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1629-

QUANTIZATION OF CANONICAL CONES
OF ALGEBRAIC CURVES

by B. ENRIQUEZ &#x26; A. ODESSKII

Introduction.

To any pair (C, D) of a curve and an effective divisor are associated
the morphism C -~ I~(D) ) * ), where K is the canonical bundle of
C, and the corresponding cone Cone(C, D) C The function

algebra of this cone is a graded algebra with Poisson structure. When
D = 0, this algebra is a ring of regular functions on the complement of
the zero section of the cotangent bundle T* (C), and the Poisson structure
corresponds to the symplectic structure of T* (C). The purpose of this paper
is to construct a quantization of this algebra.

We will propose two equivalent solutions of this problem:

(1) A solution based on the theory of formal pseudodifferential
operators (Section 2). Here the base field may be any algebraically closed
field k of characteristic zero. We show that the function algebras on

Cone(C, D), as well as their quantizations, are functorial in the pair (C, D)
(Section 2.4). We also show (Section 2.3) that this construction can be
twisted by a "generalized line bundle", i.e., an element of {divisors with
coefficients in k}/ linear equivalence.

(2) When the base field in C, we also present an analytic approach
using Poincar6 uniformization (Section 4). This solution uses the results of
[3] on Rankin-Cohen brackets (see also [11]).

Keywords: Algebraic curves - Canonical cones - Formal pseudodifferential operators -
Rankin-Cohen brackets - Poincar6 uniformization.
Math. classification: 14Hxx.
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In Section 3, we give a presentation of the quantum algebra, when C
is a rational curve.

In Section 5, we discuss the problem of constructing local, or differen-
tial, liftings from the classical algebra to the algebra of pseudodifferential
operators. We show that Poincar6 uniformization provides such liftings,
in the analytic framework. We also discuss this problem in the algebraic
framework.

In Section 6, we discuss possible relations with the elliptic algebras of

[5], with Kontsevich quantization and with the problem of quantizing the
Beauville hamiltonians of [2].

In [4], Boutet de Monvel classified all sheaves of algebras quantizing
certain sheaves of Poisson algebras, in the framework of analytic geometry.
We discuss the relation of these results to our paper in Remark 8.

1. Poisson algebras associated
with canonical cones of curves.

1.1.

Let C be a smooth, projective, connected complex curve (the con-
structions of this section can be generalized to the case where the base field
is any algebraically closed field of characteristic zero). Let K be its canon-
ical bundle. Let D be an effective divisor of C; we set D = Epec 6pP,
where each 6p is an integer &#x3E; 0 and all but finitely many 6p are zero. To
these data is attached the morphism

and the cone Cone(C, D), which is the preimage of C by the map
H°(C, K(D))* - together with the origin. When D =

0, Cone(C, D) is the canonical cone of C. To each pair D &#x3E; D’ is attached
a morphism of cones Cone(C, D) - Cone(C, D’ ) .

Moreover, the function ring of Cone(C, D) is a Poisson algebra. As
an algebra, this is the graded ring
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we will denote by A~D~ the part of of degree i. For each D, we have
an inclusion of graded rings A~ D&#x3E; where

We will define a Poisson structure on Arat, which induces a Poisson
structure on each ~4.~B For this, we will choose a nonzero rational differ-
ential a on C, and define a Poisson structure ~, 1,; then we will show that
this bracket is independent on the choice of a.

Let us denote by V’ the meromorphic connection on K0i, such that
if w is a rational section of K0i, then

Then we set, for w, w’ homogeneous of degrees i, i’,

PROPOSITION 1.1. - The bracket ~, ~~ is independent on a. We
denote it by {,}. It is a Poisson bracket on Arat, taking Azat ® Ajat
to It restricts to a Poisson bracket on ~4~. When the affective
divisors D1 and D2 are linearly equivalent, the algebras and A (D2)
are isomorphic as graded algebras and as Poisson algebras.

Proof. Let us prove the independence on a. Let /3 be another
differential. We have {3 == Fa, for F a nonzero element of (the field
of rational functions on C). Then if w is a rational section of KQ9i, we get

so

since is symmetric under the exchange (w, i ) ~ (w’, i’ ) ,
. We then define as the common value of all

It is easy to check that for any a, ~, ~a satisfies the Poisson bracket
axioms, so the same is true for {,}.

Let us show that For this, we show that if
w (resp., w’) has a pole at P of order ~ 16p (resp., i’bp), then ~w, w’~



1632

has a pole at P of order  deg(~ ). Let Q p be a
rational differential on C, such that P is neither a zero nor a pole of a p .
Then = The terms of order (i + i’)8p + 1 cancel each
other, so the order of the pole of Since

Finally, if D1 - D2 = (f), where f E C( C) x, then the ith com-
ponent AD1 -&#x3E; A i (D2) of the isomorphism AD1 -&#x3E; A (D2) takes w E

Then the natural morphism A~D~) ~ A (D) attached to D &#x3E; D’ is

a Poisson algebra morphism, so Cone(C, D) -~ Cone(C, D’) is a Poisson

morphism.

Moreover, one can describe the structure of symplectic leaves of

Cone(C, D). Let us denote by Supp(D) the support {P E CI8p =1= 0} of D.

