.3). Clearly,
C D5. Moreover,

using the flux condition (3.2), the volume comparison (3.36) from

Section 3.1.6 and the fact that

The last estimate follows from

from the choice of k, using (3.35) of Section 3.1.6 and
on the support of A [k (S2)].

3.1.2. Properties of the solution to - We define a solution

and we collect a few properties of h± which will be proved later in

Section 3.1.5.

First we need that the functions satisfy a reversed Holder
inequality on D4. On a flat space such property is related to the A2-weight
class used in harmonic analysis (see [St]). In a similar two dimensional
magnetic context it has been exploited in [EV].
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LEMMA 3.2. - There exists a constant ) such that

I 
h:,Next we estimate the maxima of Clearly h± are continuous, let

P± E D6 c D be points where the maxima of h± on D6 are attained,

Lemma 3.4 below asserts that the maxima of can be estimated by
their averages on a disk of radius p about the maximum points p± if p is
sufficiently small. Beforehand, we need to ensure that the disks D(p±,,O)
lie strictly inside D6 at least for large enough 1 because we can control the
Green’s function and h± only within D6.

LEMMA 3.3. - There exists 1 = 1(C1, C2) &#x3E; 0 such that the maxima

maxÏ56 h~ are attained on D2, i.e., p± E D2.

LEMMA 3.4. - There exist

such that for all o  oo,

Remark. - If M has no boundary, then one could alternatively define
hi:. using the global Green’s function of M and the analogue of Lemma 3.3
would follow directly from Ah± = B~ &#x3E; 0 outside of D2. However, we wish
to emphasize that our construction is local and we will use it for the case
8M # 0 as well (see Section 5).

For the rest of the proof we fix ry = ry(C1, c2 ) from Lemma 3.3 and let

with go from Lemma 3.4.

3.1.3. Energy estimate for the trial section. - We define h := h+ + h-
and f := X3 eh. Let 0 be any normalized section on D with 
and da = Bvg = 0. Clearly

on D4, i.e., da Since D4 is simply
connected, with some function g.
The trial section is defined as ~ and note that supp(~) C D4.
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LEMMA 3.5. - The energy of the trial section ) satisfies

Proof. Let F := F+ + F- and we recall from (3.5) and (3.2) that

using the estimate on dx3, volume comparison (3.36) and that
4s2  (const.) Q2. By the coarea formula,

where the inner integration is over the level set {.r E D4 : h+(x) = c}.
We recall that h± is constant on the boundary of D and h± E

by elliptic regularity from
In particular the level sets of h± are smooth curves for almost all values
of c by Sard’s theorem. Since the boundary of D itself belongs to one level
set, any other level set within the interior of D is a union of closed smooth
curves and these curves separate the sets {/z &#x3E; c} and {/z  c} for a.e. c.

Since (* dh+) (X ) _ ~~~ * = III for a properly oriented unit
vectorfield X tangent to these level curves, we can orient the curves such
that

for c &#x3E; h+(8D), where we used Stokes’ theorem, (3.6) and that y depends
on CI, c2 . For c  h+(8D) the set &#x3E; c} is replaced by  c}
in (3.17).
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Therefore we can estimate the integral in (3.16) by (3.17) to obtain

and similar estimate is valid for the dh_ term in (3.15). This completes the
proof of (3.13). 0

3.1.4. Louler bound on the L2 norm of ~. - By Schwarz inequality
and the support properties of x3,

We recall that D(p~, o) C D3 by Lemma 3.3. Now we can use Lemma 3.2
and 3.4 together with (3.36) to obtain

Combining (3.13) and (3.19) we obtain that the lowest eigenvalue E
of the quadratic form Q is estimated by

Recalling the definition of p (3.12) and the volume comparison (3.36), we
completed the proof of Proposition 3.1. D

3.1.5. Proofs of the properties of h±.

Proof of Lemma 3.2. - We prove (3.9) for h+, the proof for h-
is identical. Let

We can assume that 4) &#x3E; 0, otherwise h+ m 0. We use (3.7), (3.2), (3.38)
and (3.39) to estimate
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for x E D4. We have

3y Jensen’s inequality (applied to the probability measure 1

using that 203A6  203A60  2 by (3.2). We performed the x-integration first and
used that the singularity is integrable uniformly for all y E D5.

