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ANALYTIC INDEX FORMULAS
FOR ELLIPTIC CORNER OPERATORS

by B. FEDOSOV, B.-W. SCHULZE and N. TARKHANOV

Introduction.

Manifolds with corners belong to the category of stratified spaces,
where singularities are modelled by iteratively forming cones and wedges,
starting from a closed C°° manifold as the base of the first model cone.
Special structure of singular charts on such manifolds gives rise to differ-
ential operators with typical degeneracy in symbols. Algebraic operations
with typical symbols generate specific pseudodifferential algebras, 
Ellipticity in these algebras is determined by the bijectivity of components
of a hierarchy of principal symbols. This entails the existence of paramet-
rices within the algebras and (for compact spaces) the Fredholm property
in adequate scales of Sobolev spaces.

Since the Atiyah-Patodi-Singer index theorem [APS75] one tries

to explicitly express the index of elliptic operators on singular spaces
in terms of symbol hierarchy. For conical singularities and Fuchs-type
operators there are many results in the literature, cf. [FS96], [FST99] and
the references given there, while for edge singularities explicit answers
specifically depend on the choice of the operator algebra. Such a choice
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becomes more and more "non-canonical" the higher we admit the orders
of geometric singularities. An analytic index formula for the edge algebra
in the sense of [Sch91] has been given in [FST98], cf. also [RozOO].

In the present paper we consider corners as the next step in the

hierarchy of singularities. A corner c may be viewed as a cone whose base
Y is itself a manifold with conical points. Each conical point Yc E Y gives
rise to a one-dimensional edge, these edges meet together at the vertex c
of the corner. We consider an algebra of pseudodifferential operators with
special degeneracy properties near edges and corners, the so-called corner
algebra constructed by the second author [Sch92] (for a general manifold
with corners, see also [Sch01]) . There are three levels of principal symbols
in the corner algebra, each corner operator ,~4 gives rise to a triple

of the so-called principal interior, edge and corner symbols. If all the entries
of (0.1) are invertible then the operator A is called elliptic; with some
precautions it has Fredholm property in appropriate weighted Sobolev
spaces.

We derive an index formula for elliptic corner operators in the spirit of

[FS96], [FST98]. A convenient iterative representation of operators allows
us to employ a similar machinery. We consider a model manifold with
corners which we call "edged spindle" ,

Here Y is an (n + I)-dimensional manifold with one conical point y~, c±
are two corners, the curve [-1, 1] x Yc is an edge. The variable t E ~- l, 1]
is called the corner-axis variable.

The "edged spindle" is the simplest compact manifold with corners.
In contrast to [FS96], [FST98] we have chosen here a compact manifold as
a more realistic model allowing one to treat pseudodifferential operators
of any order without order reduction. The non-compact case of a pure
corner R+ x Y / 101 x Y is also included in our model. In this case we take
operators of order zero with symbols stabilizing to 1 in a neighborhood of
c- and having a corner degeneracy at c+.

The change of variables
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reduces the spindle to an infinite cylinder

the corners c~ become "cylindrical ends" ~oo (cf. [FST99]). The corner
algebra becomes a version of the edge algebra [ES97], [FST98] with a special
behavior at ~oo.

For the purposes of analysis it is better to work on the resolved space
M’ - [-1, 1] x Y’, where Y’ is a smooth manifold with boundary. Locally
along the edge M’ has the form 8Y’ being a
C°° compact closed manifold of dimension n. The corners are specified by

x Y’ and {1} x Y’, hence the local structure of M near the corners
is described by R+ x R+ x X.

The blow up procedure obviously induces a singular metric of the
form dt2 -f- a2t2dy2 near any corner, dy2 being a Riemannian metric on
the cross-section Y of the corner and a &#x3E; 0 a constant. The metric dy2 is
in turn of the form dr 2 + b2r2dx2 near the conical point of Y, where dx2
is a Riemannian metric on X, and b a positive constant. The associated
Laplace-Beltrami operator is

, v i

where Ay and Ax are the Laplace-Beltrami operators on Y and X,
respectively. This is an example of a typical differential operator on a
manifold with corners.

More generally, corner degenerate differential operators of order m in
the splitting of variables (t, r, x) E R+ x R+ x X have the form

with coefficients that are smooth in (t, r) up to t = r = 0 and take
values in differential operators of order m - ({3 + j) on X. In variables
(t, y) E R+ x Y we assume A to be of the form

where the coefficients A~ are smooth in t up to t = 0 and take their values
in differential operators of order m - {3 on Y. In stretched coordinates



902

(r, x) E R+ x X close to a conical point Yc E Y (i.e., near r = 0) we then
have

In local coordinates near a corner t = r = 0 the symbol of (0.5) has
the form

where a(t, r, x, T, g, ~) is smooth up to t = 0 and r = 0. The corner algebra
we work with is obtained by quantizing (0.6) for arbitrary C°° functions a
satisfying the usual symbol estimates in 7-, p- and ~.

General boundary value problems in domains with corners for differ-
ential operators with symbols (0.6) were first considered by Maz’ya and
Plamenevskii [MP77]. However, they have never treated pseudodifferential
operators and parametrices in this context. In the ’80s Melrose introduced
the so-called totally characteristic pseudodifferential operators on mani-
folds with corners, cf. [Me187] . These operators are actually tensor products
of Fuchs-type operators, i.e., they have symbols a(t, r, x, tT, ro, ç) of other
degeneracy than (0.6). This approach was essentially developed in the ’90s
by Mazzeo [Maz9l], [MM98].

In contrast to the operators of [Mel87], the class (0.6) contains the
restriction to M of any smooth differential operators in a neighborhood
of M, provided M is embedded. It follows that also pseudodifferential
operators on a smooth manifold can be interpreted in the framework of
the corner calculus with respect to artificial corners.

The (operator-valued) edge symbol of A has the form

which acts as - Here, Ks,6 (X n ) are weighted
Sobolev spaces of smoothness s and weight 6 on the infinite stretched cone
XA := R+ x X. We have I~S~s (X n ) ~ for every s, and the

behavior of functions in near r = 0 is compatible with the nature
of symbols. By the very nature, (0.7) is a family of operators of Fuchs type
at the conical singularity r = 0 on the base of the corner, parametrized by
(t, T) E R+ x R. When studying the mapping properties of the family (0.7)
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in spaces one can change the variables by r’ = tr, for fixed t &#x3E; 0.

Since the Fuchs derivative rDr is invariant under this change, we arrive
at the same family with rt replaced by r. This gives rise to the so-called
comperessed variant = of the edge symbol.
Hence there is a subordinate cone conormal symbol

acting as H’(X) --~ Hs-m(x), for z E C, cf. [Sch91]. Moreover, we have
the (operator-valued) corner conormal symbol

of A, living on the complex plane ( E C. It acts as Hs,b (Y) ---7
where Hs,6(Y) are weighted Sobolev spaces on Y.

The elements ,A in our corner algebra consist of (2 x 2) -block matrices
of operators

where the upper left corner A is a corner-degenerate pseudodifferential
operator while P is a potential and T a trace operator with respect to the

system E C M of edges. The set E itself is regarded as a one-dimensional
manifold with conical singularities at the corner points of M, and Q is
an element of the corresponding cone algebra on E, cf. [Sch91]. Then

:= is the standard principal homogeneous symbol of A.
Further, the principal edge symbol

is a family of block matrix operators, according to N- potential and N+
trace conditions with respect to E. Here, N~ depend on 6 in general.
Similarly, the corner conormal symbol

is a family of block matrix operators, parametrized by a complex covari-
able (.

For the discussion of ellipticity it is important to note that the entries
of both (,A) and are global operators along XA and Y, respectively.
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The ellipticity of A is defined by requiring the bijectivity of all three

components of Given a 03C3int -elliptic corner-degenerate operator A,
the bijectivity of is an analog of the Shapiro-Lopatinskii condition
for the additional data on E.

The question of constructing an elliptic edge problem A for a given
aint -elliptic A in the upper left corner is of similar nature as the analogous
question in boundary value problems. As is well known in the latter case,
a certain topological obstruction has to vanish for aint(A), cf. [AB64].
Although in boundary value problems there are gint -elliptic operators that
do not admit Shapiro-Lopatinskii elliptic conditions, the set of operators

with ellipticity in all components of a(A) (which is in this case the pair
consisting of interior and boundary symbols) is very rich. The same is true
of our corner algebra. If A is corner-degenerate and elliptic relative to o-int
then (0.7) is a family of Fredholm operators - 

parametrized by (t, T) C T’ R+ B ~0~, for every s E R and 6 E R B D(t),
where D(t) is a discrete set of exceptional weights. In reasonable cases (see
for instance (0.4), where D(t) is independent of t) we find suitable 6 for all
t.

Now the analog of the topological condition to aint (A) in the present
case is

for all (t, T) E 101, cf. Proposition 10 in [Sch91, p. 376]. One can
prove that (0.12) is independent of the choice of 6, though the index itself
depends on 6. Clearly, it suffices to require (0.12) for one t = to. If (0.12) is
satisfied, the operator family aA (A) (t, T) can be filled up to a block matrix

(,,4) (t, T) of isomorphisms (0.10) , where N+ - N- - ind (A) (t, T). The
details of this construction are close to those in the more general situation
of edge singularities, cf. Section 3.3.4 in [Sch91].

Similarly to the case of boundary value problems we find aA (A) (t, T)
in such a way that

for all (t, T) E T*R+ ) ~0~ and A &#x3E; 0, where (r,,x u) (r, x) - x).
In the present case the procedure can be kept uniformly in t up to t = 0,
i.e., compatible with an analogous construction for the compressed edge
symbol ~/B(~4)(~r). In this way we obtain a (2 x 2) -block matrix family

(,,4) (t, T) of isomorphisms in the sense of (0. 10).
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To illustrate the last step of constructing a bijective conormal symbol
on a line ~( = 2013~y we assume A to be a corner-degenerate differential
operator (for the pseudo differential case we would need more background
from the corner operator calculus, see also Let F (T) denote

the (2 x 2) -block matrix whose entry Fll is zero and the other entries

equal the corresponding entries of the matrix Choose an

arbitrary smooth excision function x(T), i.e., X vanishes near zero and

equals 1 outside a neighborhood of zero. Form x(T)F(T). We then obtain
an operator-valued symbol with covariable f E R in the sense of symbols
of order m with "twisted homogeneity." A kernel cut-off construction in
the sense of [Sch89] allows us to pass from to an operator-valued
function H(() which is holomorphic in ( E C and satisfies H (i - iq) -

modulo a symbol of order m - 1, for every q E R. On the chosen
weight line Qv( = 2013~ we may even arrange a remainder of order -oo. The

corner conormal symbol of our future elliptic operator ,A will be

where we choose a suitable s~ _ ~7.

What we know by construction is that 7c(.4)(() is a holomorphic
family of Fredholm operators (o.11 ) which consists of isomorphisms for R( I
large enough. The reason is that ~~ (,A.) (~) is a parameter-dependent elliptic
cone operator on Y in the sense of [Sch92]. It is then well known that in such
a case there is only a discrete set D C C of exceptional values, such that

~~ (,,4.) (~) is an isomorphism for all ( E C B D. In fact, D n (a x !a( bl
is finite for all a  b. We now fix any q E R such that T - D,
and construct a Mellin pseudodifferential operator 9 in t E R+ with the
amplitude function

where is a cut-off function in r E R+ (i.e., w = 1 near zero and cv - 0
outside a larger neighborhood of 0). Finally, we set

this operator belongs to the corner algebra and is elliptic with respect to
the chosen weights 6 and,.

