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ON VANISHING INFLECTION POINTS OF

PLANE CURVES

by Mauricio D. GARAY

D6di6 a V.I. Arnold pour son 65e anniversaire

Introduction.

The study of inflection points of plane curves has a long history going
back to Descartes, Newton and Plucker. Nevertheless, it seems that a study
"a la Poincaré" i.e. a study of local normal forms is lacking. In this paper,
we try to fill this gap. More precisely, we consider the following problem.

Let U be a neighbourhood of a point p in the projective plane 
Let f : U ~ C be a holomorphic function with an isolated critical point at
p. The fibres of f may have inflection points. We wish to find a local normal
form of f in a neighbourhood of p which "takes into account" the inflection
points of the curves when £ -~ f (p) .

The basic technique for finding normal forms is to consider the map
f up to (biholomorphic) change of variables. This is of course inadequate
for our problem because such a change of variables does not send a line
to a line. Consequently an inflection point of a curve is, as a general rule,
not sent to an inflection of the image of the curve. In fact, to define a local
normal form (and a versal deformation) with respect to inflections of the
germ of f at a point p E U is one of the first goals of this paper. Once this
is done, we shall give an analog of Arnold’s A, D, E classification [1] for the

Keywords : Plucker formulas - Normal forms - Inflection points - Bifurcation diagrams -
Projective geometry.
Math. classification : 37G25 - 14N15.
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case of inflections. Afterwards, we shall compute the versal deformations
with respect to inflections of Morse function-germs. We hope that the
normal form method adopted in this paper will be useful for solving other
geometrical problems.

This paper is divided as follows.

In the first section, we recall basic facts on the geometry of plane
projective curves.

In the second section, we introduce, following V.V. Goryunov, the
equivalence of functions on plane curves.

In the third section, we define local normal forms and versal

deformation with respect to inflections. Then, we give the classification of
simple function-germs with respect to inflections and the versal deformation
with respect to inflections of Morse functions.

In the fourth section, we prove the classification theorem stated in
Section 3.

In the fifth section, we prove the versal deformation theorem stated
in Section 3.

We have chosen for our exposition the complex holomorphic situation
for simplicity but the results can be easily adapted for the case of real C°°
curves in lRP2.

1. Inflection points of plane curves.

We recall basic facts on the geometry of curves in the projective plane,
standard references are [14], [10].

1.1. Basic definitions.

By plane curve, we mean a complex holomorphic submanifold of the
projective plane CCP2 of dimension 1, possibly singular. Let V C CP2 be a
plane curve and L the tangent line to V at a point p C V.

DEFINITION 1. l. - The anomaly ap of the plane curve V at the point p
is equal to the intersection multiplicity at p of V with L minus 2:
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Example. - Fix an integer number k. The anomaly of the plane curve

at the origin is equal to k.

DEFINITION 1.2. - A point p E V of a plane curve V C CP2 is called
an inflection point of V if p is a smooth point of V and if the anomaly of V
at p is not equal to zero.

DEFINITION 1.3. - An inflection point p E V of a plane curve
V C CCP2 is called a degenerate inflection point if p is an inflection point
of V such that the anomaly of V at p is at least equal to 2.

Example. - The holomorphic curve

has a degenerate inflection point at the origin provided that k &#x3E; 1.

1.2. The Hessian determinant.

Let U be an affine open subset of the projective plane CP . Consider
a holomorphic function f : U -~ C and fix affine coordinates x, y in U.

Following Plucker [17], we give an equation for the inflection points of
the fibres f - 1 (E) of f in terms of the derivatives of f.

DEFINITION 1.4. - The Hessian determinant of f, denoted A f , is the
determinant of the bordered Hessian matrix:

Remark. - The Hessian determinant is not a projective invariant: it

depends on the choice of the affine coordinate system (x, ~).

