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CONVERGENCE OF RIEMANNIAN MANIFOLDS
AND LAPLACE OPERATORS. I

by Atsushi KASUE*

Ann. Inst. Fourier, Grenoble
52, 4 (2002), 1219-1257

Dedicated to Professor Hung-Hsi Wu on his 60th birthday

Introduction.

Riemannian manifolds are considered as metric spaces equipped with
Riemannian distances. From this point of view, a set of compact, connected
Riemannain manifolds has uniform structure defined by the Gromov-
Hausdorff distance, and there are intensive activities around the conver-
gence theory of Riemannian manifolds, which include some works from the
viewpoint of spectral geometry and also diffusion processes (cf. e.g., [3], [4],
[10], [16], [24]). In [18] and [19], Kumura and the present author indroduced
a spectral distance on a set of compact, (weighted) Riemannian manifolds,
using heat kernels instead of Riemannian distances, and proved some re-
sults on the spectral convergence of Riemannian manifolds. Kumura, Ogura
and the present author [20] also investigated another metric topology on a
set of pairs of Riemanian metrics and weights on a manifold and discussed
the convergence of energy forms. In this paper, we shall continue the study
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for further developments and prove some basic results concerning the Rie-
mannian distances and the energy forms under the spectral convergence of
Riemannian manifolds.

0.1. To begin with, we recall the classical notion of Hausdorff distance
on the set of closed subsets of a compact metric space. Let K = (K, d) be
a compact metric space. The Hausdorff distance of two closed subsets A
and B of K is by definition the greatest lower bound of positive numbers c
such that the c-neighborhoods Ae and Be of A and B respectively include
B and A. Then the set of closed subsets of .K turns out to be a compact
metric space with the Hausdorff distance. We observe that if the Hausdorff

distance of A and B is less than E &#x3E; 0 and if we write dA and dB,
respectively, for the restriction of the distance of K to the subspaces A
and B, then by sending points a E A and b E B, respectively, to points
f (a) E B and h(b) E A in such a way that d(a, f (a))  E and d(b, h(b))  c,

we can define a pair of maps f : A - B and h : B - A satisfying the
following properties:

In general, given two compact metric spaces (A, dA) and (B, dB),
we call two maps f : A - B and h : B - A a pair of e-Hausdorff
approximating maps of A and B if these satisfy the above properties, and
we define the Gromov-Hausdorff distance, denoted by HD(A, B), of A and
B by the greatest lower bound of positive numbers 6 such that there exits
a pair of E-Hausdorff approximating maps of A and B. (Although HD
does not exactly satisfy the triangle inequality, it defines the same uniform
topology as the original distance due to Gromov [12], and we shall call this
the Gromov-Hausdorff distance on the set of isometry classes of compact
metric spaces.)

In this paper, we shall consider a compact, connected Riemannian
manifold (M, g) as a metric space equipped with the Riemannian distances
dM, unless otherwise stated.

0.2. Let us briefly recall some definitions on regular Dirichlet spaces,
refering to the monograph [11], Chap. 1. Let X be a locally compact,
separable, Hausdorff space and p a nonnegative Radon measure on X. A
Dirichlet forme is by definition a nonnegative definite symmetric bilinear
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form defined on a dense subspace D~~~ in L2(X, p), which is closed, that is
D ~~~ is complete with respect 
and further satisfies the (Markovian) property:

The generator ,C of the Dirichlet form E is the (uniquely determined) posi-
tive self-adjoint operator with (dlu, B//~)~2 == ?(~, v) and = D [S] -
In terms of the generator, we define the strongly continuous semigroup
Pt = e-tL on L2 (X, ti). The Dirichlet form £ is said to be local if ~ (u, v) = 0
for u and v with disjoint supports. We denote by Co (X) the space of con-
tinuous functions with compact supports, and we call the form regular if

D ~~~ n Co(X) is dense in D[?] with respect to the .61-norm and dense in
Co(X) with respect to the uniform norm.

Note that for our convenience, the measure is not assumed here to be

fully supported in the state space X.

The Dirichlet form E can be written as

where is a positive semi-definite, symmetric bilinear form on D ~~~
with values in the signed Radon measures on X (the so called energy
measure). It can be defined by the formula

Riemannian manifolds may be viewed as regular Dirichlet spaces with
the Riemannian measures and the energy forms. From this point of view,
we would like to study convergence of compact, connected Riemannian
manifolds.

For a compact, connected Riemannian manifold M == (M, g), we
consider the Riemannian measuer pM normalized by pM(M) = 1, that

is,
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A natural energy form on the Hilbert space L2 (M, J-lM) of square integrable
functions is defined by

Let A M, PM;t - e-’Am and pM(t, x, y) respectively denote the Laplace
operator, the heat semigroup, and the heat kernel of M. We note that

0.3. From the point of spectral geometry, Berard, Besson and Gallot [3], [4]
introduced a spectral distance on a set of compact Riemannian manifolds
and showed a precompactness theorem as interpretation of several estimates
on the heat kernels and the spectra in the presence of a uniform lower
bound of the Ricci curvatures and a uniform upper bound of the diameters.

Relevantly, Kumura and the author [18], [19] defined another spectral
distance on a set of compact Riemannian manifolds and investigated some
properties of the distance, which will be explained below in order to
illustrate the contents of the present paper.

First we introduce a distance on the set of isometry classes of compact,
connected Riemannian manifolds. Let M and N be compact connected
Riemannian manifolds. A Borel measurable map f : M -~ N is called an
E-spectral approximating map if it satisfies

The spectral distance SD(M, N) of M and N is by definition the greatest
lower bound for positive numbers e such that there exist E-spectral approx-
imating maps f : M - N and h : N ---+ M. The spectral distance S’D gives
a uniform topology on the set of isometry classes of compact connected
Riemannian manifolds.

To study convergence of Riemannian manifolds with respect to the
spectral distance, we embed given manifolds into a Banach space, using
complete orthonormal systems of eigenfunctions of the L’ spaces. To be
precise, let us denote by Co ([0, .~2 ) the set of continuous curves 
(t E ~0, oo~) with values in f2 such that "’((0) == -y(oo) - 0. Here f2 stands
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for the Hilbert space consisting of square summable sequences. The space
Co ( ~0, oo~ , .~2 ) is considered as a metric space with a distance

Let M be a compact, connected Riemannian manifold and 4Y = 

complete orthonormal system of eigenfunctions of M. The eigenfunction
Oi has the i-th eigenvalue Ai (M) of M. For such a pair (At, ~ = we

define a map of M into Co ( ~0, f2 ) by -

Then Ip turns out to be a continuous embedding of M into i
and furthermore it follows from its definition that

In other words, if we define a distance

then I, is a distance-preserving embedding of the metric space (M, dspec)
into Co([0, .~2 ) . Therefore for a family M I of compact, connected
Riemannian manifolds, if there exists a compact set K in Co ([0, .~2 )
such that each M E .~ can be embedded into K, then we see that the

is precompact as the set of compact subsets of K
with respect to the Hausdorff distance. This would suggest the existence of
limits of such a family F with respect to the spectral distance SD.