PROPOSITION 1.2. - There exists afinite subset D’ of C, such that

Supp(D) c D’ c Supp(D) U {Weierstrass points ofC’}~ with the following
property. The symplectic leaves of Cone(C, D) are of two types:

- each point of the preimage of D’ by Cone(C, D) - C is a 0-
dimensional symplectic leaf, as is the origin of Cone(C, D),

- the preimage of C-D’ by Cone(C, D) ---7 C is an open 2-dimensional
symplectic leaf.

When C is generic, D = D’.

Proof. In the proof of Proposition 1. l, (w, w’l has a pole of order
(i + i’)8p, so when 6p &#x3E; 0, this order is  (i -f- i’ + 1) 6p. If we view a

k-differential w as a function on Cone(C, D), then the coefficient of the
singularity of order k6p at P should be viewed as the value of w at a point
of the line of Cone(C, D) above P. So vanishes at P when 6p &#x3E; 0.

The elements of D’ - D are the points P such that if a section of

vanishes at P, then it vanishes at P with order 2. Let (nl , ... , ng)
be the Weierstrass sequence of P; this sequence is defined by the condition
that nl  ...  ng, and there exists a basis of regular differentials, with
zeroes of order nl , ... , ng at P. At a non-Weierstrass point, the sequence
is (0,..., g - 1). Generic curves only have regular Weierstrass points, i.e.,
with sequence (o, ... , g - 2, g) . In both cases, there exist forms w, w’ E 
such that does not vanish at P. D
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Remark. - The referee pointed out the following construction of
the Poisson bivector. Let X be the punctured cone, and p : X - C be the
projection. The vertical tangent bundle EX/C is trivialized by the Euler
vector field, so we have an exact sequence 0 ~ Tx - p* (~c ) --~ ~
of sheaves over X. Therefore n2 (Tx ) - p* (Tc), and -

K(D)0i). Then the canonical section of Oc (D) defines a
degree one section of 1B2(Tx), which is the bivector constructed above. Its
Schouten-Nijenhuis bracket with itself lies in which is zero; this

proves that this bivector is Poisson.

1.2. The quantization problem.

If B is an algebra, equipped with a decreasing filtration B = B~°&#x3E; &#x3E;
D -" (i.e., we have C B~i+~&#x3E;), then its associated graded

gr(B) _ has a graded ring structure. Moreover, if gr(B)
is commutative, then it has a natural Poisson structure of degree 1: for

x E y E grj(B), we define ?/} as the class of 17] in 
where x, yare any lifts of in B(i), B(3). We then say that B is a

quantization of the Poisson algebra gr(B).

By a quantization of the Poisson algebra A~D&#x3E; , we therefore under-
stand an algebra B~D&#x3E;, together with a decreasing ring filtration, whose
associated graded ring is commutative, and together with an isomorphism
gr(B (D)) ---7 A (D) of graded algebras, which is also a Poisson isomorphism.

The purpose of this paper is to construct a quantization of the Poisson

algebra (1). Before we explain various forms of this construction, let us

describe some examples of the Poisson rings (1) explicitly in the case D = 0
(then the algebra A (D) is simply denoted A). We do not know how to
quantize the isomorphisms A~D2 &#x3E; , where D1 and D2 are linearly
equivalent.

1.3. Explicit form of the Poisson ring A for genus 3,4,5.

Let us first describe the graded algebra structure of A. We have

dim(A°) - 1, and dim(Al ) - g, where g is the genus of C. Moreover,
the natural map ~ A is surjective when C is not hyperelliptic (see
[6]). However, the injection C ~ P(HO(C,K)*) is a complete intersection
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only when g = 3, 4, 5 and C is not hyperelliptic, and not trigonal when
g = 5. In these cases, the kernel of S (A1 ) - A is the ideal generated by
homogeneous elements Q 1, ... , Q~-2. When 9 = 3, Qi = Q is homogeneous
of degree 4; when g = 4, Ql, Q2 may be taken homogeneous of degree 2 and
3, and when g = 5, Q 1, Q2, Q3 may all be taken homogeneous of degree 2
(see [6]).

In all these cases, may be equipped with a Poisson bracket,
such that the morphism A is Poisson; in other words, the
injection Cone(C) ~ is a Poisson morphism. The Poisson
structure on may be described explicitly as follows (see [10]).

Let ~1, ... , x9 be a basis of then the Poisson structure on S.(A1)
is obtained by the rule

where x = dQ 1 n ~ ~ ~ n and wtop - dxl A ... n dxg . The elements
Q1, ... , Q9-2 are Poisson central for this structure, so there exists a unique
Poisson structure on A, such that Poisson. For example,
when g = 3, the Poisson structure is defined by the relations

in general, the brackets have the form = where the

Pij are homogeneous of degree 3.

2. Quantization based
on formal pseudodifferential operators.

2.1. Outline of the construction.

Our main tool is the general construction of the algebra of formal
pseudodifferential operators T DO(R, 9) associated to any differential ring
(R, c9). We will define the filtered algebra B as an algebra of formal
pseudodifferential operators on C, which are regular on C. We proceed as
follows. To any rational, nonzero vector field X on C, we associate a filtered
algebra of rational pseudodifferential operators on C. The construction
of this algebra involves X, but we construct canonical isomorphisms
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for any pair (X, Y) of nonzero rational vector fields. One can show that
is a quantization of the Poisson algebra Arat.