Similarly we obtain

1L/41 JD4

which, together with (3.20), finishes the proof of Lemma 3.2. D

Proof of Lemma 3.3. - We can assume that F± &#x3E; 0, otherwise

h± = 0. We estimate

The first term is estimated from below by
using

which follows from (3.39), (3.36) and (3.38).
For the second term in (3.21) we recall that 1~(s2) = 2g2 outside D2.

Hence
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using (3.3) and that s(x)  g. By (3.36) the second term in (3.21) is

estimated from below hence

if q is big enough, depending only on cl , c2 . In particular using (3.36) again

On the other hand, if x is on the boundary of D6, i.e., s(x) = 6{!, then
we have from (3.39)

Here we used (3.39) to estimate G(x, y) by H(x, y) and then the fact that
,o  11G for x E OD6, y E D5. The second term in (3.26) is zero
by (3.3) and (3.4), hence from (3.5)

By comparing (3.25) and (3.27), we can therefore fix a r :- C2) large
enough so that

Hence the maximum of h± on D6 is attained in the interior of D6.
Let p± E D6 be (one of) these points. Since Oh~ &#x3E; 0 outside of D2, we
obtain p± E D2. 0

Proof of Lemma 3.4. - For simplicity, we drop the ± indices, the

argument below is valid for both choices. We let
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i.e., AGp = 6p. We define a measure p on D(p, g) via a linear functional on
continuous functions 0 E C(D(p, o)) as follows:

where v is the outer normal of u). We have

on 8D(p, u) by (3.39) and (J" 9  47ru by (3.36). Thus (3.28) defines
a continuous functional, hence a Borel measure p. For small enough p
(depending only on cl , c2 ) this measure is nonnegative. By standard
properties of the exponential map and the measure p is absolutely
continuous with respect to vg and its Radon-Nikodym derivative satisfies

on D(p, o), p E D2, for small enoughy. Using (3.29) and Jensen’s inequality

For any 0  u  o and any smooth function ’ljJ on D(p, o),

by Stokes’ theorem. In particular for 1/J == 1,

for any u. Integrating it with respect to 27ru du from 0 to o we obtain
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Now let 0 - h, we apply (3.31), integrate as before and use (3.28)

Combining this with (3.30) and (3.32) and recalling 1 the

statement (3.11) would follow from

To estimate the first term in (3.33), we recall that

, Using (3.39) we have

which is bounded by a constant K using (3.6), (3.7) and (3.38). We also
used that

since B± &#x3E; 0 and sP:1:  o on D(p~, u) for u  p.

For the second term in (3.33) we use (3.39) again

We consider these two terms separately. In the first term we use Stokes’s
theorem and (3.6)

which gives a term of order g2 after the du-integration in (3.33).
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For the second term in (3.34) we use the explicit form of h (3.8) and
which follows from (3.39).

Hence

and finally we use (3.6) to complete the proof of (3.33). In the last

but one step we used that sp - u on 8D(p, u) and that the measure
Joe JaD(p,u) [...]ag du is bounded by 2vg on D(p, o) for small enough o
(depending only on cl , c2 ) . This follows from standard properties of the
exponential map in a small enough neighborhood. 0

3.1.6. Standard estimates from Riemannian geometry. - In the proof
above we used the following information based on standard comparison
results in Riemannian geometry. The lemma below guarantees that the

geometry is approximately flat on a lengthscale smaller than Ro.

LEMMA 3.6. - Let (M, g) be a compact two dimensional Riemann
surface without boundary satisfying the geometric conditions (2.1) on

the curvature and the injectivity radius. Let Ro 
Let D(x, R) be the geodesic disk of radius R about x E M and assume that
RRo.

(i) The distance function s. (x) - d(x, y) satisfies

(ii) The area and perimeter of the geodesic disk D(x, R) satisfies
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(iii) (Approximate mean value property). For any real function h E

(iv) (Integral of the logarithm of the distance). For any positive numbers
with A + /-t  1 there exist two positive constants m 3 = m 3 (A, it),

j = 1, 2, such that for any R  Ro, and any y, z with d(y, z)  J-LR,

(v) (Estimates on the Green’s function). Let G(x, y) be the Green’s
function of the Laplacian on D = D (m, R) (see (3.3) ) and let

then for x, y E D,

with constants K5, K6 depending only on cl , c2 .