In this paper, we consider a family _ ~ M ~ of compact, connected
Riemannian manifolds M, and assume that there exist positive constants
v and Cu such that for any M C T,

It is well known that [Ho] is equivalent to the condition that the Sobolev

inequality holds with some constant Cs &#x3E; 0 independent of M E F, that
is for any M E .~’,

when v &#x3E; 2; and also the condition that the Nash inequality holds with
some constant CN independent of M E .~’, that is for any M E .~’,
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(see, e.g., [13] and the references therein for these inequalities and related
ones). As a consequence of the above inequalities, we get a lower bound for
the measure of the geodesic ball B (x, r) around a point x of M with radius
r as follows:

where CI is a constant depending only on Cu and v (cf. [1], [7], [19]).
This implies that the family .~’ is precompact with respect to the Gromov-
Hausdorff distance HD (cf. [12]). Moreover by deriving certain uniform
estimates on the eigenfunctions and eigenvalues of M from the above
conditions (cf. Lemma 3.1), we can show that all M C T can be embedded
into a compact subset K in Co ( ~0, oc~ , .~2 ) by the maps described as above.
Based on these observations, Kumura and the present author [19] proved
the following

THEOREM 0.1 ([19]).- Let T - {M} be a family of compact,
connected Riemannian manifolds satisfying condition [Ho] with constants
Cu &#x3E; 0 and v &#x3E; 0. Then the following assertions hold:

(i) The family F is precompact with respect to both the spectral
distance SD and the Gromov-Hausdorff distance HD. In the latter case,
each M E F is considered as a metric space with its Riemannian distance

dM.

(ii) Let ~Mn ~ be an SD-Cauchy sequence in F. Then there exists a
compact, connected Hausdorff space X, a nonnegative Radon measure
/1x on X and a regular Dirichlet form (~x , D ~~x ~ ) defined on L2(X,/1x)
such that the strongly continuous semigroup Px;t on L2 (X, /1x) associated
with the Dirichlet form possesses a continuous kernel function px (t, x, x’)
(t &#x3E; 0, x, x’ E X) ; further there exists a pair of En-spectral approximating
maps fn : -~ (X, px) and hn : with

sn - 0, and in addition, these maps fn and hn are also a pair of
En-Hausdorff approximating maps with respect to the distances on

Mn and on X, where is defined by

Moreover a sequence of the (image) measures converges to Ax with

respect to the weak* topology as n - oo.

(iii) For each i = 0, 1, 2,..., the i-th eigenvalue Ai(Mn) converges to the
i-th eigenvalue Ai (X) of the generator ,CX of the Dirichlet form Ex and
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if u is an eigenfunction of Mn with eigenvalue and unit L2-norm,
1, there exists an eigenfunction v of ,CX with eigenvalue Ai (X)

and unit L2-norm, IIVIIL 2 = 1, such that

where tends to zero as n - oo. The eigenfunctions of Lx are all
continuous on X.

The limit Dirichlet space (X, in this theorem can be obtained

as follows: For a complete orthonormal system ~ _ ~ ~i ~ of eigenfunctions
on M E .~’, the image [M] lies in a compact subset K of Co ([0, .~2 ) .
Then given any sequence c .~’, taking such a system ~n - (n)
of Mn for each n and choosing a subsequence of denoted by the
same letter, we may assume that as n - oo, converges to a

compact subset X in K via a pair of En-Hausdorff approximating maps
fn : ~Mn~ -~ X and [Mn] with 0. We

put fn = o f n and hn - hn. Then we may further assume
that the image measure weakly converges to a nonnegative Radon
measure J-lx on X. Each element x E X can be expressed as x (t) =

(e’~+~~~e"~~~,(~)),=o,i,2,... (0 x t x +oo) for some sequence
of nonnegative numbers Ai and some sequence of continuous functions Oi
on X. Define a continuous function on (0,00) x X x X by

Then px turns out to be the kernel

function of a strongly continuous semigroup PX;t on L2 (X, J-lx), which
is associated with a regular Dirichlet form Ex on L2(X, J-lx), The set of
functions foil is a complete orthonormal system of eigenfunctions of the
generator Lx of Ex with eigenvalues I A- In this way, we obtain a regular
Dirichlet form (X,J-lx,Ex), to which Mn converges as n - oo with respect
to the spectral distance via a pair of the approximating maps f n and hn.
Note that we may obtain another space (X’, by taking a different
choice of a complete orthonormal system 4)’ n of eigenfunctions on Mn, but
(X’, px,, Ex,) can be identified with (X,J-lx,Ex) in the sense that there
exists a homeomorphism 7J : X - X’ which preserves the measures and
the kernel functions.

In Theorem 0.1, the support Xo of the measure px may be discon-
nected in general, Xo may not coincide with the whole space X (although
Xo is connected), and may be nonlocal (see Example 2.1 in Section 2).
Although the complement X B Xo does not play any role in the Dirichlet
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space (X, px, this part is nevertheless valid in the topology of the
spectral distance.

0.4. Let us now mention the main results of the present paper. Let ~Mn~
be as in Theorem 0.1. Then according to the first assertion, (Mn ) contains
HD-Cauchy sequences which converge to compact length spaces. In Section
1, we shall prove the following

THEOREM 0.2. - Let f n : Mn ~ X , hn : X ---~ Mn, and

be as in Theorem 0. l. Then the following assertions hold:

(i) There exist a subsequence a sequence of positive numbers

tending to zero as 777. -7 oo, and a continuous pseudo-distance 6 on
X such that the maps f m : Mum - X and hm : X -~ Mm are a pair of
Em-Hausdorff approximating maps of (Mm, dMm ) and (X,8).

(ii) The kernel px has the following off-diagonal upper bound:

where a is any positive constant and Cu (a) is a positive constant depending
only on Cu and a.

