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EQUIVARIANT DEFORMATION QUANTIZATION
FOR THE COTANGENT BUNDLE

OF A FLAG MANIFOLD

by Ranee BRYLINSKI

1. Introduction.

In the context of algebraic geometry, the equivariant deformation
quantization (EDQ) problem for cotangent bundles is to construct a graded
G-equivariant star product * on the symbol algebra R = R(T*X) where
X is a homogeneous space of a complex algebraic group G. Motivated by
geometric quantization (GQ), we require that the specialization of * at

1
t = 1 produces the algebra D = 02 g(X) of (linear) twisted differential
operators for the (locally defined) square root of the canonical bundle lC on
X. (There are other interesting choices for the line bundle but we do not
consider them in this paper.) Then * corresponds to a quantization map q
from TZ onto D; G-equivariance of * amounts to G-equivariance of q. The
choice of half-forms is naturally consistent with our requiring parity for *.

Suppose from now on that G is a (connected) complex semisimple Lie
group and X is a flag manifold of G. Flag manifolds are the most familiar
compact homogeneous spaces of G ; they exemplify the phenomenon of a
big symmetry group acting on a small space.

In this paper we solve the EDQ problem for 7Z when the geometry
of the moment map /-t for the G-action on T*X is "good" in the sense

Keywords: Deformation quantization - Flag manifold - Unitary representation.
Math. classification: 53D55 - 22E46 - 17B35 - 53D50.
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of Borho-Brylinski. Goodness of p amounts to TZ being generated by the
momentum functions JLx where x lies in g = Lie(G). Then R = S(g)/I and
D = with for some (two-sided) ideals I and J. The good
case occurs, for instance, when G = SLn ((C) or if X is the full flag variety.

We solve the EDQ problem for R in Theorem 6.1, for the good case, by
using representation theory to construct a preferred choice of *. We prove
the existence and uniqueness of a graded G-equivariant star product * such
that the corresponding representation 7r : 9 EB g - End R, (x, y) f--~ 

makes TZ into the Harish-Chandra module of a unitary representation of
G. The operators 7rx,y are given by

In this way, we get a connection between deformation quantization and the
orbit method in representation theory. In addition, motivation comes from
the constructions in [LO] and [DLO] for certain real flag varieties.

We now outline our construction of *. In fact, we do not directly
construct * but instead we construct a preferred quantization map q in
the following way. Results in representation theory of Conze-Berline and
Duflo ([C-BD]) and Vogan ([V]) give a canonical embedding A of D into
the space of smooth half-densities on X (~8); here we regard X as a real
manifold. We give a new geometric formula for A in (8.1). The natural
pairing fix a7J of half-densities induces a positive definite inner product
on D. The ,-orthogonal splitting of the order filtration on D defines our q.

In this way, R acquires a positive definite inner product 
where the grading of R is orthogonal. Then (.1.) is new

even if q was unique to begin with (so if the representation of G on R
is multiplicity free). The completion of R is a new Fock space type model
of the unitary representation of G on L’ half-densities on X (§12). So R is
now the Harish-Chandra module of this unitary representation.

Now q defines a preferred graded G-equivariant star product * on
R. We find in Corollary 9.3 that the star product ~x * ~ of a momentum
function with an arbitrary function in R has the form f-Lx ø -~- 2 ~~c~, ~~t +

where A’ is the (.1. )-adjoint of ordinary multiplication by (a
is a Cartan involution of g). This property that y’ * 0 is a three term sum
uniquely determines q (Proposition 11.1 ) . The Ax completely determine
*, but they are not differential operators in the known examples; see §10.
Thus p’ * 0 is not local in 0.

An important feature is that D has a natural trace functional T

(Proposition 8.4). We give a formula computing T by integration in (8.4).
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Then (§)w) = where a is some anti-linear involution of R;
see (11.2).

I thank Pierre Bieliavsky, Jean-Luc Brylinski, Michel Duflo, Chris-
tian Duval, Simone Gutt, Valentin Ovsienko, Stefan Waldmann, and
Alan Weinstein for useful conversations in the summer of 2000. I espe-

cially thank David Vogan for discussions in November 1999 which led to
this paper. Part of this work was carried out while I was Professeur Invite

at the CPT and IML of the Université de la M6diterran6e in Marseille,
France.