Proof. Parts (i), (ii), (iii) are standard (see e.g. [J], Section 4.6
and 4.7). To prove the lower bound in (3.38) we extend the integration
to D(z, (A + p)R) then we apply part (iii) with h = S2 and use (3.35).
The upper bound follows from log(sz/R)  log(p + A) and from (3.36).
Finally the estimates on the Green’s functions easily follow from the proof
of Theorem 4.17 of [A]. D

3.2. Choice of the localization domain.

In this section we complete the proof of part (i) of Theorem 2.1.

We need to find a geodesic disk D(rrz, R) c M such that the flux

condition (3.2) is satisfied but the area is not too small. This is the

content of the following proposition. The estimate (2.5) then obviously
follows from Proposition 3.1. D
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PROPOSITION 3.7. - There exist a constant K depending only on
cl , C2 and a geodesic disk D = D (m, R) around some m E M with radius

such that

Proof. Around each point x E M we consider the geodesic disk

D(x, R(x)) of radius R(x)  Ro given by the condition

or if  ~r, then R(x) := Ro. If R(x) = Ro for some x, then we
can choose D := D (x, Ro ) and K accordingly to satisfy (3.40); henceforth
we can assume that (3.41) is valid for all x E M.

We can choose a finite covering M C with disks Dj -=
D(xj, 4R(xj)) such that the disks Dj := D(xj, R(x3)) are disjoint. To do
that, we first choose a finite covering from by
compactness, then we choose Dj ’s successively. Let D1 be the disk with
the biggest radius. Once Dl, D2, ..., Dj are chosen, we choose Dj+l to
be the disk of biggest radius among those whose center is not included in

U 3- 2R(xk)1. Let N be the number of disks selected in this way, it
is easy to see that Dj’s cover M and Dj ’s are disjoint ( j = 1, 2,..., N).

We define D := Di . By covering and (3.36) we have

Furthermore,

This completes the proof of (3.40).

4. Proof of Theorem 2.2.

This proof is an easy consequence of part (i) of Theorem 2.1 since
the multiplicity of E can be controlled by E itself (the same idea was used
in [BCC]). We consider the trace of the heat kernel of Hv for t &#x3E; 0:
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On the other hand

by the diamagnetic inequality, where A is the Laplacian on functions
on M. We recall that the diamagnetic inequality (semigroup domination)
on complex line bundles follows directly from the Feynman-Kac formula
as in the flat case (see, e.g., Theorem 3.5 in [R]). Another proof can be
obtained via Trotter product formula and Kato’s inequality following the

corresponding proof in the flat case (see ~HLMW~ ) .
The estimate on the heat kernel is standard:

see, e.g., formulas (2.9) and (1.18) in [CL].

By choosing t := E-~ we obtain (2.6) from (4.1), (4.2), (4.3) and (2.5).
D

5. Manifolds with boundary.

In this section we indicate the additional ideas that are needed for the

proof of Theorem 2.4. The core of the argument (Section 3.1) is local and
is valid for the 8M # 0 case as well if the center of the disk D = D(m, R)
in Proposition 3.1 satisfies dist(m, 8M) &#x3E; R.

For any go &#x3E; 0 let

be the set of points that are at distance at least 2 0o away from the boundary.
The threshold oo will depend only on CI, c2, c4 (see (2.1) and (2.9)). The
following lemma shows that the volumes of M and M are comparable if o0
is small.

LEMMA 5.1. - Assuming (2.1) and (2.9), there exist positive constants
go and I~’, depending only on CI, C2 and C4, such that

Proof. For sufficiently small o the cone condition (2.9) guarantees
that for any x E M there exists a point p(x) E M, dist(x, p(x))  c2 such
that the disk D(p(x), go) is disjoint from o~M hence the disk D(p(x), 2 00)
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is fully contained in M. By a standard covering argument one can select a
finite collection of points xi such that the disks be disjoint
and the disks D(p(xi), C2) cover. A volume comparison estimate (3.36)
gives (5.1 ) . D

For the rest of the proof of Theorem 2.1 (i), we replace M with M
in Proposition 3.7, this results in a disk D = D(m, R) with center in M.
We choose the radius R to be smaller than go and apply the argument
of Section 3.1. D