We summarize well known properties due respectively to Hesse and
Plucker (see [14] for details). Denote by O(U) the ring of holomorphic
functions in U and fix E E f (U). For simplicity assume that f - £ and A 
are reduced equations.
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PROPOSITION 1.1. - 1) The ideal of O(U) generated by 0 f is a

projective invariant i.e., it does not depend on the choice of the affine
coordinate system x, y.

2) The curves and {p E U : = 01 intersect at a point p
with multiplicity k if an only if the anomaly of f -’(E) at p is equal to k.

Example 1. - Consider the function f defined by the polynomial
f (x, y) = y - x3. The Hessian determinant of f is equal to 6x (see figure 1,
left part).

Example 2. - Consider the function f defined by the polynomial
f(x, y) == y - x4. The Hessian determinant of f is equal to 12x2 which is
not a reduced equation. In order to extend part 2 of the proposition to the
case where A  is not necessarily reduced, we do as follows (part 1 holds

even if the equation A  is not reduced).
Let C7 be the ring of germs at p of holomorphic functions. Let I be

the ideal of 0 generated by the germs of f and of Af at the point p. Then
the complex dimension of is equal to the anomaly at p of 

Figure 1. The Hessian curve X f = {(.r,7/):Ay(.r,?/) = 0~ intersects the
curve Vt; == f (x, y) : f (x, y) = ~~ at an inflection point. If the inflection point
is non-degenerate then the intersection is transversal (left-hand side).

2. A brief review of t he theory of funct ions on
plane curves.

Given a holomorphic function-germ f : U --+ C defined on an affine

neighbourhood U of CP2, the ideal generated by a Hessian determinant 0 f
of f is well defined. Consequently, it makes sense to study the restriction of
f to the curve of equation A  = 0. In this section, we recall basic facts of
the study of functions on plane curves, due to Goryunov [9].
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2.1. Notations.

Throughout the paper, the following notations will be used:

1) C~ is the ring of holomorphic function-germs of the type
g : (CC2, 0) ~ (C, 0) where C2 denotes the ordered pairs of complex numbers.

2) C~* is the group of units of 0, that is, the holomorphic function-
germs of C~ that do not vanish at the origin.

3) is the maximal ideal of 0, that is, the holomorphic function-
germs of 0 that vanish at the origin.

4) is the k-th power of the maximal ideal of C~.

5) Diff (k) is the group of biholomorphic map-germs 0) -
(C, 0).

6) diff (k) is the set of vector-field germs ~:(C~,0) ~ 0) that
vanish at the origin.

7) GL(2, C~) is the group of 2 x 2 invertible matrices with coefficients
inO.

8) T is the subgroup of GL(2, 0) consisting of upper triangular
matrices of the type

9) If A = (~ ~) denotes an element of the group GL(2, 0) then, for
9 = (gl , g2 ) E (C~ x 0), the notations A x g stands for (agl + (392, ’Ygl + 692) -

10) The product of two elements A, B E GL(2, 0) is denoted by A x B.

2.2. The 9-equivalence relation.

The action of the groups Diff (2) and GL(2, C~) on C~ x 0 induces
a semi-direct product group structure on the product Diff(2) x GL(2,0).
This semi-direct product is given by the formula

This group, denoted IC, is sometimes called the contact-group but we shall
not use this terminology. We call it the V -equivalence group.

DEFINITION 2.1. - Two map-germs f , g : (C2, 0) -7 (C X C,0) are
called V-equivalent provided that they are in the same orbit under the
action of the V-equivalence group IC.
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Similarly, the set Diff(2) x T is endowed with a semi-direct product
group structure.

DEFINITION 2.2. - The is the set Diff(2) x T with the group
structure defined by formula (1) above.

DEFINITION 2.3. - Two holomorphic map-germs f = (f, Ef) and
~ = (g, E9) : (~2, 0) -~ (CxC,0) are called g - equivalent provided that there
exists a biholomorphic map germ 0 : (C,0) - (C,0) such that o f , E f )
and g are in the same orbit under the action of the group 9.

