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LIOUVILLE TYPE THEOREMS FOR MAPPINGS

WITH BOUNDED (CO)-DISTORTION

by M. TROYANOV &#x26; S. VODOP’YANOV *

1. Introduction.

A mapping f : N between oriented n-dimensional Riemannian

manifolds is said to have bounded s-distortion (or s-dilatation)  (0)
if f E W1,1 loc (M,N) and

a.e. x E M.

The Sobolev class of mappings is defined in Section 3

below; these mappings have a formal differential dfx : 
almost everywhere; in the above inequality, ldfxl denotes its operator norm
and = det dfx its Jacobian.

Mappings with bounded s-distortion are generalizations of quasi-
regular mappings; they have been studied (under various names and
viewpoints) since about 30 years, see [6], [8], [24], [25], [28], [30], [41], [44]
among other works. In the special case of homeomorphisms with bounded
s-distortion with s &#x3E; n -1, a metric characterization has been given in [8].

These mappings originated as suitable class of mappings in the

change-of-variable formula for functions in the Sobolev spaces (see
Section 4). As it turns out, this class of mappings feels quite well the

* This work is partially supported by the INTAS, grant N° 10170.
Keywords: Mapping with bounded distortion - Capacity - Parabolicity.
Math. classification: 30C65 - 31 B 15 - 26B10.
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asymptotic geometry of Riemannian manifolds. In [6], J. Ferrand was able
to prove that a Riemannian manifold is characterized up to bilipschitz
equivalence by its Royden algebra; the proof heavily uses the theory of
mappings with bounded s-distortion. In [28], P. Pansu gave conditions

on the geometry of manifolds implying that mappings with bounded s-
distortion are quasi-isometries. The work of Ferrand and Pansu has been
extended to the case of metric measure spaces in the recent thesis of

K. Gafaiti.

Mapping with bounded s-distortion are a subclass of the so-called
mappings with finite distortion which are defined by the condition that

Jj E Llc and is finite a.e. (see the argument
in the proof of Corollary 7.1). Mappings with finite distortion play an
important role in non-linear elasticity (see e.g. [27]) and they are now being
intensively studied. See e.g. the papers [16], [18], [41] and the rich references
therein.

Another important generalization of mappings with bounded s-

distortion is given by the class of mappings such that 
where Ak f is the k-th. exterior power of df, i.e. the effect of dfx at the
level of k-forms. These mappings appear in LP cohomology; see e.g. the
recent paper [29] of P. Pansu, where flows of such mappings are used in the
computation of LP-cohomology of manifolds with negative curvature and
solvable Lie groups.

In the present paper, we will consider the n - 1; let us

thus define a mappings with bounded q-codistortion (1  q  (0) to be a
mapping f E N) for which there exists a constant K’ such that

We now state a number of questions, concerning mappings with
bounded s-distortion, we are interested in

1) What are the obstructions to the existence of a non constant
mapping with bounded s-distortion f : M - N?

2) Describe the set of all s &#x3E; 1 for which there exists a homeomor-

phism (or a diffeomorphism) f : M - N with bounded s-distortion.

3) Suppose that f : M --~ N is a non constant mapping with bounded
s-distortion: How big may the omitted set N B f (M) be? (In particular,
when can it be said that f is onto?)

4) Assuming that f : M --~ N is a continuous mapping with bounded
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s-distortion. What can be said about the topological and or the geometrical
properties of f ?

Similar questions may be raised about mappings with bounded q-
codistortion.

We will give some answers to all of these questions. The main
techniques we use are based on potential theory: Recall that a condenser
in M is a pair (D, A) where A C M is a connected open subset and D C A
is compact. The p-capacity of the condenser (D, A) is defined as

DEFINITION. - The manifold M is p-parabolic if Capp (D, M) = 0
for all compact subsets D c M and p-hyperbolic otherwise.

We have included in Section 7.2 below a brief discussion of this notion.

An answer to the first question above is the following Liouville type
theorem:

THEOREM. - Let M and N be oriented n-dimensional Riemannian

manifolds and let f E N) be a mapping with bounded s-distortion
with s &#x3E; (n - 1). Assume that M is p-parabolic, where -1 + ns ~ - 1. Then
either f is constant a.e. or N is also p-parabolic.

This result is a consequence of Theorem A and Corollary 7.1 in the
present paper; it is in fact proved for a wider class than N).

In the special case of quasi-regular mappings (i.e. s = p = n), this
result has been obtained around 1968 by Y. Reshetnyak and, independently,
by O. Martio, S. Rickman and J. Vaisala (see [32] and [22]). At the end of
the paper we shortly recall the original argument of Reshetnyack.

Some answers to the other questions mentioned above are given in
Sections 2, 4 and 7.

The paper is organized as follow: In Section 2, we give some additional
definitions, state the main results of the paper and give some corollaries. In
Section 3 we recall some basic facts about Sobolev mappings, in Section 4
we discuss homeomorphisms with bounded s-distortion and in Section 5 we
prove a capacity inequality. After these preparations, we prove the main
theorems in Section 6. Finally, in Section 7, we give some complementary
information on mappings with bounded s-distortion.
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2. Definitions and statement of the results.

Throughout the paper M and N are oriented, connected n-dimensio-
nal Riemannian manifolds. We denote by dp and dv the volume elements
of M and N respectively.

In order to state our results, we need some additional definitions:

DEFINITIONS. - ( 1 ) The map f has essentially finite multiplicity if
 oo, where

for any measurable subset A C M.