(iii) Let 6 be one of the continuous pseudo-distances on X obtained in the
first assertion and let be the space of functions on X which are

Lipschitz continuous with respect to 6. Then 6) c D[exi n C(X)
and for u E CO,I(X, 6) and v E £x(u, v) - 0 if the support of u
does not intersect that of v. Moreover the energy measure of u E 6)
is absolutely continuous with respect to the measure /-Lx and the Radon-
Nikodym derivative r(u, u) - bounded from above by the
square of the local dilatation of u,

Let us recall the definition of the local dilatation of a Lipschitz
function in this theorem. Given a Lipschitz function u on a subspace A
of (X, 8), the dilatation of u on A, that is the infimal number A satisfying
lu(x) - u (y) I  A6 (x, y) for all x, y E A is denoted by di18(u), and for a
Lipschitz function u on X, the local dilatation of u at a point x is the

number
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where stands for the metric ball around x with radius r with

respect to the pseudo-distance 6, ~y E X  r}.
Let us now denote by (resp., the subspace of D.]

which consists of functions whose energy measures are absolutely contin-
uous with respect to px (resp., the density of the energy
measure of a funcion u E ,,4.~~X ~ ) . The energy measure defines in an intrin-
sic way a pseudo-metric p,,x : X x X - [0, +00], so called Carath6odory
metric (cf. e.g., [6], [27], [28], [29]), by

Then as a result of (1), we have

This holds for all pseudo-distances 6 obtained in the first assertion of

Theorem 0.2. In general, we can expect neither the equality in (1) nor
(2) even in case 6 becomes a distance on X and induces the topology of X
(cf. Examples 2.4 and 2.6).

0.5. We shall now consider, instead of condition [Ho], the following
stronger conditions on a given family T = IMI of compact, connected
Riemannian manifolds: There exist positive constants CD, Cp and CB such
that

for all r E (o,1], x E M, u E Coo(M) and M E F. According to Saloff-
Coste [26], these conditions ensure that the family satisfies condition
[Ho] with constants v = max(log2 CD, 31 and Cu depending only on CD,
Cp and CB, and further that a priori estimates on Holder continuity of the

eigenfunctions and the heat kernels hold, which implies



1228

where the exponent a (resp., the constant C2 ) depends only on CD and
Cp (resp., CD, Cp and CB). Hence we have

This estimate continues to hold on an SD-limit space X of 0 and the

pseudo-distances 6 on X, and thus we have

This shows that any pseudo-distance 6 obtained in Theorem 0.2 (i) becomes
a distance on X and induces the topology of X. We also note that each
eigenfunction of X belongs to a class of Holder continuous functions of the
exponent a with respect to the distance 6. The distances 8 indeed belong
to the same Lipschitz equivalence class as the intrinsic metric ps, on X,
as is shown in the following

THEOREM 0.3. - Let be an SD-Cauchy sequence of compact,
connected Riemannian manifolds satisfying conditions ~H1~, [H2] and [H3]
with positive constants CD, Cp and CB, respectively. Let X and 6 be
respectively the Dirichlet space and a distance on X as in Theorem 0.2.

(i) The limit space X also satisfies the same conditions as above,
namely,

(ii) There exists a constant A ~ 1, depending only on CD and Cp, such
that

and for any function

In view of (1) and [H2]’ for Lipschitz functions, we can apply a result
by Cheeger [8] to the limit metric measure space (X, /-lx, 8), and conclude
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that a finite dimensional L°° vector bundle T*X on X can be constructed,
Lipschitz functions u define L°° sections du of this bundle, and then the
energy densities F(u, u) yield an L°° Riemannian structure on T*X as
follows:

This is in general not true for the squares of the local dilatations of Lipschitz
functions.

In this paper, we confine ourselves to a family of compact, connected
Riemannian manifolds. However all of the results stated so far can be ex-

tended to the case of a family of regular Dirichlet spaces satisfying certain
properties (see Remark 3.6), which were studied in a series of papers by
K.T. Sturm [27], [28], [29]. Such families include, for instance, compact
connected manifolds endowed with Riemannian metrics and smooth prob-
ability measures.

In fact, such weighted Riemannian manifolds may be taken as the
spectral limits of Riemannian manifolds. To be precise, let g and w be
respectively a Riemannian metric and a smooth positive function on a
compact, connected manifold M, and assume that f~ 1. Consider

the warped product metrics gE (E &#x3E; 0) on the product space M x of M

and a unit circle = ~e~~ ~ x E R}, defined ew2dx2. Then
as E -~ 0, (M x gE) converges to the weighted Riemannian manifold
(M, ~cw - w with respect to the spectral distance, where the
energy form is given by .6g,,, (u, u) = fm I du 12 dJ-lw (u E C- (M)).
A pair of a sub-Riemannian metric and a smooth probability measure also
sits on the boundary of Riemannian manifolds with respect to the spectral
distance (cf. Example 2.5).

So far as Theorem 0.3 is concerned, the results can be generalized to
a family of complete, noncompact, pointed Dirichlet spaces having certain
properties: The convergence of such a family will be the subject of the
second part of the present paper [22], in which the convergence of harmonic
functions and harmonic maps into nonpositively curved manifolds will be
also discussed.

The author would like to express his thanks to Professors Y. Ogura
and H. Kumura for fruitful discussions during the preparation of this paper.
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1. Spectral convergence of Riemannian manifolds
and Riemannian distances.

In this section, we shall prove the first two assertions of Theorem 0.2
and a proposition as a result of them.

To begin with, we shall recall a basic estimate [Ho,,] below, which
is due to Davies [9]: Given a family 0 of compact, connected Riemannian
manifolds satisfying condition [Ho] with constants v and Cu, the heat kernel
pM of a compact Riemannian manifold M E 0 satisfies

where oz is any positive constant and CU (a) is a positive constant depen-
deng only on CU and cx (see also [19], Theorem 2.2 (2.6) and the references
therein) .

LEMMA l.l. There exists a continuous, increasing function 9 on

~0, oo), satisfying 8(0) - 0 and depending only on v and Cu, such that
given M E r, the Riemannian distance dM and the distance satisfy

for all x,x’,y,y’ E M.

Proof. The first inequality is an easy consequence of ~Ho, a ~ . Indeed,
noting that pM (t, x, x) &#x3E;- 1 for all t &#x3E; 0 and x E M, we have

and hence : for some t E (o,1~, then
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This shows the first inequality of the lemma. The second one follows from
the triangle inequality. Indeed, we have

This completes the proof of Lemma l.l.