2.3. The finite determinacy theorem for g-equivalence.

In this subsection denotes a holo-

morphic map-germ.

- 

DEFINITION. - The extended tangent space to the map germ

f - ( f , E f ), denoted T f , is the O-submodule of (0 x 0) generated by
the 4 map-germs

Remark. - The extended tangent space to f is the tangent space
to the 9-orbit of f at the point f E (C~ x 0) to which we have added
(for convenience only) the C vector space generated by ax f and 

DEFINITION 2.5. - The 9-Milnor number of the holomorphic map-
germ f , denoted is the complex codimension of the vector-space T f
in (0 x 0):

Remark. - When no confusion is possible we simply write Mg instead

of uG (f)

The following theorem is the finite determinacy theorem for G-equi-
valence. It can be proved along the same lines as the standard finite

determinacy theorem (see [7] and [16], [19], [15] for the standard theorem)
or using Damon’s general theory [6].

THEOREM 2.1. - Assume that  +00. Then for any map-germ
, , , I , , , . . , . , , I’t , - . "I , , z

such that is 9-equivalent to f .
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2.4. Versal deformation theory for g-equivalence.

In this subsection denotes a

holomorphic map-germ.

DEFINITION 2.6. - A holomorphic map-germ F : (Ck x -

(C x C, 0) such that F(0, .) = f is called a deformation of f .

DEFINITION 2.7. - A deformation of

f is induced from a deformation of f by a
holomorphic map-_germ h : - (Ck, 0), denoted G = h* F, provided
that the equality i~(A,.) = F(h(À),.) holds.

Given a deformation F : (C~~ x C2, 0) ~ (C x C,0) of f and a
holomorphic map-germ 7p: (Ck x C, 0) -~ (C,0), we denote by qb*F the
deformation

DEFINITION 2.8. - Two deformations F, G : ((C~ x (~2, 0) -~ (C x C, 0)
are called G-equivalent provided that there exist holomorphic map-germs
cp : (Ck x - ((C2, 0), A : (Ck, 0) - x - (C, 0) such
that the following three conditions hold:

1) 0-F = A x (G 0 ~p),

2) ~(0, .) is a biholomorphic map-germ.

3) c.p(0, .) is a biholomorphic map-germ.

DEFINITION 2.9. - A deformation F is called 9-versal if any other

deformations of the same germ is ~-equivalent to a deformation induced
from F.

Denote respectively by (Ai,..., Ak) and (x, ~) the coordinates in C~
and (~2.

Let F : x (C2 , 0) --~ (C x C, 0) be a deformation of f = ( f , E f ) .

DEFINITION 2.10. - The tangent space to the deformation F, de-
noted TF, is the sum of the following C-vector spaces:

. the 0-module generated by the four map-germs (E f, 0),
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. the C-vector space generated by the restriction to A = 0 of the

0x~ F’s,
. the C-vector space generated by ( 1, 0) .

The following theorem is the versal deformation theorem for g-
equivalence. The proof is given in [7] using standard arguments (see [16],
[19], [15]). Damon’s general theory [6] of geometrical subgroups can also be
applied.

THEOREM 2.2. - A deformation F : (Cl x C2, 0) - (C x C, 0) of the
map-germ f = F(0,.) is g-versal provided that TF = (0 x 0).

3. Normal forms and versal deformations with

respect to inflections.

3.1. Normal forms with respect to inflections.

We keep the notations than those of Subsection 1.2.

To the holomorphic function f : U ~ C is associated the Hessian

curve

and a map

whose fibre at c C f (U) consists of the inflection points and the singular
points 

In order to find a local normal form of the function f with respect
to inflections, we can forget the local projective structure on U and study
the map ~ ~ f ~ up to analytic equivalence. Of course, the problem of defining
analytical equivalence for the is not straightforward because X
is not necessarily smooth. This problem is solved (at least for germs) by
applying 9-equivalence to the map-germ ( f , (CC2, 0) -~ C x C.