2. Cotangent bundles of flag manifolds.

Let G be a connected complex semisimple Lie group G. Let X be a

(generalized) flag manifold of G. Then X = G/P is a projective complex
algebraic manifold. The classification of flag manifolds is well known.

For example, if G = then the flag manifolds are where

d = (dl , ... , ds ) with 1 c dl ...  ds  n -1. Here X (C) parameterizes
the flags V = (VI C ... C YS ) in CCn where dim Vj = dJ. The simplest cases
are the grassmannians of k-dimensional subspaces in 

The cotangent bundle T*X is a quasi-projective algebraic manifold.
Let 7Z = R(T*X) be the algebra of regular functions on T* X, in the sense
of algebraic geometry. Each regular function is polynomial (of finite degree)
on the cotangent fibers. Thus we have the algebra grading

by homogeneous degree along the fibers.

The canonical holomorphic symplectic form on T*X is algebraic and
thus defines a Poisson bracket {-, -} on R. Then TZ is a graded Poisson
algebra is homogeneous of degree j + k - 1 if 0 and 1/J
are homogeneous of degrees j and k. We have a Poisson algebra anti-
automorphism cjJ 1--+ given by cjJa = if § is homogeneous of
degree d.

The action of G on X lifts canonically to a Hamiltonian action on T*.X
with moment map p: T * X -~ g*. The moment map embeds the cotangent
spaces of X into g*. In our example, the cotangent space of X(C) at V
identifies with the subspace consisting of maps e : C~ 2013~ cn such
that C 
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The Hamiltonian action of G on T*X defines a natural (complex lin-
ear) representation of G on R. Then G acts on 7Z by graded Poisson algebra
automorphisms which commute with a. The corresponding representation
of p on R is given by the operators .1, x EE g, where I-tx C R’ are the
momentum functions.

7Z is the algebra of symbols for (linear) algebraic differential operators
acting on sections of a line bundle over X.

3. Equivariant star product problem for T*X.

Our problem is to construct a preferred graded G-equivariant star
product (with parity) on R. This means that we want an associative
product * on which makes R[t] into an algebra over C[t] in the following
way. If cjJ, 7jJ E TZ, then the product has the form

where the coefficients Cp satisfy

Axiom (ii) is the parity axiom. (Dropping parity amounts to dropping
(ii) and relaxing (3.1) from = .1 ~ 0, 7p I to 
~~, ~~.) Axiom (iii) is often called strong invariance - we use the term

"equivariant". This is an important notion because it corresponds to

equivariant quantization of symbols (see §4). Strong invariance implies the
weaker notion of invariance, which means that the operators Cp are G-
invariant.

At t - 1, * specializes to a noncommutative product on B _

R[t] /(t - 1). Then, because of axiom (i), ,~3 has an increasing algebra
filtration (defined by the grading on TZ) and the obvious vector space
isomorphism q : R -~ ,r3 induces a graded Poisson algebra isomorphism
from 7Z to Via q, the structures on TZ pass over to B. Axiom (ii)
implies that a defines a filtered algebra anti-involution j3 on B. By (iii),
the map g --~ ,t3 given by x - is a Lie algebra homomorphism and
so we get a representation of g on B by the operators .]. Then q
is g-equivariant. Consequently, the g-representation on B integrates to a

locally finite representation of G on B compatible with everything.
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1

There is an obvious candidate for B, namely the algebra D = 
of algebraic twisted differential operators for the (locally defined) square
root of the canonical bundle /C on X. Fortunately, D already has all the
structure discussed above. It has the order filtration and the principal
symbol map identifies gr D with R. (The latter statement follows by [BoBr,
Lem. 1.4] - their result goes through to the twisted case with the same
proof.) There is a canonical G-invariant filtered algebra anti-involution /3
of D such that for § E R° and ,(r1/2 ) = -n1/2 . Here is the Lie

2 2 2

derivative of a vector field il on X. Then (3 induces a upon taking principal
symbols. Let T)x be the vector field on X defined by x. The map

g --&#x3E; D, Q§ P9 Qfl/2
is a Lie algebra homomorphism. The corresponding g-representation on D

given by the operators [T/x, .] integrates to a locally finite representation of
2

G on D compatible with everything.

