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1.1. Main theorem. - Let h : M - M’ be a C°°-smooth CR diffeomor-

phism between two geometrically smooth real analytic hypersurfaces in Cn

(n &#x3E; 2). Call M globally minimal (in the sense of Trépreau-Tumanov) if it
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which is tangent to a nonempty open subset of M (see [Stl] , [St2]). Our
principal result is as follows.

1.2. THEOREM. - If M is globally minimal and if M’ is holomor-
phically nondegenerate, then the Coo -smooth CR diffeomorphism h is real
analytic at every point of M.

Compared to classical results of the literature, in this theorem,
no pointwise, local or not propagating nondegeneracy condition is imposed
on M’, like for instance M’ be Levi nondegenerate, finitely nondegenerate or
essentially finite at every point. With respect to the contemporary state of
the art, the novelty in Theorem 1.2 lies in the treatment of the locus of non-
essentially finite points, which is a proper real analytic subvariety of M’,
provided M’ is holomorphically nondegenerate. There is also an interesting
invariant to study, more general than h, namely the reflection function R’
Because the precise definition of involves a concrete defining equation
of M’, it must be localized around various points p’ E M’, so we refer
to §1.7 below for a complete presentation. Generalizing Theorem 1.2,
we show that R£ extends holomorphically to a neighborhood of each
point (p, h(p)) E M x M’, assuming only that M is globally minimal and
without any nondegeneracy condition on M’ (Theorem 1.9). We deduce
in fact Theorem 1.2 from the extendability of This strategy of proof is
inspired from the deep works of Diederich-Pinchuk [DP1], [DP2] (see also
[V], [Sha], [PV]) where the extension as a mapping is derived from the
extension as a correspondence.

In the sequel, we shall by convention sometimes denote by (M, p)
a small connected piece of M localized around a "center" point p E M.
However, since all our considerations are semi-local and of geometric nature,
we shall never use the language of germs.

1.3. Development of the classical results and brief history. - The
earliest extension result like Theorem 1.2 was found independently by
Pinchuk [P3] and after by Lewy [L]: if (M,p) and (M’, p’) are strongly
pseudoconvex, then h is real analytic at p. The classical proof in [P3]
and [L] makes use of the so-called refection principle which consists to
solve first the mapping h with respect to the jets of h (by this, we
mean a relation like h (q) = where SZ is holomorphic in its

arguments and q E M, cf. (4.10) below) and to apply afterwards the one-
dimensional Schwarz symmetry principle in a foliated union of transverse

holomorphic discs. In 1978 and in 1982, Webster [W2], [W3] extended
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this result to Levi nondegenerate CR manifolds of higher codimension.
Generalizing this principle, Diederich-Webster proved in 1980 that a

sufficiently smooth CR diffeomorphism is analytic at p E M if M is

generically Levi-nondegenerate and the morphism of jets of Segre varieties
of M’ is injective (see §2 of the fundamental article [DW] and (1.11) below
for a definition of the Segre morphism). In 1983, Han [Ha] generalized
the reflection principle for CR diffeomorphisms between what is today
called finitely nondegenerate hypersurfaces (see [BER2]). In 1985, Derridj
[De] studied the reflection principle for proper mappings between some
model classes of weakly pseudoconvex boundaries in (C2. In 1985, Baouendi-
Jacobowitz-Treves [BJT] proved that every C°°-smooth CR diffeomorphism
h : (M, p) - (M’, p’) between two real analytic CR-generic manifolds in can
which extends holomorphically to a fixed wedge of edge M, is real analytic,
provided (M’, p’) is essentially finite. After the work of Rea [R], in which
holomorphic extension to one side of CR functions on a minimal real
analytic hypersurface was proved (the weakly pseudoconvex case, which
is not very different, was treated long before in a short note by Bedford-
Fornaess [BeFo]; see also [BT2]), after the work of Tumanov [Tul], who
proved wedge extendability in general codimension, and after the work of
Baouendi-Rothschild [BR3], who proved the necessity of minimality for
wedge extension (in the meanwhile, Treves provided a simpler argument
of necessity), it was known that the automatic holomorphic extension
to a fixed wedge of the components of h holds if and only if (M, p) is

minimal in the sense of Tumanov. Thus, the optimal extendability result
in [Tul] strengthened considerably the main theorem of [BJT]. In the late
eighties, the research on the analyticity of CR mappings has been pursued
by many authors intensively. In 1987-1988, Diederich-Fornaess [DF2] and
Baouendi-Rothschild [BR1] extended this kind of reflection principle to the
non diffeomorphic case, namely for a C°°-smooth CR mapping h between
two essentially finite hypersurfaces which is locally finite to one, or locally
proper. This result was generalized in [BR2] to C°°-smooth mappings
h : (M, p) - (M’, p’) whose formal Jacobian determinant at p does not
vanish identically, again with (M’, p’) essentially finite. In 1993-1996,
Sukhov [Sul], [Su2] and Sharipov-Sukhov [SS] generalized the reflection
principle of Webster in [W2], [W3] by introducing a global condition on the
mapping, called Levi-transversality. Following this circle of ideas, Coupet-
Pinchuk-Sukhov have pointed out in their recent works [CPSI] , [CPS2] that
almost all the above-mentioned variations on the reflection principle find a
unified explanation in the fact that a certain complex analytic variety vp



1446

is zero-dimensional, which intuitively speaking means that h is finitely
determined by the jets of h, i.e. more precisely that each components hj
of h satisfies a monic Weierstrass polynomial having analytic functions
depending on a finite jet of h as coefficients (this observation appears also
in [Me3]). They stated thus a general result in the hypersurface case whose
extension to a higher codimensional minimal CR-generic source (M, p) was
achieved recently by Damour in [Da2]. In sum, this last clarified unification
closes up what is attainable in the spirit of the so-called polynomial identities
introduced in [BJT], yielding a quite general sufficient condition for the
analyticity of h. In the arbitrary codimensional case, this general sufficient
condition can be expressed simply as follows. Let L1,..., Lm be a basis

denote

and let pj (t’, l) = 0, 1  j’  d’, be a collection of real analytic defining
equations for a generic (M’, p’) of codimension d’. Then the complex
analytic variety, called the (first) characteristic variety in [CPS1], [CPS2],
[Dal], [Da2]

is always zero-dimensional at p’ E in [L], [P3], [WI], [W2], [W3], [DW],
[Ha], [De], [BJT], [DF2], [BR1], [BR2], [BR4], [Sul,2], [BHR], [Sul], [Su2],
[SS], [BER1], [BER2], [CPS1], [CPS2], [Da] (in [P4], [DFY], [DP1,2], [V],
[Sha], [PV], the variety V~ is not defined because these authors tackle

the much more difficult problem where no initial regularity assumption is
supposed on the mapping; in [DF2], some cases of non-essentially finite
hypersurfaces are admitted). Importantly, the condition 0

requires (M’, p’) to be essentially finite.

1.5. Non-essentially finite hypersurfaces. - However, it is known that
the finest CR-regularity phenomena come down to the consideration of a
class of much more general hypersurfaces which are called holomorphically
nondegenerate by Stanton [Stl], [St2] and which are in general not

essentially finite. In 1995, Baouendi-Rothschild [BR3] exhibited this

condition as a necessary and sufficient condition for the algebraicity of
a local biholomorphism between two real algebraic hypersurfaces. Thanks
to the nonlocality of algebraic objects, they could assume that (M’, p’) is
essentially finite after a small shift of p’, which entails again dimp, 0,
thus reducing the work to the application of known techniques (even
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in fact simpler, in the generalization to the higher codimensional case,
Baouendi-Ebenfelt-Rothschild came down to a direct application of the
algebraic implicit function theorem by solving algebraically h with respect
to the jets of h ~BER1~ ) . Since then however, few works have been devoted
to the study of the analytic regularity of smooth CR mapping between
non-essentially finite hypersurfaces in Cn. It is well known that the main
technical difficulties in the subject happen to occur in ~’~ for n &#x3E; 3 and

that a great deal of the obstacles which one naturally encounters can be
avoided by assuming that the target hypersurface M’ is algebraic (with M
algebraic or real analytic), see e.g. the works [MM2], [Mil], [Mi2], [Mi3],
[CPS1] (in case M’ is algebraic, its Segre varieties are defined all over

the compactification Pn(C) of which helps much). Finally, we would
like to mention the papers of Meylan [Mey], Maire and Meylan [MaMe],
Meylan and the author [MM1], Huang, the author and Meylan [HMM] in
this respect (nevertheless, after division by a suitable holomorphic function,
the situation under study in these works is again reduced to polynomial
identities).

1.6. Schwarz’s reflection principle in higher dimension. - In late 1996,
seeking a natural generalization of Schwarz’s reflection principle to higher
dimension and inspired by the article [DP1], the author (see [MM2],
[Me3]) pointed out the interest of the so-called reflection function R’ h
associated with h. This terminology is introduced passim in [Hu], p. 1802;
a different definition involving one more variable is given in [Me3],
[Me5], [Me6], [Me7], [Me8]; the biholomorphic invariance of Rh and the
important observation that R£ should extend holomorphically without any
nondegeneracy condition on (M’, p’) appeared for the first time in the

preprint versions of [MM2], [Me3].

Indeed, the explicit expression of this function depends on a local
defining equation for M’, but its holomorphic extendability is independent
of coordinates and there are canonical rules of transformation between

two reflection functions (see §3 below). As the author believes, in the

diffeomorphic case and provided M is at least globally minimal, this function
should extend without assuming any nondegeneracy condition on M’, in pure
analogy with the Schwarzian case n = 1. It is easy to convince oneself that
the reflection function is the right invariant to study. In fact, since then,
it has been already studied thoroughly in the algebraic and in the formal
CR-regularity problems, see [Me3], [Me5], [Me6], [Me7], [Me8], [Mi2], [Mi3],
[Mi4]. For instance, the formal reflection mapping associated with a formal
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CR equivalence between two real analytic CR-generic manifolds in C’
which are minimal in the sense of Tumanov is convergent (see [Mi3], [Mi4]
for partial results in this direction and [Me6], [Me7], [Me8] for the complete
statement). If h is a holomorphic equivalence between two real algebraic
CR-generic manifolds in C’ which are minimal at a Zariski-generic point,
then the reflection mapping R£ is algebraic (see [Mi2] for the hypersurface
case and [Me5] for arbitrary codimension). So we expect that totally similar
statements hold for smooth mappings between real analytic CR manifolds.

1.7. Analyticity of the reflection function. - For our part, we deal
in this paper with smooth CR mappings between hypersurfaces. Thus, as
above, let h : M - M’ be a C°°-smooth CR mapping between two connected
real analytic hypersurfaces in C’~ with n &#x3E; 2. We shall constantly assume
that M is globally minimal. Equivalently, M is locally minimal (in the sense
of Trépreau- Tumanov) at every point, since M is real analytic (however,
there exist C2-smooth or C°°-smooth hypersurfaces in C’, n &#x3E; 2, which are

globally minimal but not locally minimal at many point, see [J], 
Postponing generalizations and refinements to further investigation, we
shall assume here for simplicity that h is a CR diffeomorphism. Of course,
in this case, the assumption of global minimality of (M, p) can then be
switched to (M’, p’). The associated reflection function Rh is a complex
function which is defined in a neighborhood of the graph of h in (Cn x (Cn
as follows. Localizing M and M’ at points p C M and p’ E M’ with
p’ = h(p), we choose a complex analytic defining equation for M’ in the
form w-’ = O’(z’, t’), where t’ = (z’, w’) E Cn-1 x Care holomorphic
coordinates vanishing at p’ and where the power series

vanishes at the origin and converges normally in a small polydisc

where p’ &#x3E; 0 and where It’l . is the polydisc norm.
Here, by reality of M’, the holomorphic function 8’ is not arbitrary, it must
satisfy the power series identity

Conversely, such a power series satisfying this identity does define a real
analytic hypersurface w-’ = E)’(Z-’, t’) of C’ as can be verified easily. It is
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important to notice that once the coordinate system t’ is fixed, with the
w’-axis not complex tangent to M’ at 0, then there is only one complex
defining equation for M’ of the form w’ - 8’(z’, t’).

By definition, the ref lection function R£ associated with h and with
such a local defining function for (M’, p’) is the following function of 2n
complex variables:

(A’, A) E cn-1 X C. It can be checked rigorously that this
function is CR and of class C° with respect to the variable t E M in a

neighborhood of p and that it is holomorphic with respect to the variable v’
in the polydisc neighborhood I I z’l  p’ } of p’ in (Cn (see Lemma 3.8 below).
Let us call the functions 8ø (h( t)) the components of the reflection function.
Since M is in particular minimal at the point p E M, the components hj
of the mapping h and hence also the components 0’ 0 (h(t)) of extend

holomorphically to a one-sided neighborhood Dp of M at p, obtained by
gluing Bishop discs to (M, p). Our first main result is as follows.

1.9. THEOREM. - If h : M - M’ is a Coo-smooth CR diffeomorphism
between two globally minimal real analytic hypersurfaces in cn, then for
every point p E M and for every choice of a coordinate system vanishing
at p’ :- h(p) as above in which (M’, p’) is represented by w’ - 8’(2’, t’),
the associated reflection function 8’ ()..I , h(t)) centered at
p x p’ extends holomorphically to a neighborhood of p x p’ in Cn x cn.

In §3 below, we provide some fundational material about the reflection
function. Especially, we prove that the holomorphic extendability to a
neighborhood of p x p’ does not depend on the choice of a holomorphic
coordinate system vanishing at p’. By differentiating (1.8) with respect
to v’, we may observe that the holomorphic extendability of R£ to a
neighborhood of p is equivalent to the following statement: all the component
functions E)’ (h(t)) =: 0’ (t) (an infinite number) extend holomorphically to
a fixed neighborhood of p and there exist constants C, p, p’ &#x3E; 0 such that

It I  p ~ 10’(t)l  C(p’)-~~~ (see Lemma3.16 below). So Theorem 1.9
may be interpreted as follows: instead of asserting that the mapping h
extends holomorphically to a neighborhood of p, we state that a certain
invariant infinite collection of holomorphic functions of the components hj
of the mapping (which depends directly on M’) do extend holomorphically
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to a neighborhood of p. The important fact here is that we do not put any
extra nondegeneracy condition on M’ at p’ (except minimality). Another
geometric interpretation is as follows. Let

denote the conjugate Segre variety associated with the fixed point having
coordinates t’ (usually, to define Segre varieties, one fixes instead the

point v’; nevertheless conjugate Segre varieties are equally interesting, as
argued in [Me4]). Then Theorem 1.9 can be interpreted as saying that
the not rigorously defined intuitive "Segre mapping" t H extends

holomorphically at p. In fact, the target value of this mapping should be
thought to be represented concretely by the defining function of 
namely this intuitive "Segre mapping" must (and can only) be represented
by the rigorous reflection function

In sum, Theorem 1.9 precisely asserts that the "Segre mapping" extends
holomorphically to a neighborhood of p x p’, without any nondegeneracy
condition on (M’, p’). In certain circumstances, e.g. when (M’, p’) is moreo-
ver assumed to be Levi-nondegenerate, finitely nondegenerate or essentially
finite, one may deduce afterwards, thanks to the holomorphic extenda-
bility of the components 8ø (h( t)), that h itself extends holomorphically
at p ( cf. [DF2], [BR1], [DFY], ~DP 1, 2~ , [V], [Sha], [PV]). Analogously, in
Theorem 1.14 below, we shall derive from Theorem 1.9 above an important
expected necessary and sufficient condition for h to be holomorphic at p.

1.10. Applications. - We give essentially two important applications.
Firstly, associated with M’, there is an invariant integer K/MI with

0  /~~ ~ ~ 2013 1, called the holomorphic degeneracy degree of M’,
which counts the maximal number of ( 1, 0) vector fields with holomorphic
coefficients defined in a neighborhood of M’ which are tangent to M’ and
which are linearly independent at a Zariski-generic point. In particular, M’
is holomorphically nondegenerate if and only if K’ , = 0. Inspired by the
geometric reflection principle developed in [DW], [DF4], [F], we can provide
another (equivalent) definition of the integer ~M, in terms of the morphism
of jets of Segre varieties as follows (see also [Me6], [Me7], [Me8]; historically,
finite order jets of C°°-smooth CR mappings together with finite order
jets of the Segre morphism were first studied in the reflection principle by
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Diederich-Fornaess in [DF4]). By complexifying the variable t’ as (i’)c =: T’
and by fixing T’, we may consider the complexified Segre variety which is
defined by

For some supplementary information about the canonical geometric
correspondence between complexified Segre varieties and complexified CR
vector fields, we refer the interested reader to [Me4], [Me5]. Let denote

the k-jet at the point t’ of S§, . This k-jet is in fact defined by differentiating
the defining equation of ST, with respect to z’ as follows. For /J E Nn-1,
we denote := /J1 + ... + /In-1 and := 0i ... on -1. Then the A;-jetZl 

provides in fact a holomorphic mapping which is defined over the extrinsic
complexification

of M’ as shown in the following definition:

For k large enough, the analytic properties of these jet mappings j
govern the geometry of M’, as was pointed out in [DW] for the first

time. For instance, Levi nondegeneracy, finite nondegeneracy and essential
finiteness of (M’, p’) may be characterized in terms of the mappings j~
(see [DW], [DF4], [Me6], [Me7], [Me8]). In our case, it is clear that there

exists an integer xM, with 1  such that the generic rank of j~
equals n - 1 + xM, for all k large enough, since the generic ranks increase
and are bounded by 2n - 1. Then the holomorphic degeneracy degree can
also be defined equivalently by ~M, := n - X’ . We may notice in particular
that M’ is Levi-flat if and only if xM, = l, since O’ (z’, T’) = Tn in this case.
Consequently, we always have xM, &#x3E; 2 in this paper since we constantly
assume that M’ is globally minimal. The biholomorphic invariance of Segre
varieties makes it easy to precise in which sense the jet mapping j’ k is

invariantly attached to M’, namely how it changes when one varies the
coordinate system. Then the fact that xM, is defined in terms of the generic
rank of an invariant holomorphic mapping together with the connectedness
of M’ explains well that the integers xM, and K’ , do not depend on the
center point p’ E M’ in a neighborhood of which we define the mappings j~
(we prove this in §3). In particular, this explains why M’ is holomorphically
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degenerate at one point if and only if it is holomorphically degenerate at
every point [BR4]. On the contrary, the direct definition of ~M, in terms of
locally defined tangent holomorphic vector fields provided in [BR4], [BER2]
makes this point less transparent, even if the two definitions are equivalent.
So, we believe that the definitionof K’ , in terms of j~ is more adequate.
Furthermore, to be even more concrete, let us add that the behavior of
the map (1.11) depends mostly upon the infinite collection of holomorphic
mappings (O~(T’))~E~n-1 , since we essentially get rid of z’ by differentiating
w’ - ~~jEj~n-1 (z’)~O~(T’) with respect to z’ in (1.11). Equivalently, after
conjugating, we may consider instead the simpler holomorphic mappings

Then the generic rank of Q’ is equal to the same integer X’ , for all k
large enough. This again supports the thesis that the components O~ (t’)
occuring in the defining function of (M’, p’) and in the reflection function
are over all important. In §3 below, some more explanations about the
mappings are provided.