In Section 2.2.4, we give a canonical construction of the algebra 
independent of the choice of a nonzero vector field X.

If z is a formal tz) is the algebra of formal
pseudodifferential operators on the formal punctured disc. This algebra
contains the tz) of operators, regular at the ori-
gin. For any integer 6 &#x3E; 0, we also construct an intermediate algebra
BII z6 az ). °

Then for any point P of C, let lC p be the completed local field of C at
P, and let Op C ICP be its completed local ring. If zp is a local coordinate
at P, we have

If P is any point of C, Laurent expansion of formal pseudodiffer-
ential operators at P yields a filtered ring morphism L? : Bxt ---7

Then we define Be¡) as the preimage of TIPEe W DO
by the ring morphism

(the index  0 means operators of degree  0). One easily sees that this
definition is independent of the choice of the collection of local coordinates

(zp ) pEC  In particular, when D = 0, consists of all rational

pseudodifferential operators on C, which are regular at any point of C. We
will prove:

THEOREM 2.1. - 1) The canonical isomorphisms restrict to

canonical isomorphisms of filtered algebras

2) The graded algebra is commutative, and as a Poisson

algebra, it is isomorphic to A~D~ .

3) For D &#x3E; D’, there are canonical morphisms 1
complete filtered algebras, quantizing the inclusion ,

So for each D, the algebras Be¡) are all isomorphic when the vector
field X is changed, and they are quantizations of the Poisson algebra A~D~ .
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Remark 2. - One can prove that if one repeats this construction
without restricting it to operators of degree  0, the resulting algebra is
the same as Bx: all regular pseudodifferential operators on C are of degree
 0, because there are no nonzero sections of K(D)®2 for i  0 (the genus
of C is &#x3E; 1).

2.2. Details of the construction.

We will first present all details of the construction when D = 0.

So all superscripts (D) will be dropped. In Section 2.2.6, we explain the
modifications of the construction in the case of a general D.

2.2.1. The algebras T DO(R, 8). Let .R be a commutative ring with
unit and let 9 be a derivation of R. Following [1], [9], define xF DO(R, 8)
as the space of all formal linear combinations where for each

i, ai E R and ai = 0 for i large enough. BII DO(R, 8) is equipped with the
associative product

Say that LiEZ ai Da has degree  n if ai = 0 when i &#x3E; n, and define

W as the subspace of W DO(R, a) of all operators of degree
 n. Then W DO(R, 8) is a filtered ring. Its associated graded is R[ç,ç-1].
We will be interested in its subring W DO (R, 8) xo . It is also filtered, with as-
sociated graded R[~-1]. Moreover, are

complete for the topology defined by the family (W DO (R, )-),=o,i,2,...-

2.2.2. Functoriality properties of the rings W DO(R, a) and

W DO(R, 8) xo . The following statements are immediate:

LEMMA 2.1. - 1) Let (R,,O) be a differential ring, and let fER x
(i.e., f is an invertible element of R). Set (9’ = f 9, then o9’ is a derivation
of R. We have for any i, (f-1 Da,)i E w DO(R, c~’)~i, so if (ai)iEZ is

a sequence of elements of R, such that ai = 0 for i large enough, the

sequence converges Then there is a

unique isomorphism
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of complete filtered algebras, taking each series

We have then i

2) Let j1 : (R, OR) -~ (S, be a morphism of differential rings (i.e.,
j1 is a ring morphism and Then there is a unique morphism

taking each is a morphism of
complete filtered algebras and we have
for any morphism v : (S, as) -~ (T, dT ) of differential rings. In other words,

is a functor from the category of differential rings to that of filtered complete
algebras.

2.2.3. Construction of Bx. Let C be a curve, and let C~(C) be its
field of rational functions. Let X be a nonzero rational vector field on C;
X may be viewed as a nonzero derivation of C(C). We set

If Y is another nonzero vector field on C, then there exists a unique
f E C(C)~, such that Y - f X . Applying Lemma 2 .1, 1 ) , we get an
isomorphism

of complete filtered rings.

On the other hand, if P E C, then for any local coordinate zP at P,

a p is a derivation of Kip, preserving Op. We setdzp

By functoriality, we have then an inclusion T zp) C w zp).
Moreover, if z p is another local coordinate at P, the derivations aap and

where cp belongs to 0~, so Lemma
says that there is an isomorphism

of complete filtered algebras, restricting to an isomorphism
and such that

Let us now define the Laurent expansion morphism
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Since X is a nonzero vector field, its local expansion at P is .
The Laurent expansion map

therefore induces a differential ring morphism
and so a morphism

Composing it with the isomorphism

we get a filtered ring morphism

Finally, let us prove that the preimage by

is independent of the choice of the local coordi-
is any other choice of local coordinates, then

and

so

2.2.4. Vector field-independent construction of the algebras Bxt. Let
us define DO(C(C)) as the algebra of all rational differential operators on
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C. So DO(C(C)) is generated by Z’(f) E C(C), where X E Der(C(C)),
and relations

A E C. We will denote i( f ) simply by

DO(C(C)) may be localized with respect to the family of all Dx,
where X are all nonzero rational vector fields. The last of relations (3),
together with the fact that Der(C(C)) is a 1-dimensional C((C)-vector
space, implies that the localization of DO(C(C)) w.r.t. any Dx, X E

Der(C(C)) - fOl, coincides with its localization w.r.t. the family of all
such Dx. We denote by Brat the completion of this localized algebra w.r.t.
the degree of formal pseudodifferential operators.