4. Quantizing symbols
into differential operators equivariantly.

Now that we have decided upon B = D, we can reformulate our star

product problem in terms of quantization maps. To begin with, we can
axiomatize the properties of our vector space isomorphism q : R - D
from §3:

In (iii), we used the semisimplicity of g to get Tl’. Axiom
2

(iii) means that q is g-equivariant. This amounts to G-equivariance.
We call q a G-equivariant quantization map. We can recover * from

q by the formula 0 = where qt(OtP) = q(§)t3+P
if § E R-1. In this way, we get a bijection between graded equivariant
star products on Rand equivariant quantization maps (up to algebra
automorphisms of D which are compatible with principal symbols, the G-
action, etc.).
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5. The momentum algebra R~.

The momentum algebra is the subalgebra of R generated by the
momentum functions J-Lx, x E g. Soon (§6 onwards) we will restrict to the
case where R = 

Clearly we may identify R, = 5(g)/ I where I is a graded ideal in
S(g). Let ( : -~ D be the algebra homomorphism defined by ( (x) - r~i

2

for x E g. Then by restriction we get, for each p, a map (p from the space
Llp (g) (spanned by all p-fold products of elements of g) to the space Dp of
operators or order at most p. Let J be the kernel of (; then J is a two-sided
ideal in U(g).

LEMMA 5.1. - The following are equivalent:

(i) ~~

(ii) (p : Llp (g) is surjective for all p

(iii) ( : Ll (g) -~ D is surjective and gr J = I.

Proof. The associated graded map gr ( is the algebra homomor-
phism 5 (g) ---7 R defined by x H The result easily follows. 0

In the next section we find a preferred G-equivariant graded star
product on R. We do this under the hypothesis that TZ = R,. This is a
hypothesis on (G, X) which is satisfied for instance if (i) G = ,S’Ln ((C) and
X is arbitrary ([KP]), or (ii) G is arbitrary but X is the full flag manifold.

This hypothesis was important in [BoBr] in studying noncommutative
analogs of R(T*X) ; it is equivalent ([BoBr, Th. 5.6]) to the condition that
the moment map p : T * X --~ g* has good geometry in the sense that /-t is
generically 1-to-1 and its image in g* is a normal variety. These conditions
have been studied a lot in geometric representation theory, especially since
the image of p is the closure of a single nilpotent coadjoint orbit C~ of G.

We note that the ideal I contains all casimirs (i.e., G-invariants in
The casimirs generate I if and only if X is the full flag variety.



887

6. A preferred star product on TZ.

Suppose O*W is a graded G-equivariant star product on R (see §3).
This defines a noncommutative associative product o on R where 0 0 1/J is
the specialization at t = 1 of 0 * 1/J. Then we obtain a representation Jr of
g 0 g on R given by o ~ - ~ o JLY. Notice that the equivariance
axiom (3.2) (iii) says that the quantum operator coincides with the

classical operator {~,’}.

THEOREM 6.1. - Assume R is generated by JLx, x E g. Suppose
* is a graded G-equivariant star product on R where * corresponds to a
G-equivariant quantization map q : 7Z ~ D. (Such maps q always exist).
Then

(I) The representation 7r of g EB g on R is irreducible and unitarizable,
i.e., there exists a unique positive definite invariant hermitian form

(.I.) on TZ with (1 ~ 1 1) = 1.

(II) There is a unique choice of q, and hence a unique choice of *, such
that the grading (2. I) is orthogonal with respect to (.1.). Then

where x E g, are certain operators on R.

Proof. - The proof occupies §7-9. D

We now discuss what unitarizable means and introduce some nota-

tions. To begin with, the restriction of 7r to g = ~(x, x) ~ x E gl, i.e,
the g-representation on TZ given by the operators corresponds to the
natural G-representation on R. Thus R is a (g (D g, G)-module in the sense
of Harish-Chandra.