Let x’ , be as above and let A be the unit disc in C. It is known

that there exists a proper real analytic subset EM, of M’ such that for
each point q’ E M’ B there exists a neighborhood of q’ in C’ in which
(M’, q’) is biholomorphically equivalent to a product M’, of

a small real analytic hypersurface M’, contained in the smaller complex
space Cxml by a (n - XMI )-dimensional polydisc. As expected of course,
the hypersurface M§, is a holomorphically nondegenerczte hypersurface
(Lemma 3.54), namely Kj, = 0. Now, granted Theorem 1.9, we observe
that the local graph 

q

of h is clearly contained in the following local complex analytic set passing
through p x p’ :

It follows from the considerations of §3 below that the various local complex
analytic sets Ch centered at points (p, h(p)) stick together in a well-defined
complex analytic set, independent of coordinates. Furthermore, since the
generic rank of Q) is equal to X’ , there exists a well-defined irreducible
component C~ of C’ of dimension 2n - xM, containing the local graph of h.
We deduce:
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1.13. COROLLARY. - Let n - X’ , be the holomorphic degeneracy
degree of M’. Then there exists a semi-global closed complex analytic
subset CK defined in a neighborhood of the graph of h in (C’~ x cn which
is of dimension 2n - x’ , and which contains the graph of h over M.
In particular, h extends as a complex analytic set to a neighborhood of M

if xM, = n, i.e. if M’ is holomorphically nondegenerate.

Of course, the most interesting case of Corollary 1.13 is when

xm, = n. Extendability of h as an analytic set can be improved. Using the
approximation theorem of Artin [Ar] we shall deduce the following expected
result (see Lemma 4.14), which is identical with Theorem 1.2:

1.14. THEOREM. - Let h : M ~ M’ be a C°°-smooth CR diffeo-

morphism between two connected globally minimal real analytic hypersur-
faces in (Cn . If M’ is holomorphically nondegenerate, then h is real analytic
at every point of M.

Of course, real analyticity of h is equivalent to its holomorphic
extendability to a neighborhood of M in C’, by a classical theorem due to
Severi and generalized to higher codimension by Tomassini. In particular,
Theorem 1.14 entails that a pair of globally minimal holomorphically
nondegenerate real analytic hypersurfaces in C’ are C°°-smoothly CR
equivalent if and only if they are biholomorphically equivalent.

1.15. Necessity. - Since 1995-1996 (see [BR4], [BHR]), it was known
that Theorem 1.14 above might provide an expected necessary and sufficient
condition for h be analytic (provided of course that the local CR-envelope
of holomorphy of M, which already contains one side Dp of M at p, does
not contain the other side). Indeed, considering self-mappings of M’, we
have:

1.16. LEMMA (see [BHR]). - Conversely, if (M’, p’) is holomorphically
degenerate and if there exists a C°°-smooth CR function defined in a
neighborhood of p’ E M’ which does not extend holomorphically to a
neighborhood of p’, then there exists a Coo -smooth CR-automorphism
of (M’, p’) fixing p’ which is not real analytic at p’.

1.17. Organization of the paper. - To be brief, in 92 we present first
a thorough intuitive description (in words) of our strategy for the proof of
Theorems 1.2 and 1.9. This presentation is really important, since it helps to
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understand the general point of view without entering excessively technical
considerations. Then §3, §4, §5, §6, §7 and §8 are devoted to complete all the
proofs. We would like to mention that in the last §9, we provide a proof of
the following assertion, which might be interesting in itself, because it holds
without any rank assumption on h. We refer the reader to the beginning of
§9 for comments, generalizations and applications.

1.18. THEOREM. - Let h : M -~ M’ be a C°°-smooth CR mapping
between two connected real analytic hypersurfaces in en (n &#x3E; 2). If M
and M’ do not contain any complex curve, then h is real analytic at every
point of M.

1.19. Acknowledgement. - The author is very grateful to Egmont
Porten, who pointed out to him the interest of gluing half-discs to the
Levi flat hypersurfaces £q below. Also, the author wishes to thank Herv6
Gaussier and the referee for clever and helpful suggestions concerning this
paper. Finally, the author thanks Hassan Youssfi for encouragements.

2. Description of the proof of Theorem 1.2.

2.1. Continuity principle and reflection principle. - According to
the extendability theorem proved in [R], [BT2] and generalized to only
C2-smooth hypersurfaces by Tr6preau [Trl], for every point p E M, the
mapping h in Theorems 1.9 and 1.14 already extends holomorphically to a
one-sided neighborhood Dp of M at p in This extension is performed by
using small Bishop discs attached to M and by applying the approximation
theorem proved in [BT1]. These Dp may be glued to yield a domain D
attached to M which contains at least one side of M at every point. In
this concern, we would like to remind the reader of the well known and

somewhat "paradoxical" phenomenon of automatic holomorphic extension
of CR functions on M to both sides, which can render the above Theorem 1.9
surprisingly trivial. Indeed, let UM denote the (open) set of points q in M
such that the envelope of holomorphy of D contains a neighborhood of q
in Cn (as is well known, if, for instance, the Levi form of M has one positive
and one negative eigenvalue at q, then q E UM ; more generally, the local
envelope of holomorphy of M or of the one-sided neighborhood D of M
at an arbitrary point q E M is always one-sheeted, as can be established
using the approximation theorem proved in [BT1]). Then clearly, the n
components hl , ... , hn of our CR diffeomorphism extend holomorphically
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to a neighborhood of UM in C’, as does any arbitrary CR function
on M. But it remains to extend h holomorphically across M B UM and the
techniques of the reflection principle are then unavoidable. Here lies the
"paradox": sometimes the envelope of holomorphy trivializes the problem,
sometimes near some pseudoconvex points of finite D’Angelo type (but
not all) it helps to control the behavior of the mapping thanks to local
peak functions, sometimes it does not help at all, especially at every point
of the "border" between the pseudoconvex and the pseudoconcave parts
of M. In the interesting articles [DF2], [DF3], Diederich-Fornaess succeeded
in constructing the local envelope of holomorphy at many points of a
real analytic non-pseudoconvex bounded boundary in C2 for which the

border consists of a compact maximally real submanifold and they deduced
that any biholomorphic mapping between two such domains extends
continuously up to the boundary as a CR homeomorphism. In general,
it is desirable to describe constructively the local envelope of holomorphy
at every point of the border of M. However, this general problem seems to
be out of the reach of the presently known techniques of study of envelopes
of holomorphy by means of analytic discs. Fortunately, in the study of the
smooth reflection principle, the classical techniques usually do not make
any difference between the two sets UM and M B UM and these techniques
provide a uniform method of extending h across M, no matter the reference
point p belongs to UM or to (see [L], [P3,4], [Wl], [W2], [DW],
[W3], [BJT], [BR1], [BR2], [DF2], ~Sul~, [Su2], [SS], [BHR], [BER1], [BER2],
[CPS1], [CPS2]). Such a uniform method seems to be quite satisfactory. On
the other hand, the recent far reaching works of Diederich-Pinchuk in the
study of the geometric reflection principle show up an accurate analysis of
the relative pseudo-convex(-concave) loci of M. Such an analysis originated
in the works of Diederich-Fornaess [DF2,3] and in the work of Diederich-
Fornaess-Ye [DFY]. In [P4], [DP1], [DP2], [Hu], [Sha], the authors achieve
the propagation of holomorphic extension of a "germ" along the Segre
varieties of M (or the Segre sets), taking into account their relative position
with respect to M and its local convexity. In such reasonings, various
discussions concerning envelopes of holomorphy come down naturally in
the proofs (which involve many sub-cases). However, comparing these two
trends of thought, it seems to remain still really paradoxical that both
phenomena contribute to the reflection principle, without an appropriate
understanding of the general links between these two techniques. Guided
by this observation, we have devised a new two-sided technique. In this
article, we shall indeed perform the proof of Theorem 1.9 by combining
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the technique of the reflection principle together with the consideration of
envelopes of holomorphy. Further, we have been guided by a deep analogy
between the various reflection principles and the results on propagation
of analyticity for CR functions along CR curves, in the spirit of the

Russian school in the sixties, of Treves’ school, in the spirit of the works of
Tr6preau, of Tumanov, of Joricke, of Porten and others: the vector fields
of the complex tangent bundle T’M being the directions of propagation
for the one-sided holomorphic extension of CR functions, and the Segre
varieties giving these directions (because = TqSq for all q E M),
one can expect that Segre varieties also propagate the analyticity of CR
mappings. Of course, such a propagation property is already well known and
intensively studied since the historical works of Pinchuk ~P 1J , [P2], [P3], [P4]
and since the important more recent articles of Diederich-Fornaess-Ye [DFY]
and of Diederich-Pinchuk [DP2]. However, in the classical works, one
propagates along a single Segre variety and perhaps afterwards along
the subsequent "Segre sets" if necessary (see [BER1,2], [Me4], [Me5], [Me6],
[Me7], [Me8], [Mi3], But in the present article we will propagate
the analytic properties along a bundle of Segre varieties of M, namely
along a Levi-flat union of Segre varieties Ely :== UqEï Sql parametrized by a
smooth curve -y transversal to T~M, in total analogy with the propagation
of analyticity of CR functions, where one uses a bundle of attached analytic
discs, parametrized by a curve transversal to T~M (cf. Tumanov’s version of
propagation [Tu2]; in this concern, we would like to mention that recently,
Porten [Po] has discovered a simple strategy of proof using only CR orbits,
deformations of bundles of analytic discs and Levi forms on manifolds with
boundary which treats in an unified way the local (see [Tul] ) and the global
(see [Tr2], [Tu2], [Mel], [J]) wedge extension theorem). Let us now explain
our strategy in full details and describe our proof. To avoid excessive
technicalities in this presentation, we shall discuss the proof of Theorem 1.2
instead of Theorem 1.9.

2.2. Description of the proof of Theorem 1.2. - To begin with, recall
from 91 that the generic rank of the locally defined holomorphic mapping

is equal to the integer X’ . The generic rank of an infinite collection
of holomorphic functions can always be interpreted in terms of finite

subcollections
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Of course, using the CR diffeomorphism assumption, we may prove
carefully that xM - xM, (see Lemma 4.3). It is known that M’ is

holomorphically nondegenerate if and only if = n. In the remainder
of §2, we shall assume that M’ is holomorphically nondegenerate. Let
q’ E M’ be a point where the rank of 6~(~) is equal to n, hence locally
constant. In our first step, we will show that h is real analytic at the
reciprocal image of each such point h-1 (q’) E M. In fact, these points q’
are the finitely nondegenerate points of M’, in the sense of [BER2, §11.2].
In this case, it will appear that our proof of the first step is a reminiscence
of the Lewy-Pinchuk reflection principle and in fact, it is a mild easy

generalization of it, just by differentiating more than one time. Afterwards,
during the second (crucial and much more delicate) step, to which §§5-8
below are devoted, we shall extend h at each point h-1 (q’), where q’ belongs
to the real analytic subset EM, C M’ where the mapping Q) is not of
rank n. This is where we use envelopes of holomorphy. We shall start as
follows. By §3.47, there exists a proper real analytic subset EM, of M’ such
that the rank of the mapping Q’ 00 localized around points p’ E M’ equals n
at each point q’ close to p’ not belonging to EM, . Let

("na" for "non-analytic") denote the closed set of points q’ E M’ such
that h is not real analytic in a neighborhood of h-1(q’). By the first step,

is necessarily contained in EM, . If 0, Theorem 1.9 would be
proved, gratuitously. We shall therefore assume that and we shall

endeavour to derive a contradiction in several nontrivial steps as follows.

Assuming that Ena is nonempty, in order to come to an absurd, it suffices
to exhibit at least one point p’ of Ena such that h is in fact real analytic
in a neighborhood of h-1 (p’). This is what we shall achieve and the proof
is long. In analogy with what is done in [MP1], [MP2], we shall first show
that we can choose a particular point p1 E Ena which is nicely disposed as
follows (see Figure 1).

2.3. LEMMA (cf. [MP1, Lemma 2.3). - Let E’ c M’ be an arbitrary
closed subset of an everyhere locally minimal real analytic hypersurface
M’ C CCn, with n &#x3E; 2. If E’ and M’ B E’ are nonempty, then there exist a
point p’ E E’ and a real analytic one-codimensional submanifold Mi of M’
with p~ E Mi c M’ which is generic in C’ and which divides M’ near p~ in
two open parts Ml - and M1+ such that is contained in the open
side near p~.
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Figure 1. Geometric similarity through the CR diffeomorphism h

To reach the desired contradiction, it will suffice to prove that h is

analytic at the point h-1 (p’), 1 where p’ 1 E Ena n Mi is such a special point
as in Lemma 2.3 above. To this aim, we shall pick a long embedded real
analytic arc q’ contained in Mi - transverse to the complex tangential
directions of M’, with the "center" q1 very close to p’ (see Figure 1).
Next, using the inverse mapping h-1, we can copy back these objects on M,
namely we set

whence

To the analytic arc ~’, we shall associate holomorphic coordinates
t’ = (z’, w’) E cn-1 xC, w’ = u’ +iv’, such that p’ = 0 and V is the u’-axis
(in particular, some "normal" coordinates in the sense of [BJT] would be
appropriate, but not indispensable) and we shall consider the reflection
function

in these coordinates (z’, w’). The functions E)’ 0 (h(t)) will be called the

components of the reflection ficnction Next, we choose coordinates
t E C~ near (M,pi) vanishing at pl . To the C°°-smooth arc -y, we shall

associate the following C°°-smooth Levi-flat hypersurface:
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Figure 2. The domain and its head covered by a Levi-flat hat

where Sq denotes the Segre variety of M associated to various points q E M
(see Figure 2). Let

be the polydisc with center 0 of polyradius (p,..., p), where p &#x3E; 0. Using
the tangential Cauchy-Riemann operators to differentiate the fundamental
identity which reflects the assumption h(M) C M’, we shall establish the
following crucial observation.

2.4. LEMMA. - There exists a positive real number p &#x3E; 0 independent
such that all the components O~ (h(t) ) of the reflection function extend

as CR functions of class C°° n p).

Furthermore, by global minimality of M, there exists a global
one-sided neighborhood D of M to which all CR functions (hence the
components of h) extend holomorphically (see the details in §3.6). We
now recall that, by construction of Ml , the CR mapping h is already
holomorphic in a small neighborhood of h-1 (q’) for every point q’ E Ml-. It
follows that the components 8ø (h( t)) of the reflection function are already
holomorphic in a fixed neighborhood, say Q, of Mg in cn. Also, they are
already holomorphic at each point of the global one-sided neighborhood D.
In particular, they are holomorphic in a neighborhood cJq C Q in (Cn

of y C Mi . Then according to the Hanges-Treves extension theorem [HaTr],
we deduce that all the components 0’ (h(t)) of the reflection function extend
holomorphically to a neighborhood w(E-,) of £q in C’, which is a (very
thin) neighborhood whose size depends of course on the size of (and the
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Figure 3. Enveloppe of holomorphy of the domain and its Levi-flat hat

size of VJ’Y goes to zero without any explicit control as the center point q1
of q tends towards PI E Ena).

To achieve the final step, we shall consider the envelope of holomorphy
of DUn (in fact, to prevent from poly-dromy phenomena, we shall
instead consider a certain subdomain of DUn u cJ(£q) , see the details in §6
below), which is a kind of round domain D U Q covered by a thin Levi-flat
almost horizontal "hat-domain" touching the "top of the head" M
along the one-dimensional arc 7 (see Figure 3).

Our purpose will be to show that, if the arc Y is sufficiently close
to Mf (whence q is also very close to Mi ) , then the envelope of holomorphy
of U contains the point pl , even if is arbitrarily thin.
We will therefore deduce that all the components of the reflection function
extend holomorphically at pl , thereby deriving the desired contradiction.
By exhibiting a special curved Hartogs domain, we shall in fact prove that
holomorphic functions extend holomorphically to the lower
one sided neighborhood E- (the "same" side as D = M-, see Figure 3);
we explain below why this analysis gives analyticity at pi, even in the

(in fact simpler) case where PI belongs to the other side Et.
Notice that, because the order of contact between ~1’ and M is at least

equal to two (because TqM = for every point q E 1), we cannot apply
directly any version of the edge of the wedge theorem to this situation.
Another possibility (which, on the contrary, might well succeed) would
be to apply repeatedly the Hanges-Treves theorem, in the disc version
given in [Tu2] (see also [MP1]) to deduce that holomorphic functions in

U w(E-,) extend holomorphically to the lower side E-, just by sinking
progressively £q into D. But this would require a too complicated analysis



1461

for the desired statement. Instead, by performing what seems to be the
simplest strategy, we shall use some deformations ("translations") of the
following half analytic disc attached to £q along ~. We shall consider the
inverse image by h of the half-disc (~y’)~ rl D’ obtained by complexifying Y
(see Figure 2 and Figure 3). Rounding off the corners and reparametrizing
the disc, we get an analytic disc A E with A(b+0) C I

where = bA n {Re( &#x3E; 0}, b0 I = 1 ~ and A( 1 ) = ql . It is this
half-attached disc that we shall "translate" along the complex tangential
directions to £q as follows.

2.5. LEMMA. - There exists a C°°-smooth (2n - 2)-parameter family
of analytic discs A~ : A - E IR2n-2, 10’1  E, satisfying

1) The disc coincides with the above disc A.

2) The discs A~ are half attached to ~,y, namely C E^,

3) The boundaries of the discs A(7 are contained in

DUO U w(E-Y).

4) The mapping ((, a) H A~ (~) E £q is a COO-smooth diffeomorphism
from a neighborhood of ( 1, 0) E bA x onto a neighborhood of q1
in Ely.