Notice that we have here an analog of the Agranovich-Dynin formula
in boundary value problems, cf. [AD62]. The difference of indices of elliptic
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operators and ,,42 in the corner algebra with the same upper left corners
can be calculated as the index of a reduction of ,,4.2 to E by means of 
which is an elliptic operator in the cone algebra on E. In other words, all
elliptic operators in the corner algebra with given left upper corner are
parametrized by elliptic operators in the cone algebra on E, which gives
another impression about how many elliptic operators in the corner algebra
do exist at all. Thus, the simplest example of an elliptic edge problem on
M is

where Q is an elliptic operator of order 0 in the cone algebra on E.

The Laplace-Beltrami operator (0.4) is obviously elliptic on the
smooth part of M, i.e., with respect to the usual interior symbol aint (A) .
The other two principal symbols are

the first of the two is defined for t &#x3E; 0 and T E R while the second one lives

on a horizontal line ~T = 

The principal edge symbol acts in weighted Sobolev spaces on
the infinite cone X~ = R+ x X over X, namely Ks~s --~ Ks-2,6-2 where
the exponent 6 E R indicates a weight r-6. Using the cone theory it is

easy to see that this operator is Fredholm for all but a discrete set 6 E R.
Hence we can border the edge symbol of A by potential, trace and edge
conditions, cf. Section 3.5, such that the (2 x 2) -matrix obtained this way
is invertible for all t &#x3E; 0 and 0. For 6 in certain intervals independent
of t, the symbol (A) itself is invertible for any t &#x3E; 0 and T # 0, and so
no bordering is required.

The corner symbol ~~ (0) (T), T being a complex covariable along a line
~7 = ~~y~, acts in weighted Sobolev spaces on the cross-section

of the corner, Y, which is a compact manifold with conical points. It is a

general property of ellipticity with parameter that ~~(0) (T) is invertible

for all T with sufficiently large ITI. Hence A is elliptic with respect to the
corner symbol on both lines ±-y±, provided r:f: are large enough.
In general the corner symbol takes its values in (2 x 2) -matrices of cone
operators on Y.



907

The domains of corner operators under study are weighted Sobolev
spaces Hs,8,’Y+,r- (M). They coincide with the usual Sobolev spaces Htoc
away from the singularities on M. Near the edge these spaces are the so-
called "twisted" Sobolev spaces H’(R, -x* K’,6 (X")) that are obtained by
completing Co’(R x X~ ) in the norm

including the group action x) on 
Here 0t-ru is the Fourier transform of u in t. Note that KÜ,-(n+I)/2(X!B)
is the L2 -space on the cone X ~ relative to the measure rndrdx. Hence it
follows that

locally close to the edge. Near the corners this space is modified by
including weight factors t~~’~ . However, for s = l, 2, ..., the space

HS (R, 7r* Ks,8 (X ~ ) ) is quite different from the completion of Co (R x XA)
with respect to the norm

near the edge r = 0 (outside the corners), as it might be expected.
The group action xx entering into (0.13) affects drastically the

behavior of u near the edge. On the other hand, it is just ky that allows one
to reformulate the usual (isotropic) Sobolev spaces as anisotropic
spaces along R with values in i.e., as 

Recall that Luke [Luk72] lacked a mere group action to introduce elliptic
pseudodifferential operators with operator-valued symbols of order &#x3E; 0.

Moreover, a group action in fibers enables us to define homogeneous
symbols and asymptotic expansions in homogeneous components, which
is of crucial importance for the analysis of edge problems.

The norms (0.13) and (0.14) are still locally equivalent near the edge
in the case s = 6 + (n + 1) /2, cf. Proposition 3.1.5 in [Sch99]. So, by choosing
a suitable weight we recover also the "naive" Sobolev spaces (0.14).

The weight factor in (0.5) as well as in the corresponding
symbols is motivated by the form of the Laplace-Beltrami operator to
corner-degenerate metrics. Such factors also occur in polar coordinate

representations of operators near fictitious corners. However, t-m is not
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essential for the nature of operators in the corner algebra, and it will be
omitted later on. On the other hand, the factor r-m plays a specific role
in connection with orders of operator-valued edge symbols.

There is a vast literature concerning the index theory on singular
manifolds (see, e.g., [FST99]). The authors had to solve a difficult problem:
what material to include in the present paper without enlarging its volume
enormously. After some hesitation we decided that the results of the cone
and edge theory should be simply referred to. On the contrary, the results
of the corner theory should be presented here in detail. The reason is that
the edge theory is a well-developed branch while for the corner theory we
have essentially only one reference [Sch92]. Besides, our approach developed
here is slightly different from that in [Sch92]. We introduce special classes

of operator-valued symbols based on special families of in

Sobolev spaces on manifolds with edges. Such an approach will be called
a passive one. It turns out to be equivalent to the usual active approach
based on operator-valued symbol classes and the group action ~~ . The

terminology comes from a passive and active approach to the change of
variables. From the passive point of view, the geometrical points remain
fixed, we change only coordinate systems, while in the active approach the
system remains fixed and we move the points.

The passive approach developed here seems to be more convenient. It
allows us to reduce easily parameter-dependent operator-valued symbols to
standard integral operators in L2 spaces, so that the calculus of operator-
valued symbols becomes quite similar to that of scalar-valued symbols.
We hope that such an approach will be useful when considering higher
singularities.

An interior part of the corner operator on the manifold M, cf. (0.3), is
represented by an edge symbol a(t, T) which is an operator-valued symbol
on the plane (t, T) E ~2 whose values are cone pseudodifferential operators
on the fiber Y. It stabilizes to T) for large t. Ellipticity implies that
this function is almost invertible, that is a fiberwise parametrix ro (t, T)
exists. The latter is an edge symbol stabilizing to ro(±00, T) for large t,
such that
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are trace class operators vanishing for T large. This implies that the
differential 2 -form

has a compact support in so, the integral

exists. It gives one part of the index formula which we call an interior
contribution. The other parts are given by the so-called corner contributions
at t = ~ oo .

Let us describe the corner contribution at t - +oo. Besides the

function a(-E-oo, T) which is a limit of the edge symbol a(t, T) and in general
is not invertible for all T but only for T large enough, a corner operator
possesses a so-called corner symbol which is an operator-valued
symbol a+(T) with values in the cone operators on the base Y invertible
everywhere on the corner weight line sT = ~y+ . The corner contribution
may be thought of as a kind of a "logarithmic residue"

Unfortunately, the logarithmic derivative does not belong to the trace
class, so the trace should be defined via some regularization procedure.
To this end we compare the logarithmic derivative a+1 (T)a+ (T) with the
function rO(+oo,T)a’(+oo,T). These two functions are defined on different
horizontal lines in the complex plane T. The first one is defined on the
weight line sT = ~y~, the second one on the real axis sT = 0. Nevertheless,
the function

may be formally shifted to the weight line by means of the formal Taylor
series

here T belongs to the weight line QVT - ~y+. Were f(T) an entire function,
this series would be convergent and would give us the restriction of f (T)
to the weight line. We use the series (0.15) to regularize the logarithmic
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derivative. Namely, we define the corner contribution to be

This integral converges for N large enough and is independent of N

provided N is large. The second expression in (0.16) follows from the
first one by a formal complex shift by in the integrand. Clearly, this
shift does not change the value of the integral. Indeed, for a function b(T)
decreasing rapidly on the line == ~ we have

for any k &#x3E; 0, so that

For t = -oo we have a similar corner contribution. The full index

formula has the form

The orientation of the plane R 2 is defined by the form The sign "-"
in the corner contribution at t = -oo comes from the change of orientation

(the proper orientation of the t -axis near a corner point corresponds to
t increasing to +oo when approaching the corner point). Like the index
formulas in [FS96], [FST98], this formula has the same drawback: it does
not express the index in terms of principal symbols (0.1) only as one could
expect.
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There are special cases when corner contributions vanish, for example,
if ~y+ - 0 and a+ (T) =- a(+oo, T). This case was considered in [FS96] for
the cone elliptic operators. In general, however, all the contributions are
present, so, we will not try to classify these special cases.

Let us describe briefly the contents of the paper. In Section 1 we

introduce the Sobolev spaces H’,6(Y) on fibers with a family of norms II.IIT
depending on a real or complex parameter T. They play a distinguished role
in our passive approach. We also use them to define the corner Sobolev
spaces ~f~~~+~"(M) which in our approach are L2 spaces for scalar

functions We consider embedding properties for these spaces,

especially trace class embeddings.

Section 2 may be viewed as an introduction to our passive approach in
the theory of operator-valued symbols. Although we consider here a more
simple situation when the fiber manifold Y is smooth, the method remains
the same for more general cases when Y itself has singularities. In addition
to the simplest case considered in Section 2 we need to define proper fiber
norms 11 . liT and investigate fiber-wise properties of the operator-valued
symbols. After that the theory goes as in the simplest scalar-valued case.
We discuss also a necessary modification of the Fredholm property of elliptic
operators using a kernel cut-off procedure.

Section 3 is the most important one. Here we introduce the classes

E~(5,~ 2013 l) of edge symbols which serve for the definition of corner

operators. Starting with the well-known parametrix construction in the
edge algebra, we construct a parametrix for a corner elliptic operator and
derive a coarse index formula. This is done similarly to the case of a cone

[FST99] using our passive approach.

Finally, in Section 4 we transform the coarse index formula to the
final form (0.17) following [FS96] and using our passive approach.

As was already mentioned, we combine here the methods of [FS96],
[FST98], [FST99]. Unfortunately, some essential technical changes are
required. For the reader convenience we have gathered a necessary auxiliary
material in the last Section 5 which may be regarded as an appendix.

Acknowledgments. The authors gratefully acknowledge the many
helpful suggestions of the referee.
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1. Sobolev spaces on the edged spindle.

We introduce the spaces on the edged spindle M
represented as a product (0.3). They are similar to the corner and wedge
Sobolev spaces introduced by the second author [Sch92]. The parameters
s, 6, and ,::1: are called smoothness, the cone weight, and corner weights at
~oo, respectively, all the parameters being real.

The definition uses essentially the product structure (0.3). We treat a
function u on M as a function u(t) on R with values in a functional space on
the fiber Y. Thus, first we need to describe the spaces on Y which

is a manifold with a conical point y~ . A neighborhood of this point may be
identified with an infinite stretched cone ~~ and we will need the Sobolev

spaces on an infinite cone X~. For the reader’s convenience we
recall the definition and the properties of these spaces following [FST98],
see also [Sch92], [ES97].

In the sequel we will use various cut-off functions: p(y), y E Y, with
compact support or w (t), t E R, with a support in R+. They usually appear
with corresponding covering functions which are equal identically
to 1 on the support of the cut-off function p, w and vanish identically outside
a neighborhood of finite radius of supp p, respectively. For a given
cut-off function the corresponding covering function will be always denoted
by tilde.

1.1. The spaces Ks,6(X").

By a stretched cone X ^ with a base manifold X we mean a Cartesian
product R+ x X with the action of the group R+,

for A E R+ and (r, x) E R+ x X. The base X is supposed to be a
smooth compact n -dimensional manifold without boundary. For a coor-
dinate neighborhood U C X we denote by U^ = R+ x U the stretched
conical neighborhood in XA. We use the notation V~ C JRn+1 for the geo-
metrical conical neighborhood corresponding to a coordinate neighborhood
V C S" on the unit sphere in R"+~. The group R+ acts on V~ by homo-
theties. By a conical coordinate diffeomorphism x : U/B -+ V~ we mean a
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diffeomorphism which commutes with the action of R+. The inverse diffeo-
morphism

may be thought of as a passage to polar coordinates.

There are several modifications of the Sobolev spaces adopted to the
conical structure.