Now unitarizability of 1f means that there is a positive definite hermi-
tian inner product (,1.) on R which is invariant for g~ = ~ (X, ~(x)) ~ x E g},
i.e., the operators are skew-hermitian. Here is a fixed Cartan

involution of g. Then corresponds to a maximal compact subgroup (7c
with Lie algebra 0c = g x = E.g., if g = then take

a(x) = -x* so that gc == sun.

By a theorem of Harish-Chandra, the operators then corre-

spond to a unitary representation of G on the Hilbert space completion 7Z
of 7Z with respect to (.1.). If the TZd are orthogonal, then R is the Hilbert
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space direct sum Notice that we end up with two very different

actions of G: the graded algebraic action on R corresponding to gdiag and
the unitary action on R corresponding to g# .

7. Existence proof for q.

A G-equivariant quantization map q is completely determined by
the subspaces Td - q(Rd ) . This is immediate from (4.1)(i). Then the
decomposition "splits the order filtration" in the sense that

. Referring to (4.1 ) again, we see that the spaces Td are
stable under 0 and g (which acts by A H A]). Conversely, any such

2

splitting corresponds to a choice of q.

LEMMA 7.1. - We can always construct a G-equivariant quantiza-
tion map q : R ~ D. If the representation of G on R is multiplicity free,
there is only one choice for q.

Proof. By complete reducibility, we can find a g-stable comple-
ment to Dd-1 inside Dd. This gives a g-stable splitting of the order
filtration; let p be the corresponding quantization map. The spaces 9 d
may fail to be stable under 0. To remedy this, we "correct" p by putting
p’(0) = 2 (p(o) + Now p’ is a valid choice for q.

If R is multiplicity free, then ~ is unique for each d, and so p is the
unique choice for q. Notice that uniqueness of q does not require (ii)-(iii)
in (4.1). 0

In the multiplicity free case, the method explained in Remark 9.4
gives a sort of formula for q. We note that R is multiplicity free whenever
the parabolic subgroup P (where X - G/P) has the property that its

unipotent radical is abelian. For G = SLn(C), this happens when X is a
grassmannian. The full classification of multiplicity free cases is well known.

In general, there will be infinitely many choices for q.

8. Proof of (I) in Theorem 6.1.

The quantization map q intertwines our representation 7r of 9 EB 9 on
7Z with the representation II of 9 EB 9 on D given by (A) = *

2 2

Indeed, q(4 0 ’l/J) == q(o)q(,O) and so 

A NN A FOURIER
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Therefore proving 7r is irreducible and unitarizable amounts to prov-
ing II is irreducible and unitarizable. For this, we will need our hypothesis
that R is generated by the 

We can regard X as a real manifold and then consider the algebra
1 

of smooth differential operators on the space of smooth

half-densities on X. Notice that the half-density line bundle E2 .i is G-
1 1

homogeneous, and so we get induced actions of G on F (X, E 2 
There is a natural G-equivariant filtered algebra embedding A H A’ of D

1 1

2 (X). We put (?7?)’; these 03BEx are twisted holomorphic vector
2

fields on X.

Let 6 be the unique Gc-invariant positive real density on X such that

fx 6 be the positive square root of 6. We map D into 

by

Now D acquires the G~-invariant hermitian pairing

From now on we assume that the equivalent conditions of Lemma 5.1
are satisfied.

PROPOSITION 8.1. - ’y is 00 -invariant and positive definite.

Proof. g#-invariance means that the operators are skew-

hermitian, or equivalently, the adjoint of So we want to

show

We have the last

equality holds because fX ~x (a~3) = 0 for any half-densities a, 0.
G,-invariance of b 2 means + ~x kills 6 2 i if x E g,, or equiv-

alently ÇX + kills 8~ if x E g. Using this and the commutativ-

ity of holomorphic and anti-holomorphic operators we find ÇX 0(B) -
and so we get (8.2).