(2) A continuous map is open and discrete if the image of any open
set U c M is an open set f (U) C N and the inverse image of any

point y E N is a discrete subset of M. The branch set of such a mapping is
the set B f C M of points x E M such that f is not a local homeomorphism
in a neighborhood of x.

The next two definitions are regularity assumptions. They are always
satisfied if one assumes e.g. that f is locally Lipschitz, or that f E

for s &#x3E; n, or that f is locally quasi-regular.

(3) A measurable map f : M -~ N satisfies Lusin’s property if the
image of any set E c M of measure zero is a set f (E) c N of measure
zero.

An important and well-known result (see Proposition 3.2) states that
for any map f : M - N belonging to (M, N) there exists a sequence
of compact sets A. c M such that the restriction of f to each Ai is Lipschitz
and the complementary set Ef :== M B UiAi has measure zero. We call E f
the exceptional set of f.

(4) The map f E is almost absolutely continuous if it
is continuous and for any bounded domain M the following property
holds: for any E &#x3E; 0 we can find 6 = 6(Q, E) &#x3E; 0 such that for any finite or

inhnite sequence of pairwise disjoint balls contained in Q with

center xi E E f, we have

Remark. - The notion of almost absolute continuity appeared in

[41], [42]; it is a generalization of absolute continuity in the sense of Maly
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as defined in [19]. In particular any mapping in with p &#x3E; n

and any continuous mapping in with monotone coordinate

functions is an example of almost absolutely continuous mapping, see [19].
In dimension 2, a mapping has bounded s-distortion if and only if

it has bounded s-codistortion. In higher dimension, we have the following
relation between distortion and codistortion:

LEMMA 2.1. - Let f : M ~ N be a mapping urith bounded s-
distortion for some s &#x3E; n - 1, then f has bounded q-codistortion for

q = s/(n - 1).

Conversely, if f : M ~ N is a mapping with bounded q-codistortion
for sor such that Jj &#x3E; 0 a.e., then f has bounded s-distortion

The exponents in this lemma are sharp.

Proof. It is a trivial consequence of the inequalities

We now state the main results of the present paper:

THEOREM A. - Let f E N) be a continuous open and
discrete mapping with bounded s-distortion, where s &#x3E; (n - 1), satisfying
Lusin’s property. If M is p-parabolic with p - _~_~, ~ then N is also
p-parabolic.

Recall that a map f E always satisfies Lusin’s property if

s &#x3E; n. In Section 3 below we give other sufficient conditions. In Section
7.1 below, we will also give sufficient conditions for a continuous mapping
with bounded s-distortion to be discrete and open.

The next result is an analog of Theorem A. It holds without any

topological restrictions but assumes that f has finite essential multiplicity:

THEOREM B. - Let f E Wiloc-s (M, N) be a mapping of essentially
finite multiplicity with bounded s-distortion where s &#x3E; (n - 1). Assume
either

2) f is almost absolutely continuous and E Lfoc(M).
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If M is p-parabolic with p = s-~n-1) , then either f is constant a.e.
or N is also p-parabolic.

In Theorem B (under assumption 2) no continuity is assumed. The
proofs of theorems A and B are based on quite different approaches; it

would be interesting to have a unified method proving both results.

Remark 1. - These results are sharp. They say for instance that
there is no mapping of finite essential multiplicity with bounded s-distortion
from the Euclidean space to the hyperbolic space for s &#x3E; (n - 1). This is
optimal since the Riemannian exponential exp : Txo IHIn ~ IHIn (where IHIn is
the hyperbolic space) is a diffeomorphism with bounded 
Other comments on the optimality of these results are given in [7].

Theorem B will be obtained as a consequence of the following result
on mappings with bounded codistortion:

THEOREM C. - Let f : M - N be a mapping of essentially finite
multiplicity with bounded q-codistortion where q &#x3E; 1. Suppose that if &#x3E; 0

on some set of positive volume. Assume furthermore either

2) f is almost absolutely continuous, for some

If M is p-parabolic with p = q/(q - 1), then N is also p-parabolic.

Remark 2. - The condition that J f &#x3E; 0 on some set of positive
volume cannot be replaced by the weaker condition that f is not constant
a.e. For instance, look at the hyperbolic three-space in the upper-half
space model H3 = (x, y, z) E &#x3E; 01 (with metric tensor ds2 -
(dex2 + dy2 + dz2 ) /z2 ) ) . Then the mapping f : JR3 ---7 JHI3 given by

(x, 0,1 ) is of finite essential multiplicity and has bounded q-
codistortion for all q &#x3E; 1. Yet JHI3 is p-hyperbolic for all p and JR3 is

p-parabolic for all p &#x3E; 3.

The next result goes in the other direction:

THEOREM D. - Let f E N) be a continuous non constant
proper mapping with bounded s-distortion of finite essential multiplicity.
If M is s-hyperbolic, then so is N.

Remark 3. - The hypothesis that f is proper is necessary. For
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instance if N is a compact manifold and M C N is an open domain whose

complement N B M has non empty interior, then N is s-parabolic for all s
and M is s-hyperbolic for all s C [1, on]. Yet the inclusion f : M ~~ N has
bounded s-distortion for all s.

We now give some applications of our results. We begin by a Picard
type theorem for mappings with bounded s-distortion.