1. The spaces Hs (X ~ ) . Let Cü(X/B) denote the space of smooth
functions with compact supports in an open stretched cone X~ = R+ x X.
For a function u E take its push-forward

(x*u) (x) = u (x-1 (x))
under a conical coordinate diffeomorphism (1.1) and define

The general case may be reduced to the special one considered above by
taking a finite coordinate covering Ui of X and a subordinate partition
of unity pi(x). For stretched conical neighborhoods we take conical

coordinate diffeomorphisms xi : Ui -~ ViA and set

The norm (1.2) is independent of the covering, partition of unity and
coordinate diffeomorphisms up to equivalence.

2. The weighted spaces For a function u(r, x) E

Co~(X~) supported in a conical neighborhood U 1B, set

and define a norm

Here v( (, ~) is the Fourier transform of v(z, x) E Co (R x X). It is an entire
function in (, so the integral (1.3) makes sense. The function q - (r¡), for
q = ~), is a smooth norm function, that is a smooth function satisfying
(q) &#x3E; 1 everywhere and equal to lql for C &#x3E; 0. Its concrete form does

not affect the norm (1.3) up to equivalence. Clearly, we have
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where - means that two-sided estimates hold

The general case may be reduced to this special one by means of a partition
of unity similarly to (1.2).

3. The cone spaces Take a cut-off function E

which is equal to 1 near r = 0 and set

So, the space is a "mixture" of the weighted space Hs,8 near r = 0
and the usual Sobolev space near r = The choice of 

does not affect the norm (1.4) up to equivalence.
Let us recall some properties of these spaces.

1. For any fixed cut-off function Cü(Iae+) equal to 1 near

r = 0, we have four bounded multiplication operators

2. The group R+ acts on any of the spaces Hs(X"’), 
since it acts on the cone X~. It is convenient to modify this

action by a factor, namely

A general result concerning strongly continuous actions of R+ on Banach
spaces consists in the following estimate of the norm of 

- 

for some C, k &#x3E; 0 (see [Hir80]).
3. There are continuous embeddings

for
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The following lemma is quite similar to [FST98, Lemma 1.2].

LEMMA 1.1.2013 Let E satisfy w = 1 near r = 0. Let

M(À), À ;? 1, be a multiplication operator followed by embedding

where N, E -&#x3E; 0. If N &#x3E; (n + 1)/2 and E &#x3E; 0, then is a Hilbert-Schmidt

operator and the following estimate holds for its Hilbert-Schmidt norm:

For the proof we refer the reader to [FST98, Lemma 1. l, Lemma 1.2].

1.2. The spaces Hs,8(y).

Our next goal is to define weighted Sobolev spaces on a fiber Y
which is an (n + 1) -dimensional manifold with one conical point y,. We
define a family of norms ||·||03C4 on these spaces depending on a parameter
T E R (of course, these norms depend on s and 6 but we will not indicate
this dependence explicitly). We also admit complex values of T setting by
definition ||u||03C4 

Fix a finite U~ of Y where Ui are coordinate neighbor-
hoods not containing the conical point y,, while U~ is a neighborhood of y~.
We identify U~ with a neighborhood of the vertex of the cone X~, so that
y E U~ is represented as (r, x) E X~ with r  1. Let f pli (y) 1, Pc(y) be a sub-
ordinate partition of unity. We decompose any function v (y) E Co (YB (y~ ) )
into the sum

and define norms 11 for each summand. For the smooth neighborhoods
U2, we set

while for the conical neighborhood U~
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with xx defined by (1.7). Finally, using decomposition (1.9), define

We will often need the space CN as a fiber space rather
than Hs,8 (Y) itself. In this case we define

Here vi (y) E and V2 E C~ are direct summands, the norm
is defined by (1.12) while the norm of the vector v2 E (~N is

We will say that two families of and 11,112,7 are uniformly
equivalent if for the ratio the following two-sided uniform estimates hold:

andTEIR.

LEMMA 1.2. - The norm (1.12) is correctly defined up to uniform
equivalence.

Proof. It is sufficient to show that for a function v with a support
in Ui n Uj or in Ui rl U~ different expressions (1.10), (1.11) give uniformly
equivalent norms. We will consider the only non-trivial case when the
support of v belongs to Ui n Using conical coordinates y = (r, x) e X^
we have

Since v(r, x) vanishes for 0  r  ro, the function also vanishes

for all 0  r  ro and T E R. Thus, by virtue of (1.6) we have

where - means uniform equivalence. Now, the Fourier transform of the
function ~T&#x3E;-~~+1)/2 v(?.~J/~T~) is equal to
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so the norm (1.11) may be written as

up to uniform equivalence. Next, by (1.11) -

giving the norm

which coincides with (1.10). 0

For different values of T the norms ||·||03C4 are equivalent but this

equivalence is not uniform.

LEMMA 1.3. - There exist constants C, q &#x3E; 0 (depending on s, b)
such that

Proof. Using the uniform equivalence ( 1.14) , we have for )Ti ) &#x3E; ] T2 ]

implying for the norms (1.10)

For the norm (1.11) we make use of (1.8), so that

with C, k from (1.8). This gives the estimate
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with q = This estimate implies ( 1.15) by virtue of Peetre’s inequality

DEFINITION 1.4. - The space is a completion of Coc’O (Y B
f y, 1) with respect to any for a fixed T E R.

Clearly, we have an embedding

for each 0. Supposing that both spaces are equipped with the norms
II with the same T E R, we come to the following lemma.

LEMMA 1.5. - If N &#x3E; (n + 1)/2 and E &#x3E; 0, the embedding operator
z belongs to the Hilbert-Schmidt class and

Proof. It is sufficient to prove the estimate ( 1.17) for each multi-
plication operator pi (y) or p~ (y) followed by embedding (1.16). Denoting
v. = p2v and assuming that supp v C Ui, we have for a smooth coordinate
neighborhood Ui,

or

Thus, we need to estimate the L2 norm of the kernel

We have made use of the Peetre inequality
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with C independent of T. Multiplying by a rapidly decreasing function

?7i), we obtain for the product an estimate O ( (r~ - Tll) - ’). Thus,

giving the desired estimate ( 1.17) .

Now, for the conical neighborhood we write

assuming that all the functions are defined on the infinite cone X.

Applying to both sides the operator and multiplying by ~T) s-N, we
rewrite this equality in the form

We need to estimate the Hilbert-Schmidt norm of the multiplication
operator

This may be done by Lemma 1.2, and we come to the desired estimate

(1.17). 11

COROLLARY 1.6. - and E &#x3E; 0 the embedding z is a trace
class operator.

Proof. Decompose 2 into the product

both embeddings zl, Z2 being Hilbert-Schmidt operators by Lemma 1.6. D

1.3. The spaces ~~+~-(M).

We are now ready to define weighted Sobolev spaces on the edged
spindle M. Using a product structure (0.3), we consider a function



920

as a function on the real axis R with values in Cü(YB f y, 1) - For b &#x3E; a &#x3E; 0,
consider a covering

and subordinate partition of unity p-(t), po(t), p+(t). Given a function
u(t) E Cf (R, Cü(Y B f y, 1)), decompose it into a sum

and define a norm

Here So, u+, S- mean the Fourier transforms with respect to t. They are
entire functions since u E Co , so the complex shifts by ±i7± make sense.
For a fixed T, the function (as well as is considered as an

element of with the defined by (1.12) or as an element
of CN with the norm (1.13).

The norm (1.18) is a "mixture" of four different types of norms. For
functions with supports away from the edge and corners, it coincides with
the usual Sobolev norm HS on the smooth part of M. For functions with

supports near the edge but away from the corners, we recover the wedge
Sobolev spaces [ES97]. For functions with supports away from the edge but
near the corner, we recover the weighted Sobolev spaces as in the

case of the conical point c~ . Finally, for functions with supports near the
edge and the corner, we obtain corner Sobolev spaces (see [STOO]).

Clearly, we have an embedding

for ,

LEMMA 1.7. If sl &#x3E; +(+2)/2,i &#x3E; S2, 1,+ &#x3E; ’2,+, ’1,- &#x3E; 72,-
is a Hilbert-Schmidt operator. If in addition s, &#x3E; S2 + (n + 2) then

2 is a trace class operator.
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Proof. We need to show that the three multiplication operators by
po (t), p+ (t), p- (t) are Hilbert-Schmidt ones in the corresponding spaces.
Consider first the multiplication by po (t), that is

or

The function is an entire function rapidly decreasing on any
horizontal line, that is

for SSTI = const.

The value is an element of the space Hs,8 (Y) equipped with the
norm II . IIT1, while the value of the integrand is regarded as an element of
Hs-N,8-é(Y) with the norm 11 liT’ the latter obtained from the former as
a sequence of embedding operators

with subsequent multiplication by a constant (1.21). The operator 21 is

bounded with a norm estimate

(cf. Lemma 1.3), Z2 is a Hilbert-Schmidt operator and

(cf. Lemma 1.5). Thus, we have

Then the square of the Hilbert-Schmidt norm of the integral operator (1.20)
is equal to

the integral converges for 2N &#x3E; n + 2.
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Consider now the summand

We would like to rewrite this equation in terms of the Fourier transform

similarly to (1.20). The difference is that 71 varies along the horizontal line
£%Ti = q+ while T belongs to the line sT - ~y+ - E, where E &#x3E; 0. The

function

is defined for !aT  0. Integrating by parts we obtain

The integral on the right-hand side is an entire function rapidly decreasing
on any horizontal line sT = -Y, so that p+ (T) has the only first order pole
T = 0. The relation (1.20) becomes now

where T belongs to the line sT = -y+ - ~~ with fixed E &#x3E; 0. Again we have

so we can repeat the previous arguments to obtain that the operator
u H u+ is a Hilbert-Schmidt one in the corresponding spaces

The case of u- = p- u is treated similarly. D

COROLLARY 1.8. - If s, &#x3E; s2 + (n + 2), b1 &#x3E; 62 and yl,+ &#x3E; ’y2,+,

11,- &#x3E; -y2,-, then the embedding (1.19) belongs to the trace class.

Proof. Taking

we represent the embedding z as a product of two Hilbert-Schmidt embed-
dings
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We will also need a modification of the spaces HSW ~’+~~’- (M) obtained
by replacing the fiber space by CN with the families
of norms (1.13). As a result we obtain a direct sum Hs,6,-Y+,^I- 

(R) where the summand HS,’Y+,’Y- (R) is a Sobolev space on the

edge f y, I x R with weights 1’+, q- at t = The norm in the direct sum

is defined again by (1.18) with the fiber cf. (1.13). We preserve
the notation Hs,8,’Y+,’Y- (M) for this modified space.

2. Operators on a smooth spindle.

Before considering a pseudodifferential operator algebra on an edged
spindle we give a brief review of the algebra on a smooth spindle. It is, of
course, a particular case of a cone algebra considered in [FST99], but here
we demonstrate a passive approach based on families of norms ||·||03C4 on
fibers. So, the cone algebra on a spindle serves here as a simplified model
of the corner algebra on the edged spindle considered further in Section 3.
We also discuss how to get rid of the holomorphy condition which for the
corner algebra seems too restrictive.

In this section we deal with a smooth manifold

where the fiber Y is a smooth compact manifold of dimension n + 1. The

product structure makes it natural to use operator-valued symbols, that is
functions a(t, T) on the plane (t, T) E 1R 2 whose values are pseudodifferential
operators on the fiber Y. It is not so clear, however, how to introduce

proper classes of operator-valued symbols reflecting the most properties
of the classical symbol classes S’~~~(M) on the product manifold M. We
mention two possibilities:

o parameter-dependent theory when T considered as a parameter is

included into symbol estimates on Y;

o one considers a group action on fibers (e.g., an action (1.7)) and
symbols estimates depending on this action.

We propose another approach considering the norms on fiber spaces
varying with T, the symbol estimates involve these families of norms.

So, the symbol remains unchanged, only the norms vary. That is why this

approach is called passive in contrast to the active one where the norm
is constant while the symbol is transformed (e.g., by the group action).
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Before passing to precise definitions let us introduce some general notation
concerning and their symbols.