For positive definiteness, we just need to show that A is 1-to-1 on D.
We expect there is a geometric proof of this, but we have not worked that
out. Instead, we will use results from representation theory.
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A is Gc-equi variant and so A maps D into the space 
of G~-finite smooth half-densities. On the other hand we have the maps

Here is the algebra of g-finite endomorphisms of the
generalized Verma module Mp,_" - ou(p) where X = G/P,
p = Lie(P), v : p -~ C is the Lie algebra homomorphism defined by

, To define we consider the natural action of D on

There is a non-degenerate g-invariant bilinear pairing

It follows that D acts faithfully on so that A(m) ) = w(AØ(s), m)
where s is a section and m E Mp,-v. In this way we get a 1-to-1 algebra
homomorphism T. Next, 03A6 is the map defined by Conze-Berline and Duflo
in [C-BD, §5.3]. (This is the "7TI - 7r2 - 0" case in their notation.) Both
maps IF and 03A6 are g 0 g-equivariant; here g 0398 g acts on by the
twisted vector fields çX,y = ~~ + ~-(Y).

The map + is an isomorphism. Indeed, Mp, - w is irreducible by Vogan’s
result [V, Prop. 8.5]. (This is the case "A - = 0" in his notation.) So
[C-BD, Proposition 5.5] applies and says 03A6 is an isomorphism.

Thus the composite map in (8.3) is 1-to-1. It is easy to compare
with A. Both maps are 9 EB g-equivariant and send 1 to a non-zero

multiple of 6-L. It follows, since by hypothesis D is a quotient (cf.
Lemma 5.1(iii)), that is just a scalar multiple of A. Consequently, A
is 1-to-1. 0

COROLLARY 8.2. 0 is an isomorphism, 
from D onto the Harish-Chandra module of the natural unitary represen-
tation 

Proof. The Harish-Chandra module is We just
established injectivity of A. Surjectivity follows because the source and
target contain the same irreducible G~-representations with the same
multiplicities. Indeed, R ri R(G/L) where L is any Levi factor of
P. We may choose L so that Lc = L n G~ is a compact form of L. Then

COROLLARY 8.3. - There is a unique anti-linear algebra involution
8 of D such that = Then ,(A, B) == ,(Be A, 1).

2 2
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Proof. The formula = Be (b 2 ) defines an anti-linear map
Then gives Since the

qg generate D by hypothesis, it follows that 0 is an anti-linear algebra
2

involution. Now (8.2) gives ~y(A, B) _ ,(Be A, 1). 0

The formula T(A) - 7(A, 1) defines a linear functional T on D.

Explicitly,

Then y(A,B) = T(BA).

PROPOSITION 8.4. - T is the unique G,-invariant linear functional
on D with ~(1) = 1. Moreover T is a trace.

Proof. Clearly T is G,-invariant. Then T : D - C is the

unique invariant linear projection because the Gc-action on D is completely
reducible and the constants are the only G~-invariants in D (since the
constants are the only G c- invariants in R).

T is g-invariant, i.e., = 0. We can write this as 
2 2

Iteration gives This proves
2 2 2 2 2 i

T(AB) since the 171 generate D by hypothesis. D
2

Now we can show that, is the unique g#-invariant hermitian form on
D such that -y(l, 1) = 1. Indeed suppose A is any such form. Then _

T(A) by the uniqueness of T. So (8.2) gives A(A, B) = 
T(BÐ A) == "Y(A, B). This uniqueness of "Y implies II is irreducible.

This completes the proof of Theorem 6.1 (I) . Once q is chosen, (.1.) is
given by

Finally we record

COROLLARY 8.5. - II is irreducible. Equivalently, D is a simple
ring. 
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9. Proof of (II) in Theorem 6.1.

The graded pieces 7Zd are orthogonal with respect to (.1.) iff their

images q(Rd) are orthogonal with respect to,. So we have only one possible
choice of q, namely the one such that ’ where is the

q-orthogonal splitting of the order filtration of D. According to §7, we need
to check

LEMMA 9.1. Vd is stable under 0 and g.

Proof. - This follows because -y is invariant under 3 and 6"c. We
obtain -invariance using T ( A ), (3() == 00 (clear since D is a
quotient of U(g)), and T(AB) = T (BA). 0

Thus defines q. Then q defines a graded G-equivariant star
product * on R ; this is the only one for which the direct sum 

orthogonal.