Then Brat contains DO(C(C)) as a subalgebra, as well as the addi-
tional generators (Dx) -’, X E Der((C(C))-~0~. They satisfy, in particular,
the relations

for f E C( C) x and X E Der(C(C)) - {0}. If X is any nonzero vector field,
the natural map

is therefore an isomorphism. The map ixty : Bxt ---7 Byt then coincides
with ~Zy ~ 1 ~ ix . · 

’

2.2.5. Proof of Theorem 2.1. Let us prove the first part of Theorem
2.1. Let us emphasize the dependence of L? in X by denoting it

Then we have

Now the composed map
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coincides with

is an isomorphism of

complete filtered algebras, it restricts to an isomorphism ix,y : Bx - By
of complete filtered algebras.

Let us now prove the second part of Theorem 2.1. We will define a

filtration on Bx ; then we will construct a graded linear map

we will prove that if the genus of C is &#x3E; 1, Areg is a linear isomorphism,
and finally that it is an isomorphism of Poisson algebras.

So consists of all regular pseudodifferential operators on C of order
 -i.

is injective, because

Moreover, there is a linear isomorphism

taking the class of to where a is the rational differ-

ential inverse to X. We will prove

The restriction of maps (
rational i-differentials on Cl.

Proof of Lemma. - For any P E C, induces a linear map

it restricts to a linear map
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Now we have a linear isomorphism

restricting to an isomorphism

and taking the class of ’
is the image of bi under = C((zp)), and the diagram

is commutative (the right vertical arrow 1)~ is the Laurent expansion of
i-differentials at P). Then L p maps to

(Bx )i+l) is contained in the space of rational differentials on C, which are
regular at each point of C; this space is precisely HO(C,K0i) = Ai . D

Being the restriction of an injective map, the map (Bx )i/(Bx )i+1
- AZ induced by is injective. We now prove:

Let be a collection of elements of C(C); let us write

the necessary and sufficient conditions for to be a regular
pseudo differential operator. For simplicity, we will assume that the form
a = X-1 has no pole and 2g - 2 distinct zeroes Q1, ... , Q2g-2; so the
vector field X is nowhere vanishing and has simple poles at Qi,..., Q2g-2.
Let za be a local coordinate at Qa. Then we have a local expansion at Qa,

I I

where ca E C~; so we have local expansions

where

may be computed explicitly using binomial
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coefficients). Recall that DX is the generator of But corresponding to the
vector field X, and is the generator of T correspond-
ing to the vector field 19 .dzx

So the necessary and sufficient conditions on are:

(a) 
(b) (local conditions at each Qa, a = 1,..., 2g - 2) let us denote by

ai the element of C((za)), obtained as the Laurent expansion of aj at
Qa, then the formal series

should all be regular.

This means that the formal series (a;Q))j=i,i+1,... should have the
expansions:

1-1~ B .. - .. -.1 ..

where the ak,l are arbitrary complex numbers, and the are

certain linear forms on (
These conditions can be translated as follows:

(2) ai+1 belongs to a (possibly empty) affine space over K&#x26;Ji+2),
depending on ai;

(3) ai+2 belongs to a (possibly empty) affine space over 
depending on ai+1, etc.

We now prove that these affine spaces are all nonempty, and we
describe the set of all possible 

Moreover, for c
define linear forms
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by the condition that the local expansion of f at Qa is

k-

Then the sequence

is exact.

Proof of Lemma. - We have a long exact sequence, with H’ (C, K0i)
replacing 0 in the right hand side of (5). Since H1(C, K0i) = 0 when g and
i are &#x3E; 2, (5) is exact. 11

For any pair (i, j), let us choose a section ai,3 of the exact sequence
(5). So oi,3 is a linear map

such that if j , then for each (a,1~), we have

For any w E we set

where

etc. Then a is a linear map

it is a section of the canonical projection Areg : ---7 H°(C, This

proves that is surjective.

(d) The map A : gr(Bx ) ---7 A is an isomorphism of Poisson algebras.

There is a unique Poisson structure on C( C) [ç-1], such g~ = 0
and

four .1 Then the map
when ai =1= 0, is an isomorphism of Poisson
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algebras. Moreover, there is a unique inclusion A - C(C)[ç-1], taking
w E HO(C,K0i) to (W0152-i)ç-i (recall that belongs to C(C)). This
inclusion is a morphism of Poisson algebras. Then we have a commuting
diagram

Since all maps in this diagram except perhaps Areg are Poisson algebra
morphisms, and since the vertical arrows are injective, Areg is also a Poisson
morphism. This ends the proof of Theorem 2.1, in the case D = 0. D

2.2.6. The case of nonzero divisor D. We already defined the algebra
using the vector field X and the collection of local coordinates

(zp) pEC. We first prove:

LEMMA 2.4. - independent of the choice of (zp) pEC.