We will consider operator-valued symbols on a line t E R, that is

functions a(t, T), (t, T) E JR2, whose values are IQDO’s on Y. Treating a
function u E Co (M) as a function u(t) on R with values in C° (Y) , we
define a BliDO Op(a) in a standard way

Here the integration line is the real axis sT = 0. We also will need WDO’S
with a complex integration line !aT = q, the so-called weight line

Clearly, the symbol is defined now for t E R and £%T = 1. As for the Fourier
transform u(T), it is an entire function since u(t) E Directly from
definitions the relation follows

For two operator-valued symbols a(t, T) and b(t, T) defined on the
same weight line !aT = q, we define their Leibniz product to be a formal
series

Here h is a formal parameter, its powers serve to order the terms of the
series. The Leibniz product extends by linearity to formal power series
in h whose coefficients are operator-valued symbols, the so-called formal
symbols. One easily checks the associativity of the Leibniz product. We
use the notation

for partial sums of the series (2.4) at h = 1.

A curious relation arises if we take the Leibniz product of symbols in

(2.3),
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One recognizes the formal Taylor expansion for a(t, T + ihq) in powers
of We will also use an abbreviation (a(T)),y for such a formal complex
shift a(t, T - Were a an entire function in T the series (a(T))^, would
be convergent at h = 1 to a(t, T - 1-y). Although it is a formal series, its

partial sums

are useful when comparing BliDO’s with different weight lines.

2.1. The cone algebra.

We are now going to introduce the symbol classes Em of operator-
valued symbols. The fiber spaces are the usual Sobolev spaces on

a smooth compact manifold Y, but we equip them with a family of norms

II . liT. As in Subsection 1.2 we take a fixed coordinate covering Ui and a
subordinate partition of unity (now it does not contain a singular
chart U~ ) and set

with the defined by (1.10). Having the norms (2.6),
we can define the spaces H’,^~+,’Y-(M) on the spindle (2.1) similarly to
Subsection 1.3 with the norm given by ( 1.18) .

LEMMA 2.1. - There is an embedding

s2. The norm of this embedding fulfills an estimate

where the subscript T means that both spaces Hsi (Y) and HS2 (Y) are
equipped with the with the same T.

Proof. For a function v- supported in the coordinate chart Ui we
have
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Now, taking into account that s2 - 0, we obtain

so that

proving the lemma. D

DEFINITION 2.2. - A function a(t, T) on R2whose values are pseu-
dodifferential operators on Y is called an operator-valued symbol of order
m (notation: a C E~ = ~m(JR2») if for any integers cx, 0 and s c R the

operators

are bounded uniformly with respect to T, that is

with Ca,f3 independent of T.

As above, the subscript T in (2.8) means that both spaces in (2.7) are
equipped with the with the same T. This convention will be

used from now on unless the contrary is specified. The definition remains

meaningful if T varies along the complex weight line !aT = q.

First let us discuss trivial properties of the symbols a E ~’~’2 following
directly from the definition and Lemma 2.1. It is evident that the differen-
tiation with respect to t does not change the class Em while 0§a C 

The variables t, T may be multidimensional, that is (t, T) E R 2, . The
definition remains meaningful for the special case when Y is a point and

CN if we define the norm ||v||03C4 for v E (CN by

In this latter case our definition gives the usual class S’n of matrix-valued

symbols.

On the other hand, a classical pseudodifferential operator a(t, T)
on Y of order m with a parameter T (in the sense of the parameter-
dependent theory of defines an operator-valued symbol from 
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More precisely, let Q denote a fixed quantization procedure on the manifold
Y. This is a way to construct a BliDO Q(a(y, on Y starting with a
smooth function a(y, il) C C°° (T * Y) which behaves regularly for large 7/. If
Y = JRn+1 then there is a standard construction Q(a) = Op(a). In general,
we can use a coordinate covering subordinate partition of unity 
and "covering" functions Pi (y) defining

where Opi means a standard 03C8DO in local coordinates on Ui.

Having fixed a quantization map (2.9), we will consider operator-
valued symbols a(t, T) of the form

where b(t, y, T, q) C Sci is a classical symbol of order m on the manifold
M = R x Y. A standard consequence of the theory of BliDO’s is the following
proposition.

PROPOSITION 2.3. - The operator-valued symbol (2.10) belongs to
~m.

The following estimates playing an important role in parameter-de-
pendent theory are simple consequences of Lemma 2.1.

COROLLARY 2.4. - Let a(t, T) E ~m. 0 then the operator

is bounded and its norm satisfies an estimate

The same operator considered in the spaces

satisfies an estimate

All these simple properties show that parameter-dependent norms

II are appropriate tools for operator-valued symbols.
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We will consider TDO’s of the form

or

Here a(t, T), a+ (T ) belong to ~’~’2 , a+ (T) is defined on the weight line 
and does not depend on t. The cut-off function p has compact support, p+ is
supported in R+, the functions p, p+ are covering functions (see Section 1).

To illustrate how the symbol classes ~’~’Z work, we prove here a
boundedness property for operators (2.11), (2.12).

LEMMA 2.5. - The operator

given by (2.11) or (2.12) is bounded.

Proof. Similarly to ( 1.5) and (1.6) we have bounded multiplication
operators

The space is defined by the norm

and the space by the norm

By virtue of these properties the lemma reduces to the following two
statements:

1. for an operator-valued symbol a(t, T) E ~"2 vanishing for It I large
enough, the operator Op(a(t, T)) is bounded from to 
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2. for an operator-valued symbol a(T) E ~m defined on the line SST = ~y+,
the map

defines a bounded operator from Hs~~’+ (M) to (M).
Both these statements are almost evident. The second one follows

directly from the definition of the operator-valued symbol from Indeed,
we have

so, the same inequality holds between the L2 norms of the left- and right-
hand sides on the line £%T = -y+ .

To prove the first statement, we pass to the Fourier representation

where = Ft-+a (a( t, T)) is an operator-valued symbol acting from
to with the norm estimate

This estimate means that for any N the function is bounded

uniformly in 03C3 and T. Now, using Lemma 1.3

Now, by (2.14) we have

implying the boundedness in L2 -spaces. 0

Let us briefly discuss trace properties of the operators (2.11), (2.12)
supposing that the function p+ also has compact support. It is clear that



930

for m  -n - 1 the values of the symbol a(t, T) E Em are trace class
operators in fiber spaces since we have

where the embedding operator is of trace class. Thus, the fiberwise trace

tr a(t, T) exists.

LEMMA 2.6. - Let m  -n - 2 and the functions p, p+ have compact
support. Then the operators (2.11) and (2.12) are of trace class in the spaces

and

or

Proof. - Consider a sequence

Here p is a covering function with compact support for p or p+. The first
operator is bounded by Lemma 2.6, the second operator is of trace class by
Corollary 1.8. Note that the weights ~y+, q- in the last space may be taken
arbitrarily since p has compact support.

The trace formulas (2.15), (2.16) follow in a standard way from

representation of the trace class operator as a product of two Hilbert-
Schmidt operators. 0

The other properties of with symbols from ~m in the more
general case when Y has a conical point can be found in the last Section 5.

We introduce now an algebra W(M) of pseudodifferential operators
on a smooth spindle M. We also use the name cone algebra for it since

the only singularities of M are two conical points at t = An operator
A E of order m is defined by a triple

of operator-valued symbols from ~’~’2. The function a(t, T) is defined for T

real, the functions a:i: ( T) are defined on horizontal weight lines = ~~y~,
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and on these lines they are operator-valued symbols in (independent of
t) from L:ffi.

These symbols are assumed to satisfy the following hypothesis:

1. stabilization conditions: for (t~ I large enough, a(t, T) "stabilizes" to

T);
2. compatibility conditions: the symbols a(+oo, T) and a+ (T + are

compatible in the sense that

belongs to ~’~’z-N . The same compatibility condition is fulfilled for

ao (-oo, T) and a - (T - i~y_ ) .
An operator A E wm(M) corresponding to this triple is defined on

functions u(t) E by the formula

Here p-, p, p+ form a partition of unity on R, p, p+ are covering
functions. By Lemma 2.5 this operator is bounded from HS’’Y+,’Y- (M) to
Hs-m,’Y+,’Y- (M). .

Let us explain the role of the compatibility condition. It makes the
definition (2.18) correct, that is independent of the partition of unity and
covering functions up to trace class operators. First of all, another choice of

covering functions is irrelevant by pseudolocality (see Section 5). Further,
if we change the partition of unity the difference will be of the form

The functions Ap-, Ap, Ap+ have compact support and their sum is

identically zero. Thus, we may take one and the same covering function

p and replace 0p by -0p_ - 0p+, so that the difference become
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Here we have made use of the relation (2.3) and replaced a(t, T) by its limit
on the supports of Ap±. Further, by Lemma 5.5,

up to a trace class operator, and now, the compatibility condition implies
that the difference (2.19) is of trace class.

2.2. Ellipticity and index formula.

In this subsection we consider cone operators A of the form

(2.18) where the operator-valued symbol a(t, T) has the form (2.10). On
the contrary, the operator-valued symbols corresponding to conical
points are not assumed to have the form (2.10), they may be defined
independently of the quantization map (2.9).

DEFINITION 2.7. - The homogeneous component bm(t, y, T, r~) of or-
der m of the function b(t, y, T, q) in (2.10) is called the principal interior
symbol of the operator A. The operator-valued symbols are called

the principal conormal symbols of A at the conical points ±oo.

Clearly, the principal symbols do not depend on the concrete choice
of the quantization map.

DEFINITION 2.8. - An operator A is called elliptic if

1. its principal interior symbol O’int(A) is an invertible (matrix-valued)
function on T* M B ~0~ (interior ellipticity;

2. for each conical point ~oo, the conormal symbol 7c(~4) = an

invertible operator on Y for all T on the weight line SST = ::!:’:i: (conormal
ellipticity).

We will also assume that the conormal symbols a+ (T) are holomorphic
functions in some strip I SS( T ::!: iq+ ) ) I  e around weight lines and on each
horizontal line in these strips they define operator-valued symbols of order
m (uniformly in smaller strips). This will be referred to as a holomorphy
condition.

The index theory of the elliptic cone operators may be summarized
in the following theorems [FS96], [FST99].
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THEOREM 2.9. - Let A be an elliptic cone operator of order m and
the holomorphy condition be fulfilled. Then it has a parametrix

such that 1- RA and 1- AR are trace class operators in (M) and
(M), respectively.

In other words, the operator (2.13) is Fredholm, and the ellipticity
conditions (both interior and conormal) are sufficient for the Fredholm
property. Moreover, in [Sch91] their necessity is proved.

For the index of this Fredholm operator we have actually the same
formula (0.17).

THEOREM 2.10. - Let the ellipticity condition be fulfilled. Then there
exists an operator-valued symbol ro(t, T) E E-’ such that

are trace class operators in for any t, T E II~2, vanishing outside a
compact set in R~. If, in addition, A satisfies holomorphy conditions, then
the operator is Fredholm and formula (0.17) holds.

The proof will be given in Sections 3 and 4 in a more general situation.
The reader may also consult [FS96], [FST99].

Here we would like to attract the reader’s attention to the following
fact. The right-hand side of (0.17) which we call a topological index exists
under ellipticity conditions only, the holomorphy condition is not required.
On the other hand, the analytical index on the left-hand side of (0.17)
does require the holomorphy condition. In the next subsection we propose a
modification of the analytical index which does not require the holomorphy
condition.