COROLLARY 2.1. - Let f : M - N be a continuous mapping with
bounded s-distortion, s &#x3E; (n - 1) satisfying the hypothesis of Theorem A.
Assume that the manifold M is p-parabolic where . Then f is
surjective if p &#x3E; n, and the omitted set N B f (M) has Hausdorff dimension
 (n - p) if p  n.

Proof. Observe that f actually maps M onto N’ - f (M) (which
is an open subset of N). By Theorem A, the manifold N’ is thus p-parabolic
and therefore the Hausdorff dimension of N B N’ is  n - p. D

For a quasiregular mapping on Euclidean space f : ---7 a

stronger result is due to S. Rickman. He proved that f omits at most
finitely many points (see theorem 2.1 in [34], chapter IV]).

COROLLARY 2.2. - Let f : M - N be an injective C’ mapping
with bounded q-codistortion. Assume that q  n:1 and that M is p-
parabolic with p = Then f is a diffeomorphism.

For the proof of this corollary, will need a lemma. Recall that the
principal dilatation coefficients (or singular values) at x E M of a mapping
f E N) are the square roots A2 ... ~ ~n of the eigenvalues
of df x df ~ ; they are defined almost everywhere. Observe the following useful
inequalities:

LEMMA 2.2. - Let f : M ~ N be a mapping with bounded
q-codistortion. If q  then either 0 a.e. or there exists a

constant 6 &#x3E; 0 such that all the principal dilatation coefficients are almost

everywhere &#x3E; 6.

,~ be the dilatation coefficients of f .

at x. We have by hypothesis
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, from
which one obtains

Proof of Corollary 2.2. - By the previous lemma, all principal di-
latation coefficients are bounded below, in particular f is a local diffeo-
morphism. Assume now that f is not surjective. Then there exists a point
yo c- N B f (M). Let N’ := N B ~yo~, this is a p-hyperbolic manifold (since
p &#x3E; n). By Theorem C, the manifold M must therefore be p-hyperbolic;
but this contradicts the hypothesis and we thus conclude that f is surjec-
tive. D

If M = N = R’, we don’t need to assume global injectivity in the
previous corollary.

bounded q-codistortion where
is a global diffeomorphism..

Proof. By Lemma 2.2 all the eigenvalues of df,,’dft t are uniformly
bounded below. We thus conclude from a recent theorem of M. Chamber-

land and G. Meister that f is injective (see [1], th. 1.1).
Now set p :== then p &#x3E; n and hence R" is p-parabolic. We

conclude the proof from the previous corollary. 0

We also have similar results for mappings with bounded s-distortion.

COROLLARY 2.4. - be an injective C1 mapping
mith bounded s-distortion.

and that M is p-parabolic with
Then f is a diffeomorphism.

COROLLARY 2.5. - Let f : JRn ---7 R" be a non constant C1

mapping with bounded s-distortion where (n - 1)  s  n. Then f is
a global diffeomorphism.

Proof. This is clear from Lemma 2.1 and the previous corolla-
ries. D

This last result also holds for s = n &#x3E; 3. Indeed, V.A. Zorich has
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proved that a quasi-regular mapping f : JRn ---7 R’, which is a local

homeomorphism is in fact a global homeomorphism provided n &#x3E; 3, see

[46].

3. Calculus of Sobolev mappings.

Since a mapping f : M - JRm is given by its components which are
n functions: f = ( f 1, f2,..., fm), it is natural to say that f belongs to the
Sobolev space if each component fi i E 

In the case of a continuous mapping f : M - N between Riemannian
manifolds, we may define the condition f E N) by the use of local
coordinates charts; however, such a procedure is in general not possible for
a discontinuous map and we have to proceed differently to define the class
of Sobolev mappings between Riemannian manifolds.

We follow the approach of [33], [42].

DEFINITIONS. - 1) The mapping f : M -~ N belongs to Lîoe (M, N),
1  s  oo, if and only if the function f ~ y : M --~ R, defined by

= d( f (x), y), is in R) for all point y E N.

2) The map f belongs to Wl’oc-s (M, N) if and only if f ~ y E W,"s (M, R)
and there exists a function g E R) such g (x) a. e.

in M for any point y E N.

3) The map f belongs to ACLîoe(M, N) if it satisfies the following
three conditions:

i) the function belongs to Lîoc (M) for
every point z C N;

ii) the mapping f : M - N is absolutely continuous on lines in the
following sense: for any coordinate chart p : U - on M, the
function

is absolutely continuous in the parameter T for all i and almost all

x E ei
iii) the derivative a2gi 71 , which exists almost everywhere

in U, belongs to Lîoc (U) for all i.
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PROPOSITION 3.1. - The following assertions are equivalent:

and there exists a function g E 
that for any Lipschitz function 0 : , the function cp :
belongs to and ]

4) for any isometric embedding i : N - R~ all coordinate functions
of the composition i o f belong to 

Proof. The proof follows the order (1) ~(2)~(3)~(4)~(2). Ob-
serve that (3) ~ ( 1 ) is trivial since distance functions are I-Lipschitz.

Then (1) ==&#x3E;(2) and (2) ~ (3) are proven in [42, Proposition 3] (notice
that (1)=*(3) is also proven in [33, Theorem 5.1] by other arguments).

The proof of (4) ~ (2) is given in [34, Proposition 1.2] for the special
case N = R’. Its extension to the case of a submanifold N C is based

on the formula
T

which holds for all absolutely continuous curves in the The general
case now follows from the fact that any Riemannian manifold admits an

isometric embedding in some Euclidean space.