DEFINITION 3.1. - Two holomorphic function-germs f, g : ((C2, 0) -
(C,0) are called if the map-germs (f,Af) : (C2,0) ---&#x3E;
(C x C, 0) and (g, Ag) : ((C2, 0) --&#x3E; (C x C, 0) are g-equivalent.

Remark 1. - The definition of 9-equivalence and the first part
of Proposition 1.1 imply that the P-equivalence class of a holomorphic

~1~ The letter P stands for Plucker.
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function-germ is a projective invariant i.e., it is invariant under projective
transformations that preserve the origin.

Remark 2. - The finite determinacy theorem for 9-equivalence
implies that any holomorphic function-germ f : ((~2, 0) 2013~ (C,0) such that
( f , Af) has a finite 9-Milnor number is P-equivalent to a polynomial.

3.2. P-versal deformations.

Let f : (CC2, 0) ~ (C, 0) be a holomorphic function-germ.

DEFINITION 3.2. - A deformation of the function-germ f is a function-
germ F : (Ck x (C2, 0) - (C, 0) such that F(0,.) = f.

Given a deformation F of f, we denote by AF the Hessian determinant
with respect to the variables (x, y) C (C2.

DEFINITION 3.3. - A deformation F : (C k x C2, 0) -~ (C,0) is called
if for any other deformation G : (C~ x (C2, 0) ~ (C, 0) of f, the

deformation (G, AG) of is induced by (F, AF)-

Remark. - It is readily verified that this definition is projectively
invariant (see Remark 1 following Definition 3.1).

3.3 A local projective Morse lemma.

One of the most basic results of singularity theory is the Morse lemma
asserting that for any non-degenerate function-germ f : ((~2, 0) - (C ’o)
with a critical point at 0 there exist local coordinates in (C2 such
that f is given by f (x, y) = xy. The non-degeneracy condition means that
the second differential of f is a non-degenerate quadratic form.

In the local projective case, we have an analogous result but the
non-degeneracy condition is stronger.

DEFINITION 3.4. - A critical point p of a function f : U --+ C is called
a Pliicker critical point if

1) the quadratic differential at p is non-degenerate,

2) the anomalies at p of the branches at p of the curve If - f (p) ~ are
both equal to 0.

The following proposition is a local projective analog of the Morse
lemma.
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PROPOSITION 3.1. - Let p be a Plücker critical point of f : U - C
then the germ of f - f (p) at p is P-equivalent to the function-germ defined
by

3.4. The P-sinple function-germs.

Following Arnold, who introduced the modality and the simplicity
notions in [1] for the case of critical points of functions, we introduce the
notion of modality in Plucker space.

Let f E ./~l2 be a holomorphic function-germ such that ( f , Af ) has
finite g-Milnor number, that is, pg (f , A )  +00.

Denote E the k-jet at the origin of f.

DEFINITION 3.5. - The holomorphic function-germ f has 
m provided that m is the least number satisfying the following property. For
any 1~ &#x3E; (pg (f , A  ) + 1), a sufficiently small neighbourhood E 

is the union of the P-equivalence classes of a finite number of m-parameter
families of If the modality of the function-germ f is equal to 0 then f
is called P -simple.

Remark. - The 9-finite determinacy theorem implies that m does
not depend on the choice of k.

THEOREM 3.1. - For any k &#x3E; 3, the variety of the non ’P-simple
function-germs is of codimension 2 in the space 

THEOREM 3.2. - Any P-simple function-germ f : (C2, 0) -~ ((C, 0)
with a critical point at 0 is ’P-equivalent to one of the following function-
germs :

are strictly positive integers. Here pT denotes the Pl f cker- Tyurina
number of f (see Section 3.5 below).

This theorem is proved in Section 4.
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3.5. Adjacencies of the 7-singularity classes.

We keep the notations of the preceding subsection.