5) As -y = h-1 (~y’) varies and as q1 tends to pl, these discs depend
COO-smoothly upon ~y’ and properties (1-4) are stable under perturbations

6) If q(0) = q1 is sufficiently close to M1, and if p, E ~:;- is under

£q (as in Figure 3), then the envelope of holomorphy of (an appropriate
subdomain of) DUO U contains pl .

Consequently, using these properties 1 )-6) and applying the continuity
principle to the family A(7’ we shall obtain that the envelope of holomorphy
of DUO U (in fact of a good subdomain of it, in order to assure
monodromy) contains a large part of the side £g of ~,y in which D (_. M- )
lies. In the case where PI lies in this side ~,~ , and provided that the center
point q1 of q is sufficiently close to pi, we are done: the components of
the reflection function extend holomorphically at PI (this case is drawn in
Figure 3). Of course, it can happen that PI lies in the other side ~~ or in £q
itself. In fact, the following tri-chotomy is in order to treat the problem.
To apply Lemma 2.5 correctly, and to complete the study of our situation,
we shall indeed distinguish three cases.
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Case I. - The Segre variety SP, cuts Ml along an infinite sequence
of points tending towards pl.

Case II. - The Segre variety Sp, does not intersect Ml in a

neighborhood of PI and it goes under M1 , namely inside D.

Case III. - The Segre variety SP1 does not intersect M1 in a

neighborhood of PI and it goes over namely over D U Mi

In the first case, choosing the point q1 above to be one of the points qk
which is sufficiently close to pl, and using the fact that pi belongs to Sill
(because ql E Spl ), we have in this case pi E £q and the holomorphic
extension to a neighborhood already yields analyticity at PI (in this
case, we have nevertheless to use Lemma 2.5 to insure monodromy of the

extension). In the second case, we have sp, n D ~ 0. We then choose the
center point q1 very close to pl . Because we have in this case a uniform

control of the size of c.~ (~,y ), we again get that PI always belongs to 
and Lemma 2.5 is again used to insure monodromy. In the third (a priori
more delicate) case, by a simple calculation, we shall observe that PI always
belong to the lower side E- (as in Figure 3) and Lemma 2.5 applies to yield
holomorphic extension and monodromy of the extension. In sum, we are
done in all the three cases: we have shown that the components 0’ 0 (h(t) ) all
extend holomorphically at pl. Finally, using a complex analytic set similar
to Ch defined in (1.12) and Lemma 4.14 below, we deduce that h is real
analytic at pl.

In conclusion to this presentation, we would like to say that some
unavoidable technicalities that we have not mentioned here will render

the proof a little bit more complicated (especially about the choice of q1
sufficiently close to pl, about the choice of 1 and about the smooth
dependence with respect to q of £q and of The remainder of the paper
is devoted to complete these technical features thoroughly. At first, we
provide some necessary background material about the reflection function.

3. Biholomorphic invariance of the reflection function.

3.1. Preliminary and notation. - Let p’ E M’, let t’ =

= (z’, w’) be holomorphic coordinates vanishing at p’
such that the projection T~M~ -~ (~z; 1 is submersive. As in ~ 1, we can
represent M’ by a complex analytic defining equation of the form
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where the right hand side function converges normally in the polydisc
~2~-1 (0,//) for some p’ &#x3E; 0. Here, by normal convergence we mean
precisely that there exists a constant C &#x3E; 0 such that if we develop

with 8ø,a E C, then we have

for all multi-indices a and {3. Furthermore, by the reality of M’ the function
8’ satisfies the power series identity 8’ (z’ , z’, 8’ (z’ , z’, w’)) = w’. It follows
from this identity that Oo (t’ ) does not vanish identically, and in fact

contains the monomial w’ = Oo (o, w’ ) . We set p := h-1 (p’ ) and similarly,
we represent a local defining equation of M near p as w = 8(z, t), where 6
converges normally in A2n-1 (0, p) for some p &#x3E; 0. We denote the mapping
by h : = ( f, g) .- ( f1, ... , fn-1, g). Then the assumption that h maps M
into M’ yields that

for all t E M near_p. For this relation to hold locally, it is convenient to

assume that  p’ for every t E M with |t  p.

Since by assumption the hj are of class G°° and CR over M, we can
extend them to a neighborhood of M in (Cn as functions hj of class C°°
with antiholomorphic derivatives vanishing to infinite order on M,
f - 1, ... , n. So, if we develop these extensions in real Taylor series at each
point q E M as follows:

there are no antiholomorphic term.

The reflection function associated with such a coordinate system and
with such a defining equation, namely

where v’ - (5..’, Jl’), converges normally with respect to t E M with It I  p
and v’ E ~n with I v’  p’, hence defines a function which is CR of class C°°
on M near p and holomorphic with respect to v’. The main goal of this
paragraph is to study its invariance with respect to changes of coordinates.
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3.6. Holomorphic extension to a one-sided neighborhood attached
to M. - Before treating invariance, recall that thanks to the local

minimality at every point, all CR functions on M and in particular the hj
extend holomorphically to one side of M at every point of M (the simplest
proof of this result can be found in [R]; see also the excellent survey [Tr3]
for a proof using Bishop discs). Of course, the side may vary. We do not
require that M be orientable, but anyway the small pieces (M, p) always
divide locally C’ in two components (M, p) ~ . By shrinking these one-sided
neighborhoods covered by attached analytic discs, we may assume that for
every point p E M, all CR functions on M extend holomorphically to the
intersection of a small nonempty open ball Bp centered at p with one of the
two local open components (M, p)::. Let Dp denote the resulting open side
of M at p, namely

Since the union of the various open sets Dp does not necessarily make
a domain, we introduce the following definition. By a global one-sided
neighborhood of M in (Cn, we mean a domain D such that for every

point p E M, D contains a local one-sided neighborhood of M at p. In
particular, D necessarily contains a neighborhood of a point q E M if it
contains the two local sides of M at q. To construct a global one-sided
neighborhood to which all C°°-smooth and even C°-smooth CR functions
on M extend holomorphically, it suffices to set

The second part of this union consists of an open subset of M which
connects every meeting pair of local one-sided neighborhoods in the case
where their respective sides differ. If the radii of the Bp are sufficiently
small compared to the geometric distortion of M, then the open set defined
by (3.6) is a domain in en. Moreover, using the uniqueness principle for
CR functions, it is elementary to see that every CR function § on M
extends as a unique holomorphic function globally defined over D. In this
concern, we would like to mention that a more general construction in

arbitrary codimension in terms of attached wedges is provided in [Me2],
[MP2] and in [Da2].

Since each Dp is contained in some union of small Bishop discs with
boundaries contained in (M,p), it follows that the maximum modulus of
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the holomorphic extension of to Dp is less than or equal to the maximum
modulus of the CR function § over the piece (M, p), which is a little bit
larger than Dp n M. To be precise, after shrinking Bp if necessary, we can
assume that the Bishop discs covering Dp have their boundaries attached to
Mn  pl. Since  p’ for t E M with I t  p, the same majoration
holds for t E Dp (maximum principle), so it follows that the series defined
by (3.5) also converges normally with respect to t inside Dp. In conclusion,
we have established the following.

3.8. LEMMA. - With the above notation, is defined in the set

Precisely, R~ is holomorphic yvith respect to (t, Dp x On (0, p’) and it
is CR of class Coo over the real analytic hypersurface

3.1 l. Characterization of the holomorphic extendability of ’
x E x’ E C~ and consider a power series of the form

where the Ra,al are complex coefficients. Let us assume that R converges
normally in some polydisc Am(0, a) x Am, (0, a’), for some two a, a’ &#x3E; 0.

By normal convergence, we mean that there exists a constant C &#x3E; 0 such

that the Cauchy inequalities hold. Let us define

Classically in the basic theory of converging power series, it follows that for
every positive a  ~, there exists a constant C, which depends on a such
that for all x satisfying Ixl  cr, the estimate IRa/(x)1 I  holds.
Indeed, we simply compute for Ix the elementary series:
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As an application, such an inequality applies to the defining function
of M’: for every positive p’  p’, there exists a constant Cfi, such that for
all have

The estimation (3.13) also exhibits an interesting basic property. Suppose
for a while that the reflection function Rh defined by (3.5) extends

holomorphically to the polydisc a) x ~’) for some a, a’ &#x3E; 0

with a  p and ~’  p’. Then the functions 9) (t) defined by

satisfy a Cauchy estimate, namely ]  Cä(a’)-I!31 for all It  ~  a.

By (3.5), notice that 8~ (t) _ O~ (h(t) ) over M n p) and inside Dp,
so the holomorphic extendability of R£ implies that all the components

O~ (h(t) ) extend holomorphically to a). These preliminary observa-
tions are appropriate to obtain the following useful characterization of the
holomorphic extendability of Rh which says in substance that it suffices

that all its components E)’ 0 (h(t)) extend at p and then afterwards the
Cauchy estimate holds automatically.

3.16. LEMMA. - The following three properties are equivalent:

(i) There exists a &#x3E; 0 with a  p and a  p’ such that IZ’ h extends
holomorphically to the polydisc a) x ~) .

(ii) There exists a &#x3E; 0 with a  p such that all COO-smooth CR

functions O~ (h(t) ) defined on M n extend holomorphically to
the polydisc a) as holomorphic functions o~ (t) which satisfy the
inequality  C(a’)-I!31 for some two positive constants C &#x3E; 0,
a’  p’ and for all ~t~  ~ .

(iii) There exists 7 &#x3E; 0 with a  p such that all C°°-smooth CR functions

E)’ 0 (h(t)) defined on M f1 p) extend holomorphically to the polydisc
An (0, a) as holomorphic functions 8~ (t) .

Proof. - Of course, (i) implies (ii) which in turn implies (iii) trivially.
Conversely, let us show that (iii) implies (ii). By (3.4) with q = 0, the Taylor
series of hj at the origin Hj(t) := Tühj(t) involves only holomorphic
monomials ta and no antiholomorphic monomial. We notice that the

Taylor series at the origin of E)’ 0 (h(t)) coincides with the composition
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of formal power series 0~(~f(~)). Consequently, by the assumption (iii),
the formal power series mapping H(t) is a formal solution of some evident
complex analytic equations. Indeed, we have

for all 0 E I~1‘ n-1. By the Artin approximation theorem (see [Ar]), there
exists an analytic power series H(t) with H(0) = 0, which converges
normally in some polydisc, say An (0, a) with a &#x3E; 0, and which satisfies

for all t E An (0 , a~) . Shrinking a if necessary, we may assume that for t ~  a,

we have IH(t)1  a’  p’. Then the Cauchy estimate (3.14) valuable for
the O~(t’) yields by composition a Cauchy estimate for E)’ 3(H(t)) which in
turn yields the desired Cauchy estimate for the 9) (t) as stated in the end
of (ii), thanks to the relations (3.18). This completes the proof. 0

3.19. Invariance of the reflection function. - Our definition of the

reflection function Rh seems to be unsatisfactory, because it heavily depends
on the choice of coordinates and on the choice of a local defining function
for (M’, p’). Our purpose is now to show that Theorem 1.9 holds true for
every system of coordinates provided it holds for one such system. This
requires to analyze how the components 8¡’ (h( t)) behave under the action
of biholomorphisms. Let t" = A(t’) be a local biholomorphic mapping
such that A(0) = 0, denote t" = (z", w") _ w") and denote
A = ( ~ 1, ... , accordingly. By the implicit function theorem, if we
assume that the linear mapping 7r" o dA : TgM’ - (Cz ; 1 is bijective, where
7r~:C~~ --~ C~/7~ is the projection parallel to the w" axis, then the

image A(M’) can also be defined locally in a neighborhood of the origin
by a defining equation of the form w- " = O"(z", t") similar to that of M’.
Equivalently, this differential geometric condition can be expressed by the
nonvanishing

where the L.’ constitute a basis for the CR vector fields on M’, namely
. Thus, we aim to compare the

two reflection functions
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Without loss of generality, we can assume that O" converges normally
in A2~-i(0,p~) and that A(0~(o, p’)) is contained in The

following lemma exhibits the desired invariance under biholomorphic
transformations fixing the center point p’ and Lemma 3.37 below will
show the invariance under local translations of the center point.

3.22. LEMMA. - The following two conditions are equivalent:

(i) There exists a &#x3E; 0 with (7  p and  p’ such that v’) extends
holomorphically to the polydisc A,, (0, a) x A,, (0, a).

(ii) There exists a &#x3E; 0 with a  p and a  p" such that R1oh(t,v")
extends holomorphically to the polydisc On (o, a) x On (o, a).

Proof. - Of course, it suffices to prove that (i) implies (ii), because A
is invertible. The proof is a little bit long and calculatory, but the principle
is quite simple (in advance, the reader may skip to equation (3.35) and
to the paragraph following which explain well the relation between the
components of the two reflection functions). As A maps M’ into M", there
exists a converging power series A(t’, i’) such that the following identity
holds for all t’ with  p’ :

Replacing w-’ by 8’ (z’, t’) on the left hand side, we get an interesting formal
power series identity at the origin in (C2~-1,

which converges for all lz-’l  p’ and It’i  p’. Putting z’ = 0, we see first
that

Next, we differentiate (3.24) with respect to zj for j - 1,..., n - 1.

Remembering that -L’ = o9i, + Oz, (z’, we see that differentiation
, 

i i zj -with respect to zj is the same as applying the operator Lj and we get by
the chain rule
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Consider the following determinant, which, by the assumption (3.20) does
not vanish at the origin:

Shrinking p’ if necessary, we can assume that D’ is nonzero at every point
of 02n-1 (0, p’). Then using the rule of Cramer, we can solve in (3.26) the
first order partial derivatives of 0" with respect to the rest. We obtain an

expression of the form

Here, for every multi-index -y E l~n-1, we denote by (L’ ) ~ the antiholo-
morphic derivation of order 111 defined by Moreover,
in (3.28), it is a fact that the terms R~ are certain universal polynomials in
their n(n - 1) arguments.

By differentiating again (3.28) with respect to the 2i, using Cramer’s
rule, and making an inductive argument, it follows that for every multi-index
0 E 1‘~n-1, there exists a certain complicated but universal polynomial R.
such that the following relation holds:

Now, we put z’ := 0 in these identities. An important observation is in
order. The composed derivations (L’)~/ are certain differential operators
with nonconstant coefficients. Using the explicit expression of the L.
we see that all these coefficients are certain universal polynomials
of the collection of partial derivatives {9~e~,~)/9(~)~}i~~j.
Thus the numerator of (3.29), after putting z’ := 0, becomes a

certain holomorphic function of the collection {e~(t’) }0::;1’Y1::;1,B1 (recall
O~,(t’) _ [(1/~!)81’Yle’(z’, t’)/c~(z’)~’~z~;-o). A similar property holds for the
denominator. In summary, we have shown that there exists an infinite

collection of holomorphic functions S,3 of their arguments such that
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where the left and right hand sides are holomorphic functions of t’ running
in the polydisc An (0, p’) . Furthermore, by Cauchy’s integral formula, there
exists a positive constant C such that for I  ’ 2 p", we have the
majoration

Consequently we get the estimate IS¡3(t’)1 ::; C( ~ p")-I¡3I. . Now, let us

rewrite the relations (3.30) in a more explicit form, taking into account
that E)’(0, t) = by definition:

where we denote l~‘ * -1 : - l~n-1 ~ {0}. This collection of equalities may be
considered as an infinite upper triangular linear system with unknowns
being the functions O~ (1~ (t’ ) ) . This system can be readily inverted. Indeed,
using Taylor’s formula in the convergent case or proceeding directly at the
formal level, it is easy to see that if we are given an infinite collection of

equalities with complex coefficients and with ( E which is of the form

for all multi-indices /3 E I~‘Tn-1, then we can solve the unknowns O~ in
terms of the right hand side terms by means of a totally similar formula,
except for signs:

for all 0 E Applying this observation to (3.32) and using the above
Cauchy estimates on s, (t’) , we deduce the convergent representation
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which is valuable for  p’. Here, we recall that the functions 8(3
only depend on the biholomorphism A and that they are holomorphic
with respect to their arguments. Now, we can prove that (i) implies (ii)
in Lemma 3.22. By the equivalence between (i) and (ii) of Lemma 3.16,
it suffices to show that all component functions 8ø(A(h(t))) extend

holomorphically to a neighborhood of the origin provided all component
functions O~ (h(t) ) extend holomorphically (by construction, the Cauchy
estimates are already at hand). But this is evident by reading (3.35) after
replacing t’ by h(t). This completes the proof of Lemma 3.22. D

3.36. Translation of the center point. - We have shown that the

holomorphic extendability of the reflection function Rh centered at one
point p x h(p) is an invariant property. On the other hand, suppose
that R£ is holomorphic in the product polydisc a) x a’),
for 0  p and 0  a’  p’. Does it follow that the reflection

functions centered at points q x h(q) E An(0, a) x An(0, a’) also extends
holomorphically at these points? Without loss of generality, we can assume
that h(M n On (o, p) ) C and that h(M n An(0, a)) C An(0, a’).
Let q E A,,(O,u) be an arbitrary point and set q’ := h(q). Recall that
as in §3.1 above, we are given coordinates t and t’ centered at the origin
in which the equations of M and of M’ are of the form w = 8(z, t) and
w’ - O’(z’, t’), with 8 converging normally in the polydisc 
and similarly for 8’. We can center new holomorphic coordinates at q and
at q’ simply by setting

and

We shall denote

and

Let M* := M - q and M~ := M’ - q’ be the two new hypersurfaces obtained
by such geometric translations. In the new coordinates, we naturally have
two new defining equations w* - O* (z*, t* ) and w* - O* (z*, t* ) for M*
and for M~ with 8* converging (at least) in A2~-i(0,p 2013 s) and with 8~
converging (at least) in A2~-i(0, ~ 2013 ~). The explicit expression of 8~ will
be computed in a while. Let

Define the transformed reflection function (t*, v[ ) accordingly.
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3.37. LEMMA. - and £’  a’, then the reflection function

extends holomorphically to the polydisc,

Proof. At first, we compute the defining equation of M~. To obtain
the explicit expression of e~, it suffices to transform the equation

in the form

Differentiating with respect to z’ and setting z’ := Z-’, we obtain

for all 0 E Now, suppose that the reflection function v’) in the
old system of coordinates extends holomorphically to the product polydisc

a) x An (0, a’) as a function that we shall denote by

By Lemma 3.16, the functions 9)(t) are holomorphic in and they
extend holomorphically the C°°-smooth CR functions 8ø(h(t)) defined
on M n An(0, p). Immediately, R’ is holomorphic in an obvious product
polydisc centered at q x q’, namely in 6) x On (q’, ~’ - 6/).
Let t* := t - q and F§ :- v’ - q’. The unique function R*(t*, v*) satisfying
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possesses coefficients necessarily given by

for all /3 E Nn-1. In the new coordinate system, the reflection function
centered at q x h(q) can be defined as

for t* E M* with  6-. Substituting t’ by h,, (t,,) in equations (3.40)
and using afterwards that the 9)(t) extend the O~ (h(t) ), we deduce that
the functions

extend holomorphically to the polydisc An(0, a - 6) as functions of t*

given by the right hand sides of (3.43). The convergence of these series
follows from the Cauchy estimates on the e~ (t) . This completes the proof
of Lemma 3.37. D

3.46. Delocalization and propagation. - At this stage, we can
summarize what the term "reflection function" really means. Let h : M ~ *
M’ be a (not necessarily local) C°°-smooth CR mapping between two
connected real analytic CR manifolds. For any product of points p x h(p)
lying in the graph of h in M x M’ and for any system of coordinates t’
vanishing at p’ := h(p) in which the complex defining equation of M’ is an
uniquely defined graph of the form w-’ O’(z’, t’), we define the associated
reflection centered at p x p’ by Rh (t, ~c’ - 8’(5/,h(t)). If it exists,
its holomorphic extension at p x p’ is unique, thanks to the uniqueness
principle on the boundary (see ~P 1~ ) . Also, its holomorphic extension does
not depend on the system of coordinates t’ vanishing at p’. And finally, its
holomorphic extension propagates at nearby points. Although for some real
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analytic hypersurface M’ there does not exist a global defining equation of
the form w-’ = 8’ (z’, t’), we believe that the transformation rules explained
in Lemmas 3.22 and 3.37 justify that we speak of "the" reflection function.