PROPOSITION 9.2. - This star product * satisfies

Proof. Since * is graded, it suffices to consider o. Let f (0) and
r( ø) denote respectively left and right o-multiplication by 0. The map
ux H extends to a graded anti-linear algebra involution 0 ---&#x3E; 0’(x)
of R ; this follows because the complex nilpotent orbit 0 (defined in §5) is
a-stable. We claim that the adjoint with respect to (-I.) of £(Ø) is r(o
Using this we can show : if 0 E E R~ and v E R d occurs in 0 o ~,
then j + ~ ~ ~ ~ ~’ 2013 Indeed, the highest degree term in 0 is 00
and this lies in Now v occurs in 0 o 0 implies that V) occurs in v o øO’
and so d + ,y ~ k. Similarly d + ~ ~ ~.

To verify that r (0’) is adjoint to f (0), we will use our hypothesis (cf.
Lemma 5.1 (ii) ) that, for each p, maps onto Ðp. With this, it follows
that 0 preserves the filtration components 7)p and moreover 0 induces a on
gr D - R. Now (8.2) implies that r (0’7) is adjoint to .~(~). D

COROLLARY 9.3. - For x E g and 0 E 7Z we have
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where l~~ is the adjoint with respect to (.1.) of ordinary multiplication by
ua(x).

Proof. Certainly (9.1) implies (9.2) where = 

Now suppose § E R3 and 1/J E Because of orthogonal-
ity of the spaces Rd we find

Now (9.2) gives (6.1). This concludes the proof of Theorem 6.1.

Remark 9.4. - We know another method for constructing a G-

equivariant quantization map r : R - D. We start with the positive
definite G,-invariant hermitian pairing A(/,~) == 0g( f) on S(g), where 8x
is the constant coefficient vector field on g defined by 0z (y) = - (a(x) , y)
and = 801 aO?’ Let H be the A-orthogonal complement to I in S(g)

---- -- --

where 7Z = 5(9)/1. Then. Then H = is graded. We put ;
where s : 5(g) ---+ U(g) is the symmetrization map. Then D = 
g-stable and 03B2-stable splitting of the order filtration. So by 37 this splitting
defines r.

Here is a formula for r: if we pick a basis of g and

L ai1,...,idxi1 ... Xid lies in Hd, then

where we sum over all permutations T of ~l, ... , d}.
We conjecture that V d, or equivalently, that r = q. This is

obviously true in the multiplicity free case by uniqueness (Lemma 7.1).
Analytic methods may well be needed to show r = q, just as we needed
integration to establish the positivity of q (or even the weaker fact that -y
is non-degenerate on each space Dd) .

Suppose X is the full flag manifold. Then H is Kostant’s space of
harmonic polynomials, and r is simply a p-shifted version of the map
constructed by Cahen and Gutt in [CG] for the principal nilpotent orbit
case.

10. The operators Ax on R.

In Corollary 9.3 we saw that our star product * produces operators
A’~ , x E g, on R. Conversely, the A’~ completely determine *. This follows
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because if we know the A’, then using associativity we can compute
... by induction on n. Here (9.2) provides the first step n = 1,

and also it propels the induction.

Several nice properties follow from Corollary 9.3:

(i) A~ is graded of degree -1, i.e., ç Rj-l.

(ii) The A~ commute and generate a graded subalgebra of End R isomor-
phic to TZ.

(iii) The A~ transform in the adjoint representation of g, i.e., ~~~,11y~ -

(iv) The map g x g - C, (x, y) H is a non-degenerate g-invariant
symmetric complex bilinear pairing.

The Ax are not differential operators on R in general. Indeed differ-
entiality fails when G = and X - CPx In that case Ax is a

reasonably nice operator as it is the left quotient of an algebraic differen-
tial operator L~ (of order 4) on the closure on 0 by the invertible operator
(E + 2 ) (E + n + 1). Moreover Lx extends to T*(CP"’. See [AB2], [LO] and
[B].

The Ax determine * in a rather simple way, and so their failure to be
differential should control the failure of * to be bidifferential.

We conjecture that A~ is of the form Ax = where (i) P and
L~ are algebraic differential operators on T*X, (ii) P is G-invariant and
vertical so that P "acts along the fibers of T * X -~ X" (iii) P is invertible
on R, in fact P is diagonalizable with positive spectrum and (iv) the formal
order of P-1 Lx is 2.