For the proof of Theorem 2.2 in the 8M fl 0 case we repeat the
argument in Section 4. The diamagnetic inequality is valid for manifolds
with boundary; the Laplacian being replaced with the Dirichlet or Neumann
Laplacian, OD or A’, depending on the boundary condition of Ho
(see [HLMW] for a recent careful treatment of both boundary conditions) .
The diagonal elements of the Dirichlet heat kernel can be estimated by the
Neumann one. The Neumann heat kernel is estimated in (2.9) of [CL] as

The estimate (2.2) on I(M) completes the proof of Theorem 2.4 on the
multiplicity similarly to the proof of Theorem 2.2. D

6. Examples.

We explore the sharpness of our theorems via a few examples and in
particular we prove part (ii) of Theorem 2.2 and Theorem 2.3.

6.1. Example 1: spectral shift with potentials.

Theorem 2.1 states that the inclusion of the magnetic field raises
the spectrum of the Laplacian by at most the absolute flux per unit

volume (apart from geometric constants depending on Cl, C2, C3). A similar
statement with a potential would claim (Ho = -0),

but this is false. To see this, let V (x) be equal to the constant -U « 0 on a
small E-neighborhood of a point m E M, x E D(m, c), and zero elsewhere.
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We can assume flat geometry around m. An appropriately scaled trial

function localized on D(m,c) gives inf Spec(Ho + V)  (const.)s-2 - U for
any c. Let B = U on and zero elsewhere. Using (2.4) it is easy to
see that Hv + V &#x3E; 0. Choosing U » c-2, we see that the spectral shift due
to the magnetic field is at least of order U, while the average flux can be

kept tiny if M ~ » U c2.

6.2. Example 2: proof of part (ii) of Theorem 2.1:
bound on the injectivity radius is necessary.

PROPOSITION 6.1. - For any 6 &#x3E; 0, there exists a sequence of

magnetic Schrbdinger operators Hn on the trivial bundle over appropriate
manifolds Mn, ø, with uniformly bounded Gauss curvature,

 6, and with a magnetic field Bn such that

but 11 J remains bounded. The injectivity radius of Mn, of
course, tends to zero.

Proof. Let F :1~ --~ R+ be a function supported on ~0, L~ ,
F E COO (0, L), F(O) = F(L) = 0, such that F(x) - F(L - x), F - E
on [f, L - f], with L &#x3E;&#x3E; f &#x3E;&#x3E; 1, E  I chosen later. Let M = llilF C JR3 be
the surface of revolution of F around the x-axis with the metric inherited

from JR3. For any é, 8 &#x3E; 0 one can choose = .~(~, b) large enough so that
for any L &#x3E; 2.~ there exists an F = FE,8,L so that the Gauss curvature
of M on the whole M. Of course, F’ (0 + 0) = oc and
F’(L - 0) = -oo and f(é, 8) -~ oc as E, 6 ~ 0. Roughly, M looks like two
distant big spheres connected with a narrow tube and with smoothed out
joints (see Fig. 1). In fact, the joints have to be long to keep the curvature
almost zero and get the necessary narrowing. For such manifold I r, is small,
the injectivity radius is also small (of order E) and the volume can be
arbitrarily big as L - oo.

To define the magnetic field, we partition M into five pieces
M = U5==l M~ such that
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We assume L &#x3E; 4.~.

Now we choose B such that B(x) = U » 0 for x E M1 U M2,
B(x) = 0 on M3 and B(x) = -U for x E M4 U M5. We also ensure that
2 Bvg be a half integer, i.e., U M2| = + 1/2) with some
N E N. Notice that fm Bvg = 0 by symmetry, hence one can realize this
magnetic field as the curvature of a connection V on the trivial line bundle.
The field B is not smooth to simplify our construction, but it can be

smoothed out on a very small lengthscale without changing the conclusion.

Figure 1. Surface of revolution with magnetic field vectors

We claim that

on the other hand, it is clear that

These statements prove Proposition 6.1 and then part (ii) of Theorem 2.1.