DEFINITION 3.6. - A P-singularity class is a subset of the space A~
which invariant under P-equivalence.

If X is a P-singularity class, we write f E X if f : (C~, 0) -~ (C’ 0) is
a function-germ belonging to X. Denote by

the set of function-germs belonging to the P-singularity class X.

DEFINITION 3.7. - The Pliicker- Tyurina number of a function-germ
f E X, denoted pT ( f ) , is the codimension of I[X] in .J~l 2 .

The Plucker-Tyurina numbers of the P-simple function-germs are
given in the table of Theorem 3.2.

DEFINITION 3.8. - A P-singularity class L is called adjacent to a
P-singularity class K, denoted L - K, if every function-germ f E L can be
deformed to a function-germ of class K by an arbitrary small perturbation.

If L is adjacent to K and K is adjacent to J then L is adjacent to J.
We simply write

omitting the arrow between L and J.

Here is the list of all the adjacencies for the P-simple singularities in
the space M.

1) The P-singularity class A3 denotes the function-germs f : ((~2, 0) ~
(C, 0) equal to y2 ~-- x4 up to a biholomorphic change of variables in C2.

2) The P-singularity class(2) Kj denotes the set of function-germs
g : (C2 , 0) ~ (C, 0) such that the origin is an inflection point of Ig = 0}
with anomaly j + 1.

~2~ The letter K refers to Kazarian.
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The parenthesis (X) means that the P-singularity class X is not

P-simple.

This table should be read as follows:

1) The P-singularity class PAf,q, p  q, is adjacent only to the 
such that j  p, k  q and to the Kj for which i  q.

2) The P-singularity class PA2 is adjacent only to PAl (and not to
Kl for instance).

3) The only P-singularity class which is not P-simple and which
bounds the list of P-simple singularities is A3.

The first statement follows from Theorem 3.3. The second statement

is elementary (see [7]). The third statement will be proved in Section 4.

3.6. P-versal deformations of germs belonging to PAp’q.

THEOREM 3.3. - 1) The deformation F : X (C2, 0) ---t (C’ 0)
defined by the polynomial

is P-versal.

2) The deformation (F, AF) is g-equivalent to the deformation

(cx, ~3, x, ~) H (P(a, ~3, x, ~), xy) where P is the polynomial defined by
the formula

The proof of this theorem is given in Section 5.
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Figure 2. The Plucker discriminant of the families of curves

+ X4 + ’Bx3 + y3 - E (left-hand side) and PA2 : y2 + X3 +
Ai r == c (right-hand side) for real values of the parameters A, ~.

In [7], we remarked that the multiplicity of intersection of the Hessian
curve {AF = 0} with the plane projective gives rise to
a stratification of the space of the parameters (A, E) E (~~ x C. The closure
of the strata of codimension one is called the Plucker discriminant.

The figures labelled from 2 to 4 show the list of the typical singularities
of Plucker discriminants for two and three parameter families of functions
with P-simple critical points (of course transverse intersections of these
Plucker discriminants are allowed). This result is obtained using Theorem 5
and the list of adjacencies of the singularities.

3.7. Further results.

The results of this paper can be used to compute local topological
projective invariants for the P-simple function-germs. Such invariants were
defined and computed in [7]. The P-simple function-germs have a 
property analogous to the K(7r, 1) property of the complement of the
bifurcation diagram of the simple function-germs (see [7]).

The methods of this paper can be carried out for the case of flattening
points of curves in (i.e., the points of a curve for which the osculating
hyperplane has a higher order of tangency than usual). A positive lower
bound for the modality was found in [7] for n &#x3E; 2. In particular, there are
no P-simple objects in dimension higher than 2. As E. Ghys remarked this
lower bound is defined in a way analogous to that of Dirichlet series.

The two starting points of this research where the Plucker formula
and the Kazarian theory of flattening point of rational curves (see ~11~, [13],
[12]).
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Figure 3. The Plucker discriminants of the families of curves PA2: xy +
x 5+ .ÀIX4 + A2 X3 + y3 = E and + y4 + .Àlx3 + = E.