The case where G = and X = CP"’ is an example where

(i)-(iv) works. This example was part of a quantization program for minimal
nilpotent orbits (see [AB1, §1]). In fact, our conjecture here arises from a
larger program we have on quantization of general nilpotent orbits. A proof
of our conjecture, coming most likely out of properties of (.1.), would give
more evidence for our program.

11. The inner product (.1.) on TZ.

In Theorem 6.1, the hermitian form (.1.) completely determines the
star product *, and vice versa. To show this, it suffices (see §10) to show
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that knowing (.1,) is equivalent to knowing the A~. Certainly (.1.) produces
A’, as A~ is (Corollary 9.3) the adjoint of § - Conversely, suppose
we know the To we only need to compute for

0, 0 E lZd, since R3 is orthogonal to R~ if j 7~ k. By adjointness again we
find

The cleanest formula for (øl1P) comes from (8.5). Let 7T : R - C

be the projection operator defined by the grading of R. Notice that T
is classical, i.e., we know it before we quantize anything. Recall the map
0 P-&#x3E; 0’ from the proof of Proposition 9.2; this is also classical. T and T

correspond via q and so T is a o-trace by Proposition 8.4; we view this as
the "quantum analog" of the fact that T vanishes on Poisson brackets. So

(8.5) gives

For ~, ~ E Rd, this reduces to = where CP are the
coefficients of *.

We can now characterize * without the explicit use of symmetry and

unitarity.

PROPOSITION 11.1. - The preferred star product * on R we found
in Theorem 6.1 is uniquely determined by just the two properties: (i) *
corresponds to a G-equivariant quantization map q : D, and (ii) *
satisfies (9.2) where the A~ are any operators.

Proof. Suppose * satisfies (i) and (ii). Then, since R = R, by
hypothesis, * satisfies (9.1) and so o = 0 for j # k. Equivalently,

= 0 if j ~ k. We claim that this uniquely determines 
among all g-stable splittings of the order filtration of D. For it implies that
the spaces Vd are orthogonal with respect to the symmetric bilinear pairing
A(A, B) = But we know A is non-degenerate on Vd ; this follows
because 1&#x3E;d is 0-stable and A(A, Ae) _ A) is positive if 0. So there

is only one A-orthogonal splitting. This proves our claim.

12. TZ is a Fock space type model of 

Combining the discussion in §6 with our work in §8, we find Theorem
6.1 gives
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-00 dCOROLLARY 12.1. - The Hilbert space completion R = 
of R with respect to (.1.) becomes a holomorphic model for the unitary rep-
resentation of G on L2 (X, ~ 2 ) . We have, for the Harish-Chandra modules,
the explicit intertwining isomorphism

While L2 (X, ~ 2 ) is itself a Schroedinger type model, our TZ is a

generalization of the Fock space model of the oscillator representation of the

metaplectic group. This follows for three reasons. First, ~Z is the completion
of a space of "polynomial" holomorphic functions. (We conjecture that R
is a Hilbert space of holomorphic functions on T*X. This is proven when
G = and X = in [AB2, Cor. 9.3].)

Second, the action of the skew-hermitian operators corre-

sponding to the non-compact part of gO is given by creation and anni-
hilation operators. For the non-compact part of g~ x E 9c}
and (6.1) gives

The multiplication operators are "creation" operators mapping Rd to
while the are "annihilation" operators mapping Rd to 

Third, the operators corresponding to the compact ]
x c g~~ of 9~ are just the derivations ~~c~, ~~ and these map Rd to Rd.
Notice that the multiplication operators J1ix and the derivations are

classical objects, while the A ix are quantum objects (which encode (.1.)).
This gives new examples in the orbit method. For R identifies with

the algebra of G-finite holomorphic functions on the complex nilpotent
orbit C~ associated to T*X (see §5). We may regard 0 as a real coadjoint
orbit of G. Then Theorem 6.1 and Corollary 12.1 give a quantization of C~

(with respect to a certain G~-invariant complex polarization).
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