To show (6.1), we define a partition of unity : such

that X3- = 1 on Mj, i - 1, 3, 5 and dX3. is supported on a compact subset of
M2 U M4. We also assume that ]]] (const . )£  . By Schwarz inequality

By (2.4)
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for j = 1 and j~ == 5. We write

if~= , where 0 is a global normalized section.

We claim that

and

with positive universal constants. In particular, these estimates inserted
into (6.4) imply that

Finally, from (6.2), (6.3) and (6.7) our claim (6.1) follows.

The estimates (6.5) and (6.6) are given in the following two lemmas
applied to f x3. In both lemmas we let Sl be the circle of radius E and
let Z = (a, b) x 8; be an open cylinder equipped with the standard metric

We use x E (a, b), 8 E [0, 27r) cylindrical
coordinates on Z.

LEMMA 6.2. - Let f be any smooth function on Z that is zero in
a neighborhood of the lower boundary x S1 of Z. Let ex be a 1-form
with U E R+, then there exists a universal positive constant
such that

Similar statement is valid if f vanishes around the upper boundary ~b~ x ,5’~
by symmetry.

LEMMA 6.3. - Let a be a closed 1-form on Z with ;

where C is a closed curve in Z such that its projection onto ,S’~ winds
around once ( this integral is independent of the choice of C). Then there
exists a universal positive constant such that

for any smooth function f on Z.
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Proof of Lemma 6.2. - For definiteness, we consider the case

da = the other case is identical. Since d(£Uxd8) = it is

easy to see that a = éU x d8 + c d8 + dp with some smooth function cp on Z
and some constant c. Changing f to it is sufficient to estimate

for any function f on Z. We expand f into Fourier series as

hence

For each m == c-1(k - c) we can minimize the quadratic form

v

of the shifted harmonic oscillator under Dirichlet boundary condition at a;
g(a) = 0, and free (Neumann) boundary condition at b, i.e., g’(b) = 0.

We claim that

from which Lemma 6.2 follows. Notice that for g with Dirichlet boundary
conditions on both ends we would g) &#x3E; U J: using the explicit
lowest eigenvalue U of the harmonic oscillator on R.

Therefore,
by Schwarz inequality,
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If m - bUl  5,/-U, then we can symmetrize the potential around b
by defining W(x) :== 1m - UXl2 for x  b and W(x) := ~-~7(2~-.r)p for
x &#x3E; b. Then the lowest eigenvalue of T with Neumann boundary condition
at b will be the same as the lowest eigenvalue of -0921OX2 + W (x) on
[a, 2b - a] with Dirichlet boundary conditions on both ends. On the otherL 

hand, for a small enough q &#x3E; 0, hence

-c~2 /o~x2 ~ W(x) &#x3E; ) qU, using the lowest eigenvalue of the harmonic
oscillator on R. This completes the proof of (6.10). 0

Proof of Lemma 6.3. - We clearly have

and recall that f

For any fixed x E X we have

by the lowest eigenvalue of the Dirichlet Laplacian on viewing
as a periodic function in 0.

where A = a(80 ) - hence

With a slight abuse of notation, we dropped the variable x since it is fixed,
i.e., we assume that A, are functions on andoo is denoted by prime.
It is sufficient to show that for some small universal constant 1 &#x3E; q &#x3E; 0

(to be chosen later) we have

then (6.9) would follow from (6.11), (6.12) and (6.13). We can assume that
and for simplicity we use the notation
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Let g := f g and 9 = g - g. By the spectral gap of the Laplacian on ,5’1
we have

If then (6.13) is proven, hence we can assume that

in particular j i then

If p &#x3E; then (6.13) is proven, so we can assume that

In this case we use Schwarz inequality to estimate

hence (6.13) is proven with

6.3. Proof of Theorem 2.3: any finite sequence of multiplicities
can be realized on the trivial bundle.

We will use the method of stable perturbations developed in [CdV86],
[CdV87], [CdV88] and used in the magnetic example constructed in [CdVT]
with a potential. The magnetic Schrodinger operator on ,S’2 with a nonzero
constant field has a degenerate ground state, but the bundle is nontrivial.
Changing the bundle involves a nonperturbative change in the curvature
form 0. If an additive scalar potential is allowed [CdVT], then one can
consider a very strong positive potential supported on a small disk