Proof of Theorem 0.2 (i) and (ii). Let ~Mn~ be an SD-Cauchy
sequence in T which converges to X E .~’. Let f n : : Mn -~ X and
hn : X - Mn be En-spectral approximating maps between M~ and X
with £n = 0, which are also a pair of En-Hausdorff approximating
maps between (Mn, diIeC) and We define a sequence {bn} of
Borel measurable functions on X x X by 6,, (x, x’) = dMn (h,, (x), hn (x’) ) .
Note that

for all x, x’, y, y’ E X. By choosing an increasing family of finite

subsets of X whose union Aoo == UAk is dense in X, and then passing to
a subsequence, we may assume that bn converges pointwise to a function
b on a dense subset x of X x X. Obviously 6 is nonnegative and
satisfies the triangle inequality. Moreover letting n tend to infinity in (3)
and (4), we have

for all x, x’, y, y’ E The latter shows that 8 is uniformly continuous on
the subspace Hence 6 extends uniquely to a continuous function
on X x X, which is also denoted by the same letter 8, and inequalities (5)
and (6) hold everywhere on X.

Now we claim that 6,, uniformly converges to 8 on X x X. Indeed,
given E &#x3E; 0, we choose r &#x3E; 0 and N so that if r, then

8(x, x’ )  E and in addition if n -&#x3E; N, then 8n(x, x’ )  E. For any x, y E X ,
we take x’, y E Aoo in such a way that + r, and
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assume n &#x3E; N. Then

Hence choosing N’ so large that
we have

for any n &#x3E; N’,

for any n &#x3E; N’. This shows that as n ~ oo, bn uniformly converges to 6 on
X x X, that is, for some ££ going to zero as n ---+ oo,

In addition, we have

and further, for some e" going to zero as n - oo,

because

Hence f n and hn are a pair of sn-Hausdorff approximating maps with
0 between (Mn,d Mn ) and (X,8). Thus we have shown the

first assertion of Theorem 0.2, which together with [Ho,a], obviously implies
the second one.

Let X be an SD-limit of a family 0 of compact, connected Rieman-
nian manifolds satisfying [Ho]. Let ~Mn ~, J-Lx, Ex, ~x and 6 be as in The-
orem 0.2. We denote the support of p x by Xo and note that 8(x, Xo) == 0
for all x E X . Indeed, let be a pseudo-ball around a point x c X
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with radius r with respect to
is easy to see that

Then it

for any e &#x3E; 0. Therefore we have

where C3 is a constant depending only on v and Cu. This implies in
particular that n o for all x E X and r &#x3E; 0, and hence

We also note that it may occur that 6 is trivial, 6 = 0, namely, the
quotient metric space X5 obtained by the equivalence relation Ns on X,
x -5 y @ 8(x, y) = 0, reduces to a single point, (although Xo is isomorphic
to a smooth Riemannian manifold as a Dirichlet space). See Example 2.2.

The kernel function px (t, x, y) in Theorem 0.2 is continuous, so that
it defines a semigroup on the Banach space C(X), which is denoted by the
same letter PX;t as the semigroup on Since, for any u E C(X)
and E &#x3E; 0, we have

it is easy to verify the following

PROPOSITION 1.2. - Let X, Px;t and 6 be as in Theorem 0.2. For
a function u E Px;tu uniformly converges to u as t - 0.

Moreover Px;t defines a strongly continuous semigroup on C(X), that is
Px;tu uniformly converges to u as t - 0, for any u E C(X), provided that
6 is a distance on X.
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In this section, we shall exhibit some elementary examples of spectral
convergent sequences of compact (weighted) Riemannian manifolds.

Example 2.1 (cf. [20], Section 7). - Let .~’ be a family of Riemannian
metrics on the product of unit circles
such that

We take a finite number of points
on and 21~ intervals with

. We now assume that all gF satisfy the following conditions:

where bi, ci, d+ and d- are positive constants with ci &#x3E; 1 (i = 1, 2,..., k).
Then the family T7 satisfies condition [Ho] with constants v and Cu
depending only on the given ai, bi, ci, dt and di (i = 1,..., k). (Indeed,
we see that v = max{2, c1/(cl - 1),..., 1)~.)

Let gn - gFn be an SD-Cauchy sequence in 0 which converges to
a regular Dirichlet space (X,¡tx,£x), and suppose that as n ---+ oo, Fn
uniformly converges to a continuous function F on satisfying: F(x) &#x3E; 0

F(xi) = 0 and F(x)  eiFn(x) for x E Ii U Ii (i = 1,..., k),
where ei are some positive constants.

Under this situation, we shall describe the Dirichlet space (Xo, ~x)
in three cases, where Xo = supp /ix.

(i) In the case where

Xo consists of k connected components Xo;i (i = 1,...,A;). Each (Xo;i,
can be identified with the singular Riemannian manifolds
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x equipped with the energy forms where two cir-

cles fxil x and x respectively reduce to points zi and zt,
and the form E9F is the smallest closed extension of the energy form on

x Sl) with respect to the metric gF, so that it may be viewed
as a 2-sphere with metric singular at zi and zi . The complement X B Xo
of Xo consists of 1~ connected open subsets Ei (i = 1,..., l~) and each Ei
joins XOji-1 to Xo;i in such a way that Ei n Xo = 

(ii) In the case where

Xo is connected and can be identified with the singular Rieman-
nian manifold (Sl x Sl, gF) equipped with the energy form The domain

consists of functions in 7~~((5’~B{pi,... whose traces

on each circle x from the both sides conincide and x Sl)
is dense in the domain. The pseudo-distance 6 obviously degenerates along
the k circles.

(iii) In the case where

Xo consists of k connected components Xo;i (i = 1,..., k), and each
(Xo;i, £XIXO;i) can be identified with a singular Riemannian manifold
Mi - x with boundary S,.- = x equipped
with a nonlocal energy form ~Z . The circle (xi) x reduces to a single
point zi and the energy form Ei is given by

where

The complement X B Xo of Xo consists of 1~ connected open subsets

E’ (i - l, ... ,1~) and each E’ joins Xo;i-l to Xo;i in such a way that
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Example 2.2. - Let M - (M, gM) be a compact, connected Rie-
mannian manifold of dimension 2. We consider a family .~’ of Rieman-

nian metrics on the product space M x S’1 of M and a unit circle

such that

where is a one-form on M. We assume that M satisfies condition [Ho] with
constants v and Cu. Then 0 satisfies condition [Ho] with constants and

depending only on Cu. We take a finite number of 
and coordinates neighborhoods (Ui, (xi, yi)) around pi (i = 1,..., ,1~) which
are mutually disjoint. x gn = be an SD-Cauchy sequence
in 0 which converges to a regular Dirichlet space (X, px, EX) such that
Wn converges to a continuous one-forrn cJ uniformly on compact sets in M,
and the 2-forms SZn = dwn satisfy

for some positive constant a. Then (Xo, can be identified with

(M x S’1, g~,), because the heat kernel of gn converges to that of g, uniformly
on compact sets in M. On the other hand, the Riemannian distance dn of

gn tends to zero along each circle x (i = l, ... , k). Indeed, for each
i, we take a closed curve (0  t  f ) of unit speed, which joins p. to a
point qi;E on the geodesic circle 8BM(Pi, E) by the geodesic segment, moves
along the circle to a point and then goes back to pi along the geodesic
segment. Let y)?~ (t) (0 - t - f) be the horizontal lift of starting at