2.3. The kernel cut-off.

Let a(T) E ~’~’2 be an operator-valued symbol on a weight line QVT -
We will not assume that a(T) has an analytic extension to some strip around
!aT = q. We will construct a new operator-valued symbol depending
on a parameter E &#x3E; 0, which is an entire function in T and, for E small

enough, is sufficiently close to a(T). The corresponding procedure known
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as a kernel cut-off was introduced by the second author [Sch91], [ES97]. It
also works in more general situations when the symbol a(t, T) also depends
on t varying on a compact set.

Let 0(t) E and let 0(t) - 1 in a neighborhood of t = 0. The
Fourier transform O(T) is an entire function in T rapidly decreasing on any
fixed horizontal line. We also introduce a small parameter E &#x3E; 0 considering
the function and its Fourier transform

Now, we define a new symbol by convolution of a(T) and 
namely

It is clear from (2.20) that is an entire function in T since Tl )
is.

LEMMA 2.11. If a(T) is a symbol of on the horizontal line

~7 == , then on any horizontal line To. Moreover, if

a(T) is invertible, so that a-1 (T) E ~-’~’2 on the line aT - -Y, then is

also invertible in some strip

-

and a,, 1 (T) E on each horizontal line in the strip.

Proof. From (2.20) it follows that

By Lemma 1.3,

the norms here are taken in the spaces Thus, if
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for v E then

proving that E E~.

To prove the second part, we consider T on the line = 1’, T2 on the

real axis, and expand a(T - T2) in (2.20) by Taylor’s formula

Since

that is this expression equals 03C8(0) = 1 0 and is zero for k &#x3E; 0, we
obtain from (2.20)

The operator

admits a norm estimate

following from Lemma 1.3. Lemma 2.1 and Corollary 2.4 show that the
same estimate is valid for this operator acting from to Thus,

Since

the change of variables T2 - Ex yields

implying the invertibility of ae (T) on the line ~T = ~y.
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It remains to show the invertibility of aE(T) in some strip  8.

But taking T’ = T + ib with a real b,  6, we get

since belongs to E - 1. D

Using this lemma, we can extend the notion of the analytical index
to elliptic operators not necessarily satisfying the holomorphy condition.
Given an elliptic operator A defined by the triple (a+(T), a(t, T), a- (T))
with non-degenerate a+ (-r), a- (T) on the weight lines aT = ~y+, sT = -,-,
respectively, we apply kernel cut-off to obtain a new operator

which is elliptic for sufficiently small E &#x3E; 0, by Lemma 2.11, and satisfies
the holomorphy conditions. Clearly, the analytical index of A~ is constant
for c small enough, because of the stability of the index. We can define a
modified analytical index of the operator A (which is not a Fredholm one
without holomorphy condition) as ind A,. The index formula (0.17) is still
valid for this modified index.

3. The corner algebra.

3.1. Corner-degenerate symbols.

In this section the singular manifold M will be an edged spindle (0.3).
As in Subsection 2.1 we denote an algebra of BliDO’s A defined by
a triple fa+ (T), a(t, T), a- (T) ~ of operator-valued symbols. The only (but
essential) difference is that now the entries of this triple are on a

fiber Y which itself has a conical singularity y,.

We introduce classes of operator-valued symbols Em( 8,8 - l ) with
l &#x3E; m, similar to the classes cf. Definition 2.2.

DEFINITION 3.1. - An operator-valued symbol a(t, T) stabilizing for
large It I belongs to E’(6,6 - l ), l &#x3E; m, if for any integers a, {3, and s E R
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the operator

is bounded in the norms 11 - liT’ cf. (1.13), uniformly with respect to T.

In this section we construct a very special realization of the classes

Em(8,8 - 1) which leads to the so-called edge algebra. The boundedness
relations (3.1) for edge symbols are fulfilled in a slightly sharper form (see
Lemma 3.2 below). Adding to an edge symbol two symbols a±(-F) defined
on corner weight ::t:,:i:, and imposing compatibility conditions
on the triple fa+ (T), a(t, T), a- (-r) I similar to (2.17), we come to the corner
algebra, the main object of our interest.

The edge symbols a(t, T) (respectively a~ (T)) consist of three different
components. In this subsection we consider a so-called interior part. It is

given by a classical (matrix-valued) symbol of order m, that is a function
o

on T*M where

is the smooth part of M, and

We assume the following:

1. The symbol b admits an asymptotic expansion for (T, TI) --~ oc in

homogeneous components

where are homogeneous functions in T, q of degree m - j.

2. Edge degeneracy. In the singular chart U c C Y, let y = (r, x) with
r E R+ and x e X, so that U~ is identified with the subset 0  r  1

of the cone X~ = R+ x X. Write q = (0, ç) E Ty (Y B ly.~~ 1), with
9 E R, the covariable for r, and ~ C T~ X . Then

3. Stabilization. For t large enough, positive or negative, the symbol
b(t, y, stabilizes to b(+oo , y, T, 77).
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Such a function will be called a corner-degenerate classical complete
symbol of order m. Its homogeneous component of the highest degree m is
called the principal interior symbol,

In general, the function b on the right-hand side of (3.2) may depend
explicitly on r,

In this case it is supposed to be smooth up to r = 0. We confine ourselves
to the simplest case when b does not depend on r explicitly but only in
combinations rT and r9. It is sufficient for the purposes of the index theory.

Such a function defines an operator-valued symbol via a quantization
map

(cf. (2.9)), where the summation is taken over smooth charts Ui. This is
an operator-valued symbol acting from H’,5(Y) to H’-’,61(Y), for any
6, 61 E R, since the functions pz (y) vanish in a neighborhood of the conical
point yc.

Let us comment on the structure of the Schwartz kernels of the oper-
ators : in which variables do they behave well? Writing out a quantization
of b, as in (3.2), little more explicitly gives

where we quantize in all variables, and drop a density factor. Introducing
new variables T’ = rT and 03B8’ = rO, and writing the inverse Fourier
transform of 6 as b, one obtains

where now 6 is conormal to the origin in the last three variables, and decays
rapidly at infinity in these variables, so at r = 0 the kernel is ’localized’ at

t=t’, r=r’=0.

As in the smooth case the Definition 2.2 is satisfied for the operator-
valued symbols (3.4) with obvious replacement and 
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by Hse (Y) and ~ ~+/3,~i~y~ respectively. It may also be viewed as an
operator-valued symbol acting in the spaces (3.1). In this case the operator
is a (2 x 2) -matrix with the left upper corner equal to (3.4), and with
remaining entries equal to 0.

3.2. Mellin symbols.

The next ingredient is the so-called complete edge symbol. It is defined
in the vicinity of the edge R x f y, 1, so that the fiber Y may be viewed as a
cone ~C~. The manifold M in the vicinity of the edge is viewed as a wedge
R x X/B with coordinates t, r, x, where t E R, r E R+ are defined globally
while x E X. We also replace the spaces Hs,8 (Y) on the fibers by the spaces
~C~~(~C~) on the infinite cone, with the norm family 11 - liT given by (1.11).
Thus, we are in the setting of the wedge algebra (see [ES97]). We fix a
quantization map QX on X allowing one to construct a TDO on X by a
function a(x, ç) on T* X, for example,

Recall that we have a group action xx on the spaces K’,’Y(X") given
by (1.7), and the is defined via this group action, cf. (1.11).

A Mellin complete symbol of order m is a function I

where ( is a complex variable, and h(t, x, T, (, ~) is a holomorphic function
in ( belonging to a cone weight strip

around the cone weight line SSe = 6.

We assume that h is a classical symbol of order m on any horizontal
line const inside the weight strip. This means that there is an

asymptotic expansion for A - oo,

where hm- j are homogeneous functions of degree m - j in (T, RC, ç).

I In general, h may depend explicitly on r being smooth up to r = 0. Similarly to
the interior corner-degenerate symbols we confine ourselves to a particular case when h
does not depend on r explicitly.
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Applying the quantization map Qx to it, we obtain a function still
denoted by

whose values are TDO’s on X of order  m. Further, we associate to it a
Mellin BliDO as follows. For a function u(r) with values in C~(X), we first
change variables v(z) = f*u = u(e-z), then apply to v a 03C8DO with the
symbol h(t, F, ç),

and then make the inverse change of variables z = -lnr. The result will be
denoted by

The next assumption on the function h is its compatibility with the
interior corner-degenerate symbol b. This condition is quite similar to (2.17)
with the cone weight line !a( - 6 instead of the corner weight line in (2.17).
It means that the operator (3.9) coincides with the ~DO defined by the
symbol b = b(t, x, T, r8, ç) up to order -oo. More precisely, applying the
quantization map QX on X, cf. (3.5), we obtain a function still denoted by

whose values are TDO’s on X of order m, and associate to it a ~DO,

which acts on functions u(r) C Co (I1~+, Coo (X )) by

The requirement is that both the operators (3.9) and (3.10) coincide up
to order -oo. In terms of the Mellin symbol h(t, x, 7, (, ç) and the interior
corner-degenerate symbol b(t, x, 7, W, ç) given by (3.2), this condition looks
as follows. We first consider a formal complex shift by i6 in the variable (
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applied to the function h(t, x, T, (, ~), that is the formal Taylor series

with the real variable 0. Next, we apply to (3.11 ) a change of variables in

symbols generated by z = -Inr. The result must coincide with the symbol
b(t, x, T, 8, ç), that is

were - means that the homogeneous components in T, the classical
symbols in both sides coincide. Vice versa, if the symbol b(t, x, T, 0, ~) is

given, then the symbol h(t, x, T, (, ~) holomorphic in ( and satisfying (3.12)
may be found in two steps. First, we change the variables r - e-z in

symbols defining

then apply the procedure of asymptotic summation to this formal series,
and then the kernel cut-off procedure (Subsection 2.3) to obtain a Mellin
symbol h(t, x, T, (, ç) which is an entire function in (. The relation (3.12)
shows that such a Mellin symbol is defined uniquely up to a smoothing
Mellin symbol, for which all the terms of the asymptotic expansion (3.8)
are equal to 0.

A crucial observation for the edge and corner theory is that the symbol
(3.6) and the corresponding operator (3.9) possess another homogeneity
property, quite different from (3.8). It is easy to verify that the operator
(3.9) is invariant under the xx action (3.10). It means that the operator-
valued symbol

is a homogeneous function in T in the following sense:
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This property will be referred to as "twisted" homogeneity 2. Notice

that the factor r-m in front of h ensures that the degree of "twisted"
homogeneity coincides with the highest degree of homogeneity in (3.8).

Now, having a corner-degenerate symbol b(t, r, x, T, 0, ~) and a Mellin
symbol h(t, r, x, T, (, ç) compatible with b, and using various cut-off func-
tions, we construct an operator-valued symbol

First, we have a function p~ ( y) = p~ (r) corresponding to a singular chart
U~ C Y, and a covering function Next, we take a partition of unity

on R+, with satisfying 1, and
1 - po, and let §5o and be covering functions for po and 

Then we set

where

Here Opm 6 and OpF denote Mellin and Fourier BliDO’s with respect to the
variable r.

LEMMA 3.2. - The operator-valued symbols bo(t, T) and boo(t, T)
acting in the spaces

or, equivalently,

belong to the class Em(8, 8 - m). Moreover, the relation (3.1) is fulfilled in
a sharper form: the operator

is bounded in the norms 11 - liT uniformly with respect to T.

2 In the general case when h depends explicitly on r there is an asymptotical
expansion in A of the left-hand side of (3.14) whose leading term of degree
m coincides with the right-hand side.
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For the proof the reader is referred to [FST98, Lemma 2.6].
We next define a principal edge symbol T) of the operator-valued

symbol (3.15) by

for T ~ 0. Let us explain the meaning of (3.17). Because of the special form
of the Mellin symbol h (cf. (3.13)), the operator Op6 m Qx (h) is homogeneous
of degree m (cf. (3.14)). In fact,

and

for A &#x3E; 0 large enough, and

as A - oo. Similar relations hold for OpFQx (b) and This means

that (3.17) may be viewed as a limit

at least formally. For fixed t and 0, the operator

is a cone cf. [ES97], and as such has a conormal symbol
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3.3. Green symbols.