as an "almost" Dirichlet boundary condition and one can trivialize the
bundle on the complement. Without potential, the corresponding region of
trivialization is not forbidden. Nevertheless, we can keep the spectral effect
of the trivialization under control by combining L°°-estimates obtained
from elliptic regularity with a special logarithmic cutoff function known
from the proof of the density of {0}) in We then supplement
this argument by a Hilbert space perturbation technique of quadratic forms.
This second part is similar to [CdV86] so we skip some straighforward steps
but we keep the presentation self-contained.
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Proof of Theorem 2.3. - We let M :_ ,S’2 with the standard metric,
written as g = (dO) 2 + in usual spherical coordinates, where 0
is the geodesic distance from the North pole N. Let Ln be the line bundle
over M with Chern number n E Z; this is unique up to bundle isomorphism.
Let n + 1 == mi-t-m2+-"+ we can assume n &#x3E; 1. In this proof we use

(const.) to denote various constants depending only on n.

There is a connection V~ with constant curvature ,Q~ on Ln.
Using (2.4), (~~)*~~ &#x3E; 2 n, and we let Ho := 
this is the space of the holomorphic sections of Ln. By the Riemann-Roch
theorem, dim Ho = n + 1. By resolvent compactness there is a gap
of size ~y = -y(n) &#x3E; 0 above the ground state in the spectrum of 

We will construct a connection V on Lo that has the same constant
curvature as V~ apart from a small neighborhood of the South pole S’ E ,S’2.
The curvatures Ro and Roc will differ drastically around ,S’ to accomodate

the different Chern numbers. Nevertheless, Ho - V*V on Lo will be

considered as an appropriate perturbation of on Ln.

To compare operators on Lo and Ln we introduce coordinates. For an

appropriate normalized section On E the connection 1-form

of V~ becomes ac = away from S. We define the following
quadratic form on L2 (M, 

on its maximal domain

then = 0(/?/)- The minimal form domain, Dmin(Q), is

defined as the closure of the set

with respect to the norm 11’11+ = (~~’~~2 -+- Q(’, ’))1~2, where 1/.11 I is the

L2(M, Vg) norm. Using a standard density argument (e.g., [Si]) it is easy to
see that since is regular away from S,
and - ndcplll is regular away from N.

Let the operator H := Hac denote the corresponding Friedrichs
extension of Q = Qac’ Then the operators Hvc and H are unitarily
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equivalent. Similar identification is valid for any connection V on any line
bundle replacing arc with the connection 1-form a of V determined
by a fixed section §m e 

In particular, we fix a global section Oo on the trivial bundle Lo.
For any connection V on Lo we will identify the operator V*V with Hex,
where -iacpo. Here the connection 1-form a is global and Hex is

defined as the Friedrichs extension of Qa ( f , f) fM III d f - iafll12vg with
core Co = Coo (M). Explicitly,

We also need (2.4) in coordinates. Let a be a global 1-form,
da = 13 = then

with é This is valid for any either by a
direct calculation or by considering ~ = f§o E r(Lo), then extending it to
any function f )  00 since Dmax(Qa) = Dmin(Qa). Similarly

This relation is valid for any f E Cn by a direct calculation (or using (2.4)
for ç = f 0. E F(LJ’.~ = E then by ~ J it extends to any
function f with Q( f , f )  oo.

We can choose a normalized basis (go , ~i? - - - gn ) in by specifying
the Taylor polynomial of gk to be z k at the north pole N. The sections Çk
can be written as Çk = where the functions fk E Cn are given in the
usual spherical coordinates

, , - ,

with an appropriate normalizing constant. The functions fk are orthonormal
in £2(M, Vg) and let be their span; this is the ground state eigenspace
of H with eigenvalue 1/2 n and dimension n + 1. Let Po be the projection
onto Ho in L2 (M, The gap for Hvc means that
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PROPOSITION 6.4. - For any positive integer n and 0  E « 1 there
exists a magnetic Schrödinger operator He == B7; B7 e on Lo so that the
corresponding operator He on H = Vg) has the following properties :

(i) Let He be the spectral subspace of He with eigenvalues smaller than
. Then dim ’

(ii) For any . uTe have

with a constant depending only on n.