Proof. If zp and z’ p are local coordinates at P e C, we have
an isomorphism After com-

posing it with the isomorphisms
and the inverse of i

I, we get the isomorphism

Now there exists

restricts to an isomorphism

One uses this isomorphism in the same way as above to show that the

algebra is independent on the choice of (zp) pEC. 11

The behavior of with respect to changes of the vector field X is
the same as above.

The filtration of A ~ is defined by
we prove:
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LEMMA 2.5. - The restriction of the map defined by (4) to
._ . 

rat

maps to It c Aiat. So Arat induces a Poisson
morphism - A~D~ .

Proof. Any element of 1
sion

has the expan-

with for any This implies that

The other statements are proved as above, in particular, the analogue
of Lemma 2.3 holds because deg(K(D) ) &#x3E; deg(K). 0

2.3. Twisting by generalized line bundles.

If t E C, there is a unique continuous automorphism of

taking D8/8z to and leaving z fixed. We denote it by T H zRTz-R.

We denote by CC the group of all formal linear combinations

¿PEe ApP, where all Ap but a finite number are zero. We have a natural
group morphism CC. Moreover, the divisor map is a group mor-

phism div : CC ( C) " ~ ZC. The Picard group of C is defined as Pic(C) =
ZC / div( C( C) X). Then there is an injection Pic(C) ~ 
induced by ZC - CC. We call elements of CC "generalized divisors" and
elements of CCI div(C(C) x) "generalized line bundles" .

be a generalized divisor. One can define an

algebra BX~’D~’~ of twisted pseudodifferential operators as follows:

B1 ’-.’--" / B1 ’-.’--" /

Conjugation by a rational function sets up an isomorphism between

B~C’D~’~ and B~C’D~ ~~ , for A, A’ linearly equivalent generalized divisors
(i. e., differing by an element of On the other hand, one can
repeat the proof of Theorem 2.1 to prove that is a quantization
of A (e,D) for any A.
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2.4. Functoriality in (C, D).

In this section, we emphasize the dependence of the algebras A, 
in the curve C by denoting them A(c), , x , , x x .

2.4.1. The Poisson algebras. Let C -&#x3E; C’ be a (possibly ramified)
covering. So p gives rise to an inclusion of fields p* : C(C’) ~ ~ (C) . Then
cp induces morphisms cp* : H° (C’, (K’) ®2 ) - (here K’ is the
canonical bundle of C’ ) , and therefore an algebra morphism

The maps p* extend to maps between spaces of rational i-differentials.
For any f ’ E (~ ( C’ ) , we have in particular
follows that for any rational differential a’ on C’, we have cp* (w’)) =

It follows that is a morphism of Poisson algebras.

where vp is the ramification index of f at P E C (it is 1 for all but finitely
many P). Set D = then D is an effective divisor of C. Then cp
induces a morphism

of graded algebras and of Poisson algebras.

2.4.2. Quantization of the morphisms flags’ Let X’ be a rational,
nonzero vector field on C’, let cx’ = (X’)-l be the rational differential on
C’ inverse to X’; let us set a = cp* (c~’) and X = a-’. So X is a rational,
nonzero vector field on C. We will now show:

PROPOSITION 2.1. - There exists a morphism

of complete filtered algebras. It induces morphisms

and

of complete filtered algebras, quantizing the morphisms 
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Proof. (a) Construction of . The map
is a morphism of differential rings. Indeed,

So induces an algebra map

that is an algebra map

. Let P E C, and let us set j A’
be the ramification index of cp at P. Then if zp, z p, are local coordinates
at P, P’ , we have Then there is

a natural morphism

restricting to a morphism A and such

that the diagram

commutes. The Laurent expansion morphisms behave with respect to

changes of the vector fields according to (2). So we may replace X’ by a
rational vector field Y’, without any zero or pole at P’. We denote by Y the
corresponding vector field on C, and by Yi.cal, Yl’o,al the formal expansions
of Y, Y’ at P, P’.

Now we have a commuting diagram

Since Yocal preserves OPf, contains a subalgebra
The assumptions on Y’ allow to identify

Let us show that Q takes this subalgebra to

03C8 DO (OP’, zP’)  0.
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The map a takes Op, to Op, and it takes i

Now we have

local expansion of Y at P has the form

with 7r This expansion implies that I has the form

where belongs to

Now a takes

So a takes the generators of ~ 1

so

This implies that p* takes

to

In the same way, one proves that (

This ends the proof of Proposition 2.1.

3. An explicit example: the rational case.

It is easy to see that the results of Theorem 2.1 also hold in the

following cases: g = 0, deg(D) &#x3E; 2; and g = 1, deg(D) &#x3E; 1. In this section,
we study the first case.
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3.1. Presentation of the classical algebra.

Let us set C = P , D = Noo, where N &#x3E; 2. We have then

where
, where f (z) is a polynomial

of degree

PROPOSITION 3.1. - A(e,V) may be presented as follows: genera-
tors are aJa = z’dz, a = 0,..., N - 2, and relations are

for any quadruple (a, b, c, d) such that a + b = c + d.