(pi, 1) E M x namely the curve (n) (t) == 0 (n) (t)) on M x S’
given by

Since the length of is less than 47rE for £ small, we get

On the other hand, if we denote by Ai;, the region enclosed by then

we have
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and hence if a, then the interval [0, a] is covered by the

range of (i), as and are varied. This implies that the circle

lpil x is contained in a geodesic ball around (pz, I) with radius less
than b~, where b is a positive constant depending only on a. This shows
that the Riemannian distance dn degenerates along each circle lpil x ,Sl

Now we consider a family of Riemannian metrics defined by

By choosing a sequence T(n) with T(n) = 0 appropriately, we
obatin an SD-Cauchy sequence {(M x 6’~,~)} which converges to X with
(Xo, but collapses to a single point with respect to the Gromov-
Hausdorff distance.

Now we make an observation before proceeding to the next example.
Let M be a compact, connected manifold and fix a Riemannian metric go
as a reference one. We consider pairs (g, w) of Riemannian metrics g and
positive smooth functions w such that 1. Such pairs (g, w)
define the Dirichlet forms on M. In view of condition [Hol’ or [Ho]",
a family of the Dirichlet forms on satisfies condition [Ho]
(resp., [Hi], [H2] and [H3]), if there exist positive constants ai (i = 1, 2)
(resp. (3i (i - 1,2,3,4) ) such alwgo and w - a2 (resp.,

02go and $3 x w x ~4).

Example 2.3 (cf. [14]; also [11], 3.1(2°)). Let (N, h) be a compact
connected Riemannian manifold. We consider a sequence of Riemannian

metrics gn on the product space M = x N of a unit circle Sl -

E R) and N such that

and assume that fn is a nonnegative smooth function on supported in

[-I /n, I /n] and fn(x)dx weakly converges to a delta function 60 at 0 as
n - oo. Let En be the energy form on L2(M, J-l) defined by
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Then as converges to the regular Dirichlet
space where

The energy measure of the limit form is singular along the hypersurface
~0~ x N, and the limit of the Riemannian distance dgn is a pseudo-distance
which is degenerate along the hypersurface.

Example 2.4 (cf. e.g., [20], Section 4). - We consider a sequence of
metrics gn on S’1 x such that

where F is a positive smooth function on Then as n --+ oo, (,S’1 x gn)
converges to (,S’1 x with respect to the spectral distance via the
identity map, where is given by

Therefore if we set u(x, y) = ]2Jr - x 11, then (u, u) - 1 and

(u, u) = 1. The equality holds if and only if F is a constant.

Example 2.5. - In this example, we shall see that sub-Riemannian
metrics lie on the boundary of Riemannian metrics with respect to the
topology of not only the Gromov-Hausdorff distance but also the spectral
distance.

Let us consider a subbundle H of the tangent bundle T M of a compact
connected manifold M endowed with a smooth probability measure ft. Let
h be a metric on H, and set h(v, v) = +oo if v is outside H. Then for any
absolutely continuous path (a x t x b) in M, we define the length of
~ by h(~y’(t), ~y’(t))l~2dt, and for points x, y E M, we denote by ph(x, y)
the infimum of the length of such paths joining x and y. On the other hand,
the metric h is transformed into a degenerate metric h* on the cotangent
bundle T* M of M by

which yields the energy form ~h on L2 (M, J-l) defined by
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Now we assume that ph becomes a distance on M and induces the topology
of M, and the volume doubling property [Hi] with a constant CD(h) and
the weak Poincaré inequality [H2] with a constant Cp(h) hold (cf. [23],
[17]). Then we take the orthogonal complement V of the subbundle H in
TM with respect to a Riemannian metric go and consider a sequence ~gn ~
of Riemannian metrics such that H and V are orthogonal with respect to
every -n -1go on V and En on H, where En tends to 0
as ?~ 2013~ oo. For such a sequence ~gn ~ of Riemannian metrics, a sequence of
the energy forms

converges to Eh as n - oo, in the sense of the spectral distance via the

identity map (cf. Theorem 3.2 in Section 3; also [20]).

Example 2.6 (cf. [16]). - We consider a sequence of Riemannian
metrics such that

where E and F are positive smooth functions on x and is a

sequence of positive numbers which tends to 0 as n - oo. We note that the
normalized Riemannian measure of gn is independent of n and given by

Let 7r, : S’1 x S1 ~ denote the projection onto the first and define a

measure p on this t

Moreover we have two metrics on Sl given by

where E* (x) - minIE(x, y) I y E RI. Then (Sl X converges to

p, £h) (resp., h*)) with respect to the spectral distance (resp.,
the Gromov-Hausdorff distance). The distance 8 on with respect to h*

is given by b(x1, x2) - and hence if we fix a point xl and
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set p(x) = 6(xi, x), then we have

where the equality holds if and only if E(x, y) = E* (x), namely, E(x, y) is
independent of the second variable y.

We note that Examples 2.4 and 2.6 satisfy conditions [Hi], [H2] and
[H3] .

Finally we shall mention some geometric classes which satisfy con-
dition [Ho]. Let (M, g) be a compact, connected Riemannian manifold of
dimension d.

(i) Let y(M, [g]) be the Yamabe constant of the conformal class of g
and Scalg denote the scalar curvature of g. IfVol(M,g) ~ a, y(M, [g]) &#x3E;- 0,
fm for some positive constants a, (3, "’I &#x3E; d/2(&#x3E; 3/2), then
M satisfies condition [Ho] with constants v = d and Cu = Cu (d, a, /3, ~, 7~).

(ii) Suppose that M is isometrically immersed into a complete manifold
whose sectional curvature is bounded from above by a positive constant
and whose injectivity radius is bounded from below by a positive constant c.
Then if Vol(M) x a and the mean curvature HM satisfies: fM y

for some constants a, Q &#x3E; d and ~/, then M satisfies condition [Ho] with
constants v = d and CU = ~, c, a, Q, "’I).