(iii) There exists an orthonormal f’7,..., in HE: such
that

and for any u &#x3E; 0,

Proof. For any

and we notice that

We also choose a monotone C°° cutoff function on [1
such that q’ = 1 on and 1

with form core C’ (M) and fie be its
Friedrichs extension. Clearly

For 6 &#x3E; 0 we define Rc,8 := and where H5 is the

spectral projection onto
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LEMMA 6.5. , then

(i) one has

uniformly on

~i) one has

(iii) there exists an increasing &#x3E; 0 such that for 

The proof of this lemma is postponed until Section 6.3.1.

Now we complete the proof of Proposition 6.4. Fix 6 = 9~ (we then
omit 6 from the notation), E(-!-) and apply Lemma 6.5. Parts (i),
(ii) of Proposition 6.4 follow directly from (6.27), (6.28) and (6.29).
Formula (6.26) implies that the projection 7~ converges to an isometry
between fio and IIPE: - Po I - 0, as E ~ 0, hence (6.20) follows.

We apply (6.16) to the truncated functions XE: fj,

using that = ac on the support of ;

By (6.27) we have ~, hence using (6.23),
(6.24) and the uniform boundedness of the functions we obtain that

2. We also have , hence

from which (6.21) follows.
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The rest of the proof of Theorem 2.3 is similar to [CdVT] but the role
of the potential is played by the magnetic field. For some small E we will
perturb the magnetic field of H~ by a small b. A careful choice of b will turn
the (n + 1) eigenvalues of H~ near in into the multiplicity pattern given
by m1, m2, ... , The key observation is that a perturbation b of the
curvature appears as an additive perturbation b up to first order, thanks
to (2.4), hence it is like a potential perturbation. However, some care is
needed since the estimate (6.21) necessary to control higher order terms
does not fully extend to the South pole; a small region has to be treated
separately.

Let D be a small geodesic disk around ,S’ and let

equipped with the L°°-norm. By the Poincar6 formula, for any b E Y there
is a global 1-form ab with dab = bvg and

Let a, be the global connection 1-form of B7 E obtained in Propo-
sition 6.4, i.e., We define cxb := ab + ag, the quadratic
form

with core C°° (M) and the corresponding operator Hb. Let 
denote the set of hermitian forms q(./.) on HE equipped with the natural
norm

LEMMA 6.6. - There exist Eo &#x3E; 0 and a finite dimensional subspace
the linear map

’)

(Herm(RE), ",11) given by

is a bijection such that l~ are bounded uniformly in é.

- 

Proof. Consider the restriction to D of the functions Reh fk,
Imfjfk, for j, k = 0,1, 2, ... , n, j  k, and the function identically 1

on D. Using their explicit formula, it is easy to check that these

(n + 1) (n + 2) + 1 functions are linearly independent over R. Hence there
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Using the boundedness of bjk’s and (6.20), we see that for all E  EO

small enough

where the functions {fEj} are from Proposition 6.4 (iii).
Hence the (n ~ 1 ) 2 x (n -~- 1 ) 2 matrix with the ((jk), entry

equal to f~ is bounded with a bounded inverse. The bounds are

uniform in E. This is exactly the matrix of 4D, in the fixed bases C .~o
0

We observe from (6.14) and (6.32) that the operator Hb is a small
perturbation of Hg in the following sense:

The following result follows from standard perturbation theory and we omit
its proof.

LEMMA 6.7. - Let Hand Hw be nonnegative selfadjoint operators
with discrete spectra, defined on a common core C in a Hilbert space H,
satisfying

Let and let be the spectral projection
below the energy E + v. We assume that

with some fixed -yo &#x3E; 0. Then there exist positive constants ao, a,, vo, wo
depending on and dim(P), such that for every v  vo, w  wo,

uTe have

wherc is the spectral projection of Hw .