(3) --&#x3E; (4). We consider an isometric embedding i : N - Rk and some
coordinate function zj in The restriction Zj IN is a Lipschitz function
on N, thus the composition zj o f belongs to R). 0

The next proposition says that a Sobolev mapping is Lipschitz on a
big set.

PROPOSITION 3.2. - Let f E N). Then there exists a
measurable decomposition M = E f U such that 0, Ai
is compact for all i and fiAt is Lipschitz.

Proof. - Using the previous proposition (assertion 4) we can reduce
the proof to the well-known Whitney’s approximation theorem for Sobolev
function (see e.g. [4, p. 254]). 0
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As a consequence of this proposition, we have the following version
of the change of variables formula for integrals (also known as the area
formula), recall that XA denotes the characteristic function of a set A c M.

PROPOSITION 3.3. - Let f E N) be a Sobolev mapping
between Riemannian manifolds of the same dimension. Then there exists

a subset E f C M of measure zero such that for all measurable function
~ : M - R+ we have

B~B/ l i7 /

If f satisfies Lusin’s property, then one may take E = 0.

See e.g. [11] for a proof. 0

For the area formula to be useful, we need to work with mappings
having a locally integrable Jacobian. Observe in particular that if f E

(M, N) has bounded s-distortion and Jf E then we have in

fact f E W1,s loc (M,N)
The next two lemmas give us sufficient conditions for the local

integrability of the Jacobian.

Proof. This is a trivial consequence of the inequality if 

LEMMA 3.2. - If f E (M, N) is continuous and has essentially
finite multiplicity or is open and discrete, then E Ltoc (M).

Proof. This follows directly from the area formula. 11

We now give sufficient conditions for Lusin’s property:

LEMMA 3.3. - Let f : M - N be a mapping satisfying one of the

following conditions:

i is almost absolutely continuous;
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is continuous open and discrete.

Then it also satisfies Lusin’s property.

Under hypothesis (1) this is Theorem 5.3 in [26]; see also [43] for the
case s = n. In case (2), this is Theorem 8 from [41]. In case (3), this is a
result from [20] ; see also [40] for a short proof. D

We refer to [23] and [19] for further results on Lusin’s condition.

PROPOSITION 3.4. - If the map f is continuous, open and discrete
and has bounded s-distortion for s &#x3E; (n -1), then it is differentiable almost
everywhere.

See Lemma 4.4 in chapter VI of Rickman’s book [34] or Proposition
1 in [41] for a more general result. 0

Finally we will also need the following result about the exterior
differential of the pull-back of a (n - I)-form:

LEMMA 3.4. - Let f : At -~ N be a mapping satisfying one of the
following conditions:

f is almost absolutely continuous,

Let /3 be a smooth Then

This result is proved in [26, Th. 3.2] under the first hypothesis and in
[41, Th. 8] in the case of the second hypothesis 0

4. On homeomorphisms with bounded s-distortion.

In this section, we discuss the special case of homeomorphisms with
bounded s-distortion.

DEFINITION. - The s-Dirichlet space of a Riemannian manifold M

is the space of functions u E such that J~ jB7uls dJL 
oo. This space is equipped with the semi-norm
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If f : M ~ N is a homeomorphism and v : N - R is any function,
we denote by f * v = v o f its pull back on M. If u : M - R, we denote by
fuu = u o f - 1 : N --+ R its pushforward.

S. Vodop’yanov has proved the following result [38], [39] (see its

generalized version in [44, Theorems 1 and 9]):

THEOREM 4.1. - Let f : M - N be a homeomorphism between
n-dimensional Riemannian manifolds. Fix s E then the following
assertions are equivalent:

is a bounded operator;

and f has bounded s-distortion: 

Moreover, if s e (1, oo), then condition (1) or (2) are equivalent to

3) decreases the s-capacities of condensers up to a constant:

for any condensers (C, A) in M.

Finally, if s &#x3E; (n - 1) and Lusin’s property holds, then any condition
(1)-(3) is equivalent to

4) f~ : £1’P(M) ---7 £1’P(N) is a bounded operator where 1
, consequently f - 1 has bounded

p-distortion.

Proof. We only give a short proof of the second part of assertion

(4). By Proposition 3.4, the map f is differentiable a.e. and by [44, Theorem
9], we know that g :- f -1 : N - M is ACL (see also Lemma 5.6 below).
Thus we have o dfx = Id a.e. in M. Notice also that Jg(Y) =1= 0
a.e. in N since f has Lusin’s property by hypothesis, we thus have almost

everywhere 
- . ..

and therefore

A useful consequence of this theorem is the following



1766

COROLLARY 4.1. - If f : M - N and g : N - W are homeomor-
phisms with bounded s-distortion, then g o f : M - W also has bounded
s-distortion.

Special cases of the previous result where also obtained in [9.2 and
12.3], [24], [25, Section 6.4.3] and [30].

DEFINITION. - The Royden algebra of M is the subspace RS(M) C
of bounded continuous functions; it is a Banach algebra with norm

We denote by Kn the norm of the operator
and by I~~ the norm of the operator

PROPOSITION 4. l. - Suppose 1  s  oo, then for any homeomor-

phism f : M -~ N we have Kn = KL 1.