Proof. Let A(N) be the algebra with generators to,..., tN - 2, and
relations

for any quadruple (a, b, c, d) such that a + b = c + d. Then A(N) is the

sum of its homogeneous components A(N)i, and relations (8) imply that a
generating family of A(N)i is given by the union of the

We have an algebra morphism

taking each ti to Wi . It takes the generating family (9) to a basis of 
which proves, as the same time that this family is a basis, and that (10) is
an isomorphism. 11

Remark 3. - Proposition 3.1 is an algebraic translation of the

statement that the rational normal curve in IfDN -2, that is the image of
the embedding P1 --&#x3E; IfDN -2 given by Xi = UN-2-iVi, is defined by the

equations = for i + 3* = k + (see e.g. [7], 1.14). 0

The Poisson bracket on is given by

so in terms of generators

for any (c, d, e) such that
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3.2. Quantized algebras j5~ and B’x.

The field of rational functions on I~1 is the field of rational frac-

tions (~(z). Equip it with its derivation X - 8z = ddz. Then 
03C8 DO(C(z), gz) 0

Lifts in BX of the úJa are the elements

Denote by BX the subalgebra of generated by the wa. Since the Wa
generate B x is the completion of BX with respect to the topology
of BXrat.x .

THEOREM 3.1. - For any quadruple (a, b, c, d) such that 0 
uTe have

Let us defines C as the algebra with generators i and

relations

for a, b, c, d = 0,..., N - 2, such thata+b= c+dandb &#x3E; d. Let Ic be the
ideal of C generated by the 1
Then there is a unique continuous algebra isomorphism

taking each ta to wa . This isomorphism induces an algebra isomorphism

Proof. Let us first prove the relation (11). We have

so
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We have gr(C) = We have a morphism of filtered
algebras C ---7 Moreover, we have gr(Bx) = A(C,D), so we
get an algebra morphisme f

Select in relations (11), the subset of relations corresponding to
(a, b, a-E-b, 0) for a, b such that N-2, and (a, b, N-2, a-E-b-(N-2))
for a, b such that a + b &#x3E; N - 2. Then this subset of relations implies that
a generating family of is the union of all

with The morphism gr(C) - A takes it to a basis of An, so

gr(C) - gr(B&#x26;) is an isomorphism. This implies that the map ê ---7 Bx
obtained by completing C - B &#x26; is an isomorphism. This fact now implies
that ---7 B &#x26; is injective. Since it is obviously surjective, this
map is an isomorphism. D

Remark 4. - We do not know whether 0, in other

words, whether C is separated for the topology defined by the powers of
Ie.

4. Quantization based on Poincar4 uniformization.

In this section, we assume that C is defined over C, and that we are
given a Poincar6 uniformization of C. We denote by H the Poincar6 half-
plane, and we denote by 1, a discrete subgroup of such that there

is an analytic isomorphism H/r - C.

We will recall the results of [3] in the Rankin-Cohen brackets (Section
4.1); we will show how they give rise to a solution Ban of the problem of
quantizing the algebra A (Section 4.2), and that this solution is isomorphic
to the quantization BX of Section 2 (Section 4.3). For simplicity, we restrict
ourselves to the case D = 0.

4.1. Rankin-Cohen brackets and pseudodifferential operators
on H: the results of [3].

Let us denote by the ring of holomorphic functions on the
Poincar6 half-plane and by T the coordinate on this plane. Let us denote
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by 81t its derivation d/dT. Consider the It is

a filtered ring, with associated graded

where Krt is the sheaf of differentials on H.

Kx has a natural section dT, which induces isomorphisms K~2 )
- 

The and are equipped
with natural actions of The paper [3] contains the following results:

THEOREM 4.1 - There exists a lifting map

i=0

which is SL2(R)-equivariant. The restriction of lift to maps

this space to

and the composed map

is inverse to the natural isomorphism

tas the form w(T)(dT)i, then lift(c,v) has the
expression

m/v

where are explicit rational numbers.

Denote by ft the product on K~2) obtained by transport-
ing the product of W DO(Hol(H), by the map lift. Since the product
on

is expressed by differential operators, p is a SL2(R)-invariant star-product
More precisely, the authors of [3] show:

THEOREM 4.2 ( Let us denote by J1fj the map
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induced by J-L, then the are the Rankin-Cohen brackets: vve have

for suitable rational numbers (

This result immediately implies that the Rankin-Cohen brackets are
SL2 (R)-invariant.

4.2. Construction of Ban.

Let C be a complex curve, equipped with an isomorphism C - Hjr
of analytic manifolds. This isomorphism induces an isomorphism

i=0

of graded algebras and of Poisson algebras.

THEOREM 4.3. - Set

Then Ban is afiltered algebra. Its associated Poisson algebra is isomorphic
to A.

Proof. Let us set I This obvi-

ously defines a filtration on Ban, and the image of the composed map

is contained in So we have a natural map

Since each map of the sequence (13) is injective, so is (14). It remains

to prove that (14) is surjective. Denote by lifti,r the restriction of lift to
Then lifti, r is a linear map

According to Theorem 4.1, the image of lifter is actually contained in
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The composed map

is obviously a section of (14), which proves that this map is surjective. D

The algebra Ban also has a "star-product" version.