The last ingredient of the edge algebra is the so-called Green operator-
valued symbol.

DEFINITION 3.3. - An operator-valued symbol

belonging to ~m (8, 6 - l), l &#x3E; m, is called a Green symbol of order rrL if for
some E &#x3E; 0 and any fixed T, the operator T) can be extended as
a bounded operator to

for any 82 c I~.

Thus, this definition means that the operator bG is smoothing one on
fibers and besides gives a gain in the cone weight by some E &#x3E; 0. A typical
example of the Green operator of order m is given by (3.13) where the
Mellin symbol h( t, x, 7, (, ç) belongs to _S-°°, that is decreases rapidly in
(T, (, ~) and besides its conormal symbol h(t, x, 0, (, ~) is identically equal to
0. Another example of the Green symbol (of order -oo) gives a difference
of the symbols bedge (t, T ) and both obtained by (3.15), (3.16)
with a different choice of cut-off functions, namely cpo, cpo, for

bedge and ~o, bedge. In [GSSOO] it is shown that the choice
~Po = §5o m 1 and 0 is also possible up to a Green symbol of
order -00.

The restriction 1 m ensures that E~(~, ~ 2013 m) E ~(b, b - l), so that
corner-degenerate and Mellin symbols of Subsections 3.1 and 3.2 belonging
by construction to ~m (b, b - m) are also included (see Section
5 for a more detailed discussion).

Up to now we considered the operators acting on the spaces KS ~s (X ^ )
or We will need however Green symbols acting in the spaces
Ks,s (X ~ ) C C~. The on the direct sum is defined by (1.13)
and the classes ~"2(b, b - l) are defined with respect to this norm family
(Definition 3.1). Thus, a (2 x 2) -matrix
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belonging to E~(5, ~ 2013 1) is a Green symbol of order m if for some E &#x3E; 0

and any fixed T, sl, s2, the operator

is bounded.

For a characterisation of the Schwartz kernels of Green symbols we
refer the reader to [ST98].

For the operators (3.19) the notion of "twisted" homogeneity is

meaningful, the action of R+ on the direct sum 0 C’ is defined
as (B 1. So, the Green symbol (3.19) defined for 0 is homogeneous
of degree m if

is independent of A. It is clear that multiplying this symbol by an excision
function x(T) with x * 0 in a neighborhood of T == 0, we obtain a
Green symbol T) of order m. This observation allows us to define
classical Green symbols, namely

where bC,m-j(t,T) are homogeneous Green symbols of degree m - j and
N means an asymptotic summation. In other words, (3.20) means that the
difference

is a Green symbol of order m - N.

For a classical Green symbol we define its principal edge symbol by

We also set by definition

Now, we are in a position to describe the corner A

corner operator is defined by a triple
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(we denote here and further on the interior part by instead of

a(t, T)), it acts on the spaces HSW~’+~~’- (M) similarly to (2.18), namely,

Here we have also changed the notation p(t), p(t) for pi(t), The

following definition (unfortunately, rather cumbersome) summarizes the
constructions of this section.

DEFINITION 3.4. A corner symbol A = of

order m consists of an operator-valued symbol

acting on the spaces (3.1 ), where

o bint is defined by a corner-degenerate symbol (3.2) via (3.4) ;
9 bedge is defined by a Mellin symbol h (3.6) via (3.15), (3.16);
* bG is a classical Green symbol of order m.

All these symbols are assumed to stabilize as t --~ ~oo to symbols
independent of t,

The components a~ (T), ii1T = ±-y±, are also operator-valued symbols of
order rrz acting in the spaces (3.1). These symbols must be compatible with
ai T) in the sense that

belongs to 1 + E) with some E &#x3E; 0 (cf. (2.17)).
The component ai is actually an element of the edge algebra on an

infinite cylinder M = R x Y, and the components a± serve to compactify
this cylinder by two corners.

DEFINITION 3.5. - For a corner operator there are three levels of

principal symbols:
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0 the principal interior symbol aint(A) which is a homogeneous function
o

of degree m on T*M defined by (3.3);
o the principal edge symbol

which is a "twisted" homogeneous function of degree m in T defined
by (3.17), (3.21); §

9 the principal corner symbol at each corner t = This is

simply the operator a~ (T), ii1T = :f:,::i:.

Besides, there is a conormal symbol a Ma 1B (A) whose left upper corner
is given by (3.18) and the remaining entries of the (2 x 2) -matrix are 0.

The corner theory may be summarized in the following theorem.

THEOREM 3.6

1. A corner operator of order m is bounded as an operator

2. The corner operators form an algebra with the additivity of orders.

3. The symbol maps O’A, ac and gMgA are homomorphisms.

The detailed proof is contained in [Sch92], see also [STOO], and [ES97],
[ST99] containing a similar theorem for the edge algebra.

3.4. Kernel cut-off and holomorphy.

In the original definition of the corner algebra [Sch92] there was an
additional requirement comparing to the Definition 3.4: the operator-valued
functions a~ (T) were supposed to be meromorphic in T. The poles gave rise
to the so-called corner asymptotics which were one of the objects of study
in [Sch92].

For the purposes of the index theory we don’t need the full asymptotic
information, so the meromorphy is no longer needed. It is sufficient
to require a milder holomorphy condition: the functions a±(T) defined on
the corner weight lines ii1T = -y± have analytic extensions into a corner

weight strip
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moreover,

on any horizontal line in the strip. A similar condition with a cone weight
strip (3.7) instead of 6~ was imposed on the Mellin symbol (3.6).

However, at the first glance even this milder condition seems to
contradict the Definition 3.4. Indeed, because of the compatibility (3.24)
it is natural to assume that satisfies the holomorphy condition
as well. But because of the cut-off functions (cf. (3.16),
which are by no means holomorphic in T, the holomorphy of the whole
operator is doubtful. Quite surprisingly, the following lemma shows
that the holomorphy property may be obtained by means of the kernel
cut-off procedure. In addition to Lemma 2.11 the kernel cut-off procedure
in the symbol classes E~(~, ~ 2013 ~), ~ ~ m, possesses the following property.

LEMMA 3.7. - Let an operator-valued symbol

defined on a weight line ii1T = -y belong to the symbol class l ) .
Then the operator-valued symbol

also belongs to ~m (6, 6 - 1). Moreover, the difference a, (T) - a(T) is a Green
symbol.

Proof. Similarly to the proof of Lemma 2.11 we have by Taylor’s
formula

By Proposition 5.1 the symbol a (N) (T) belongs to ~"2-N (b, S - l + ~1 )
with some 6-1 &#x3E; 0. Thus, a~ (T) - a(T) also belongs to ’Em-N(8,8 -l + ~1 )
since %be (T2 ) is rapidly decreasing on the real axis.

Since N may be taken arbitrarily large, it means that a~ (T) - a(T) is
infinitely smoothing and gives a gain in the weight by In other words,
it is a Green operator. D



949

As a consequence we see that for a corner operator

we can take another corner operator

which differs from A by a Green operator and satisfies the holomorphy
condition. Moreover, we could introduce a subclass of corner operators
satisfying the holomorphy condition in the spirit of the original definition
in [Sch92], and restrict ourselves to this subalgebra. We prefer, however,
to remain in a little wider class of Definition 3.4 using, if needed, a

holomorphic approximation (3.25).

3.5. Ellipticity and parametrix.

Having defined three principal symbols, cf. Definition 3.5, we intro-
duce elliptic corner operators as those for which uint, and 0" c are in-

vertible. More precisely, the interior ellipticity means that the function
o

O"int == q) on T * M ~ ~0~ is an invertible homomorphism. Near the
edge we actually have

with a function bm(t, x, T, W, g) called compressed interior symbol. We
assume that it is an invertible homomorphism for (F, ~, ~) 54 (o, 0, 0),
including this assumption into the interior ellipticity.

Next, the edge ellipticity means that the principal edge symbol

is an invertible operator for 0. Finally, the corner ellipticity at t = 
means that the operator

is invertible for any T belonging to the corner weight line ~y+ . A

similar condition is imposed at t = -oo.
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A basic question of the elliptic theory is if the ellipticity implies the
Fredholm property of a corner operator of order m,

as in the smooth case. A well-known way to answer this question is to

construct a parametrix

such that the operators 1- RA and 1- AR are compact (and even of trace
class) in the spaces ~~+~-(M) and Hs-"2,s-l,~+,~- (M), respectively. In
contrast to the smooth elliptic theory the invertibility of principal symbols
is not sufficient for the parametrix to exist, one needs also a holomorphy
condition for the corner symbols a±(-r), that is, the symbols a~ (T) as well
as their inverses have analytic extensions into corner weight strips

moreover,

on any horizontal line in the strip. As was explained in the preceding
subsection we may assume without loss of generality that both cone and
corner holomorphy conditions are fulfilled. Under these assumptions we

prove the following theorem.

THEOREM 3.8. - Let

be an elliptic operator satisfying the holomorphy conditions. Then there
exists a parametrix

such that both 1 - RA and 1 - AR are trace class operators in the spaces
Hs~s~~‘+~~’- (M) and (M), respectively.

Thus,
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is a Fredholm operator. We also prove that its index may be expressed by
the formula

for any N &#x3E; n + 1. All the operators in curly brackets are of trace class
in the spaces or and tr means the corresponding
operator trace.

Proof. The operator-valued symbol ai (t, T) entering (3.26) is an

edge symbol of order m stabilizing at t - ±oo. We use a well-known
parametrix construction in the edge algebra (see e.g. [ES97], [FST98],
ST99]) which gives us a symbol ri (t, T) E E~~(~2013~,~) such that 
and 1 - a- o ri IN are Green symbols of order -N with respect to weight
data (6,6) for 1 - ri and (b - 1,6 - l) for 1 - ai o ri IN.

To pass further to corner algebra, we follow the scheme of [FST99,
Theorem 3.1]. Actually, we simply repeat the calculations for the case of
operator-valued symbols. Observe that the symbol variables t, T are defined
globally, the only transition being a complex shift in T. The computations
use different versions of the theorem on the regularized trace of a product,
and a pseudolocality of pseudodifferential operators.

We start with the well-known formula for the index of a Fredholm

operator

According to (3.26), (3.27), and (3.23) the operators A and R are given by
the following expressions:
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and

The product RA contains nine summands, two of them R-A+ and R+A-
being equal to 0 since p-p+ - p+ p_ = 0. Thus,

and

The corresponding summands in (3.29) and (3.30) differ only by the order
of factors. Were these summands trace class operators, the difference

of their traces would be equal to 0. We will transform the summands

pairwise replacing them by equivalent pairs where the equivalence means
the following. We say that two pairs AB, BA and A’B’, B’A’ are equivalent
if the differences AB - A’B’ and BA - B’A’ are trace class operators and
their traces coincide. For example, if A - A’ and B - B’ belong to the trace
class, then

In other words, if we change A or B adding to them trace class operators,
we obtain an equivalent pair.

Consider first the corresponding pairs from the first lines of (3.29)
and (3.30), for example

and
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We may drop here p+ since the operators

belong to the trace class by pseudolocality, cf. Lemma 5.4. So, this pair is
equivalent to the following one:

which in turn is equivalent to

by the theorem on the regularized trace of a product (Theorem 5.6).

Similarly, remaining two pairs from the first lines are equivalent to

and

Now, there are four pairs in the second lines of (3.29), (3.30). Consider one
of them, say

and

Here the factors have different representations corresponding to different
weight lines. First of all we need to pass to the same representation in both
factors.