We will need the following

LEMMA 4.1. - Let v E R8(N) be a non constant function, and
&#x3E; 0. If 1  s  oo, then for any t E (0, (3), where a : - inf v and

(3 := sup v, there exists r = r(t, E) &#x3E; 0 such that r  min(t - 0, {3 - t~ and

Proof. Suppose the lemma false, then the function

satisfies for some c &#x3E; 0 and all t’, t" E such that

~2013r~~~~~+r. Consider a bounded domain A C N such that

~ are non empty
open subsets.

The family is bounded in W1,S(A) and hence weakly compact.
It follows that there is a sequence vn : := such and

(tn - t’ ) --~ 0, which converges weakly to some function w E 
We can furthermore assume that the sequence

converges to some number A. Using Mazur’s Lemma, we can produce convex
combinations of the vn converging strongly to w. Hence w = 0 a.e. on Ao,
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w = 1 a.e. on A l and w = A a.e. on the level set At : ~ x E A : v(z) = 
But then Vw = 0 a.e. in A, hence w is constant a.e. in A which is impossible
since Ao and Ai have positive measure. 0

Proof of Proposition 4.1. - Observe that 1 since constant

functions belong to the Royden algebras. So we only need to prove the
inequalities max{1, KL} . Since f is a homeomorphism, f *
defines an isometry f * : L°(N) - L°° (M) and the inequality 

K~ ~ follows immediately.
To prove the inequality Kqz it suffices, by density of in

£1,S(N), to show that

for any E &#x3E; 0 and any function v E 

Set a : - inf v and {3 sup v. By compactness of the interval [a , 13],
we can find a subdivision T = {a = to  tl  ...  ti  131, such
that (t,+ i - ti)  ri for i - 1, ... , l - 1, where ri = r (t, E) satisfies the
property of the previous lemma for some t E 

By the
lemma we have

because I The inequality (4) now follows

Remark. - Pierre Pansu has defined in [28, p. 475] the notion of
homeomorphism of bounded s-dilatation as homeomorphism such that
Kqz x oo. It follows from the results of this section that the definition

of homeomorphism of bounded s-dilatation used by Pansu, coincides with
our notion of homeomorphism with bounded s-distortion if 1  s  oo.
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It also follows from Theorem 4.1 that if f is a homeomorphism satisfying
Lusin’s property with bounded s-dilatation in Pansu’s sense, then is a

homeomorphism with bounded p-dilatation where = 1. This

gives a positive answer to question 10.3 in [28] in the case where Lusin’s
property holds.

5. Pushing functions forward.

The proof of Theorem A is based on a capacity estimate for the

pushforward operator (Corollary 5.1) which is important in itself. It is

the goal of this section to prove this capacity estimate.

Let f : M - N be a continuous mapping and u : M - R a
bounded function. We define the pushforward of u to be the function
v= f,u : TV 2013~- R given by

LEMMA 5.1. - If f is continuous discrete and open, and u : M ---7 R
is continuous with compact support, then the function v = f~u : N - R is
also continuous and supp v C f (supp u) .

This is Lemma 7.6 in [22]. D

If the mapping f has bounded s-distortion and u E Co (M, R) then
v = f ~ u belongs to where p provided
More precisely: 

’ ’

THEOREM 5.1. - Let f E (M, N) be a continuous open and
discrete mapping ulith bounded s-distortion, (n - 1)  s  oo. Assume also

that f satisfies Lusin’s property if n - 1  s  n. Then the operator f#
possesses the following properties:

, for any u E CJ(M). where
and K is the constant in (1).

Remarks. - 1) If f is a continuous open mapping and f E

then it always satisfies Lusin’s property [20] (see also [40]
for a short proof).
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2) This theorem is known for s = n (see [22]). It is also known for

general values of s when f is a homeomorphism [44]. Our proof will be
based on techniques borrowed from these two papers.

If f is continuous and open, then the image ( f (C), f (A)) of a

condenser (C, A) in M is again a condenser in N.

COROLLARY 5. l. - For any condenser (C, A) in M we have

Proof. Choose a non negative function u E Co (M) such that
u = 1 on C, supp(u) C A and
is arbitrary.

Then, by Theorem 5.1 we have

we have

We begin the proof of Theorem 5.1 by some lemmas on capacities of
condensers:

LEMMA 5.2. - The inequality

holds for the capacity of any bounded condenser (C, A) c R’.

LEMMA 5.3. - Let (C, A) C R’ be a condenser such that C is
connected. then

where the constant b(n, s) depends on n and s only.

Proof. See Lemma
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Recall that a domain SZ C M is said to be a normal domain for f if 0-
is compact and 8( f(Q)) = f(8n). For any normal domain Q C M we have
Nf (Q)  oo. A condenser (C, A) is a normal condenser if A is a normal

domain of f.

LEMMA 5.4. - If SZ C M is a normal domain then 

KN f (SZ) Caps f (C, A) for any condenser (C, A) inn.

This is a direct consequence of Lemma 6.2 below. See also [44,
Th. 4]. 0

The next lemma sums up the basic topological properties of a discrete
and open mapping f : M - N. If x E M and r &#x3E; 0, then we denote by
U(x, f, r) the connected component of f -1 (B( f (x), r)) containing x.