Furthermore I and
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Using (6.34), we apply this lemma to our case (see Proposition 6.4)

For small we

obtain 11 and

where pi is the spectral projection of Hb onto energies below

Moreover, we claim that

To see this, we use (6.15) for any ,

Since the second term

in (6.38) is of order ]
II II , , , , , ,

For the first term we estimate

Let 0  u  2 7r, we split the dO integration and use this estimate for 0
near 7r to obtain, using (6.19) and = 1, that
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Here we used (6.21) in the first term, and we used the following estimate
with 7r - 0 xr sin 0 in the second:

Since (6.39) is true for any u &#x3E; 0, and f E Ilf 11 = 1, we proved (6.37).
Hence, for small enough we obtain from (6.36) and (6.37) that

We fix a unitary transformation Uf on R == £2(M, Vg) that maps ft, onto
xb isometrically and satisfies 

6

The existence of such Ub follows from I
We define the map from TO into

Herm(1tE) by identifying a selfadjoint operator with its quadratic form.
Using (6.40) and (6.41) we have

Notice that is a quadratic form of vanishing norm as E - 0 by (6.18),
and the derivative W[ (0) has a uniformly bounded inverse using Lemma 6.6
and limg-o = 0 that follows from (6.42). Using the inverse
function theorem, for small enough E there exists b E To such that Wg (b) has
eigenvalues with any given multiplicities ml, m2, Mk - Since we know
that the ground state of Hb lies in the range of Pb, these are exactly the
multiplicities of the lowest eigenvalues of Hf.

Finally, if E is chosen small enough, then b can also be chosen

small, in particular J |b|vg  1/2 u can be achieved. The magnetic field of
and an easy calculation shows

for small E. This completes the proof of
Theorem 2.3. D
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6.3.1. Proof of Lemma 6.5.

which follows from Schwarz inequality

and (6.22) with an optimal choice of s. Similarly

where f E C°°(M), which proves (6.24). Clearly for any

f E C°° (M), hence by (6.16) and (6.23) we have

then

by the diamagnetic inequality and standard L2 ---7 L~ heat kernel estimates
on M = ,S’2 . The same bound is true for the eigenfunction of Choosing t
appropriately, we obtain that

Step 3. - We show that the lowest eigenvalue E~ of Q~ satisfies

Let f ~ be a corresponding eigenfunction. We can assume that
Then using (6.44), (6.45) and (6.46), we obtain (6.47).
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Step 4. - First we prove the following weaker version of (6.25)
and (6.26):

Let be an orthonormal eigenbasis with

Using (6.46) we have

hence for small enough ~  E(6),

for all j by (6.23) and (6.44).

by (6.17). Using (6.51), we obtain 11 ) for small enough 

Since I - Po is a projection, we obtain

for small enough E, using (6.50). The orthonormality of then

gives (6.48).
Similar argument is valid for P,,6. Recall that fo, fl, f 2 , ... , f n is an

orthonormal basis in fio and their L°°-norm is uniformly bounded by (6.46).
For small enough E  E(6),

by (6.23), (6.43) and (6.47). We define

and we again have , From

and (6.52) we obtain which implies (6.49).



1872

LEMMA 6.8. - Let U, V be finite dimensional subspaces of a Hilbert

space H and let Pv : V be the orthogonal projection onto V. If

then Pv j u : U - V is injective, hence dim(U)  dim(V).

Proof - Let ul, ... , Uk be an orthonormal basis in U, k := dim(U).
We decompose u - = v j + w j with Vj  -1. If were not

injective, then 0 for some nonzero vector u = ~~ cjuj, Ilull = 1, and
. Hence 11-

but this is a contradiction. Q

Step 5. - Now we prove Lemma 6.5. Since 03B4  9n and dim Ho = n+1,
from (6.49) and Lemma 6.8 we obtain that PE,8 : is injective and

dim 

Suppose that dim HE,8 &#x3E; dim Ho = n + 1, then choose a subspace
U C with dim(U) = n + 2. Using (6.48) and 6  9n , we see that

~Co is injective and dim ( U ) ~ dim (H-o) = n ~ 1, which is

a contradiction. This proves (6.28). The proof of (6.29) easily follows
from (6.50).

Finally, we fix 6  9n , let 6’  6 Then = HE,81
by (6.28) and the monotonicity of these subspaces in 6. Therefore

using (6.48) for 6’ and finally, letting 6’ ---7 0 we obtain (6.25). The proof
of (6.26) is similar using (6.49) and the monotonicity of PE,8 in 6.

For the proof of (6.27) we need two sided bounds on The lower

bound is given in (6.47). For the upper bound, we use that Q, -- -1 n + b’y2

on ,s, but 7 = ?-l,s for any 6’  b,E  E(6’) and we let 6’ ---&#x3E; 0.

The proof of (6.30) is similar by noting that f ) is at least
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