THEOREM 4.1. - The product p, defined in terms of Rankin-Cohen
brackets (see Theorem 4.2), restricts to a product on

i=0

The restriction of lift induces an isomorphism between (A,u) and Ban .

4.3. Isomorphism with the construction of Section 2.

PROPOSITION 4.2. - For any nonzero rational vector field X on C,
there is an isomorphism

of complete filtered algebras. If Y is another nonzero rational vector field
on C, then ax = any o 2xY .

Proof. Let us denote by Mer(H) the ring of meromorphic func-
tions on H, all poles of which are of finite order. Then OR extends to a
derivation of Mer(H) (which we also denote by 81-{). We set

We will also set

Then we have a commuting square of algebras

where the vertical arrows are injective. We have a natural injection C (C) -
induced by the projection H - C. Moreover, let X be a nonzero

rational vector field on C. The lift of X to H may be expressed in the
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form X(T)ddT’ where X (T) E Mer(H), so Lemma 2.1 implies that there is a
canonical morphism

Lemma 2.1 also shows that the image of this morphism is contained in

(W Recall that we have W DO(C(C), X)~o = so we have

constructed an algebra morphism 

We now want to prove that we have a commuting square of algebras

where the vertical arrows are injective. We proceed as follows:

(a) for any point P E C, there are natural Laurent expansion
morphisms

such that the diagram

commutes.

may be identified with the preimage of

(c) For each P E C, the composed maps

and

coincide, so the image of the latter map is contained 
So the image of the composed map

is contained in So we have constructed a morphism
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of filtered algebras.

(d) Both algebras Bx and (T are complete and separated
for their filtrations. (15) induces an isomorphism between their associated
graded algebras, so it is an isomorphism of filtered algebras. This proves
Proposition 4.2. 0

Remark 5. - The authors of [3] actually define a family of star-
products, depending on a parameter K. In the language of Section 2.3, this
construction corresponds to replacing the algebra by the family of

algebras BX ’ D ~’ ~ , where the generalized line bundle A is Ka, and a is an
element of CC such that the class of 2a modulo div(C(C)~) is equal to the
canonical bundle Kc .

Remark 6. - To be able to use Proposition 4.1, one needs to know
the group 1, corresponding to a given curve C. This is the case, by definition,
if C is a modular curve. In this case, a classical problem is to find algebraic
equations for this curve. This problem is solved using the algebra of modular
forms. The corresponding "quantum" problem is to give a presentation of
the algebra Bx (or equivalently, of (HO (-H, K?/)) r, equipped with its
Rankin-Cohen star-product structure 

5. Differential liftings.

The lifting
-.

constructed in the proof of Theorem 2.1 (see step (c) of Section 2.2.5) relies
on estimation of the dimensions of cohomology groups. Contrary to the
operation lift of Theorem 4.1, it is therefore not a local operator. We now

study the problem of constructing such a local, or differential, lifting, in the
algebraic framework. We will prove that the set Liftdif (C) of such liftings
is a torsor under the action of a group Autdiff(C), Poincar6 uniformization
yields a point of this torsor. We do not know an algebraic way to construct
a point of the torsor but we study some algebraic structures

provided by such a point.
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5.1. Differential liftings.

A differential lifting of the isomorphism gr(B ) ---7 A is defined as the

following data: for each rational vector field X, this is a collection 
of rational differential operators {rational i-differentialsf - C(C).
This collection is subject to the following conditions:

then A x maps Aiat to (Br;t) i, the composed map
is the inverse of the canonical map, and AX (1) = 1;

(2) for any pair X, Y of nonzero vector fields, we have = 11Y;

(3) condition (2) implies that for any P e C, 11X induces a map

Then for any P E C, A~ maps

(If a nonzero vector field Xo is fixed, then for any family 
satisfying conditions (1), (3) for Xo, condition (2) uniquely determines a
differential lifting extending (A-’y9)i, -.)

Conditions (1), (2) and (3) imply immediately that ~1X induces a
linear map

which is a section of the canonical map gr(Bx) ---7 A, and therefore induces
an isomorphism where A is the completion I

Let us denote by Liftdif (C) the set of all differential lifts on C. For
any nonzero rational vector field X, the assignment is a map

We will now see that both sides of this map are principal homogeneous
spaces (torsors) and that p is a morphism of torsors.
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5.2. The group 

Define DO(K0i, K0j) as the space of all regular differential operators
on C, from K0i to K0j. Define DO(K0i, as the subspace of all
such operators of order  k. Set

Then we have a graded linear injection

It follows that when

Define Enddiff(C) as follows:

where 0153 is the completed direct sum (direct product). Then composition of
differential operators induces an algebra structure on Projec-
tion of the diagonal summands induces an algebra morphism 

C. The preimage of flio 1 in is a group, which we denote

It is easy to see that this is a prounipotent algebraic group, as
is the subgroup of elements preserving 1.

Define Aut (A) as the group of all continuous linear automorphisms
of A = 

PROPOSITION 5.1. - There is a natural group morphism Autdifr,i (C)
- The map p is a torsor morphism, compatible with this group
morphism.