LEMMA 5.5. - Let f : M ---+ N be a continuous discrete and open
mapping. Then lim,-o diam U(x, f, r) = 0 for every x E M. If U(x, f, r) is
compact then U(x, f, r) is a normal domain and f (U(x, f, r)) = B ( f (x), r).
Furthermore, for every point x E N there is a positive number a x such that
the following conditions are satisfied for 0  r - ax :

) is a normal neighborhood of x,

i is connected if M is connected,

i is connected if M is connected,

See [22], [34] or [12] for a proof. 0

LEMMA 5.6. - Let f : M -~ N be as in Theorem 5.1 and

u E CÓ(M). Then the function v = füu is ACL.

Recall that a function v : N - R is absolutely continuous on lines

(ACL) if for any local parametrization p : Q -~ N (where Q = 
bi ~ C is some n-interval) and for almost all z C (=

the projection of Q on the hyperplane = 0), the one-variable function
t --~ + tek)) is absolutely continuous.
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Proof. Let us fix some notations. Fix a local parametrization
cp : Q - N (where Q = ~t E C R n is some closed

n-interval). Choose Q small enough so that for any ball B(y, r) C 
the domains Ui := U(xi, f, r) are disjoint normal neighborhoods of xi for
1 ~ i ~ q where ~xl, ... , xql = f -1 (y) f1 supp u.

The function v o will be simply denoted by v : Q - R. We need
to show that for any l = 1,..., n and for almost all z E the function

v is absolutely continuous on the line segment flz : [a,, bl] - Q defined by
Bz(t) = z+ tel

To this aim, we define a set function cp on P, (Q) by

where U = Ui and A C Pl (Q) is any Borel set. Then t is a completely
additive set function in Pl (Q) and from Lebesgue’s differentiation theorem,
we know that ~(~)  oo for almost all z E Pl ( Q).

It is known (see [22, Lemma 2.7]) that for every point xo E U rl
f -1 (z + al el ) there exists a path a : ~ U such that a (al ) = xo and
f o a = cp o (3z. We call such a path a lift of (3z(t) = z + tel with base point
xo; clearly the number of lifts does not exceed 

a is absolutely continuous.

Since the ACL-property is local it suffices to show that a is ACL in
a neighborhood of every point. We may thus restrict our considerations to
the case of mappings f : U - Q where U is a bounded domain in R’~ .

To prove the claim, we fix some arbitrary pairwise disjoint closed

segments Ai , ... , Ak C (az, bi) of lengths bl,..., bk . Choose r &#x3E; 0 small

enough so that the sets

are pairwise disjoint. Let 1
; indeed, we have

From Lemmas 5.2 and 5.3, we have
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and

These inequalities, together with Lemma 5.4, imply

where the constant c3 depends on previous constants, K and N f (supp u).

f -1 (E(z, r)). Summing the previous inequality over i = l, ... , l~ and

applying Holder’s inequality we obtain

Letting r - 0, we find that

hence c~ is absolutely continuous if  oo.

We now conclude the proof of the lemma as follows: Let al, a2, ...ad
be all the lifts of the segment j3z. If ~’ (z)  oo, then u o ai is absolutely
continuous since u is C’ and ai is absolutely continuous. We conclude that
v o j3z is absolutely continuous since

LEMMA 5.7. - Let f : M - N be as in Theorem 5.1, then = 0

almost everywhere on the branch set and the image of the branch set has
measure zero.

Proof. Because f has bounded s-distortion and s &#x3E; (n - 1 ) ,
f E it then follows from 3.4 that f is differentiable almost everywhere.

Suppose that f is differentiable at x and &#x3E; 0, then the index

j(x, f) = I (because the map is continuous open and discrete and the
topological degree is stable under homotopy, see e.g. pp. 15-21 in [34]).

If j(x, f) = 1, then x ~ B f (see [34, Proposition 4.10]); it follows that
Jf = 0 a.e. on Bf.
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Because f is assumed to satisfy Lusin’s property, we can use the area
formula (Proposition 3.3) to conclude that f (B f) has measure zero:

Proof of Theorem 5.1. - To conclude the proof of the theorem it
only remains to check the integrability of dv. To do this we first observe
that Vitali’s covering Theorem implies

where B f is the branch set of f, A c N is a set with v(A) = 0 and B(yi, r2),
t C N, are mutually disjoint balls small enough so that the components of

ri)) which meet the support of u form a finite disjoint collection
Di2 , ... , Dik of open subsets of M such the restrictions of f define

homeomorphisms fj : ri), j = 1,... k.

By Theorem 4.1, the inverse of fi, i.e. the map gj :== /~~ : B(y2, ri) -
Dij is ACL, furthermore, we have a.e. Hence we obtain

b

for almost every z E This implies

From Lemma 5.7, we know that v( f (B f ) ) = 0 and 0 a.e. on B f; we
thus have from the area formula
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6. Proofs of the main theorems.

6.1. Proof of Theorem A.

Let us recall the statement :

THEOREM A. - Let f E N) be a continuous open and
discrete mapping with bounded s-distortion where s &#x3E; (n - 1). Assume
also that f satisfies Lusin’s property. If M is p-parabolic with p 
then N is also p-parabolic.

Proof. Let D C M be a compact subset with non empty interior.
Because f is a continuous and open map, f (D) c N is also a compact set
with non empty interior. By Corollary 5.1 we have

6.2. Proofs of Theorems C and B.

The proofs will use the following criterion for hyperbolicity which is
due to V. Gol’dshtein and M. Troyanov (see [9]).