To this end we replace the cut-off functions p+ and p+ by a pair pi,
pl of compactly supported functions satisfying the following conditions:

l. = l

2. pi, so that PI is a covering function for pi.
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This replacement gives us an equivalent pair of operators because of
pseudolocality. Indeed, replacing first p+ by pi , we obtain a new pair of
operators which differ from the previous one by

The second operator is of trace class by pseudolocality, for 
0. Its trace is equal to 0 because moving the factor P+ under the trace sign
to the first place we get pl ) - 0. Thus, A may be changed to

Here p+ may be replaced by since the difference

is of trace class because of pseudolocality. Finally, we obtain the operator

instead of A+.

Now, we use the compatibility condition which implies that the
difference

is of trace class. As a result we come to an equivalent pair

which can be handled similarly to the pairs from the first lines. We drop pi
and jii and then apply the theorem on the regularized trace of a product,
obtaining an equivalent pair

In the final expression we have again replaced PI by pi without changing
the symbol.

Similarly, the remaining three pairs may be transformed to equivalent
ones
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In (3.36) and (3.37) we have again used the compatibility condition

implying that

is a trace class operator. Indeed, it can be rewritten as

since Op ’Y+ (a+ (T) ) and are mutually inverse. From this

representation the trace class property is obvious.

The pairs (3.31) and (3.33) may be transformed further using the
identities

Thus,

since o a+ = 1 and Op ’/’+ (p+ ) is simply multiplication by p+ (t). So, the
pairs (3.31) and (3.33) become

Now, gathering these two pairs and the previous ones (3.32), (3.34)-
(3.37), we obtain

and

The summands in the first lines are obviously trace class operators and the
difference of their traces yields the first line in (3.28).
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Our next goal is to pass from the operators Op-I to the operators Op.
The following lemma gives us the needed rule.

LEMMA 3.9. Let a(t, T) belong to ~0(8,8), for .~sT = -y. Moreover,
let it have a compact support in t. Then the following relation holds:

where A - B means that A - B is a trace class operator with zero trace.

Proof. Let p(t), p(t) have compact support, p a(t, T) = a(t, T) and
p(t). By pseudolocality we may write

the last equality being a simple consequence of the definition (2.2) of Op~.
Now, all the symbols and functions have compact supports in t, so, we may
apply the theorem on the regularized trace of a product to the operators

1

resulting in

since the regularized trace of ~A is obviously equal to 0. Dropping cut-off
functions p, p from the final expressions, we obtain (3.40). D

Observe that the formal series

is a formal Taylor expansion for a(t, (T + ry) 2013 in powers of at

T + iq. Note also that for k large enough the operator T + 

is of trace class with zero trace. Indeed,
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since

Using the notation (a),y for the formal complex shift by i-y, we have

so, the formal complex shift is an automorphism or the formal Leibniz

product o. With this notation the second lines in (3.38) and (3.39) may be
written as

and

Here we have changed the order of factors since p+ (a+ ).y+ is equivalent to

p+ai by compatibility condition, and similarly is equivalent to

pzrz. We move p2 in (3.41) through (a+)-,+ and ai as follows:

Substituting this into (3.41) we may drop the last term since it vanishes
on the support of p+. Thus, for the trace of (3.41) we obtain

In (3.42) we move p+ through (a+),y+ and a- obtaining

It remains to take the difference of these traces to obtain

Now, since (a+1 ).~+ and ai do not depend on t on the support of p+, we
have

r/ i , .- / v I ., v
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Using that

we obtain finally

which gives the second line in (3.28). In a similar way we obtain the third
line completing the proof of Theorem 3.2. D

4. The index formula.

It remains to reduce the index formula (3.28) to (0.17). This may be
done similarly to [FS96] using the scheme

analytical index - algebraic index - topological index.

Unfortunately, the methods of [FS96] can not be applied directly and we
need some modifications.

Our basic observation consists in the fact that the homothety group

with A &#x3E; 0 acts on the set of elliptic corner operators. The index remains
constant under this action. So, extracting the part of the expression (3.28)
invariant under homotheties, we get the final formula (o.17) .

4.1. The algebraic index.

We start with the definition of the algebra of formal symbols where
the algebraic index lives.

DEFINITION 4.1. - A formal symbol is a formal power series

where are edge symbols from ~’~’2-~ (b, b - l).
We assume further that ak E 03A3m-k(03B4,03B4 - + E) for k &#x3E; 0, with some

E &#x3E; 0. The leading term ao does not depend on t for large positive or
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negative t, while the higher coefficients ak (t, T), k &#x3E; 0 vanish identically
for large It 1. .

The Leibniz product of two formal symbols is defined by

We will use the notation

for the N-th partial sum of the series (4.1) at h = 1. This is a symbol from
03A3m(03B4,03B4-l).

Define the trace of a formal symbol to be

Of course, all the symbols T) must be trace class operators in Hs,8 (Y)
and the integrals in (4.3) must converge. This will be the case, in particular,
if ~G~n+2~ (~?~) for all k, and tr ao - 0 for It large enough. Here
and further on ~G (b, b) stands for the Green symbols of order m.

For an elliptic corner operator defined by a triple

let us consider the function a(t, T) as a formal symbol consisting of the
leading term only. Then we have a fiberwise parametrix ro(t, T) such that

Treating ro as a formal symbol consisting of the leading term only let us
construct a formal symbol
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where ol~ means the k-th power with respect to the Leibniz product (4.2).
Then,

and

Taking N &#x3E; n + 1 we see that the fiberwise trace exists, moreover,
the constant term of the difference

is equal to zero. Indeed, it may be written as

This index is independent of t, T because of stability of the index. Thus,

since a+ (T -~- i~y) is an invertible operator. The higher-order terms in 1- r o a
and 1-aor vanish for large |t| since they contain derivatives in t of functions
stabilizing for large Itl. Thus, the expression

is meaningful being understood as

It is a formal power series in positive powers of h because the coefficient at
h-1 vanishes as it has been explained above. The series (4.5) will be called
an algebraic index.

PROPOSITION 4.2. - The constant term is the only non-zero term in
the algebraic index.

Proof. Consider a homothety operator defined on formal symbols
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where A is a positive number. It is straightforward to verify that Hx is an
automorphism of the Leibniz algebra, that is

Thus, if we replace the symbol a(t, T) in the triple (4.4) by the symbol
a(At, T) we again obtain a corner elliptic operator. The correspond-

ing parametrix (as a formal symbol) is H~,r = r(At, T, Ah). Further, denot-
ing

we obtain

Changing the variables At = t’ and integrating we come to the following
series:

Thus, the part of the functional (4.5) invariant under homotheties is given
by the constant term.

On the other hand, we can expect the stability property for the

algebraic index resulting in

Unfortunately, the trace functional Tr is not a "genuine" trace, so we may
not assert that the stability property for the functional (4.5) holds. We
even can not define Tr (1 - r o a) and Tr ( 1 - a o r) separately, but only
in a combination (4.5). However, the stability property for the functional
(4.5) does hold. The matter is that our symbols are independent of t for
large ltl. Thus, the homothety a(At, T) does not change the leading terms
for sufficiently large ltl. In other words, the symbol

has a compact support in t. It means that we may make use of the notion
of trace ideal J in the algebra of formal symbols. Let J consist of formal



962

symbols belonging to E G (n+2) and vanishing identically for It large enough.
Although (I - r o a) and (1 - a o r) do not belong to J (since they do not
vanish for large t) their derivatives in A do belong and moreover,

where is given by the functional (4.5). We proceed further in a
standard way transforming the above expression to

where all the symbols under the Tr sign belong to J. For such symbols
cyclic permutations of factors under Tr sign are possible implying that the
first and the second lines cancel, proving the proposition. D

Thus, the algebraic index may be viewed as a number: the constant
term of the formal series

Observe that for k large enough the integral

converges and equals zero, so the formal Taylor series in (4.6) are meaning-
ful since their terms with large k vanish after integration, so, they do not
contribute the algebraic index. Observe also that the corner contributions
at t = ±oo are independent of h, that is they contribute the constant term

only.

PROPOSITION 4.3. - The analytical index defined by (3.28) and the
algebraic index defined by (4.6) coincide.
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Proof. Take an algebraic parametrix

with Nl sufficiently large, and define an analytic parametrix taking

Denoting r ~ N2 = b, write the analytical index (3.28) in the form

In this formula we may replace the symbol b by the formal symbol r
since the difference

for N2, N2 sufficiently large does not affect the index. Indeed, the corner
contributions remain unchanged since T) = 0. As for the interior
term its change is proportional to

This expression is the sum of the terms

where Ab means a summand of Ab. Integration by parts shows that these
terms are equal to zero. Next, the number N may be enlarged arbitrarily.
We may also take N = oo in the corner contributions as was explained
earlier. The result is
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We also can independently take N = oo in the interior term since only the
constant term of the formal series

(cf. (4.5)) is not equal to zero. This non-zero term gives precisely the
algebraic index. D

4.2. Explicit expression.

It remains to extract explicitly the constant term in (4.5). Here we
follow exactly [FS96, Section 4]. Introduce an algebra ,,4 consisting of
differential forms of even degree on the plane 

where the coefficients are operator-valued symbols belonging to the classes

E~(~ ~ 2013 ~), 1 &#x3E; m, and stabilizing for large t. A product 6 of two elements
a, b E Â is defined by

One checks immediately that this product is associative.

Any function a(t, T) may be considered as an element of Â consisting
of the 0 -component only. So, for functions a, b, we have three products:

. ab, the usual point-wise product of operator-valued functions;

0

the Leibniz product of formal symbols consisting of leading terms only;
9

the product in the algebra A.
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Comparing (4.8) and (4.9) one can deduce a simple rule to pass from
the product a o b to the product aob of functions: keep the terms linear in h,
alternate the derivatives 8 /0T and a/at, and then replace h by This

rule may be extended by induction to any number of factors: al o a2 
and 8ak .

Next, we introduce a trace functional on the algebra ,4 by

for an element a given by (4.7). We assume that R2 is oriented by the form
dt A dT. Of course, this functional is defined if tr a exists and the integral
converges. In particular, this is the case if a belongs to an ideal ~ C ~4
consisting of Green symbols ~Goo (8,8) vanishing for large t.

Now, starting with the algebraic index formula (4.6) and applying the
rule to pass from the o -product to the -o -product, we come to the following
index formula.

PROPOSITION 4.4. - For N large enough,

where ro is a fiberwise parametrix of a.

Proof. Taking an algebraic parametrix in the form

and substituting into (4.6), we obtain corner contributions as in (4.10) and
the interior contribution in the form
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Let us extract the constant term in (4.11 ) . So, we may calculate the

integrand keeping only the terms linear in h. Thus,

where the dots mean higher-degree terms in h. Further,

where - means that the linear terms on both sides coincide. The second

sum may be written as

or

Using "integration by parts" , transform (4.14) to the form

We represent the second sum in (4.12) as a half sum of (4.13) and (5.15),
then take a fiberwise trace tr, divide over 27rh and take a constant term.
As a result we obtain the following expression:
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Integrating this expression over t, T E we see that

so, this term may be omitted. Next,

and

Thus, taking into account the orientation, we get for the constant term of
Tr (1 - ro o an expression

A similar expression may be obtained for the constant term of Tr (1 - a o

simply by interchanging a and ro in (4.16).
Note that
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It implies that the last integral in (4.16) remains unchanged under a
permutation of a and ro. Thus, taking the difference of (4.16) and the
corresponding expression obtained by a permutation of a and ro, we find

This is nothing but

which may be checked similarly to (4.12). This completes the proof of the
proposition. D

Finally, using the associativity of the o -product we reduce (4.10) to
the index formula (0.17) of the introduction. To this end we first show that
the number N in (4.10) may be reduced to N = 2. Indeed, for any N &#x3E; 2,
we have

The last line gives the trace of the commutator

understood with respect to the o -product. This is equal to
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which coincides with the last summand (with k = N - 1) in the corner
contributions

For the case N = 2 we use directly (4.17). This gives

since

Integrating by parts in the first summand, we get

The first summand gives a part of the corner contributions at N = 2, that
is the very last term in the expression

Further,

so, gathering all the terms, we come to the index formula (o.17) .
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5. Trace properties of edge
and corner pseudodifferential operators.