A transversal slice of the surface of the left hand side gives two curves

intersecting with multiplicity 4 at the origin.

The Plucker formulas were generalized by several authors among
which Arnold, Griffiths, Kleimann, Piene, Pohl (see [18] and references
therein, [4]).

The Kazarian theory was to some extent treated as a particular of the
Legendre mapping deformation theory introduced in [7] and pursued in [8].

This Legendre deformation theory is just an extension of the theory
of Legendre mappings developed by Arnold, Zakalyukin and others (see [2],
[3], [21]). It enables us to give, for instance, versal deformations of surfaces
in RP3 with respect to parabolic curves and special parabolic points.

The Ph. D. thesis of R. Uribe [20] contains also much interesting
material on the geometry of curves and surfaces and their relation to

symplectic and contact geometries.

E. Ghys raised the interesting question of studying the case where
the lines do not come from local projective structure but from a more
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Figure 4. The Plücker discriminants of the families of curves
K3 : 

general second order differential equation. In such a case, one might wonder
whether there is a relation between the vanishing inflections and the

violation of Desargues theorem or not.

4. Proof of Theorem 3.2.

4.1. A preliminary remark.

Let f : C2 ---+ (C, 0) be a holomorphic function-germ. Fix a linear
coordinate-system x, y in ~2. Denote the Hamilton vector-field of f by

Remark that this vector field depends on the choice of the coordinate

system. By a straightforward computation, we get the following proposition.

PROPOSITION 4.1. - The Hessian determinant of f is equal to the
determinant of the 2 x 2 matrix whose columns are the first and second

derivatives of the anine coordinates (x, y) along X f.

4.2. Normal form 

Let f : ((C2, 0) ~ (C, 0) be a Morse function-germ such that the
anomalies at the origin of the branches of f -1 (o) are finite. Then there
exists a linear coordinate system (Xl Y) such that f admits the preliminary
normal form

with r(O) = 8(0) = t(O) = 1 and p  q. Remark that the numbers p and q
are the anomalies at the origin of the branches of (0).

The proof of the following proposition is given in the next three
lemmas.
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PROPOSITION 4.2. - The following 9-equivalence relation holds:

LEMMA 4.1. - There exist holomorphic function-germs a, b : (C, 0) -
(C, 0) such that the following 9-equivalence holds:

Proof. The Hamilton vector-field of f is of the following form, with
ri, r2 E M2:

Using Proposition 4.1, we get by a straightforward computation that
the Hessian determinant Af of f is of the type

where r3 E ./1~13.

The Morse lemma implies that there exists a biholomorphic map-germ

such that we have the equality

By definition of 9-equivalence, we have the g-equivalence relation

The division theorem implies that one can represent f o cp in the form

where a, b, c are holomorphic function-germs.

The definition of 9-equivalence implies the g-equivalence relation

The lemma is proved. D
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LEMMA 4.2. - The orders of the holomorphic function-germs a, b of
the preceding lemma are respectively equal to 3 -f- p and 3 -t- q, i.e.,

with aobo # 0.

Proof. Put E(x, ~) == x~. Denote by j (resp. 1~) the highest number
such that a E M3 (resp. b E That is the first term in the Taylor series
of a (resp. b) appearing with a non-zero coefficient is of degree j (resp. k).
A priori j or k can be infinite but we shall see that this is not the case.

Denote by

. Cl (resp. C2 ) the branch of the plane curve-germ of equation f = 0
tangent to the x-axis (resp. to the y-axis),

. O 1 (resp. A2) the branch of the plane curve-germ of equation
0 f = 0 tangent to the x-axis (resp. to the y-axis).