THEOREM 6.1. - Let M be an oriented connected Riemannian

manifold M. Then the following are equivalent (~ -I- q - 1) :
1) M is p-hyperbolic;

2) there exists a smooth form a E such that da &#x3E; 0
and f M da =1= 0;

3) there exists a form cx E such that da &#x3E;- 0 and

f

The cohomology space H,.mp,q(M) is the space of all closed differ-

ential forms of degree n with compact support modulo the differential of
(n - I)-forms in Lq .
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We will also need the following lemma :

LEMMA 6.1. - Let f : M - N be a mapping of class with

essentially finite multiplicity and bounded q-codistortion: K 

Then 
’

is a bounded operator with norm :

(Recall that N f (A) = ess sup,, Card(.

Pro of. -

We now prove Theorem C; we restate it in the following form:

THEOREM C. - Let f : M ---7 N be a mapping of essentially finite

multiplicity with bounded q-codistortion where q &#x3E; 1 and such that if &#x3E; 0

on some set of positive measure. Assume furthermore either

f is almost absolutely continuous,
, _ - - .., -,

for some

If N is p-hyperbolic with , then M is also p-hyperbolic

Proof. Let us choose a bounded Borel set U C M such that U

has positive measure, f (U) is bounded and Jj &#x3E; 0 on U. Observe that, by
the area formula, v ( f ( U) ) &#x3E; 0.

Choose a non negative smooth function h : N - R with compact
support and such that h &#x3E; 0 in a neighborhood of f (U). Since N is
p-hyperbolic, hence there exists an (n - I)-form {3 E

Lq (N, such that do = h - cvN (WM and are the volume forms of

M and N respectively).
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By Lemma 6.1, we have a := f *~3 E Lq(M, We then have from
Lemma 3.4

Thus 0 and dp &#x3E; 0 and we conclude by Theorem
6.1 that M is p -hyperbolic. D

Finally, we deduce Theorem B from Theorem C.

THEOREM B. - Let f E be a mapping of essentially
finite multiplicity with bounded s-distortion where s &#x3E; (n - 1). Assume
either

2) f is almost absolutely continuous and J f E 

If M is p-parabolic and N is p-hyperbolic with p = sl(s - (n - 1)),
then f is constant a. e.

Proof. Let q - p/(p 2013 1). Then s = q(n - 1) and from Lemma
2.1 we know that if f has bounded s-distortion, then it has bounded q-
codistortion. Hence by Theorem C, we have Jf - 0 a.e. and thus - 0
a.e. since As f is a Sobolev mapping, we conclude that f is
constant a.e. D

6.3. Proof of Theorem D.

LEMMA 6.2. - Let be a mapping with bounded
s-distortion and essential finite multiplicity. Then f * : £l,s (N) ---7 £l,s (M)
is a bounded operator with operator norm at most 

Proof. Let us first consider a function v E n 

Then 1 t fence we have almost

everywhere . From the area formula we thus
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Thus

Using the argument on page 673 of [44], we can extend this estimate
from functions v E n to all functions v E ,C1 ~S (N). This
proves that the norm of the operator j ) is bounded

0

Recall the statement of Theorem D:

THEOREM D. - Let f E N) be a continuous non constant
proper mapping with bounded s-distortion of finite essential multiplicity.
If N is s-parabolic then so is M.

Proof. Let D c M be a compact set; then D’ = f (D) c N is also
compact and, by hypothesis, it has zero p-capacity. For each E &#x3E; 0, one
can thus find a continuous function v E ,C1,S (N) with compact support and
such that v = 1 on D’ and 

Since f is a proper map, the function u := f * (v) also has compact
support and, clearly, u = 1 on D. Let A be the norm of the operator
f * : we know by Lemma 6.2 that A is finite. We then
have fm fN Hence D has zero p-capacity and we
conclude that M is p-parabolic. D

7. Complements.

7.1. A topological result.

A famous theorem of Yu. Reshetnyak states that a non constant quasi-
regular mapping is open and discrete. We formulate below a generalization
of this theorem established recently by S. Vodop’yanov’s in [41], which
provides topological properties for mappings with integrable distortion.

THEOREM 7.1. - Let f E N) be a continuous non con-
stant mapping with nonnegative Jacobian J f (x) &#x3E; 0 and K(x) - E

f(x)

Llc(M) for some n - 1  p  00. Assume either

2) f is almost absolutely continuous and J f E 

Then f is discrete and open.
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Remarks. - 1) If the manifolds are two-dimensional, then the con-
dition n - 1  p ~ n, can be relaxed to 1  p  2.

(2) This result was also proven in [13] and [21] under the assumption
f E N). It has been also recently proved in [18] under different
analytical assumptions.

As a consequence of Theorem 7.1 we obtain topological properties for

mappings with bounded s-distortion. The next assertion gives a positive
answer to the question 10.8 of [28].

COROLLARY 7.1. - Let be a continuous non

constant mapping with bounded s-distortion where n - 1  s - n. Assume

either

2) f is almost absolutely continuous and J f E Lloc(M).
Then f is discrete and open.

Remark. - This result does not hold if s &#x3E; n. Consider for instance

the map f : R" given by

for some a &#x3E; 1. Then f is Lipschitz and has bounded s-distortion for
s &#x3E; n. Clearly f is neither open nor discrete; however f has finite
essential multiplicity.

Proof. We suppose that CJ f a.e. for some n - 1  s  n.