We have already mentioned that Poincar6 uniformization provides an
element of Liftdiff(C)- On the other hand, Liftdiff(C) is a purely algebraic
object, so one would like an algebraic construction of its elements. We will
not give such a construction, but only indicate that such elements give rise
to affine spaces over spaces of differential operators (Section 5.3).
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Let us now describe the possible form of a differential lift A. If fl is a
rational differential, we may set

in the notation of Section 2.2.4. In other words, if ao is a nonzero rational

differential, and Xo is the vector field inverse to ao , we have

where f = /3/o’o’
Let now {3 be a rational quadratic differential. Set The

element

of is independent on the choice of ao. On the other

hand, one can show that there is no expression P(ao, f ) of the form

E , such that the element

of is independent on the choice of ao. So the determination
of the coefficient P(ao, f ) depends on additional data. The space of all
possible expressions P(a°, f ) is an affine space, with associated vector space
DO(K02, K(4). This structure of affine space may be viewed as a part of
the torsor structure of Liftoff.

Remark 7. - On the size of DO(K0n, K0m). The injection (16) is

not always surjective: for example, where n = l, m = 2,1~ = 1, the preimage
of 1 E H°(C, Oc) is the class of all regular connections on K; but there is
no such connection, because 0.

6. Concluding remarks.

6.1. The elliptic case.

When g = 1 and the degree of D is &#x3E; 0, the above construction of
the algebra Bf,D) may still be carried out. Its classical limit is the algebra
A (C,D) . Let us compare them to the elliptic algebras of [5].
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may be described as follows: A (C,D) == where

A~C’D) = H°(C, (~(D)~~). We view elements of as rational functions

on C, with divisor &#x3E; -iD. In particular, the derivation f - = f’
can be applied to these functions (here z E C is a uniformizing parameter
of C). The algebra structure of is graded and induced by the
product of rational functions. Its Poisson bracket is defined as follows:

it is homogeneous of degree 1, and if f E , g E , then
oJ

corresponds to

It turns out that for any integer d &#x3E; 0, one can define a Poisson structure
on the algebra A (C,D) , by requiring that it is homogeneous of degree d,
and for f E Ai g E E corresponds to (17). The
structure studied in this paper corresponds to d = 1, and the structure of

[5] corresponds to d = 0.

As we have said, the quantization of the first structure may be

done in terms of pseudodifferential operators. The quantization AFO of
the second structure was achieved in [5]. It can be expressed in terms
of difference operators: if a = ea( d/ dz) is a translation of C, elements
of (AFO)n are operators of the form where f is a section of

O(D + ..- + AFO is then a graded algebra.

We do not know a quantization of the Poisson algebras corresponding
to other values of d.

6.2. Higher-dimensional Poisson structures.

Let us set A1 = H° (C, K), then we have a map

1,;?U

When g = 3, 4, 5, one can define a Poisson structure on the algebra 
such that (18) is Poisson. In that case, the quantization of S. (A I) and of
the morphism (18) is not known.

In the other cases, a Poisson structure on such that (18)
is Poisson, is not known. One 2-dimensional symplectic leaf of such a

Poisson structure would be given by the dual to the map (18), so it

would be isomorphic to the cone Cone(C, D). One could try to construct
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geometrically higher dimensional symplectic leaves of this Poisson structure
by first understanding their geometric interpretation when g = 3, 4, 5.

6.3. Relation with Kontsevich quantization.

When g = 3, 4, 5, one may apply Kontsevich quantization to the
algebras Under this quantization, the Poisson central elements

Q1, ... , Qg-2 are deformed to central elements. So factoring them out gives
rise to a quantization ~ An of the map (18). It is natural to expect
that An and BX are isomorphic.

6.4. Relation with the Beauville hamiltonians.

In [2], Beauville introduced integrable systems on symmetric powers
of I~3 surfaces. An analogous construction is the following. Let k be an

integer, (C, D) be the pair of a curve and an effective divisor, and WI, Wk
be elements of AiC,D). Set

Then A (k) is a Poisson algebra. For 0 E denote by 0(’) be image
of 0 in the ith copy of Denote by 1/Jo, ... , 1/Jk the minors of the
matrix

Set Hi - for i = 1,..., ,1~. Then the Hi are a Poisson-commuting
family of elements of Frac(A (k) ). It would be interesting to study the quan-
tization of this family using the algebras of pseudodifferential operators
introduced here.

Remark 8. - Relation to [4]. In general, A~C~D~ may be viewed as
the space of sections of a sheaf of Poisson algebras over C. When D = 0, and
in the complex analytic framework, sheaves of filtered algebras, quantizing
this sheaf of Poisson algebras, were classified by Boutet de Monvel in [4]:
he established a bijection of such sheaves with the singular cohomology
group H’ (C, C). It is easy to see that the algebra of global sections of the
simplest sheaf (corresponding to 0 E HI (C, C) ) is isomorphic to BX .
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In [4], the quantization problem for sheaves was studied for varieties
X of any dimension. When the dimension is &#x3E; 1, the operation of taking
global sections is no longer interesting, because then there are no nonzero
functions on T* (X), homogeneous of negative degree and regular except at
the zero section. -
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