. (Cf - the multiplicity of intersection at the origin of the curve
germs GR and 

We have

The curve-germ GI is tangent to the x-axis while A2 is tangent to the

y-axis. Hence, their intersection number is equal to

Similarly, we have the equality

Consequently the numbers j, k are given by the following system of

equations:

This means that j = (Ci . A) and k = (C2. A).
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The preliminary normal form given by formula (2) above implies that
the curve-germ Cl is parameterized by a holomorphic map-germ of the type

Denote by 6 E Ot the holomorphic function-germ of the parameter t
obtained by restricting 0 f to the curve-germ C1.

The number (C1 ~ A) is equal to the degree of the first term in the
Taylor series of 6 appearing with a non-zero coefficient.

Using the old-fashioned notations, the Hamilton vector field X f of f
is defined by the Hamilton differential equations

with ml,m2 E A4 .

The parameterization given in (6) allows us to identify the ring
of holomorphic function-germs on GI with a subring of Ot. Via this
identification, the restriction D of the derivation along the Hamilton
vector-field X f to GI is a (holomorphic) derivation of Ot. The first equality
of the system of equations (7) implies that

Using (6) and (8), we get the Taylor expansion

Thus I and consequently

B~JL 20132013/ ~,~. 
.

The proof that (C2.A) = 3 + q differs only in notations. This concludes the
proof of the lemma. D

We keep the same notations.
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LEMMA 4.3. - We have the g-equivalence relation

Proof. Since 0, there exist a, {3 E C~* such that the equalities

hold. The biholomorphic map-germ

induces the 9-equivalence relation

By definition of 9-equivalence, we have the 9-equivalence relation

This concludes the proof of the lemma and of Proposition 4.2. D

4.3. Quasi-homogeneous filtration and notations.

1) In Arnold’s R-classification [1], the notation f C Ak means that
f : (CCn, 0) --~ (C, 0) is a holomorphic function-germ such that there exists a
coordinate system for which f admits the representation

2) In the next subsections, we assume that the reader is acquainted
with the notion of quasi-homogeneous filtration (for details see [5]). Given
a quasi-homogeneous filtration in C~, in order to avoid confusions with the

singularity class Ak, we shall denote by Fd C 0 the C-vector subspace of
holomorphic function-germs of order d instead of the notations Ad which is
commonly used.

3) We write f = fo + 6(d) if f, are holomorphic function-germs
such that f - 10 E Fd+ 1 -
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4.4. PA2 normal form.

PROPOSITION 4.3. - For any holomorphic function-germ f : (C2, 0) -
(C, 0) belonging to the R-singularity class A2, the tuTo following statements
hold:

1) The 9-Milnor number of ( f, is finite.

2) We have the 9-equivalence relation (

Proof. - We fix a linear coordinate system (x, y) in (C~2, 0).
In C~, we introduce the quasi-homogeneous filtration for which the

weight of the monomial is 2i + 3 j .

A non-degenerate linear map a: C2 ----t (~2 sends the inflection points
of a curve to the inflection points of its image, thus the maps f and f o a
are P-equivalent. Therefore, without loss of generality, we can assume
that f E A2 admits an expansion of the type

LEMMA 4.4. - The holomorphic function-germ f is P-equivalent to a
holomorphic function-germ of the type y2 -~ x3 + õ(7).

Proof. We have

Moreover

Put a(x, y) = (X - -1 cy, ?/). The function-germ f o a is of the type

This proves the lemma. 0

The previous lemma implies that without loss of generality, we can
assume that our holomorphic function-germ f : (C~,0) --~ (C, 0) is of the

type
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LEMMA 4.5. - The holomorphic function-germ Af admits the

expansion 0 f = -18x4 - 24xy2 + 

Proof. The preliminary normal form (10) implies that the Hamilton
vector-field X f of f admits an expansion of the type

Using this expansion, we get the lemma by a direct computation. 0

Define the holomorphic function-germs H, E E C7 by

We have proved the existence of a 9-equivalence relation of the type

with r E F10.