(iii) Suppose that M is the total space of a Riemannian submersion
onto a compact, connected Riemannian manifold B such that all fibers are
connected and totally geodesic. In this case, all fibers are isometric to a

compact, connected Riemannian manifold F, and moreover if B (resp., F )
satisfies condition [Ho] with constants v’ and CU (resp., v" and then

so does the total space M with constants v = v’ -~- v" and CU = CU + C~.
See, e.g., [2], [5], [19], [20], [21], [30] for details and related topics.

3. Convergence of energy forms.

We shall study the convergence of energy forms under the same
situation as in the preceding section, and prove Theorem 0.2 (iii) and
Theorem 0.3.

To begin with, we recall some consequences from condition [Ho] in
the following
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LEMMA 3.1 (cf. [19], Lemmas 2.4 and 2.5). - Let M be a compact,
connected Riemannian manifold satisfying [Ho] with constants v and Cu.

(i) The i-th eigenvalue Az (M) of M satisfies

and further

where C4 is a constant depending only on v and Cu.

(ii) Let foil be a complete, orthonormal system of eigenfunctions Øi
with eigenvalue Then one has

and 0,

for all T -&#x3E; and x E M.

Let fn : Mn X be as in Theorem 0.1. Given an integrable function
un on Mn for each n, we say un weakly converges to an integrable function
u on X as n - oo (via approximating maps fn : Mn - X), if

for any v E C(X). Also we say a sequence of bounded functions un on Mn
uniformly converges to a bounded function u on X as n - oo, if

THEOREM 3.2. - Let Mn --~ X, hn : X - Mn, Ex and Lx be
as in Theorem 0.1.

(i) Suppose that a sequence ~un ~ of functions un E weakly
converges to a function u E and that the L2-norms IIunllL2 are
bounded as n - oo, then u E L2 (X, px) and
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If, in addition, then

Moreover if the L2-norms of the Laplacians are bounded as

(ii) For any u E D [Ex n C(X ), there exists a sequence of functions

such that un weakly converges to u, and further

in addition, if ~ 1 then

weakly converges to Lxu, and

Proof. We choose a complete orthonormal system
of eigenfunctions of Mn and such a of X, and we shall
discuss under the assumption that

for all a E Mn and x E X, where tends to 0 as n --+ oo.

Given an integrable function un on Mn for each n, we suppose that
un weakly converges to a function u via the approximating
map fn : Mn - X. Now suppose each un is square integrable. Then Un has
the eigenfunction expansion with respect to the basis =to(n) 1, which
reads

The L2 norms of un, and OMn un are respectively given by



1243

if they are finite.

We claim first that if the L2 norm of un
is bounded as n - oo. To see this, given any N, we have

and hence letting
we obtain

In a similar manner, we can show that if is bounded

Indeed, since

tends to 0 as N - oo, uniformly in n. This implies that
Moreover for each N fixed,

converges to so that

In addition, if is bounded as n - oo for some

, then we see that

In the discussion just above, we have assumed the convergence of
complete orthonormal systems of eigenfunctions as in (7), but the results
are clearly independent of the choice of such systems, and thus, the first part
of Theorem 3.2, the lower semicontinuity of the above norms of functions
with respect to the weak convergence, has been shown.

In what follows, we shall prove the second part of the theorem. Given
a function u E D~~x~ nC(X ), we set ut = Px;tu and also we define bounded
functions un and un; t ( t &#x3E; 0) on Mn by un - and un; t = PMn;tUn.
Then it is easy to see that un weakly converges to u ; moreover, for each

t &#x3E; 0 fixed and any é c f 0, 1, 2 .... 1, uniformly converges to
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that is

Indeed, we observe from Lemma 3.1 that for any N , there exists a positive
constant ON - 9N (Cu , v, f, t) depending only on Cu, v, R, t and tending to
zero as N -~ oo, such that

Therefore we have

Hence in view of (7), we get the first assertion of (8), because C(n)
(un ) = by the assumption that u is continuous, and also Az
(Mn) = Ai(X). In exactly the same way, we can show the second one of
(8). In particular, we have
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Since

for any k = 1, 2,..., there exists a positive number such that

Then we can take a positive interger N(k) so large that

for all n &#x3E; N(k). Now for any n, we denote by k(n) the integer k with
N(k) x n  N(k + 1), and set Vn - Then it is easy to see that

Vn weakly converges to u as n - oo, and hence

On the other hand, we have

This implies that

We thus obtain

In the case where u C D[£xf] n C(X ), we see in exactly the same way that

This completes the proof of Theorem 3.2.

Remark 3.3. - Let u and vn be as in Theorem 3.2 (ii). Suppose that
Px;tu uniformly converges to u as t 2013~ oo. Then it follows from the above

proof that vn uniformly converges to u as n ---+ oo, that is

and in case and uniformly
converges to LXU, that is
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LEMMA 3.4. - Let Mn, X, f n : X and hn : X - Mn be as
in Theorem 0.1. Let un and vn be L2 functions on Mn such that un and

vn weakly converge to L2 functions u and v on X, respectively. Then the
following assertions hold:

(i) converges to as n - oo, and if

is bounded as n - oo, then

and EMn(Vn,Vn) are bounded as
n - oo, then the product function unvn weakly converges to uv as n - oo,
and

(iii) If EMn (un, Un) and respectively converge to Ex(u, u)
and and if and are bounded as n -i oo, then

Proof. Suppose that Ex(u,u). As in the
proof of Theorem 3.2, we take a complete orthonormal system (D n = (§)~~ )
of eigenfunctions of Mn and such a system I&#x3E; == {Qi} of X, and we shall
discuss under the assumption (7). Then tends to

zero as N - oo, uniformly in n. Hence if Emn (v,, vn) is bounded as

n - oo, then 0 uniformly in n.
This implies that Ex (u, v). This proves the first
assertion of the lemma.

Now suppose that

and

and we see that both

tend to zero as N - oo, uniformly
in n. This shows that
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uniformly in n. Therefore given any w E C(X), we have

Hence by choosing N sufficiently large and then letting n - oo, we see
that

Thus the product function unvn weakly converges to uv as n - oo. This
shows the second assertion of the lemma, which, together with the first
assertion, implies the third one. This completes the proof of Lemma 3.4.

LEMMA 3.5. - Let u be a function in n C(X) such that Px;tu
uniformly converges to u as t - 0.

(i) If a sequence fvnl of functions Vn in n C(Mn) uniformly
converges to u as n - oo, then
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for all nonnegative functions 0 E rl C(X) to which Px;to uniformly
converges as t - 0. Moreover, if the L2p norm ofldvnl, , ( f Idvnl2p 
is bounded as n - oo for some p with 2 - p  00, then the energy
measure of u is absolutely continuous with respect to px, the density
r(u, u) = LP integrable, and

for any open subset QofX.