The two analytic relations (3.35) and (3.40) are extremely important.
In §3.47 just below, we shall see that they permit to establish that certain
CR geometric concepts defined in terms of the collection 
are biholomorphically invariant.

3.47. The exceptional locus of M’. - As above, let p’ E M’ and
assume that the defining equation of M’ converges normally in the polydisc
A2,,-l (0, p’). Let us consider the infinite Jacobian matrix of the infinite
holomorphic mapping ~~ (t’) = (O~ (t’) )~E~n-1 introduced in §1.10:

Concretely, by ordering the multi-indices /3, we may think of as

a horizontally infinite oo x n complex matrix. Also, it is convenient to

truncate this matrix by limiting the multi-indices to run over 1,81  k.

Let us denote such finite matrices by

As a holomorphic mapping of t’, the generic rank of increases

with k. Let ’ , denote the maximal generic rank of these finite matrices.
Equivalently, there exists a minor of size xM, of the matrix Jo which does
not vanish identically as a holomorphic function of t’, but all minors of size

(xM, + 1) of do vanish identically. W~this integer the generic
rank of the infinite matrix Of course, xM, is at least equal to 1,
because the term does not vanish identically and is nonconstant

(see ~3.1 ) . So we have 1   n. Apparently, the integer xM, seems to
depend on p’ and on the choice of coordinates centered at p’, but in fact it
is a biholomorphic invariant of the hypersurface M’ itself, which explains
in advance the notation. Recall that M’ is connected, which is important.
We shall check this invariance in two steps.

3.50. LEMMA. - Let p’ E M’, let t’ be a system of coordinates

vanishing at p’ and let t" be another system of coordinates vanishing at p’
defined by t" = A(t’) as in Lemma 3.22. Then the two generic ranks of the
associated infinite Jacobian matrices are identical.
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Proof. - Looking at the family of relations (3.35) and applying
the rank inequality for composed holomorphic mappings, we see that the
generic rank of is certainly less than or equal to the generic rank
of Joo(t’). As the mapping A is invertible, a relation similar to (3.35) holds
if we reverse the roles of t’ and t", and we get the opposite inequality
between generic ranks. D

3.51. LEMMA. - Let p’ E M’, let q’ E M’ be close to p’ as Lemma 3.37
and consider the infinite Jacobian matrix associated with the

functions O*~ (t* ) defined by (3.40). Then the generic ranks of and

coincide.

Proof. - This is immediate, because the relation (3.40) between
the two collections (0~(~))/3ei~~ and (8Í1(t’))¡3ENn-l is linear, upper
triangular and invertible. D

So we may prove that / is a global biholomorphic invariant of
the connected hypersurface M’. Indeed, any two points p’ E M’ and
p2 E M’ can be connected by a finite chain of intermediate points which are
contained in pairs of overlapping coordinate system for which Lemmas 3.50
and 3.51 apply directly.

Here is an interesting and useful application. Locally in a neigh-
borhood of an arbitrary point p’ E M’, we may define a proper complex
analytic subset of An (0, p’) denoted by S’ which is obtained as the vani-
shing locus of all the minors of size xM, of As in the proofs of
Lemmas 3.50 and 3.51, by looking more closely at the two families of infi-
nite relations (3.35) and (3.40), we observe that the set of points t’ close
to p’ at which the rank of is maximal equal to XMI is independent
of coordinates. Consequently, the complex analytic set .6’, which we shall
call the extrinsic exceptional locus of M’, is an invariant complex analytic
subset defined in a neighborhood of M’ in Moreover, S’ is proper

(i.e. of dimension  n - 1), because &#x3E; 1, so there is at least one not

identically zero minor in the definition of E’. The intrinsic exceptional locus

of M’ denoted by EM, is defined to be the intersection ofF’ with M’. This
is also a proper real analytic subset of M’ (maybe empty).

3.52. LEMMA. - If M’ is globally minimal, then the real dimension
is less than or equal to 2n - 3.

Proof. Suppose on the contrary that there exists a stratum ,S of
real dimension 2n - 2. This stratum cannot be generic at any point, because
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otherwise E’ which contains S’ would be of complex dimension n. So S is
a complex hypersurface contained in M’, contradicting local minimality at
every point. 0

This dimension estimate should be compared to that of the Levi
degeneracy locus: unless M’ is everywhere Levi degenerate, the set of
points at which M’ is Levi degenerate is a proper real analytic subvariety,
but in general of dimension less than or equal to 2n - 2, with this bound
attained. This is so because the Levi degeneracy locus is not contained

in a complex analytic subset of a neighborhood of M’. The fact that
the real codimension of is at least two will be crucial for the proof
of Theorems 9.2 and 9.3 below.

3.53. Local product structure at a Zariski-generic point. - In the
beginning of §4 below we shall need the following geometric straightening
statement.

3.54. LEMMA. - In a small neighborhood of an arbitrary point
q’ E the hypersurface M’ is biholomorphic to a product
Mq, by a polydisc of dimension n - xM,, where Mq, is a

real analytic hypersurface in F’urthermore, at the point q’, the rank
of an associated infinite matrix ~~ (t’), where t’ E are holomorphic
coordinates vanishing at q’, is maximal equal to xM, .

Proof. - Choose coordinates t’ vanishing at q’. By assumption,
the mapping t’ H is of constant rank xM, for all t’ near
the origin and for all k large enough. By the rank theorem, it follows

that the union of level sets T,, := O~(t’) - E)’ 0 (r’), E 

for r’ running in a neighborhood of q’ do constitute a local holomorphic
foliation by complex leaves of dimension n - X’ . We can straighten this
foliation in a neighborhood of q’ so that (after an eventual dilatation)
C’ decomposes as the product x On-xM’ , where the second term
corresponds to the leaves of this foliation. In these new straightening
coordinates, which we will denote by t", we claim that the leaves of this
foliation are again defined by the level sets of the functions 19"(t"), namely

:= ~t" : O~ (t") - 8ø(r"), E This is so, thanks to the

important relations (3.35). For simplicity, let us denote these coordinates
again by t’ instead of t". We claim that if the point r’ belongs to M’, then
its leaf 0r, is entirely contained in M’ in a neighborhood of q’. Indeed,
let s’ c so we have 8ø(s’) = O~ (r’ ) for all 13 E Nn- 1 by definition.
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It follows first that

Next, thanks to the reality of M’, there exists a nonzero holomorphic
function a’(t’, -r), where T’ = ((’, ~’) E en-1 x C, such that

for all t’, T’ running in a neighborhood of the origin. Using crucially this
identity, we can transform (3.55) as follows:

Now, conjugating this new identity, we get ws, - O’ (zs, , = 0 and finally,
using a second time 8ø(s’) = 8ø(r’) for all ~3 E ~n-1, we obtain

which shows that s’ E M’, as claimed. In summary, in the straightened
coordinates (t’, t’) E x those leaves f P = ct. I intersecting M’
are entirely contained in M’. It follows that there exists a defining equation
for M’ in a neighborhood of the origin which is of the form

namely it is independent of the coordinates t’. We define Mq, to be the
hypersurface of defined by the equation (3.59). The infinite Jacobian
matrix of M’ therefore coincides with the infinite Jacobian matrix

By assumption, is of rank xM, at the origin (this means that
all finite submatrices Jk (t’) are of rank xm for all large enough k). So the
rank at the origin of Jo (t’) is also equal to xM, . The proof of Lemma 3.54
is complete. 0

3.60. Pointwise nondegeneracy conditions on M’. - We shall call
the (always connected) hypersurface M’ holomorphically nondegenerate if
xM, - n. By examinating the proof of Lemma 3.54, one can see that
this definition coincides with the original definition of Stanton 

[St2] in terms of tangent holomorphic vector fields (cf. also [Me5, §9]).
By §3.47 above, holomorphic nondegeneracy is a global property of M’.
Furthermore, we shall say that M’ is finitely nondegenerate at the point p’
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if for one (hence for all) system(s) of coordinates vanishing at p’, the rank
of is equal to n at the origin. By the above definitions, a connected
real analytic hypersurface M’ is holomorphically nondegenerate if and

only if there exists a proper complex analytic subset of a neighborhood
of M’ in namely the extrinsic exceptional locus E’, such that M’ is
finitely nondegenerate at every point of M’ not belonging to S’. Also,
Lemma 3.54 above may be interpreted as a sort of geometric quotient
procedure: locally in a neighborhood of a Zariski-generic point q’ E M’, i.e.

EM,, after dropping the innocuous we are left

with a finitely nondegenerate real analytic hypersurface M’, in a smaller
complex affine space. Finally, we shall say that M’ is essentially fznite at
the point p’ if for one (hence for all) system(s) of coordinates vanishing
at p’, the local holomorphic mappings t’ 1--* (eØ(t’))I,6Ik are finite-to-one in
a neighborhood of the origin for all l~ large enough. It can be checked that
this definition coincides with the one introduced in [DW] and subsequently
studied by many authors. We shall consider essentially finite hypersurfaces
in §9 below.

3.61. Conclusion. - All the considerations of this paragraph support
well the thesis that the collection of holomorphic functions 
is the most important analytic object attached to a real analytic hypersurface
M’ localized at one of its points.

4. Extension across a Zariski dense open subset of M.

4.1. Holomorphic extension at a Zariski-generic point. - Let
h : M - M’ be a C’-smooth CR diffeomorphism between two connected
real analytic hypersurfaces in 

4.2. LEMMA. If M is globally minimal, then M’ is also globally
minimal.

Proof. Indeed, as h is CR, it sends every C°°-smooth curve 1 of M
running into complex tangential directions diffeomorphically onto a curve
ly := also running in complex tangential directions. Then Lemma 4.2
is a direct consequence of the definition of CR orbits. We do not enter the

details. 0

The starting point of the proof of Theorem 1.9 is to show that

the various reflection functions already extend holomorphically to a
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neighborhood of q x h(q) for all points q running in the Zariski open
subset of M, where EM is the intrinsic exceptional locus of M
defined in the end of §3.47 above. It is convenient to observe first that h
maps EM bijectively onto EM, .

4.3. LEMMA. - A point q C M belongs to M B EM if and only if its
image h(q) belongs to M’ B EM, . Furthermore, XM = 

Proof. Let q E M be arbitrary, let t be coordinates vanishing at q
and let t’ be coordinates vanishing at q’ := h(q) in which we have

for all t E M close to the origin and for some nonvanishing function a(t, f)
of class C°° . By developping the Taylor series of all C°°-smooth functions
in (4.4) and by polarizing, we see that the Taylor series H of h at the
origin induces a formal mapping between (M, q) and (M’, q’), namely
there exists a formal power series A(t, T) with nonzero constant term such
that the following identity holds between formal power series in the 2n
variables (t, T) :

Now, the computations of Lemma 3.22 can be performed at a purely
formal level, replacing the mapping A there by the formal mapping H.
We obtain a relation similar to (3.35), interpreted at the formal level,
with A replaced by H. Using the invertibility of H to get a second relation
like (3.35) with A replaced by H-1, it then follows that the rank of the

mapping t H at q is the same as the rank of the mapping
t’ ~--~ (O~(t’))~E~n-1 at h(q). This property yields the desired conclusion. 0

Thus, the starting point of the proof of Theorem 1.9 is the following
Zariski dense holomorphic extension result.

4.6. LEMMA. - Ifh:M2013~M~isa C°°-smooth CR diffeomorphism
between two globally minimal real analytic hypersurfaces in en, then

for every point q E lying outside the intrinsic exceptional
locus of M and for every choice of a coordinate system vanishing at
q’ := h(q) in which (M’, q’) is represented by w’ - 8’(z’,t’), the associated
reflection function (t, V-’) ~’ - O’ (~’, h(t) ) extends holomorphically to
a neighborhood of q x q’ in (~n x cn.



1480

Proof. First, by Lemma 4.3, we already know that q’ does not
belong to EM, and that xl,,l = XMI. For short, let us denote this integer
by x. By Lemma 3.22, the holomorphic extendability of the reflection
function is invariant, so let us choose adapted convenient coordinates.
Using Lemma 3.54, we can find coordinates near q’ E M’ of the form
t’ = (z’, v’, w’) E CX-1 x C’-x x (C1 in which the equation of M’ near the
origin is given by w-’ = 8’ (z’, z’, w’). Notice that the (v’, v’) coordinates do
not appear in the defining equation, because of the product structure. We
do the same straightening near q E M, so that we can split the coordinates
as t = (z, v, w) E eX-1 x x (C1 in which the equation of M near the

origin is also given in the form iv- = 8(z, z, w). Finally, we split the mapping
accordingly as h = ( f, .~, g) E x cCn-x x C . It is important to notice
that in these coordinates, the reflection function

where (A’, ~, v’) CX-1 x x e1, neither depends on the n - x middle
components (.~1, ... , (hx,..., hn-1) of h nor on v’. Clearly, to
show that this reflection function extends holomorphically at q x q’, it would
suffice to show that the X components ( f1, ... , g) = (hi, ... , hx-1, hn)
of h extend holomorphically to a neighborhood of the origin. We need some
notation. Let h denote these X speeial components ( f , g), let M denote

the hypersurface w = of CX and similarly let M’ denote the
hypersurface ill’ == O’ (z’, z’, w’) of Cx. A priori, it is not clear whether h
induces a C°°-smooth CR mapping between (M,g) and (M’, q’), since h
might well depend on the variables (vl , ... , vn-x ) .

4.7. LEMMA. - The X components (fl,..., fx-,, g) of h are inde-
pendent of the (n - x) coordinates v. Consequently, the mapping h induces
a well defined CR mapping h : (M, q) -~ (M’, q’) of class C°° .

Proof. Let L 1, ... , £n-1 be a commuting basis of Tl,’M with real
analytic coefficients, for instance

and also Li = for i = 1,..., n - x. Notice that the (1, 0) vector
field Li, i = 1, ... , n - x commute with the (o,1) vector fields L3,
~==1,...,~2013 1. Since h is a C°°-smooth CR diffeomorphism, after a

possible linear change of coordinates, we can assume that the determinant
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is nonzero at the origin. Applying the derivations L1’...’ Lx-1 to the

fundamental identity g(t) = 8’(f(t),I1(t)) for t on (M, q), we get first

Shrinking a &#x3E; 0 if necessary, we can assume that the determinant D(t, t )
does not vanish for all It I  a. By Cramer’s rule, we can solve in (4.8) the
first order partial derivatives 8Z1 k 8’ with respect to the other terms. As in
the proof of Lemma 3.22, by induction, it follows that for every multi-index
~3 E 1‘~X-1, there exists a certain universal polynomial Ro such that the
following relation holds for all t E M with It 

Next, since by assumption the point q’ does not belong to EM, , the second
sentence of Lemma 3.54 tells us that there exists a positive integer 1~ such

that the rank of the mapping ex 3 (2/,tt/) ’2013~ is maximal

equal to X = xM, . Writing the equalities (4.9) only for I/JI and applying
the implicit function theorem, it follows finally that we can solve h(t)
with respect to the derivatives of h(t), namely there exist X holomorphic
functions Qj in their variables such that for j - l, ... , ~ and t E M

with It  r (shrinking if necessary), we have:

Applying now the n - x vector fields Li = 8/ 8Vi, i = 1,..., n - x,
to these identities, using the fact that these 9v, do commute with the
antiholomorphic derivations Li ... X-1 and noticing that the h(t) are
anti-CR, we obtain that the c9v,hj(t) do vanish identically on M near the
origin. Since the are CR and of class C°°, we already know that
the derivatives also vanish identically on M near the origin. This
proves that the hj are independent of the coordinates (v, v), as desired. D

Finally, the following lemma achieves to prove that the reflection
function, which only depends on h, does extend holomorphically to a
neighborhood of q x q’, as claimed.

4.11. LEMMA. - The mapping h extends holomorphically to a

neighborhood of the origin.
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Proof. - The proof of this lemma is an easy generalization of

the Lewy-Pinchuk reflection principle and in fact, it can be argued that
Lemma 4.11 is almost completely contained in [P3] (and also in [W2],
[W3], [DW]). Formally indeed, the calculations in the proof of Lemma 4.7
above are totally similar to the ones in the Levi nondegenerate case
except for the order of derivations. Of course, the interest of derivating
further the equations (4.8) does not lie in this (rather evident or

gratuitous) generalization of the reflection principle. Instead, the interest
lies in the fact that there are large classes of everywhere Levi-degenerate
hypersurfaces for which it is natural to introduce the concept of finite

nondegeneracy expressed in terms of the fundamental functions O~ (t’) .
Indeed, finite nondegeneracy correspond to the (not rigorous, in the folklore)
intuitive notion of "higher order Levi-forms". Furthermore, holomorphically
nondegenerate hypersurfaces are almost everywhere finitely nondegenerate.
In sum, from the point of view of local analytic CR geometry, higher order
derivations are very natural.