Let us define the function

Set we have at almost all points where J f (x) ~ 0,

Thus K f E Since n - s  1, we have p &#x3E; s &#x3E; n - 1 and we can

conclude the proof from Theorem 7.1. D
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COROLLARY 7.2. - Let f E be a mapping 
bounded q-codistortion where

Assume that Jj &#x3E; 0 a.e. and either

... ,__ ’-’ , .

2) f is almost absolutely continuous and E LJoc(M).
Then f is discrete and open.

Proof. By Lemma 2.1, f has bounded s-distortion for s -

; observe that the inequalities (5) are equivalent to n - 1 
. Thus the corollary follows from Corollary 7.1.

7.2. On p-parabolic manifolds.

A connected oriented Riemannian n-manifold M is called p-parabolic,
1  p  oo, if Capp (C, M) = 0 for all compact subsets C c M and

p-hyperbolic otherwise. In this section, we list some facts concerning p-
parabolicity. We refer to [37], [10], and [45] for further information on this
notion.

a) If M contains one compact subset with nonempty interior having zero

p-capacity then M is p-parabolic.

b) The Euclidean space is p-hyperbolic for p  n and p-parabolic for

any p &#x3E; n.

c) If M is p-hyperbolic, then any domain S2 C M is also p-hyperbolic.

d) If a closed subset ,S’ C M with Hausdorff dimension &#x3E; (n - p) is

removed from any manifold M and if M B ,S’ is connected, then M B S
is p-hyperbolic.

e) In particular, if one removes a point xo, then M B xo I is p-hyperbolic
for all p &#x3E; n and if one removes a non separating closed subset with

nonempty interior D C M, then M B D is p-hyperbolic for all p &#x3E; 1.

f) If the manifold is complete and Vol(B(xo, r)) - const. rd then M is
p-parabolic for any p &#x3E; d (finer estimates relating the volume growth
to parabolicity are in fact available).
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g) If the isoperimetric inequality

holds for any big smooth domain Q c M, then M is p-hyperbolic for
p  d.

h) Suppose that a Sobolev inequality

holds for some 1  q  oo and all functions u E Then M is

p-hyperbolic.

Recall that the p-Laplacian is the operator Apu := 
A function is called p-superharmonic if 0.

i) M is p-parabolic if and only if every positive p-superharmonic func-
tion on M is constant.

j) M is p-hyperbolic if and only if there exists a positive Green function
for the p-Laplacian.

k) M is 2-hyperbolic if and only if the Brownian motion is transient.

1) If M has finite volume, then there exists a number d E such

that M is p-parabolic for 1 ~ p  d and p-hyperbolic for p &#x3E; d.

m) For a non compact manifold with bounded geometry, we have the
opposite behaviour: there exists a index d , called the parabolic
dimension of M, such that M is p-hyperbolic for 1 ~ p  d and

p-parabolic for p &#x3E; d.

n) The parabolic dimension is a quasi-isometric invariant of manifolds
with bounded geometry.

o) n-parabolicity is a quasi-conformal invariant for any manifolds.

Proof. - The proofs of (a)-(h) and (l)-(n) can be found in [37]. The
proofs of (i) and (j) are in [14] (see also [17]). We refer to [10] for (k) and
[45] for (o).

7.3. An improvement of a result by Pierre Pansu.

The following result gives an improvement of our Theorem B for
Sobolev homeomorphisms with Lusin’s property between manifolds with
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bounded geometry. It was proved by P. Pansu for diffeomorphisms, see [28,
corollaire 2. I].

THEOREM. - Let M and N be Riemannian manifolds with boun-

ded geometry, and assume that N satisfies an isoperimetric inequality of
order d &#x3E; n:

const. Vol(Q)

for all smooth compact domain SZ C N of volume &#x3E; 1 (in particular N is
n-hyperbolic).

If  s  n, then every homeomorphism f C N) with
bounded s-distortion satisfying Lusin’s property is a rough quasi-isometry.

Proof. We know that if f has bounded s-distortion, s &#x3E; (n - 1)
and satisfies Lusin’s property, then has bounded p-distortion where
p = S (see Theorem 4.1 and the Remark at the end of Section 4).
The above theorem thus follows from [28, Th6or6me 1].

7.4. On Reshetnyak’s proof
for the case of quasi-regular mappings.

In order to illustrate the alternative approach based on methods of
non-linear potential theory, we give a short proof of Liouville’s theorem for
quasi-regular mappings along Reshetnyak’s ideas.

THEOREM. - Let f : M - N be a non constant quasi-regular
mapping between oriented n-dimensional Riemannian manifolds. Assume
that M is n-parabolic, then so is N.

Proof. Assume that f : M ---~ N is a non constant quasi-regular
mapping, then it is known (see [31, Th. 6.4, chap. Il]) that f is an open map;
in particular N’ := f (M) C N is open. If N is n-hyperbolic, then so is N’
and, by [14, Th. 5.2], we know that there exists a non constant positive n-
superharmonic function v : N’ ---7 R. The function 
is then A-superharmonic where ,,4 is the pull back to M of the operator
TN’ - TN’ given by q - (see [31, Th. 11.2, chap. II] or [12, Th.
14.42]). By [14, Th. 5.2] again, one concludes that M is also n-hyperbolic,
contradicting the hypothesis. D
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Final remarks. - 1) The argument of Martio, Vaisala and Rickman
are based on capacity estimates in the spirit of our proof of Theorem A
(see [22]).

2) Another proof can be found in [3]. This paper gives other obstruc-
tions to the existence of quasi-regular mappings.
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