(ii) If a sequence ~wn ~ of functions wn in rl C(Mn) weakly
converges to u and further (wn, wn) tends to u) as n --+ 00,

then

for any function ~ E n C(X) to which Px;to uniformly converges as
t - 0.

Proof. In view of Remark 3.3, we take a of functions

un E in such a way that as n --~ oo, Un uniformly converges
to u and EMn (un, Un) tends to u). For any 0 E D[exi n C(X) such
that Px;to uniformly converges to 0 as t - 0, we can also take a sequence
f On I of functions On E n C(Mn) in such a way that On uniformly
converges to 0 and EMn(Øn,Øn) tends to Ex (0, 0) as n - oo. Then it

follows from Lemma 3.4 that
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Now, for a sequence {vn} of functions vn in D[£Mn] n C ( Mn ) which
uniformly converges to u as n - oo, we have

On the other hand, in the case where 0 -&#x3E; 0 and 0, by

we get

which shows

In the case where the L2p norm of Idvnl I is bounded as ?~ 2013~ oo, we

have by setting q = p/ (p - 1),
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for all 0 E Notice that it is assumed here that §n converges to

0 not uniformly but L2 strongly in the sense that = 0.

We thus conclude that for some LP function r(u, u),
and

for any open subset Q of X.

Proof of the assertion (iii) of Theorem 0.2. - Assuming 8) C
D [Ex ], we first show that for u E and v C D[£xJ, Ex (u, v) - 0 if
supp u n supp v = o. This is verified as follows. Since there exists a positive
constant E such that 6(x, x’) &#x3E; E for any x E supp u and x’ E supp v, we

get

Now given u E and an open set Q of X, we set LQ =
and define a Lipschitz function uQ on X by

Then uu = u in Q and LQ.

Let us assume that for a subsequence f rnl, fm : (Mm, (X, 6)
and (X, 6) - (Mm, dMm ) are a pair of En-Hausdorff approximating



1251

maps with Em tending to 0 as m - oo. We would like to construct a
sequence of Lipschitz functions vm on My such that = LQ and vm
uniformly converges to uQ as m -~ oo. For this, we first take an increasing
family of finite subsets Ak of Q such that ?7k for all x E SZ with

?7k = 0. If we define a sequence of Lipschitz functions by

then it is easy to see that

Let be a sequence of Lipschitz functions vm on Me given by

Then the dilatation of is obviously equal to Lo and satisfies

so that vm uniformly converges to Un as m --~ oo. Hence it follows

from Theorem 3.2 (i) and Lemma 3.5 (i) that uQ belongs to and

with

In particular, by considering the case Q = X, we see that u E 
and Lx = Moreover since u = uq on Q, we see
that for any 0 E

supported in Q, and hence it follows that u) = r(un, un)
in Q. Thus we obtain

This is true for any open set Q, so that we can conclude that

Proof of Theorem 0.3. - We may assume that f n : X and

hn : X - M~ are a pair of En-Hausdorff approximating maps with en
tending to 0 as n - oo. Then the inequalities except the second one, the
weak Poincaré inequality, in the first assertion of the theorem are obvious,
that is we have
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and

From (9), we can easily deduce that

Now we would like to show the weak Poincaré inequality. We are
given a function u E D ~~x ~ n C(X) and take a sequence of functions
Un E ~1 such that as n - oc, ttn uniformly converges to
u and £ Mn (un, un) = u). First we notice that for any x E X
and r &#x3E; 0,

Secondly, we take a positive number 6; and a continuous function VE such
that 1, 1 on + c) and VE vanishes outside of

for n large, we
have

and hence letting 6; --~ 0, we obtain

Since D[exi n C(X ) is dense in £x with respect to the El-norm, this holds

In order to prove the assertion (ii) and (iii), we shall first recall a
basic fact derived from the weak Poincaré inequality: for a function u in
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and for Lebesgue points x and y of u, it holds that

where C5 is a positive constant depending only on CD and Cp, and for
an integrable function f and a positive number R, MR f stands for the
(restricted) maximal function of f which is defined by

The proof of (11) can be found in [15], Lemma 5.14.

As a result of (11), we have

if u is a continuous function in with r(u, u)  1. Therefore it follows
that

Combining this with (2), we thus conclude that

Let us now prove that for a Lipschitz function u with respect to 8,

where Lip6u(x) is the number defined by

and C6 is a positive constant depending only on CD and Cp. This estimate
can be verified by the same argument as in [8], Proposition 4.26. Indeed, let
p be a Lebesgue point of u) and let q and ~ be (small) positive numbers
which are fixed for a while. Set for simplicity R(x) = 8(x, 8B8(p, ~) ) for
x E B~ ( p, ~ ) , and put
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Then for any x E E, we can find a number r(x) E (0, R(x)) such that

Denote by £ the union of the balls B6(x, r(x)) for all x E ~. Then in view of
Vitali covering theorem, we can find a subset of 2: so that r (xi ) )
are mutually disjoint and E C UiB8(Xi, 5r(xi))’ Therefore using (10), we
obtain

Let £(g) be the positive number given by

Observe that £(g) tends to zero as ~ ~ 0, because p is a Lebesgue point of
r(u, u), and moreover that for any x E 85 (p, ~), there exists a point yx in
B,5 (x, E (~) ~) B ~; otherwise, we would have

Thus for any x E ç), we can find a point yx E £(g)g) such that

Since we get
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Hence it follows from (11) that

Noting that
we obtain

which implies that

Letting ~ tend to 0 and then q go to 0, we obtain

for all Lebesgue points p of r(u, u), and hence

because Lip,5u = dilsu almost everywhere (cf. the proof of Theorem 6.5 in
[8]). This completes the proof of Theorem 0.3.

Remark 3.6. - As is mentioned at the end of the introduction, the
results in this paper can be generalized to a family of certain regular
Dirichlet spaces. To be precise, a member (X, J1, ~) of the family satisfies
the following properties (cf. [27], [28], [29] for details): (i) X is a locally
compact, separable, Hausdorff space; (ii) the measuer J1 is a Radon measure
with support X and unit mass, p(X) = 1 ; (iii) the regular Dirichlet forum E
is local, the domain D ~~~ contains constant 1, = 0; (iv) the form
~ is strongly regular in the sense that the intrinsic metric pE induces the
topology of X and balls are relatively compact; (v) the doubling property
[Hi] with a constant CD(X), the (weak) Poincaré inequality [H2]’ with
a constant Cp(X) as in Theorem 0.3 hold with respect to the intrinsic
metric pE; (vi) infxEx J1(Bp&#x26; (x, 1)) &#x3E; 0. Theorems 0.1 and 0.2 are true

for a family of such Dirichlet spaces if it satisfies condition [Ho], and so is
Theorem 0.3 provided that the constants in conditions ~H1~, ~H2~’ and [H3]
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can be chosen uniformly in members of the family. Finally we mention the
short-time asymptotics of the heat kernel p(t, x, y) of X. K.T. Sturm [28],
[29] showed that

and further under the condition that D[E], Ramirez [25] has

established that

BIBLIOGRAPHY

[1] K. AKUTAGAWA, Yamabe metrics of positive scalar curvature and conformally flat
manifolds, Differential Geom. Appl., 4 (1994), 239-258.