This appendix contains an auxiliary material related to the trace
of edge and corner pseudo differential operators. Most of this material is
scattered in our previous publications [FS96], [FST98], [FST99]. For the
reader’s convenience we repeat it here more or less systematically in a

proper form.

We will consider here the edge symbols introduced in Section 3. A

symbol class Z~(~ (~ 2013 l), l &#x3E; m, (of order m with respect to weight data
(6, 6 - 1)) consists of operator-valued functions

The first two summands act in the spaces

while their derivatives

act in

All these spaces are considered with the family of norms ||·||03C4 (see
Subsection 1.2), and all these operators are bounded in these norms

uniformly with respect to T.

The third item called a Green symbol and its derivatives act bound-
edly in the spaces

for some E &#x3E; 0, with the defined by (1.13). These operators are
bounded for all s 1, s2, that is they are infinitely smoothing on the fibers
Y, but the norm bounds are not uniform in T. However, for any and

s2 = s - the operators (5.2) are bounded uniformly in T.

The whole sum (5.1) acts in the spaces
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the summands aint and aedge are viewed as (2 x 2) -matrices with the only
non-zero entry in the left upper corner. Since 6 - m -&#x3E; 6 - 1 the operator
(5.3) is bounded uniformly in T. All the summands are supposed to stabilize
for t - =boo.

The following simple observation is crucial in the sequel.

PROPOSITION 5. l. - If j3 &#x3E; 0 then for some E &#x3E; 0 the operator

is bounded uniformly in T with respect to the norms 11 . 

Proof - Assuming E in (5.2) less than 1 we have

for 0 &#x3E; 0 m. Thus,

This proves the proposition since the norm of the embedding is uniformly
bounded by Lemma 2.1. D

Thus, for given cone weight data (6,6 - l) m (usually one
starts with weight data (6,6 - m)), the Green summand gives a gain in
weight by 6-. The whole symbol (5.3) looses this gain in general but after
derivation in T we regain it. Or, more briefly, the inclusion a E ~"2 (6, 8 -l),
l &#x3E; m, implies for 0 &#x3E; 0,

5.1. Compatibility.

A corner operator A E Bl1m(M) is defined via (3.23) by a triple

of edge symbols satisfying compatibility conditions. The symbol a(t, T)
belongs to El (6, 6 - 1) and, for large t, stabilizes to ao(:f:oo, T). The latter
may be viewed as edge symbols from ~"2 (b, b - l) independent of t. The
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symbols a~ (T) are defined on horizontal lines sT = and as functions

in RT belong to the symbol class ~"2(b, b - l), that is

with a real variable T.

DEFINITION 5.2. - The symbol a(t, T) is compatible urith the symbol
(5.5) if for any N and some E &#x3E; 0

Were a(t, T) an entire function in T as in the case of differential
operators, the symbols a~ (T) might be taken as restrictions of a(±00, T)
to the corner weight lines ~7- = ~-y~, the condition (5.6) would be fulfilled
automatically by virtue of (5.4) since TN(T) in this case would be a

remainder in the Taylor formula. In general, TN (T) is the difference between
a(:f:oo,T) and a formal complex shift of a± (T ± t’-y±) by ~i~y~, it should be
"small" in the sense of (5.6).

We will use the compatibility condition in the following situation.

LEMMA 5.3. - For any functions f2 (t) the operator

in the corner Sobolev space Hs~s~~’+~~’- (M) belongs to the trace class

provided N &#x3E; m + n + 2.

Proof. From (5.6) it follows that

Thus, the operator (5.7) may be factorized through

The corner weights -~+, -y- are improved because f 1, f 2 have compact
supports. Now the lemma follows from Corollary 1.8. D
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5.2. Pseudolocality.

We will need a pseudolocality property for corner ’liDO’s, especially
near corner points. Roughly speaking, it consists in the fact that a 

belongs to the trace class if the supports of fi and f 2 have empty
intersection. Here fi and f 2 are smooth functions either having compact
supports or equal to 1 in a neighborhood of ~oo and vanishing outside a
larger neighborhood. The weight, may be equal to 0, 7+, -y-, and the
symbol a(t, T) E E’(6,6 - 1) coincides with one of the symbols 
a+ (T), a-(T) entering the corner operator (3.22).

Below we consider one of such statements leaving to the reader similar
statements for other situations. So, let

The function a(T) is holomorphic in T in some strip  E and

belongs to the symbol class E~(~, ~ 2013 ~) on any horizontal line in the strip,
uniformly in ii1T E [,y - Eo,,y + Eo] with any Eo  E. The operator (5.8) is

considered in the space consisting of functions u(t) with values
in fiber spaces Hs,8(y) equipped with the family of norms II. liT’ cf. (1.12).
The in coincides with the L2 -norm of the function

that is

LEMMA 5.4. Let f 1 (t) = 0 for large negative t, and - 1 for

large positive t. Let the function f2 be equal to 0 for large negative t, and
- 0. Then the operator

belongs to the trace class.

Proof. Our operator may be rewritten in the form
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since t - t’ ~4 0 on the support of We will prove that A is

bounded in the spaces

for a large positive integer N and some E &#x3E; 0. Taking a suitable cut-
off function w+(t) equal identically to 0 for large negative t and covering
the function fl(t), that is - fl(t), we see that the operator
A - c,~+ (t) A belongs to the trace class since multiplication by 
followed by the embedding

is a trace class operator by Corollary 1.8.

Passing to the Fourier transforms

we find

where

Note that b(q, ~) is holomorphic in 77 and T in the lower half-planes iilq  0,
sT  0 and is rapidly decreasing on any horizontal lines

Of course, N is supposed to be sufficiently large. We will use the notation

which means that the function

considered on the lines = CI  0 and QVT - C2  0 is bounded for any

p, q, cl, C2 -
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The function 8jia(T) is also holomorphic in a strip, so shifting the
integration lines we get

where we take iilq _ -y + 

The derivative of the symbol a(T) C E~(~,~ - l) belongs to
the class ~’~’2+N (b, b - N + E) (see (5.4)), and we are going to show that
v belongs to the space Let us estimate the norm

in the space We have

But by Lemma 1.3

Here means the norm in Hs,8(y). By the definition of the classes
’Em+N(8, 8 -l l -E- ~), the norm is bounded. So, we obtain finally

But such an integral operator in L2 is bounded, implying that A is bounded
from Hs,8,’Y(M) to This completes the proof of the
lemma. 0

5.3. Regularized trace of a product.

We again consider a neighborhood of a corner point t = so all

functions u(t) and symbols a(t, T) are supposed to vanish for t  0. Thus,
the corner weight r- at t = -oo is inessential and we drop it from our
notation, writing Hs~s~~’+ (M) instead of HsW ~’+~~’- (M). We consider here
a corner version of the theorem on the regularized trace of a product. In

[FS96] and [FST98] the corresponding cone and edge versions were proved.
Consider two symbols a(t, T), b(t, T) vanishing for t  0 and stabilizing

to T), b(+oo, T) for large positive t. We assume that they are
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holomorphic in the strip 7-~  E, and on each horizontal line within

the strip we have

uniformly with respect to in each smaller strip. The corresponding
corner TDO A = Op’*+ (a) defined by (5.8) may be considered in any of
the spaces with, E (-y+ - E, -y+ + é), since the integration line
ii1T = -Y+ in (5.8) may be shifted to = q. Thus, the operator A may be
extended to a bounded operator

- , , , , , ,

Consider the operator

in the spaces

LEMMA 5.5. - For N &#x3E; n + 2, the operator CN is of trace class.

Proof. We pass to the Fourier transform of symbols. Denote

The integral is defined for iilg  0, the last equality being obtained by
integration by parts. The integrand in the last integral is a function with
compact support because of the stabilization condition. Thus, â( ç, T) is a

holomorphic function in ~ C C except the only first-order pole ~ = 0. The
operator A may be written as

Here we need to take i%£  q since according to (5.9) S(~ 2013 T, T) is defined
for i#(£ - T)  0.

Similarly, for the operator BA we obtain
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with qi  -y and  -yl. Expanding by Taylor’s formula, we obtain

with the remainder

where means the derivative with respect to the second argument. The

regularized product CN may be written in the form

For N &#x3E; 0 the function (ç - T)Nâ(ç - T, T) has no pole in ~ - T, so,
the restriction qi  q is no longer needed. The only restriction remains

 7i- Thus, we can choose ii1( = -y2 with qi &#x3E; y2 &#x3E; q.

Show that CN is bounded in the spaces

with N &#x3E; n + 2 and some 62 &#x3E; 6, q2 &#x3E; T The gain in corner weight
follows since we can choose q2 = ~a( &#x3E; q. The gain in the cone weight is
a consequence of Proposition 5.1 because of the term with N &#x3E; 0 in

(5.10). This term gives also a gain in smoothness by N and this is sufficient
to prove (5.11).

More detailed estimates look as follows. Denote

Then (5.10) implies
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means the norm in Hs+Ne2 (Y) depending on a complex
parameter (, cf. (1.12) (recall := 11 - llgz()-

We will apply Lemma 1.3 to estimate this norm. Thus,

To estimate the norm of consider the symbol

the gain b2 - b in the cone weight is due to the derivation (N &#x3E; 0) by
Proposition 5.1. So, the norm of the operator

is uniformly bounded in ~, both spaces being equipped with the family of
norms 11 . II (j . It is also uniformly bounded in t since this symbol vanishes
for t  0 and stabilizes for large positive t. Its Fourier transform

being holomorphic in A, aA  0, is rapidly decreasing on any fixed
horizontal line in the lower half-plane, that is

uniformly in sJRo- if sa  0 and !ao, are fixed. Thus, the estimate (5.13) may
be continued to give

Similar arguments applied to (5.12) give

where the is taken in the space Note that

is an entire function in ç -7 rapidly decreasing on any horizontal line. Now,
since
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for q &#x3E; 0, and

by Peetre’s inequality, we come to the final estimate in (5.13) of the form

because

for finite q. Integrating over 0 E ~0,1~ and over the lines ii1£ = rl, ii1T = r,
we obtain

for ii1( = q2 &#x3E; 1.

It remains to note that the norm of CNU in Hs+N,82,’"Y2 (M) is equal
to the L2 -norm of and the norm of u in is equal to
the L2 -norm So, the boundedness of (5.11) follows from the
boundedness of the integral operator (5.14) with the kernel O( (( - r)"~)
in L2. D

Under the previous assumptions on A and B define a regularized trace
of a product as

for N &#x3E;_ n + 2. Similarly we define

THEOREM 5.6. - The regularized trace of a product does not depend
on the order of factors, that is

Proof. We now put 71 &#x3E; q2 == 1 in (5.10). To calculate the trace of
the integral operator (5.10) (which belongs to the trace class as we know)
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we integrate its kernel over the diagonal obtaining

TrNBA

Here tr means the operator trace in H’,6(Y) (that is, the fiberwise trace of
the operator-valued symbol). In the last integral we have changed variables
s = ~ - T. Note that for N -&#x3E; 2 there are no poles in s in the integrand.
Indeed, â(s, T) and b(N) (-s, T + Os) have first-order poles at s = 0, which
disappear because of the factor sN, N -&#x3E; 2.

Therefore, we can shift the integration line !as - qi - q to the real
axis ss = 0 obtaining the integral

Integrating by parts in T and changing variables

we get

which coincides with the corresponding expression for TrNAB. D
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