Although Lemma 4.11 is explicitely stated or covered by [DW], [Ha],
[BJT], etc., we shall summarize its proof for completeness. Recall that
by §3.6, the components of h extend holomorphically to a global one-sided
neighborhood D of M which contains one side Dq of M at q. Let M-

denote the side of (M, q) containing Dq and let M+ denote the other side.
As in the Lewy-Pinchuk reflection principle, using the real analyticity of
the coefficients of the Lj and using the one-dimensional Schwarz reflection
principle in the complex lines {t~ = which are transverse to M near

the origin, we observe that the functions Qj in the right hand side of (4.10)
extend C°°-smoothly to M+ as functions úJj which are partially holomorphic
with respect to the transverse variable w. Since by (4.10) the values of the
the I1j coincide on (M, q) with the values of and since the hj are already
holomorphic inside Dq, it follows from a rather easy (because everything
is C°°-smooth) separate analyticity principle that the hi and the úJj stick
together in holomorphic functions defined in a neighborhood of q. This
provides the desired holomorphic extension of h and hence the holomorphic
extension of R~ . The proofs of Lemmas 4.6 and 4.11 are complete. D

4.12. Holomorphic extension of the mapping. - We end up

this paragraph by showing that Theorem 1.9 implies Theorem 1.14

(or equivalently Theorem 1.2). Under the assumptions of Theorem 1.14,
let p E M be arbitrary and let t be coordinates vanishing at p. By the

holomorphic extendability of the reflection function, we know that all the
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C°°-smooth CR functions O~ (h(t)) extend as holomorphic functions 0’(t)
to a fixed neighborhood of p. Thanks to the holomorphic nondegeneracy
of M’, there exist n different multi-indices On C such that

the generic rank of the holomorphic mapping t’ f---~ equals
xM, = n, or equivalently

Let H(t) denote the formal Taylor series of h at the origin. Since the

Jacobian determinant of h at 0 does not vanish, it follows that (4.13) holds
in C[[t]] after t’ is replaced by H(t). Then the holomorphic extendability
of h at the origin is covered by the following assertion.

4.14. LEMMA. - Let p E M, let t be coordinates vanishing at p, let

hl, ... , hn be CR functions of class C°° on (M, p) vanishing at the origin,
let Hj (t) denote the formal Taylor series of hj at 0, let Q’ (t’),..., 
be holomorphic functions satisfying

Assume that there exist holomorphic functions q’ (t), ... , qn (t) defined in
a neighborhood of the origin such that Q~ (h(t) ) _ q~ (t) for all t E (M, p)
close to the origin. Then hi(t),...,hn(t) extend holomorphically to a
neighborhood of the origin.

Proof. Clearly, the holomorphic functions 6~ ~(t~, t~) defined by the
relations

satisfy the relation t’) = We first prove that

the Taylor series Hj(t) are convergent. By the Artin approximation
theorem [Ar], for every integer N E 1~1‘ *, there exists a converging power
series mapping H(t) E with H(t) == H(t) mod such that

Q~ (?~(t) ) m q~ (t) . If N is large enough, it follows from the main assumption
of Lemma 4.14 that the following formal determinant does not vanish

identically in C[[t]]:
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Finally, by the relation

and thanks to the invertibility of the matrix (see (4.17)), we deduce
that = Hj(t) is convergent, as claimed. Secondly, for t E (M, p) close
to the origin, we again use (4.16) with t’ :- h(t) and t’ := H(t), which
yields a relation like (4.18) with H(t) replaced by h(t), namely

Then the corresponding determinant (4.17) (with H(t) replaced by h(t))
does not vanish identically on (M, p), because it has a nonvanishing formal
Taylor series by (4.17) and because (M, p) is generic. Consequently, relation
(4.19) implies that == for all t E (M, p) close to the origin.
This completes the proof of Lemma 4.14 (similar arguments are provided
in [N]). Also, the proof of Theorem 1.14 (taking Theorem 1.9 for granted)
is complete. D

5. Situation at a typical point of non-analyticity.

Thus, we already know that R£ is analytic at every point q x h(q)
for q running in the open dense subset of M. It remains to show

that Rh is analytic at all the points p x h(p), where p E EM, which
entails h(p) E EM, by Lemma 4.3. This objective constitutes the principal
task of the demonstration. In fact, we shall prove a slightly more general
semi-global statement which we summarize as follows.

5.1. THEOREM. - Let h : M -~ M’ be a C°°-smooth CR diffeo-

morphism between two globally minimal real analytic hypersurfaces in en.
If the local reflection mapping is analytic at one point q x h(q) of
M x M’, then it is analytic at every point p x h(p) of the graph of h
inMxM’.

To prove Theorem 5.1, we shall proceed by contradiction. We define
the following subset of M’ :

(5.2) A’ lp’ E M’ : R£ is analytic in a neighborhood of hC-1)(p’) x p
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A similar subset A of M such that h maps ,~l bijectively onto ,A.’ can
be defined, but in fact, it will be more adapted to our purposes to work
in M’ with A’. Recall that we already know that Theorem 1.9 implies
Theorem 1.2. However, for a direct proof of Theorem 1.2 (cf. §2), it would
have been convenient to define the set ,/~’ above as the set of point p’ E M’
such that h is analytic in a neighborhood of h-1 (p’ ) . Anyway, the set A’
defined by (5.2) is nonempty, by the assumption of Theorem 5.1. For the
proof of Theorem 1.9, ,,4.’ is also nonempty, because it contains M’ B EM,
thanks to Lemma 4.6 above. So let us start with (5.2). If ,~1.’ = M’,
Theorem 5.1 would be proved, gratuitously. As in §2.2, we shall therefore
suppose that its complement Ena := M’ B ,A.’ is nonempty and we shall
endeavour to derive a contradiction. In fact, to derive a contradiction, it

clearly suffices to prove that there exists at least one point p’ E such

that R’ is analytic at h~-1~ (p’) x p’. It is convenient to choose a "good"
such point p’ which is geometrically well located, namely it belongs to Ena
and in a neighborhood of p~, the closed set Ena is not too pathological or
wild: it lies behind a smooth generic "wall" M{.

5.3. Construction of a generic wall. - As in Lemma 2.3, this point
pi will belong to a generic one-codimensional submanifold Ml C M’, a
kind of "wall" in M’ dividing M’ locally into two open sides, which will be
disposed conveniently in order that one open side of the "wall", say Ml’-,
will contain only points where Rh is already real analytic. To show the
existence of such a point p’ E Ena and of such a manifold: ( "wall" ) Mi, we
shall proceed similarly as in [MP1], Lemma 2.3. Figure 4 below summarizes
how we proceed intuitively speaking.

5.4. LEMMA. - There is a point p~ E Ena and a real analytic generic
hypersurface Ml’ C M’ passing through p’ so that Ena B lp’l lies near p’
in one side of lVli (see Figure 4).

Proof. Let q’ E be an arbitrary point and let ~’ be
a piecewise real analytic curve running in complex tangential directions
to M’ (CR-curve) linking q’ with another point p’ E M’ B Ena. Such
a curve q’ exists because M’ and M’ B Ena are globally minimal by
assumption (in fact, every open subset of M’ is globally minimal,
because M’ is locally minimal at every point). After shortening q’,
we may suppose that 7’ is a smoothly embedded segment, that p’
and q’ belong to q’ and are close to each other. Therefore -y’ can

be described as a part of an integral curve of some nonvanishing real
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Figure 4. Construction of the generic wall by blowing out ellipsoids

analytic CR vector field (i.e. a section of T’M’) L’ defined in a neighbor-
hood of p’.

Let H’ c M’ be a small (2n - 2)-dimensional real analytic
hypersurface passing through p’ and transverse to L’. Integrating L’ with
initial values in H’ we obtain real analytic coordinates (u’, v’) E R x 
so that for fixed vo, the segments (u’, vb) are contained in the trajectories
of L’. After a translation, we may assume that the origin (o, 0) corresponds
to a point of Y close to p’ which is not contained in Ena, again denoted
by p’. Fix a small s &#x3E; 0 and for 1, define the ellipsoids (see again
Figure 1 above)

There is a minimal 81 &#x3E; 1 with Qsl 0. Then Q~1 
and Q~.1 D = 0. Observe that every boundary is transverse to the

trajectories of L’ out off the equatorial set ’’Y’’ := ( (0, v’) : Iv’I2 = c} which
is contained in Hence aQsl is transverse to L’ in all points
of rl Ena. So is generic in en, since L’ is a CR field.

To conclude, it suffices to choose a point p~ E rl Ena and to
take for M1 a small real analytic hypersurface passing through p~ which is
tangent to at pi and satisfies M{ B {p~} c D

In summary, it suffices now for our purposes to establish the following
assertion.

5.5. THEOREM. Let p~ E Ena and assume that there exists a real
analytic one-codimensional submanifold M{ with p~ E M{ c M’ which is
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generic in C~ such that fp’l is completely contained in one of the two
open sides of M’ divided by M{ at pl, say in M{ +, and such that R’ is
analytic at the points h-1 (q’) x q’, for every point q’ belonging to the other
side Ml’-. Then the reflection function R£ extends holomorphically at the
point h-1 (pi ) x p~.

By the CR diffeomorphism assumption, the formal Taylor series

of h at PI induces an invertible formal CR mapping between (M,pi)
and (M’, pi ) . It is shown in [Me6], [Me8] that the associated formal

reflection function converges at PI x -’ and (as a corollary) that there
exists a local biholomorphic equivalence from (M,pi) onto (M’, p’).
Consequently, it would be possible to suppose, without loss of generality,
that (M’, pi ) _ (M,pi) in Theorem 5.5. However, since the proof would be
completely the same (except in notation), we shall maintain the general
hypotheses. In coordinates t’ vanishing at p’, we can assume that M’ is
given by the real equation Im w’ - p’(z’, z’, Re w’), i.e. v’ = u’)
if w’ := u’ + iv’, or equivalently by the complex equation w’ = 
with 8’ converging in the polydisc A2n- 1 (0, p’) and satisfying

In fact, given cp’, the function 0’ is the unique solution of the implicit
functional equation

It is convenient to choose the coordinates in order that = w- / 1.
Moreover, an elementary reasoning using only linear changes of coordinates
and Taylor’s formula shows that, after a possible deformation of the
manifold Mi in a new manifold still passing through pl which is bent

quadratically in the left side M1-, we can assume for simplicity that Mi
is given by the two equations w’ = 8’ (z’, t’) and xi - -~~i2 + I Z, 12 + U/2],
where we decompose z’ = xl + iyi in real and imaginary part and where we

denote z’ :- (z2, ... , zn_ 1 ). In this notation, the new side is given by

( Warning: For ease of readability, in Figure 5 below, we have drawn
Mi as if the defining equation of M1 was equal to x 1 = + [yf 1 2 + Iz~12 + U/21,
so Figure 5 is slightly incorrect.)
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Shrinking p’ if necessary, by Lemma 5.4, we know that fp’l is
contained in the right open part n On (0, p’) . We set pi h-1 (pl )
and M1 := h-1 ( Mi ) . Then M1 is one-codimensional generic submanifold
of M which is only of class Coo, because the CR diffeomorphism h is only
of class Coo. The reader may observe that even if we take the conclusion of

the proof of Theorem 5.5 for granted, namely even if we admit that R£ is
real analytic at x p~, it does not follow necessarily (unless M’ is
holomorphically nondegenerate) that h is real analytic (cf. Lemma 1.16),
so the hypersurface h- 1 (M,’) is not real analytic in general. Let D be the
global one-sided neighborhood of automatic extendability of CR functions
on M constructed in §3.6. Let Dp, C D be a small local one-sided

neighborhood of (M, pl ) . Since we are working at pi , we shall identify the
two notations Dp, and D in the sequel. By the considerations of §3.6,
the reflection function R£ associated with these coordinates is already
holomorphic in D x An (0, p’), shrinking p’ &#x3E; 0 if necessary. Moreover,
R£ is also holomorphic at each point h-1 (q’) x q’, for all q’ belonging
to in a neighborhood of the origin. Using the computation of §3.36
(especially, equations (3.40)), we can make this property more explicit. Let

denote the family of biholomorphisms sending q’ E M’ to 0
simply obtained by translation of coordinates t’ ~-4 t’ t’ - q’. The ~q,
are holomorphically parametrized by q’ E Let 8:(z:, t* )
denote the corresponding equation of IF’, (M’). Let hql denote the mapping
h - q’ obtained by this translation of coordinates, namely h* (t) : := h(t) - q’.
Let q . := h-1 (q’ ) . By assuming that the reflection function extends

holomorphically to a neighborhood of h-1 (q’) x q’ for every point q’ E Mi , I
we mean precisely that each translated reflection function R" in these
coordinates vanishing at q’ extends holomorphically to a neighborhood
of q x 0. By Lemma 3.22, this property is invariant under changes of
coordinates fixing q x 0. However, we need to express this property in terms
of a single coordinate system, for instance in the system t‘ vanishing at p1,
and this is not obvious.

5.7. Holomorphic extendability in a fixed coordinate system. -

This part is delicate and we begin with some heuristic explanations.
As presented in §2 with a slightly different definition of Ena, in the

situation of Theorem 1.2 (where M’ is holomorphically nondegenerate)
and of the corresponding Theorem 5.5, the mapping h already extends
holomorphically to a neighborhood of M1 in However, in the situation
of Theorems 1.9 and 5.5, this is untrue in general. Consequently, we raise the
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following question: if we fix the coordinate system t’ vanishing at the point
pi E Mi of Theorem 5.5, is it also true that the components O~ (h(t)) extend
holomorphically to a neighborhood of M1 in en? Let q’ E M{’ be close to
the point p~, which is the origin in the coordinates t’. Let t: : := t’ - t’ as
in §3.36. Let w* = 6~(~, t’) be the translated equation of M’. Also, denote
h(t) - q’ by h* (t). By assumption, the reflection function ~* - O* (A’, h* (t))
extends holomorphically to On (q, aq) x ~q, ), for some two positive real
numbers aq &#x3E; 0 and &#x3E; 0. By Lemma 3.16, we have a Cauchy estimate
for the holomorphic extensions O:f3 (t) of the components e:f3 (h(t)) of the
reflection function, say 8* ~ (t ) (  for all It - ql  O’q- Possibly,

0", is smaller than In the previous coordinate system t’, it would

be natural to deduce that the C°°-smooth CR functions O~ (h(t) ) extend
holomorphically to a neighborhood of q in C~. Unfortunately, by formulas

(3.43), we would necessarily have the following representation for the

desired holomorphic extensions 9)(t) of the components O~ (h(t)) of the
reflection function (if the series would be convergent for It - ql  

For this formulas to converge normally and to define a holomorphic function
of t, it would be necessary that the modulus of Z-’, be smaller than ~q, , which
is not a priori true in general. This difficulty is meaningful, unavoidable
and important.

At present, we may nevertheless observe a useful trick: if zq, vanishes,
then formulas (5.8) automatically yield holomorphic functions 8~ (t) in the
polydisc fit - ql  gql- Indeed, if = 0, there are no infinite series at all!

Indeed, 0/ (t) - o*~ (t) . So choosing a point q’ with vanishing coordinate Z-’,
is a crucial observation allowing to bypass the nonconvergency of the
series (5.8). Moreover, we will crucially use this trick in the proof of
Lemma 7.7 (corresponding to Lemma 2.4). In sum, we have observed that
Cauchy estimates might be killed after complex tangential displacement
whereas they are trivially conserved after complex transversal displacement.

5.9. Holomorphic extension to a neighborhood of Mi . Fortunately,
thanks to Artin’s approximation theorem, we can bypass the general
difficulty above and we can make ~q, larger than ~’, at the cost of

reducing aq. In advance, the following Lemma 5.10 is adapted to its

application in §7 below. Let qi E M’ be close to p~, let t’ be a fixed system
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of coordinates centered at q’, so ql is identified with the origin. Without loss
of generality, we can assume that h(M n On (0, 2 p) ) C M’ n On (0, 2 p’) .
Let E c M f1 On (0, 2 p) be an arbitrary closed subset, not necessarily
passing through the origin. Set E’ := h(E). As in Theorem 5.5, let us

assume that the reflection function centered at points q x h(q) is locally
holomorphically extendable, for all q E (M B E) n On (0, 2 p) . Then the
following holds.

5.10. LEMMA. - In the fixed system of coordinates t’ centered at q’,,
there exists a neighborhood 0 of (M B E) n On (0, 2 p) in en to which the
components 19’ 0 (h(t)) of the reflection function extend holomorphically.

Proof. So, let q C (M B E) n On (0, 2 p) be an arbitrary point and
let q’ h (q). As in Lemma 3.37, let t’ :- t’ - q’, let t* := t - q and let

be the reflection function centered at q x q-1. Here, we have lql  2 p and
1 q’I  2 P’ . Let aq &#x3E; 0 and ~q, &#x3E; 0 be such that 7~(~,~) extends as a
holomorphic function

for I  aq and I  a§,. Of course, it follows that the holomorphic
functions 0’0(t*) converge for lt*l I  a q and that if H*(t*) denotes the
formal power series of h* (t* ) at t* - 0, then O*~ (H* (t* ) ) - 8*~ (t* )
in C[[t*]]. By Artin’s approximation theorem, there exists a holomorphic
mapping ?~* (t* ) defined for  a*  aq such that O*~ (~* (t* ) ) - 8*~ (t* )
in Cft*1. By the Cauchy estimates for 0’ 0 (tl), since there

exists a constant C &#x3E; 0 such that we have ~O*~(t*) ~  C( 2 p’)-I~I for

all It’  -1 p’. Shrinking a* if necessary, we can assume that ~~-l* (t* ) ~  4 p’
for all It* (  o,*. It follows that

for all 3 E I‘~n-1. Finally, this Cauchy estimate is appropriate to deduce
that the series defined in equations (5.8) do converge normally and do
define holomorphic extension to the polydisc A,, (q, a,,) of the components
of the reflection function centered at ql x q’,. For all q running in
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(M B (0, 2 p), the various obtained extensions of course stick together
thanks to the uniqueness principle at the boundary (see [PI]). The proof
of Lemma 5.10 is complete. D

In particular, in the situation of Theorem 5.5, it follows from

Lemma 5.10 (with q1 := pi) that we can assume that the components
of the reflection function centered at PI x -’ extend holomorphically to a
neighborhood of (M r1 Ena) n On (0, 2 p) . Now we can begin our principal
geometric constructions. As explained in §2.2, we intend to study the
envelope of holomorphy of the union of together with an arbitrary
thin neighborhood of a Levi-flat hypersurface ~’Y. We need real arcs and
analytic discs.