[2] K. AKUTAGAWA, Convergence for Yamabe metrics of positive scalar curvature with
integral bound on curvature, Pacific J. Math., 175 (1996), 239-258.

[3] P. BÉRARD, G. BESSON and S. GALLOT, On embedding Riemannian manifolds in a
Hilbert space using their heat kernels, Prépublication de I’Institut Fourier, n° 109,
1988.

[4] P. BÉRARD, G. BESSON and S. GALLOT, Embedding Riemannian manifolds by their
heat kernel, Geom. Funct. Anal., 4 (1994), 373-398.

[5] G. BESSON, A Kato type inequality for Riemannian submersion with totally
geodesic fibers, Ann. Glob. Analysis and Geometry, 4 (1986), 273-289.

[6] M. BIROLI and U. MOSCO, A Saint-Venant principle for Dirichlet forms on discon-
tinuous media, Ann. Mat. Pure Appl., (4) 169 (1995), 125-181

[7] G. CARRON, Inégalités isopérimétriques de Faber-Krahn et conséquences, dans
Actes de la Table Ronde de Géométrie Différentielle en I’Honneur de M. Berger
(Luminy, 1992), Sémin. Congr. 1, Soc. Math. France, 1996, 205-232.

[8] J. CHEEGER, Differentiability of Lipschitz functions on metric measure spaces,
Geom. Funct. Anal., 9 (1999), 428-517

[9] E. B. DAVIES, Explicit constants for Gaussian upper bounds on heat kernels, Amer.
J. Math., 109 (1987), 319-334.

[10] K. FUKAYA, Collapsing Riemannian manifolds and eigenvalues of the Laplace
operator, Invent. Math., 87 (1987), 517-547

[11] M. FUKUSHIMA, Y. OSHIMA and M. TAKEDA, Dirichlet Forms and Symmetric
Markov Processes, Walter de Gruyter, Berlin-New York, 1994.

[12] M. GROMOV, Structures métriques pour les variétés riemanniennes, rédigé par
J. Lafontaine et P. Pansu, Cedic Fernand-Nathan, Paris, 1981.

[13] A. GRIGOR’YAN, Heat kernel of a noncompact Riemannian manifold, Stochastic
Analysis (Ithaca, NY, 1993), 239-263, Proc. Symposia in Pure Math. 57, Amer.
Math. Soc., Providence, R.I., 1995.

[14] Y. HASHIMOTO, S. MANABE and Y. OGURA, Short time asymptotics and an
approximation for the heat kernel of a singular diffusion, in Itô’s Stochastic Calculus
and Probability Theory (ed. N. Ikeda et al.), 129-140, Springer-Verlag Tokyo, 1996.

[15] J. HEINONEN and P. KOSKELA, Quasi conformal maps on metric spaces with
controlled geometry, Acta Math., 181 (1998), 1-61.



1257

[16] N. IKEDA and Y. OGURA, Degenerating sequences of Riemannian metrics on a
manifold and their Brownian motions, in Diffusions in Analysis and Geometry (ed.
M. Pinsky), Birkhäuser, Boston-Bassel-Berlin, 1990, 293-312.

[17] D. JERISON, The Poincaré inequality for vector fields satisfying Hörmander’s
condition, Duke Math. J., 53 (1986), 503-523.

[18] A. KASUE and H. KUMURA, Spectral convergence of Riemannian manifolds, Tohoku
Math. J., 46 (1994), 147-179.

[19] A. KASUE and H. KUMURA, Spectral convergence of Riemannian manifolds, II,
Tohoku Math. J., 48 (1996), 71-120.

[20] A. KASUE, H. KUMURA and Y. OGURA, Convergence of heat kernels on a compact
manifold, Kyuushu J. Math., 51 (1997), 453-524.

[21] A. KASUE and H. KUMURA, Spectral convergence of conformally immersed surfaces
with bounded mean curvature, to appear in J. Geom. Anal.

[22] A. KASUE, Convergence of Riemannian manifolds and Laplace operators; II, in

preparation.
[23] A. NAGEL, E. M. STEIN and S. WAINGER, Balls and metrics defined by vector fields

I: Basic properties, Acta Math., 55 (1985), 103-147.
[24] Y. OGURA, Weak convergence of laws of stochastic processes on Riemannian

manifolds, Probab. Theory Relat. Fields, 119 (2001), 529-557.
[25] J.A. RAMíREZ, Short-time asymptotics in Dirichlet spaces, Comm. Pure Appl.

Math., 54 (2001), 259-293.
[26] L. SALOFF-COSTE, A note on Poincaré, Sobolev and Harnack inequality, Duke Math.

J., Int. Math. Res. Notices, 2 (1992), 27-38.
[27] K. T. STURM, Analysis on local Dirichlet spaces I. Recurrence, conservativeness

and Lp-Liouville properties, J. Reine Angew. Math., 456 (1994), 173-196.
[28] K. T. STURM, Analysis on local Dirichlet spaces II. Upper Gaussian estimates for

the fundamental solutions of parabolic equations, Osaka J. Math., 32 (1995), 275-
312.

[29] K. T. STURM, Analysis on local Dirichlet spaces III. The parabolic Harnack
inequality, J. Math. Pures Appl., 75 (1996), 273-297

[30] K. YOSHIKAWA, Degeneration of algebraic manifolds and the continuity of the
spectrum of the Laplacian, Nagoya Math. J., 146 (1997), 83-129.

Manuscrit reçu le 19 novembre 1999,
revise le 23 février 2001,
accepté le 10 septembre 2001.

Atsushi KASUE,
Osaka City University
Department of Mathematics
Sugimoto, Sumiyoshi
Osaka 558-8585 (Japan).
Current address:
Kanazawa University
Department of Mathematics
Kanazawa 920-1192 (Japan).
kasue@kensoku.kanazawa-u.ac.jp