6. Envelopes of holomorphy of domains
with Levi-flat hats.

6.1. A family of real analytic arcs. - To start with, we choose
coordinates t and t’ as above near M and near M’ in which PI := 

and p’ are the origin and in which the complex equations of M

and of M’ are given by w- = and w-’ = O’(z’, t’) respectively.
Geometrically speaking, it is convenient to assume ToM = {Im w = 01 and
To M’ = {Im w’ - 0}. We shall denote the real equations of M and of M’ by
v = cp(z, z, u) and v’ - ~o’(z’, Z-’, u’) respectively. We assume that the power
series defining 6 and 8’ converge normally in the polydisc A2,,-l (0, p)
and 02n-1 (0, p’) respectively. For q’ E M’ close to the origin in the target
space, we now consider a convenient, sufficiently rich, family of embedded
real analytic arcs y/ (s’), depending on 2n - 1 very small real parameters
(z§, , Ul, ) E en-1 x R satisfying lz’,  E, lu,  E’, where £’   p’, with

ql ql ql q,

the "time parameter" s’ satisfying ]s’ ]  2 p’, which are all transverse to
the complex tangential directions of M’, and which are defined as follows:

Here, in the definition of we identify a point of M’ with its

2n - 1 real coordinates (z’, u’) = (x’ + iyl, z~, u’). We also recall that
z# - (z2, ... , zn_ 1 ) and that Mi is given by (5.6). Figure 5, in which
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Figure 5. The family of real analytic arcs on the left side of the wall

we have reversed the curvature of ~11 for easier readability, explains how
the 

i 
and M1 are disposed.

We identify the arcs 
i 
with the mappings s’ H (s’). It can be

straightforwardly checked that the following properties hold:

1) The mapping (z, , *- / (0) is a real analytic diffeomorphismql ql q,
onto a neighborhood of 0 in M’. Furthermore, the inverse image of Ml’
and of Mi - simply correspond to the sets f xi 1 , q, , = 01 and 1 

 01,
respectively.

4) For x"q, 1 1 
= 0, the order of contact 

1 
I with Mi at the point (0)

equals 2.

and

6.3. Inverse images. Since h is a C°°-smooth CR diffeomorphism, by
inverse image, we get in M a family of C°°-smooth arcs, namely h-’( ’,).
In analogy with the notation (s’), we shall denote these arcs by 1ql (s).
By the index notation ~ql , we mean that these arcs are parametrized by
the point q1 . := h-’(q’) E M. Of course, a point ql E M can be identified
with its coordinates (zql , uql ) E en-1 x R, so the arcs 1ql are concretely
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parameterized by (zql , uql ) E x R and by the "time" s E R. It is

convenient to identify the point pi with the origin (in the coordinate
system t) and the point q1 close to pi with its coordinates (zql , uqi ). Of
course, shrinking a bit p if necessary, there exists E « p such that the

parameters satisfy zql I  E, luql I  2 p. Evidently, the C°°-
smooth arcs satisfy four properties similar to 1)-5) above with respect
to Mi . Let us summarize the geometric properties that will be of important
use later, when envelopes of holomorphy will appear on scene.

6.4. LEMMA. - For all small Xl,q,  0 and arbitrary, the
following two properties holds:

1) The center (0) of the smooth arcs 1 ql cover diffeomorphi-
cally the left negative one-sided neighborhood M1 of M1 in a neighborhood
of p 1.

2) The arcs are entirely contained in M1 and satisfy,
, even for small 0.

6.5. Construction of a family of Levi-flat hats. - Next, if y is a Coo-
smooth arc in M transverse to TcM at each point, we can construct the
union of Segre varieties attached to the points running in ~y: Ely 
We remind that the Segre variety S4 associated to an arbitrary point q
close to the origin is the complex hypersurface of An(0, p) of equation
w = 8(z, tq). For various arcs 1ql’ we obtain various sets which are

in fact C°°-smooth Levi-flat hypersurfaces in a neighborhood of 7q,. The
uniformity of the size of such neighborhoods follows immediately from the
smooth dependence with respect to 7 uql) - Shrinking p if necessary, the
Levi-flat hypersurface E 7ql is closed in On (o, 3 p) . What we shall need in
the sequel can then be summarized as follows.

6.6. LEMMA. - There exists 6 &#x3E; 0 with c   p such that, if the

parameters satisfy luql  s, then the set , 
n p) is a

closed C°°-smooth (and Coo -smoothly parametrized) Levi-flat hypersurface
of On (o, 3 1 p) ~

6.7. Two families of half-attached analytic discs. - Let us now define
inverse images of analytic discs. Complexifying the real analytic arcs 
we obtain local transverse holomorphic discs (~~~) c, closed in 
of which one half part penetrates inside D’ := h(D). Uniformly smoothing
out the corners of such half discs (see the right hand side of Figure 3), using
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Riemann’s conformal mapping theorem and then an automorphism of A,
we can easily construct a real analytically parameterized family of analytic
discs Aql : A 2013 (Cn which are C°°-smooth up to the boundary bA and arei 

_

embedding of 0 such that, if we denote

then we have i and also

for all Iz’, I, lu’, I  e’ ( cf. Figures 2 and 3). Consequently, the compositionq, q].
with h-1 yields a family of analytic discs := (()) which
satisfy similar properties, namely: 

ql

6.9. LEMMA. - The mapping (ql, () H Aql (() is C°°-smooth and it
provides a uniform family of C°°-smooth embeddings of the closed unit disc
0 into C~. Furthermore, vve have Aql (1) = 1ql (0) and

Finally, ure have

This family Aql will be our starting point to study the envelope of
holomorphy of (a certain subdomain of) the union of D together with a
neighborhood Q of M1 and with an arbitrarily thin neighborhood 
of (see Figure 3 and Figure 6 below). At first, we must include Aql
into a larger family of discs obtained by sliding the half-attached part
inside along the complex tangential directions of 

6.11. Deformation of half-attached analytic discs. - To this aim,
we introduce the equation v = Hql (z, u) of where the mapping

H Hql (z, u) is of course COO-smooth and IIHql - 
is very small. Further, we need some formal notation. We denote

Aql (~) ~ and =: To deform

these discs by applying the classical works on analytic discs and because
Banach spaces are necessary, we shall work in the regularity class ck,a,
where k &#x3E; 1 is arbitrary and where 0  a  1, which is sufficient for our

purposes. Let T1 denote the Hilbert transform vanishing at 1 (see [Tul],
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[Tu2], [Tu3], [MP1], [MP2]). By definition, T1 is the unique (bounded,
by a classical result) endomorphism of the Banach space R),
0  a  1, to itself such that 0 + iT1 (cp) extends holomorphically to
A and TIO vanishes at 1 E b0, i.e. (Ti())(l) - 0. Our next reasoning
below is similar to the one in Airapetyan [Ai] : we shall "translate" a small
analytic disc which is attached to a pair of transverse hypersurfaces. We
know that the disc Aql has one half of its boundary attached to the smooth
hypersurface v = Hql (z, u). After a possible linear change of coordinates, we
can assume that the other half is attached to another real hypersurface nql
of equation v = Gql (z, u) smoothly depending on the parameter ql . Indeed,
since the half disc is transverse to along b+ A and an embedding of 0
into there exist infinitely many such hypersurfaces Aql. Furthermore,
we can asssume that Aql sends neighborhoods of i and -i in b0 into

the intersection of the two hypersurfaces n Aql . Let rp- and rp+ be
two C°°-smooth functions on b0 satisfying rp- == 0, cp+ = 1 on b+.6. and
rp- + cp+ = 1 on b0. The fact that our disc is half attached to and half

attached to Aql can be expressed by saying that

(6.12) Vq,- (() - (().~(0)~
for all ( C b0. Since the two functions uql and vql on b0 are harmonic
conjugates, the following (Bishop) equation is satisfied on b0 by uql :

(6.13) uql (() = - [Tl Uql) + rp- Gql (Zql’ (~)·
We want to perturb these discs Aql by "translating" them along the complex
tangential directions to Introducing a new parameter a E C’-1 with

lal  E, we can indeed include the discs Aql into a larger parameterized
family by solving the following perturbed Bishop equation on b0
with parameters (q1, ~) :

For instance, the existence and the C’,O-smoothness (with 0  B  a

arbitrary) of a solution to (6.14) follows from Tumanov’s work [Tu3].
Clearly the solution disc Aql,,, is half attached to Differentiating
the mapping en-1 x b+A 3 (cor,() - (zpl (() ~- ~, E at the

point 0 x 1, using the fact that Ap, (b+ A) is tangent to the u-axis at p,
(since -ypl is tangent to the u-axis at pi) which gives e~0)) ] o=o = 0,
we obtain easily property (3) of the next statement. Notice that since the
discs are C~~~ for all k, and since the solution of the modified Bishop
equation (6.14) is the same in and in C~~~, the discs Aql,, are in fact
of class C°° with respect to all the variables.
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6.15. LEMMA. - The C°°-smooth deformation ( "translation" type) of
analytic discs (ql, a, () ~--~ (() is defined for IQ11 I  E and for lal I  s

and satisfies the following three properties:

3) The mapping en-1 x b+A 3 (a, () ~--~ Apl,a(() E is a local

C°° diffeomorphism from a neighborhood of 0 x 1 onto a neighborhood
of Ap. (1) = pi in 

6.16. Preliminary to applying the continuity principle. - At first, we
shall let the parameters (Q1, a) range in certain new precise subdomains.
We choose a positive 6  6 with the property that the range of the mapping
in 3) above, when restricted  61 x b+A, contains the intersection
of with a small polydisc An (0, 2"7), for some 77 &#x3E; 0. Recall that pi is

identified with the origin 0 E (C’~. Of course, there exists a constant c &#x3E; 1,
depending only on the Jacobian matrix of the mapping in 3) at 0 x 1

such that c-1 b  ~  c6. Let 0 ( 1, b) denote the disc of radius 6 centered
at 1 E C. Furthermore, since the boundary of the disc ApI,o is transversal
to then after shrinking a bit "7 if necessary, we can assume that

the set

contains and foliates by half analytic discs the whole lower side An (0, 2TI) n

E" (see Figure 6). Of course, the side ~,~~1 is "the same side" as M-,
i.e. the side of E-,pj where the greatest portion of D lies. However, D is
in general not entirely contained in because the Segre varieties S4
for q E may well intersect D. 

As presented in §2, we now fix a neighborhood Q of M1 in (Cn to
which all the components of the reflection function extend holomorphically.
Such a neighborhood is provided by Lemma 5.10 above. Let c~(E~ ) be
an arbitrary neighborhood of in Our goal is to show that the
envelope of holomorphy of Q U D U contains at least the lower

side An (0, TI) n E- for all q1 small enough. We shall apply this to the^Yql

components of the reflection function in §7 below.

By construction, the half parts are all contained in 

It remains now to control the half parts Using the last property
of Lemma 6.9, namely Aql,o(b-0) cc D U M1 , it is clear that, after
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shrinking 6 if necessary, then we can insure that C C 

for all I  6- and all I a I  6. Of course, this shrinking will result in
a simultaneous shrinking of r~, and we still have the important inclusion
relation: I Ap~,, (() : lal (  6, ( E A n 0 ( 1, 8)} ~ 2T,) rl Finally,
shrinking again E if necessary, we then come to a situation that we may
summarize:

6.17. LEMMA. - For alllq11  6, we have

and.

Shrinking s if necessary we can also insure that the intersection of D
with An(0, 1]) n E- is connected for all Iq11  s. Implicitely, we assume’Yql
that E « 6, hence also E « q.

6.19. Envelopes of holomorphy. - We are now in position to state
and to prove the main assertion of this paragraph. Especially, the following
lemma will be applied to each member of the collection ~O~(h(t))~~E~~.-~ i
in §7 below.

6.20. LEMMA. - Let 8,1], s &#x3E; 0 as above, namely satisfying 6 -- 1],

E « 6 and £ « q. If 6 &#x3E; 0 is sufhciently small, then the following
holds. If a holomorphic function 0 E O(D U Q) extends holomorphically
to a neighborhood in en, then there exists a unique holomorphic
function E U such == 

Proof. This is an application of the Behnke-Sommer Kontinui-
tdtssatz (see Figure 6). Let q1 with |q| I  E. We shall explain later how
we choose 6 &#x3E; 0 sufficiently small. Let 0 E O(D U Q). By assumption,
there exists a holomorphic function ’l/Jw E such that ’l/Jw == ’l/J
in a neighborhood of in First of all,
we must construct a domain Bql C D U Q sufficiently large such that
and 0, stick together in a unique holomorphic function defined in the union

Bql U To get this extension property, we need that Bql n 
be connected. For this to hold, we construct (equivalently, we shrink) the
neighborhood as a union of polydiscs of very small constant radius
centered at points of Next, we construct in two parts Bql as follows.
The first part of Bql consists of a small neighborhood of Aql,o (0) in en,
for instance a union of small polydiscs centered at points of 
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Figure 6. Part of the enveloppe of holomorphy of the hat domain

which are of constant very small radius in order to be contained in DUO.

The second part of Bql consists of three subparts, namely the union
of polydiscs of radius 26 centered at points of ApI (b- A), at points of

Am (b+ 0) n ’Ym ( ~- 2 P~ - 4 P~ ) and at points of Ap. (b+ 0) n ( ~ 4 P~ 2 P~ ) ~
This part is the same for all Bql . By Lemma 6.4(2), if 6 is small enough, the
second part of Bql will be contained in D U Q. This is how we choose 6 &#x3E; 0

small enough. Moreover, because Apl (A) are non-tangentially half-attached
to along b+0, the intersection Bql n is connected. So we
get a well defined semi-local holomorphic extension, again denoted by
1/J E U W(~Î’ql)). Geometrically speaking, this domain Bql U 
is a kind of curved Hartogs domain. We claim that such a function 0
extends holomorphically to a neighborhood of the union of disc Aql,,(A)
for Jul  6. Indeed, we first observe that for all  6, the
boundaries are contained in this domain Bql U ~(E~ ). This is
evident for the half boundaries which are contained in 

by Lemma 6.15 2). On the other hand, the boundaries stay
within a distance of order say 16 with respect to the boundary AP1 1 (b- A),
by the very construction of the smooth family Aql,a, which proves the
claim. We remind the notion of analytic isotopy of analytic discs (see [Me2],
Def.3.1]) which is useful in applying the continuity principle. For fixed
q1 and for varying ~, all the discs are analytically isotopic to each
other with their boundaries lying in Bql U c,~(~,yql ). Moreover, for a = 0,
we obviously see that is analytically isotopic to a point in the

domain Bql U c,~(~,yql ), just by the trivial isotopy (r, () H Aql,O(r() with
values in the neighborhood cv(Aql,o(0)) C Bql. By Lemma 3.2 in [Me2],
it follows that 0 restricted to a neighborhood of Aql,,(bA) extends
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holomorphically to a neighborhood of in for all Jul 6.
Furthermore, thanks to the fact that the map ((, a) H Aql,a (() is an

embedding, we get a well defined holomorphic extension Oq, of V) to the
union Cq, : - 0 ( 1, 6)). Of course, this extension coincides
with the old 0 E U S2) in a neighborhood of the intersection of the half
boundary with Cql . Since Cql rl D is connected and since Cql
contains rl ,ql 1 by Lemma 6.17, after sticking ’l/J with ’l/Jql’ we get
the desired holomorphic extension T E 0 (D U [An (0, 1]) r1 The proof
of Lemma 6.20 is complete. 

~ 

D

7. Holomorphic extension to a Levi-flat union of
Segre varieties.

7.1. Straightenings. - For each parameter q’ , we consider the real
analytic arc i 

defined by (6.2). To this family of analytic arcs we can
associate a family of straightened coordinates as follows.

7.2. LEMMA. - For varying q’ E M’ with I  s’   P’, there

exists a real analytically parameterized family of biholomorphic mappings

1 
of A~(0, ~~) sending q’ to the origin and straightening I to the

u’-axis, such that the image := a closed real analytic
hypersurface of An (0, 2 1 p’) close to M’ in the real analytic norm which is
given by an equation of the formcv’ (z’, t’), with 8’ (z’, t’) convergingq, ql

normally in the polydisc A2-i(0, p) and satisfying E)’, (0, 0, w’) - w’
and (z’, t’) = w’ + 0 (2). q,

7.3. Different reflection functions. - Let us develop these defining
equations in the form

Here, w’. We denote by the mapping in
these coordinate systems. To every such system of coordinates, we associate

diff erent reflection functions by setting
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7.6. Holomorphic extension to a Levi-flat hat. - Recall from §6.5
that the Levi-flat hypersurfaces are defined to be the union of the
Segre varieties Sq associated to points q varying in intersected with the

polydisc On (o, 3 p) . Here, we establish our main crucial observation.

7.7. LEMMA. - If q1 with lql I  E belongs to M1 , then all

the components Oqi , (h(t) ) extend as CR functions of class C°° over
ql

Proof. Let L 1, ... , be the commuting basis of TO,’M given
by Lj = 0/0zj + 8zj (z, t) a/aw, for 1  j  n - 1. Clearly, the coefficients
of these vectors fields converge normally in the polydisc By
the diffeomorphism assumption, we have 0. At

points (t, t ) with t E M fl On (o, 3 p), we shall denote this determinant by

Here, by its very definition, the function D is holomorphic in its

variables. Replacing w by O (z, t ) in D, we can write D in the form

D (z, t, ~ O~te f qi ~ ~ (t ) ~ 1 ,~ n,1  k  rL-1 ) ~ where D is holomorphic in its variables.
Shrinking p &#x3E; 0 if necessary, we may assume that for all fixed point tq E M
with ltq  3 p, then

1) The polarization’ is convergent
on the Segre variety, &#x3E;
i. e. it is convergent with respect to

2) This expression does not

vanish at any point of the Segre variety i. e. it does

not vanish for all I
Let us choose q’1 satisfying 

i 
C Mi-, with I  s’. We pick the

corresponding parameter q1 := h-1 (qi ) with Iq11  e. By the choice of 
we then have - 0 for all s E R with This proper
will be really crucial. As the mapping is of class Coo over M, we can

apply the tangential Cauchy-Riemann derivations
of order I/JI infinitely many times to the identity

which holds for t E M n An(0, p). To begin with, we first apply the CR
derivations Lj to this identity (7.9). This yields



1501

Applying Cramer’s rule as in the proofs of Lemmas 3.22 and 4.7, we see
that there exist holomorphic functions 7~ in their arguments such that

By CR differentiating further the identities (7.11), using Cramer’s rule at
each step and making inductive arguments, it follows that for every multi-
index /3 E NZ-1, there exist holomorphic functions 7~ in their variables
such that

Precisely, the terms TO are holomorphic with respect to (z, f ) and relatively
polynomial with respect to ’ Also, the
variable t runs in M in a neighborhood of Now, we remind
that by Lemma 5.10, all the functions t H Oqi ,~ (hqi ,,~ (t) ) are already

holomorphically extendable to a neighborhood in since c Mi .
Let us denote by these holomorphic extensions. We shall first proveql ’
Lemma 7.7 in the simpler case where M’ is holomorphically nondegenerate,
in which case the mapping h in fact extends holomorphically to a

neighborhood of M1 in In this case, for every point q E of

the form q - 1ql (s), the terms in the right hand side of (7.12) extend
holomorphically to a neighborhood (q, q) of the complexification ,~( of M,
which is the complex hypersurface in (Cn x Cn given by the defining
equation w = 8(z, T). So, for (t, T) close to (q, q), we can complexify (7.12),
replacing t by T and t by (z,e(z,r)), which yields an identity between
holomorphic functions:

Next, we put T := tq = -yql (s), whence t belongs to the Segre variety S,,
namely t = (z, 8(z, tq)), where the variable z is free. From the important
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fact that f q1 = 0, because h(q) belongs to it follows that the queue

sum ¿l’EN:;-1 in (7.13) disappears. Consequently, we get the following
identity on Sq for z close to zq :

The crucial observation now is that the right hand side of (7.14) converges
over a much longer part of the Segre variety Sq. Indeed, by (1) after (7.8),
it converges for z  ~p. Furthermore, the right hand side of (7.14) varies
in a C°° way when tq varies on This proves Lemma 7.7 in the case

where h extends holomorphically to a neighborhood of M1 in C~, which
holds true for instance when M’ is holomorphically nondegenerate.

In the general case, it is no longer true that h extends holomorphically
to a neighborhood of M1 in C~, so different arguments are required.
Let q E be arbitrary. By assumption, the components q, 1

extend holomorphically to a neighborhood of q in Cn as holomorphic
functions B’ , (t) defined, say in the I  for

small aq &#x3E; 0. By expanding hqi 1 in formal power series at q, we

get a series 7~ (tq + (t - Also, we may expand
+ (t - Then we have the following formal power

series identities:

in (~Qt - tqD for all ~3. Since the Taylor series of at (tq, tq) induces a
formal CR mapping between the complexifications .M centered at (q, q) and
the complexification Ji4’ centered at (q’, q’), it follows that we can write

the following formal power series identities valuable in e[t - tq, T - tq~
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Putting T tq in (7.16), taking (7.15) into account, and using the

important fact that Fqi = 0, we get the formal power series identities
between two holomorphic functions which are valuable ]  G"q
in C(z - zql and for all 0:

Consequently, we get on Sq the following identities between holomorphic
functions of z valuable  aq and for all ~3:

As in the holomorphically nondegenerate case, we see that the right
hand side of (7.18) converges for lzl  3 p, so the holomorphic functions

converge in a long piece of the Segre variety ,S’q . The C°°-
smoothness of the right hand side extension over ,q1 1 n On (0, 3 p) yields
a CR extension to which is of class Coo. This completes the proof
of Lemma 7.7. D

7.19. LEMMA. - If q1 with I ql  s belongs to M1 , then all the

components of the reflection function extend as
q1 1 1 q1

holomorphic functions to a neighborhood w (E-Yql ) of in en.

Proof. By the hypotheses of Theorem 5.5 and by Lemma 5.10,
we remind the reader that the components 8’, , (hqi (t) ) already extendq, 1

holomorphically to a neighborhood C S2 of C M1 in en as
the holomorphic functions O’,,,(t). Thanks to Lemma 7.7, the statement
follows by an application of the following known propagation result: D

7.20. LEMMA. - Let E be a C°°-smooth Levi-flat hypersurface in CCn

(n &#x3E; 2) foliated by complex hypersurfaces FE. If a continuous CR function
~b defined on E extends holomorphically to a neighborhood Up of a

point p belonging to a leaf 0r of ~, then 0 extends holomorphically
to a neighborhood of in en. The size of this neighborhood
o (0r ) depends on the size of Up and is stable under sufliciently small ( even
non-Levi-flat) perturbations of E.
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Proof. The first part of this statement was first proved by
Hanges and Treves [HaTr] using microlocal concepts, the fbi transform and
controlled deformations of manifolds. Interesting generalizations were given
by Sj6strand and by Tr6preau [Tr2] in arbitrary codimension. Another proof
using deformations of analytic discs has been provided by Tumanov [Tu2].
Both proofs are constructive and the second statement about the size of the
neighborhoods to which extension holds follows after a careful inspection
of the techniques therein. Since it is superfluous to repeat the arguments
word by word, we do not enter the details. D

8. Relative position of the neighbouring Segre varieties.

8.1. Intersection of Segre varieties. - We are now in position
to complete the proof of Theorem 5.5, hence to achieve the proof
of Theorem 1.9. It remains to show that the functions extend

i &#x3E;

holomorphically at pl, for -yql chosen conveniently. For this choice, we
are led to the following dichotomy: either SP1 n Mg = 0 in a sufficiently
small neighborhood of pi or there exists a sequence of points of

S., n M1 tending towards pl. In the first case, we shall distinguish two
sub-cases. Either Sp, lies below M1 or it lies above M1 . Let us write this
more precisely. We may choose a C°°-smooth hypersurface Hl transverse
to M at PI with Hl satisfying HI n M = M1 and HI n M = Ml (see
Figure 7). Thus HI together with M divides C~ near 0 in four connected
parts. More precisely, we say that either Sp, n Hi is contained in the lower
left quadrant H1 n M- = H1 n D or it is contained in the upper left

quadrant HI n M+. To summarize, we have distinguished three possible
cases:

Case I. - The half Segre variety Sp, n HI cuts Ml along an infinite
sequence of points tending towards pl .

Case II. - The half Segre variety Sp, n Hi does not intersect M1 in
a neighborhood of PI and it passes under M1 , namely inside D.

Case III. - The half Segre variety Spl n Hi does not intersect M1
in a neighborhood of PI and it passes over M1 , namely over D U M~.

In the first two cases, for every point q1 close enough to p1, the Segre
variety will intersect and the neighborhoods constructed

in Lemma 7.20 will always contain the point PI (we give more arguments
below). The third case could be a priori the most delicate one. But we can
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Figure 7. The Segre variety Sq, intersects D left to HI near pi

already delineate the following crucial geometric property, which says that
Lemma 6.20 will apply.

8.2. LEMMA. - n H1 is contained in M+, then PI lies in the
lower side for every arc C M1 of the family (6.2).

Proof. In normal coordinates t vanishing at pl , the real equation
of M is given by v = z, u), where cp is a certain converging real
power series satisfying cp(0) - 0, dcp(0) - 0 and 0. We can

assume that dh(0) = Id. We can assume that the "minus" side D = M- of
automatic extension of CR functions is given by Iv  ’1’( z, z, u) 1. Replacing
u by (w + w)/2 and v by (w - w)/2i, and solving with respect to w, we
get for M an equation as above, say w = w + i3(z, f), with u(0, f) - 0.
We have 8(z, f) - w + in our previous notation. We claim that

every such arc 1ql C M1 contains a point p E M1 whose coordinates
are of the form (zp, 0 + zp, 0)). Indeed, by construction, the arcs -yq,
are all elongated along the u-coordinate axis, since it is so for 

i 
and

since dh(0) = Id. In normal coordinates, the Segre variety passing
through the origin PI has the simple equation ~w - 01. By assumption,
the point (zp, 0) E lies over M in M+, so we have cp(zp, ZP, 0)  0.
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Then the Segre variety ,5’P (which is a leaf of has the equation
w - Therefore, the intersection
point iz = of D 5p c has coordinates equal to (0, -i~p(zp, zp, 0)). This
point clearly lies above the origin pl , so PI lies in the lower side E- tq 1, which
completes the proof of Lemma 8.2. 

~ 

D

8.3. Extension across (M, 0) of the components - We are now

prepared to complete the proof of Theorems 5.5 and 1.9. We first choose
6, q, 6 and various points Iq11  E as in Lemma 6.20 and we consider the two

associated arcs and -yqi , the associated mapping hqi and the associatedi 1

reflection function R’ By Lemma 6.20, for each such choice of ql , then
1

all the components extend holomorphically to D U [E- n A,, (0, 77)].
Our goal is to show that for suitably chosen in Cases I, II and III,
then the components extend holomorphically to a neighborhoodql
of pi. Afterwards, thanks to Artin’s approximation theorem, the Cauchy
estimates are automatic, as explained in Lemma 3.16.

8.4. Case I. - In Case I, we choose one of the points qk E M1 n 6p~
which is arbitrarily close to PI and we denote it simply by ql . We can assume
that I q11 I  s. Next, we consider the associated By an application
of Lemma 7.19, all the components (t)) of the reflection functionq, &#x3E; 1

I extend holomorphically to a neighborhood w(E ) of in Cn.

Of course, this neighborhood contains the point PI E S’ql C However,
because of possible pluridromy, the extension at PI might well differ from
the extension in the one-sided neighborhood D near pl . Fortunately, thanks
to Lemma 6.20, all these holomorphic functions extend holomorphically in
a unique way to D U 

1 
n On (0, r~)~ . The neighborhood being

constructed as a certain union of polydiscs of small radius, it is geometrically
smooth, so its intersection with D U n On (0, r~)~ is connected. In sum,
we get unique holomorphic extensions of the functions (t)) to thei &#x3E;

domain

which yields the desired holomorphic extensions at pl. Case I is achieved.

8.6. Case II. - Case II is treated almost the same way as Case I.

Since sp, f1 H1 is contained in D, we can choose a fixed point 4 of Sp,
which belongs to D. So there exists a radius p &#x3E; 0 such that the polydisc
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is contained in D. For  s sufficiently close to pi , there exists
a point ill E S’ql sufficiently close to 4 such that the polydisc On (q1, 2 p) is
again contained in D. Thanks to Lemma 7.20, if q1 is sufficiently close to pl,
the neighborhood constructed by deformations of analytic discs as
in [Tu2] will contain the point pl , since its size along ,S’ql depends only
on the fixed size of the polydisc which is of radius at least 1 -
uniformly. Finally, as in Case I, the monodromy of the extension follows by
an application of Lemma 6.20.

8.7. Case III. - For Case III, thanks to Lemma 8.2, we know already
that pi belongs to the lower side E- . Thus Case III follows immediately"Yql
from the application of Lemma 6.20 summarized in §8.3 above. Case III is
achieved. The proofs of Theorems 5.5, 1.9 and 1.2 are complete. D

9. Analyticity of some degenerate
C°°-smooth CR mappings.

9.1. Presentation of the results. - Theorems 1.9 and 1.14 are

concerned with C°°-smooth CR diffeomorphisms. It is desirable to remove
the diffeomorphism assumption. Taking inspiration from the very deep
article of Pinchuk [P4], we have been successful in establishing the following
statement. We refer the reader to the work of Diederich-Fornaess [DF1] and
to the book of D’Angelo [D’A] for fundamentals about complex curves
contained in real analytic hypersurfaces.

9.2. THEOREM. - Let h : M 2013~ M’ be a C°°-smooth CR mapping
between two connected real analytic hypersurfaces in en (n &#x3E; 2). If M
and M’ do not contain any complex curve, then h is real analytic at every
point of M.

At first, we need to recall some known facts about the local CR
geometry of real analytic hypersurfaces.

1) If M does not contain complex curves, it is essentially finite. This is
obvious, because the coincidence loci of Segre varieties are complex analytic
subsets which are contained in M (cf. [DP1], [DP2]).

2) If M is essentially finite at every point, it is locally minimal
at every point, so it consists of a single CR orbit, namely it is globally
minimal. As we have seen in §3.6 above, CR functions on M (and in
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particular the components of h) extend holomorphically to a global one-
sided neighborhood D of M in Cn.

3) If M does not contain complex curves, then M is Levi

nondegenerate at each point of the complement of some proper closed
real analytic subset of M. On the contrary, the everywhere Levi degenerate
CR manifolds are locally regularly foliated by complex leaves of dimension
equal to the dimension of the kernel of the Levi form, at points where this
kernel is of maximal hence locally constant dimension. This may happen in
the class of essentially finite hypersurfaces.

4) If M does not contain complex curves, then either h is constant
or it is of real generic rank (2n - 1) over an open dense subset of M and
its holomorphic extension is of complex generic rank n over D. This is

easily established by looking at a point where h is of maximal, hence locally
constant, rank.

5) In Theorem 9.2, there exists at least an everywhere dense open
subset UM of M such that h is real analytic at every point of UM .

Based on these observations, Theorem 9.2 will be implied by the
following more general statement to which the remainder of §9 is devoted.

9.3. THEOREM. - Let h : M - M’ be a C°°-smooth CR mapping
between two connected real analytic hypersurfaces in (Cn (n &#x3E; 2). If M
and M’ are essentially finite at every point and if the maximal generic real
rank of h over M is equal to 2n - 1, then h is real analytic at every point
of M.

In [BJT], [BR1], [BR2], an apparently similar result is proved. In
these articles, it is always assumed at least that the formal Taylor series
of h at every point of M has Jacobian determinant not identically zero.
It follows that all the results proved in these papers are superseded by
the unification provided in the recent articles [CPS1], [CPS2] and [Da2]
expressed in terms of the characteristic variety (1.4). However, the difficult
problem would be to treat the points of M where nothing is a priori known
about the behavior of h, for instance points where all the hj could vanish
to infinite order hence have an identically zero formal Taylor series. In this
case, of course, the characteristic variety is positive-dimensional. Unless M
is strongly pseudoconvex or there exist local peak functions, it seems

impossible to show ab initio that h is not flat at every point of M. Thus
the strategy of working only at one fixed "center point" of M might well
necessarily fail (cf. [BJT], [BR1], [BR2], [BR4], [BER1], [BER2], [BER3]).
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On the contrary, a strategy of propagation from nearby points as developed
in [P3], [P4], [DFY], [DP1], [DP2], [Sha], [V], [PV] (and also in the previous
paragraphs) is really adequate. Philosophically speaking, there is no real
surprise here, because the propagation along Segre varieties is a natural
generalization of the weierstrassian conception of analytic continuation.

9.4. Dense holomorphic extension. - Let D be a global one-sided
neighborhood of M in C~ to which CR functions extend holomorphically.
It follows from the assumptions of Theorem 9.3 that the generic complex
rank of h in D equals n. Recall that the two everywhere essentially finite
hypersurfaces M and M’ are of course holomorphically nondegenerate,
namely xM - n and xM, - n. At first, we prove the following lemma.
Recall that the intrinsic exceptional locus EM defined in §3.47 is a proper
real analytic subset of M. Let UM denote the open subset consisting of
points p C M B EM at which the real rank of h equals 2n - 1.

9.5. LEMMA. - The open subset UM is dense in M.

Proof. - Indeed, suppose on the contrary that M B UM contains an
open set V. Then the rank of h is strictly less than 2n - 1 over V. By
the principle of analytic continuation and by the boundary uniqueness
theorem, it follows that h is of generic complex rank strictly less than n in
the domain D, contradiction. D

9.6. LEMMA. - The mapping h extends llolomorphically to a neigh-
borhood of every point p E UM .

Proof. Indeed, at such a point p E UM, h is a local CR

diffeomorphism of class Coo. By Lemma 4.3, the image p’ . := h(p) of p
belongs to M’ B EM, . Then Lemma 4.11 applies directly (with xM, - n of
course) to show that h extends holomorphically at p. 0

9.7. Holomorphic and formal mappings of essentially finite hypersur-
faces. - Let h : M -~ M’ be as in the hypotheses of Theorem 9.3. Let p E M
and let p’ := h(p). Let t be coordinates vanishing at p and let as usual a
complex equation for the extrinsic complexification of M be of the form

w = O(z, ~, ~), where t = (z, w) E x C and T = ((,~) E x C.

Similarly, let w’ = 8’(z’, (’, ç’) be an equation of J1~I’. As in the proof of
Lemma 4.3, the C°°-smooth CR mapping h induces a formal CR mapping
(H(t), H(T)) between (.A4, (p, p)) and (A4’, (p’, p’)). Precisely, this means



1510

that the Taylor series Hj (t) _ the origin and there

conjugates H(T) satisfy a formal power series identity of the form

where we denote H = (F1, ... , G) and where A(t, T) is a formal power
series. Without loss of generality, we can assume that the coordinates
(z, w) and (z’, w’) are normal, namely the defining functions satisfy
E)(0, (, ~) =- 0(~,0,~) = ~ and idem for 8’. Such coordinates are not

unique, but they specify a certain component Hn - G of the formal CR
mapping H which is called a transversal component. In [BR2], two facts
about formal CR mappings between small local pieces of real analytic
hypersurfaces (and even between formal hypersurfaces) are established.

Recall that M and M’ are assumed to be essentially finite at the origin and
that the coordinates are normal.

1) If the transversal power series G does not vanish identically, then H
is of finite multiplicity, namely (cf. [BR88]), the ideal generated by the power
series F, (z, 0),..., (z, 0) is of finite codimension in (C Qz~ . We denote
this codimension by Mult(H, 0). It is independent of normal coordinates.

2) If H is of finite multiplicity, then a formal Hopf Lemma
holds at the origin, which tells us that the induced formal mapping

ToM’ITOcM’ represented by is of formal rank equal
to 1. Equivalently, (aG/o~w) (0) ~ 0.

The multiplicity is independent of normal coordinates,
so it is a meaningful invariant of h at an arbitrary point of M. In

normal coordinates, essential finiteness of M at p is characterized by the
finite codimensionality in Cftl of the ideal generated by the 8 (3 (t) for

all ~3 E l~n-1. This codimension is independent of coordinates and denoted
by EssType(M,p). Recall that is defined to be the set of points
q E M at which the mapping t - (()O(t)))3EN,~-1 is of rank n in coordinates

vanishing at q. Consequently

9.9. LEMMA. - For every q E M B EM, we have EssType(M, q) = 1.

A refinement of the analytic reflection principle proved in [BR1] is as
follows (see [BR2, Theorem 6]).

9.10. LEMMA. - The C°°-smooth CR mapping h extends holomor-
phically to a neighborhood of a point q E (Cn provided that in normal
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coordinates centered at q and at q’ - h(q), the normal component g of h
is not flat at the origin, namely its formal power series G does not vanish
identically.

Furthermore, in the case where the mapping h extends holomorphi-
cally at one point, four interesting nondegeneracy properties hold:

9.11. LEMMA. - With the same assumptions as in Theorem 9.3, let

q E M, let q’ := h(q) and assume that h extends holomorphically to a
neighborhood of q. Then

1) The induced differential dh :
rank 1.

2) The mapping h is of finite multiplicity rrz = Mult(h, q)  oc and h

is a local rrz-to one holomorphic mapping in a neighborhood of q.

3) We have the multiplicative relation

4) If q E M B EM, then h is a local biholomorphism at q.

9.13. Installation of the proof of Theorem 9.3. - Let Ena be the
closed set of points of M at which the mapping h is not real analytic.
By Lemma 9.6, the complement M B Ena is nonempty and in fact dense
in M. If Ena is empty, then Theorem 9.3 is proved, gratuitously. As in §2
and §5 above, we shall assume that Ena is nonempty and we shall construct
a contradiction by showing that there exists in fact a point pi of Ena at
which h is real analytic. By Lemma 5.4, we are reduced to the following
statement, which is analogous to Theorem 5.5.

9.14. THEOREM. - Let PI E Ena and assume that there exists a real

analytic one-codimensional submanifold M1 of M with p, E M1 which is
generic in C~ such that Ena B is completely contained in one of the two
open sides of M divided by M1, say in Mi, and such that h is real analytic
at every point q E M B Ena. Then h is real analytic at pl.

To prove this theorem, we shall start as follows. We remind that the
intrinsic exceptional locus EM of M is of real codimension at least two in M.
At each point q E M B EM, the hypersurface M is finitely nondegenerate.
It follows from Lemma 9.11(4) that at each point q E M B (EM U Ena), the
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mapping h extends as a local biholomorphism from a neighborhood of q
in C~ onto a neighborhood of h(q) in C . Consider the relative disposition
of the center point PI with respect to EM. In principle, there are two cases
to be considered. Either pl E EM or pl E M B EM . In both cases, we have
the following useful existence property.

9.15. LEMMA. - There exists a small two-dimensional open real

analytic manifold K passing through PI and contained in M such that

1) K is transversal to Mi.

2) K f1 EM - and the line TPIK n TPIM1 is not contained

in T;1 M.

Proof. Indeed, introducing real analytic coordinates on M, this
follows from a more general statement. Given a locally defined real analytic
set E in IIw of dimension 1  p ~ ~ 2013 1 passing through the origin, then for
almost all (v - p)-dimensional linear planes K passing through the origin,
the intersection of K with E consists of the singleton ~0~ in a neighborhood
of the origin. 0

It follows from Lemma 9.15 that the intersection K n M1 coincides
with a geometrically smooth real analytic arc ~1 passing through PI which
is not complex tangential at pi. By construction, -yl B is contained

in the locus M B Ena where h is already real analytic. Moreover, 
is also contained in M B EM . Its complexification is a complex disc
transversal to M with (71)1 n M = Recall that h already extends
holomorphically to a one-sided neighborhood D of M. To fix ideas, we can
assume that D is in the lower side M- of M in Cn. Moreover, h extends

holomorphically to an open neighborhood Q of M B Ena in (Cn . We choose
normal coordinates t vanishing at PI in which the equation of M is of the
form w = 8(z, t), with E)(0, t) =- w. Especially, we choose such coordinates
in order that ~1 coincides with a small neighborhood of the origin in the
u-axis in these normal coordinates, which is possible. Also, we choose some
arbitrary norrrtal coordinates t’ vanishing at p~ := h(pi) in which the

equation of M’ is of the form iv’ = 8’ (z’, t’), with ~’(0, t’) - w’. We denote
the mapping by h = ( f , g) = ( f 1, ... , g) in these coordinates.

Suppose for a while that we have proved that the normal component g
of the mapping extends holomorphically to a neighborhood of the point PI
in the transverse holomorphic disc (~yl ) ~, which coincides with a small
neighborhood of the origin in the w-axis. Notice that we speak only of
holomorphic extension to the single transverse holomorphic disc passing
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through pl. , because our method below will not give more. Then we
claim that the proofs of Theorems 9.14 and 9.3 are achieved. Indeed, it

suffices to show that the holomorphic extension g(0, w) at w = 0 does not
vanish identically, since then it follows afterwards that the Taylor series G
at the origin of the normal component g does not vanish identically,
whence h extends holomorphically at PI thanks to Lemma 9.10. To prove
that the extension g(O, w) is nonzero, we reason as follows. According to
Lemma 9.11 ( 1 ) , at every point q E 11 sufficiently close to PI and different
from pl , the induced differential dh : Tql M’ /Tq, M’ is of rank
one. This entails that the differential awg(0, w) is nonzero at w := wq, which
shows that the holomorphic extension g(0, w) does not vanish identically,
as desired. In summary, to prove Theorems 9.14 and 9.3, it remains to

establish the following crucial statement.

9.16. LEMMA. - The COO-smooth restrictions fin- 1 and
extend holomorphically to a small neighborhood of p, in the complex

disc (~yl ) ~ .

9.17. Holomorphic extension to a transverse holomorphic disc. - This
subsection is devoted to the proof of Lemma 9.16. Using the manifold K
of Lemma 9.15, we can include ~1 into a one-parameter family q of real
analytic arcs, with si  s  1, contained in .K which foliate .K n M1 for
s,  s  1. Since for s,  s  1, the arcs -~, are contained in M1 , we
have ys n Ena = 0. By Lemma 9.15, we also have the important property

= 0. We consider the complexifications (~ys)~, which are transversal
to M. One half of the complex discs (-ys)~ is contained in D. The crucial
Lemma 9.19 below is extracted from [P4, Lemma 3.1~ and is particularized
to our C°°-smooth situation. In the sequel, it will be applied to the one-
dimensional domains of the complex plane C defined by

where r &#x3E; 0 is sufficiently small and to certain antiholomorphic functions
to be defined later. First of all, we introduce some notation. As the complex
disc (~ys ) ~ is transverse to M and almost parallel to the w-axis, it follows
that Us is a small one-dimensional simply connected domain in 

bounded by two real analytic parts which we shall denote by 8s C qs and
by /3S = r} n (1s)C n D. These two real analytic arcs join together at
two points q-: E 7, and q- E n ~ w = r} == 8s 
Then the boundaries 6s and ys depend real analytically on s, even in



1514

a neighborhood of s = 1. We consider the two open real analytic arcs

~ := ~ B {~, and similarly for 00. Here is the lemma.

9.19. LEMMA. - Let Us C C be a one-parameter family of bounded
simply connected domains in C having piecewise real analytic boundaries
with two open pieces 60 and 0’ depending real-analytically on a real
parameter s,  s  1, let ’Ps, ’Øs be antiholomorphic functions defined in Us
which depend COO-smoothly on s and set Os := Assume that the

following four conditions hold:

1) For s  1, the two functions cps and ’Øs extend antiholomorphically
to a certain neighborhood of Us in C and there exists a point p, E 81 so
that ~p1 and ’Ø1 extend antiholomorphically to a neighborhood of U1 B 
in (C and Coo -smoothly up to the open arc 81. *

2) The quotient B1 := ’P1/’Ø1 is of class C°° over 81.

3) For s  1, the function ’Øs does not vanish on 8Us and there exists
a constant C &#x3E; 0 such that for all s 1  s  1.

4) The function ’Ø1 does not vanish on U1 B 
Then the quotient 01 satisfies lOll ]  C on Ul and it extends as an

antiholomorphic function to U1 which is of class C°° up to the open real
analytic piece 6’ of the boundary.

Proof. - In view of the nonvanishing of os in the function ’Øs
has in Us a certain number m (counting multiplicities) of zeros which is
constant for all s 1  s  1. Using a conformal isomorphism of U, with the
unit disc and an antiholomorphic Blaschke product, we can construct an
antiholomorphic function bs on U, extending C°°-smoothly to the boundary
with = 1 on such that the m zeros of bs coincide with the m zeros
of os. Then is holomorphic in Us for s 1  s  1. It follows from the

maximum principle that C on Us for all s 1  s  1. Since u/1 # 0
in U1 B ~pl ~, when s - 1, all zeros of the function os converge to the single
point pi E 8Ui. From the form of a Blaschke product, we observe that

= 1 for every point z E Therefore, for z ~ Ul , we have

So the function 01 is bounded in U1. Since its boundary value is

of class C°° on 81, it follows that the antiholomorphic function 01 extends
C°°-smoothly up to 81 U The proof of Lemma 9.19 is complete. El
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We can now begin the proof of Lemma 9.16. Let L1, ... , L,, - 1 denote
the commuting basis of TO,’M given by Lj = 8/8zj + (z, t) for

j = 1, ... , n - 1. In a neighborhood of the arc qs for s  1, the mapping h
extends holomorphically as a local biholomorphism. It follows that the

determinant

does not vanish for t E M in a neighborhood of qs. Also, it extends as

a certain antiholomorphic function to the domain Us . Let us denote this
extension by 1/J s. In order that the function 1/J s satisfies the assumption 4) of
Lemma 9.19, we first observe that the determinant (9.21) does not vanish
on the part of Indeed, since h is real analytic at every
point of and since is contained in M B EM, this follows
from Lemma 9.11 4). For the second part {31 of 9U,, we observe that
for every small r &#x3E; 0 as in (9.18), the determinant (9.10), extends as an
antiholomorphic function to Ul and is in fact real analytic in a neighborhood
of /31. Since the determinant (9.21) does not vanish on bl B ~pl ~, there exist
arbitrarily small r &#x3E; 0 such that does not vanish over {31. Shrinking sl,
we can assume that 1/Js does not vanish on {3s for all s 1  s  1. Finally,
we know already that for s  1, the function 1/Js does not vanish on 6s,
thanks to the fact that 1s n EM is empty. Since does not vanish on the
boundary aUs for all s,  s  1, it follows from Rouch6’s theorem that the
number of zeros of 1/Js in Us is constant equal to m (counting multiplicities).
Therefore, even for s = 1, the function has in Ul not more than m zeros.

Decreasing r &#x3E; 0 once more, we can assume that does not vanish in Ul.
This shows that 1/Js satisfies all the assumptions of Lemma 9.19.

Next, as the mapping h is of class C°° over M, we can apply
the tangential Cauchy-Riemann derivations ~3 E Nn-1, of
order 101 infinitely many times to the identity

which holds for all t E M in a neighborhood of pl. As in §7 above, using the
nonvanishing of the determinant we get for all /3 E and for all t G qs
with s  1 the following identities:
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Precisely, the are holomorphic with respect to (z, f) and relatively
polynomial with respect to the jets follows that
the numerator T,3 extends antiholomorphically to U, for every s,  5  1 as

a certain function which we shall denote by We set ~~ := [0,]21,31-1.
For t E -y, C M with s  1, let us rewrite (9.23) as follows:

As the left hand side of (9.24) is of class C°° on -y,, it follows that the

right hand side is of class C°° on for all s  1. By construction, for
all $ the function has no zeros on the boundary for s  1

and it also has no zeros on Furthermore, these two functions

CPj3,s and ’l/Jj3,s both extend antiholomorphically to a neighborhood of Us
in (~ys)~ for s  1 and to a neighborhood of for s = 1. Let us

define ()j3,s := By Lemma 9.19, for s = 1, the functions ()j3,1
extend antiholomorphically to Ul as bounded functions and C°°-smoothly
up to the open real analytic arc 6’. In summary, we have shown that for
all 0 E 1‘~n-1, there exist functions 8,~,1 (t ) defined for t E 61 and extending
as antiholomorphic functions to Ul which are of class C°° up to 6’ such
that the following identities hold on 61:

Next, we may derive some polynomial identities in the spirit of

[BJT], [BR1]. By the relation (9.25) written for t pl E 6’, we see
that ()f3,1 (pl ) = 0, because h(pi ) = p1 sends the origin p, (in the coordinate
system t) to the origin p’ (in the coordinate system t’) and because the
coordinates are normal. As M’ is essentially finite at the origin, there exists
an integer K E such that the ideal (8ø(t’))If3I~~ is of finite codimension
in (C~t’~. It follows from (9.24) and from a classical computation (cf.
[BJT], [BR1]) that there exist analytic coefficients Aj,k in their variables
which vanish at the origin and integers 1 such that, after possibly
shrinking r &#x3E; 0, we have

for all t E 61. It follows that these coefficients Aj,k, considered as functions
of one real variable in extend as antiholomorphic functions to Ul .
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In summary, we have constructed some polynomial identities for the

components of the mapping h with antiholomorphic coefficients which

hold only on the single transverse half complex disc U1 - (~/i)~ n D in
a neighborhood of pi. These polynomial identities are crucial to show
that the mapping h restricted to (~y1 )~ n D extends holomorphically to a
neighborhood of PI in (~1) C .

Indeed, by following the last steps of the general approach of

[BJT], [BR1, §7], we deduce that the reflection function (as denoted in
equation (8.1) of [BR1, §8]) extends holomorphically to a neighborhood of
the point PI in (-~1)’ as a function of one complex variable w (remember
that is contained in the w-axis). We would like to mention that in
the strongly pseudoconvex case, such a holomorphic extension to a single
transverse holomorphic disc was first derived by Pinchuk in [P4] in the more
general case where h is only continuous at PI and real analytic in M B Ena.
Finally, using the real analyticity of the reflection function, using the C°°-
smoothness of hl,1 and using Puiseux series as in [BJT], we deduce that
hl,1 is real analytic at pl . The proof of Theorem 9.3 is complete. 11

A careful inspection of the above arguments shows that there is no
obvious possibility to get an extension to the complex discs (~5)~ with a
uniform control of the size of the domains of extension. Only the extension
to the limit complex disc (11)C can be obtained.

9.27. Strong uniqueness principle for CR mappings. - We end up
this section by an application of Theorem 9.2. A similar application of
Theorem 9.3 may be stated.

9.28. THEOREM. - Let h : M - M’ and h* : M -&#x3E; M’ be two C°°-
smooth CR mappings between two connected, real analytic hypersurfaces
in C~ and let p E M. If M and M’ do not contain complex curves, then
there exists an integer r~ E 1~* which depends only on p, on M and on M’
such that if the two K-jets of hand h* coincide at p, then h - h* over M.

Proof. By Theorem 9.2, we can assume that h and h* are both
holomorphic in a neighborhood of p and nonconstant. By Lemma 9.11, the
two mappings h and h* satisfies the Hopf Lemma at p and are of finite
multiplicity. It follows from a careful inspection of the analytic versions of
the reflection principle given in [BR1], [BR2] that if K is large enough, then
the two mappings h and h* coincide in a neighborhood of p. In fact, the
complete arguments already appeared in a more general context in [BER3,
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Theorem 2.5]. Then h - h* all over M by analytic continuation. For the
particular case of germs, Theorem 9.28 is conjectured in [BER4, p. 238]. 0

10. Open problems and conjectures.

In the celebrated article [DP2], the following conjecture stated without
pseudoconvexity assumption, was solved in the case n = 2.

10.1. CONJECTURE. - Let h : D - D’ be a proper holomorphic
mapping between two bounded domains in C~ (n &#x3E; 2) having real analytic
and geometrically smooth boundaries. Then h extends holomorphically to
an open neighborhood of D in 

To the author’s knowledge, the conjecture is open for n &#x3E; 3. In fact,
among other conjectures, it has been conjectured for a long time that
every such proper holomorphic mapping h : D ~ D’ extends continuously
to the boundary M of D and that in this case, h is real analytic at every
point of M. In the much easier case where h extends C°°-smoothly up
to M, Theorem 9.2 above, in which no formal rank assumption is imposed
on the Taylor series of h at points of M, provides a positive answer.
Analogously, in Theorems 1.2 and 1.9, it would be very desirable to remove
the diffeomorphism assumption and also the C°°-smoothness assumption.
We have strongly used these two assumptions in the proof and we have
found no way to do without. Nevertheless, inspired by above conjectures,
it is natural to suggest the following two open problems.

10.2. CONJECTURE. - Let h : M 2013~ M’ be a continuous CR mapping
between two globally minimal real analytic hypersurfaces in en (n &#x3E; 2)
and assume that the holomorphic extension of h to a global one-sided
neighborhood D of M in Cn is of generic rank equal to n. Then the
reflection function extends holomorphically to a neighborhood of every
point p x h(p) in the graph of h.

The rank assumption is really necessary, as shown by the following
trivial example. Let M C e4 be the product of e;2 x e;3 with the

unbounded representation of the 3-sphere given by the equation w = w+izz,
let M’ be given by w’ = 
function on M independent of (Z2, Z3), of class C°°, which does not extend
holomorphically to the pseudoconcave side of M at any point. Then the
degenerate mapping (~1,~2~3?~) ~ (zl, h2 (zl, w), 0, w) maps M into M’
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but does not extend holomorphically to a neighborhood of M in e2.
Suppose by contradiction that the globally defined reflection function

iz, (t, 0’) == jl’ - w - w) extends holomorphically to a
neighborhood of 0 x 0 in (C4 x C4 . Differentiating with respect to At
we deduce that extends holomorphically at the origin in C 4
contradiction. In fact, to speak of the extendability of the reflection function,
one has to choose for M’ the minimal for inclusion real analytic subset
containing the image h(M), as argued in [Me5]. In the case where the generic
complex rank of h over D equals n, then M’ necessarily is the minimal
for inclusion real analytic set containing h(M). This explains the rank
assumption in Conjecture 10.2.

Finally, in the holomorphically nondegenerate case, we expect that h
be holomorphically extendable to a neighborhood of M.

10.3. CONJECTURE. - Let h : M - M’ be a continuous CR

mapping between two globally minimal real analytic hypersurfaces in C’
(n &#x3E; 2), assume that the holomorphic extension of h to a global one-sided
neighborhood D of M in C’ is of generic complex rank equal to n and
assume that M’ is holomorphically nondegenerate. Then h is real analytic
at every point of M.
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