We now prove that the g-equivalence

holds for any rl E F8, r2 E Flo. This will conclude the proof of Proposi-
tion 4.3.

In order to prove the 9-equivalence relation (11), we introduce the
O-submodule T of the extended tangent space to (H, E) defined as follows.

The O-submodule T of 0 x 0 is generated by

Here v . (H, E) denotes the Lie derivative of the map-germ (H, E)
along the vector-field v.

Next, consider the 0-nodule M defined by

LEMMA 4.6. - The 9-equivalence (H + ri, E + r2) - (H, E) holds for
any ri E Flo provided that M is contained in T.
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Proof. The proof is standard. First we prove the assertion for
formal power series and then use the 9-finite determinacy theorem.

The induction step is as follows.

Assume that we have proved the 9-equivalence relation

with ml e Fdl and m2 E Fd2’ for some pair di &#x3E; 8, d2 &#x3E; 10.

Assertion. The G-equivalence relation (12) implies that

We prove this assertion.

The inclusion MeT implies that (ml, m2) admits a representation
of the type

with a, b E 0, v E diff(2).
Put

Define the biholomorphic map-germ cp : (C~2, 0) ~ ((C2, 0) by

and the matrix A E GL(2, C7) by

With the notations of Subsection 2.2, we get the equality

Using the equality (13), we get that

This proves the assertion formulated above.
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This assertion implies that for any k, there exists a map-germ

V) = V)2) E (0 x 0) with 01 E ’ljJ2 E such that the following
g-equivalence holds:

The inclusion H C T implies that the 9-Milnor number of (H, E) is finite.
Thus, the 9-finite determinacy theorem (Theorem 2.2) implies that

provided that k is chosen big enough. This concludes the proof of the
lemma. 0

The following lemma concludes the proof of Proposition 4.3.

LEMMA 4.7. - The 0-module M is contained in T.

Proof. Denote by the O-submodule of M defined by

Let Jr : M -~ (M/.MM) be the canonical projection. The Nakayama lemma
(see [15]) implies that the following two equalities are equivalent:

The C-vector space 7r(M) is generated by the images under 7r of the
eight following map-germs

Direct computations show that the images under 7r of the eight following
map-germs of M n T are linearly independent:

Thus, the equality 7r(m) = 7r(M n ~) holds. The lemma is proved and so
is Proposition 4.3. D
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4.5. A3 is not P-simple.

Arnold’s classification implies that any holomorphic function-germ
with a critical point at the origin of critical value equal to zero which is
neither in A1 nor in A2 is adjacent to A3 (see [1], [5]).

Next, the function-germs in A1 which do not belong to a for

some value of p, q form a set of infinite codimension in ./~12. Consequently,
in order to prove that there are no other p-simple singularity classes than
the PAP"’s and PA2 it is sufficient to prove the following proposition.

PROPOSITION 4.4. - Any holomorphic function-germ f : ((C2, 0) -
(C, 0) such that f E A3 is not P-simple.

Proof. That f E A3 means that there exists a biholomorphic
map-germ ((~2, 0) - ((~2, 0) such that

A non-degenerate linear map sends the inflection points of a curve to
the inflection points of its image. Hence, without loss of generality we can
assume that

Consider the one-parameter family of function-germs f defined as

follows. Let y) = p (x, y) + (0, and put f a = H o 

We denote by the determinant of the 2 x 2 matrix whose lines

are the first and second derivative of ~p~ along the Hamilton vector-field
of H.

The following lemma will not be proved. It can be obtained by a direct
computation.

LEMMA 4.8. - The holomorphic map-germ (H, is 9-equivalent
to (fy, Af)

The proof of Proposition 4.4 is based on the three following assertions:

. Assertion 1: if f a is P-equivalent to f b then a2 = b2 .

. Assertion 2: if (H, is V-equivalent to (H, then a2 = b2.
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. Assertion 3: if fa is P-equivalent to f b then (H, is V-

equivalent to (H, 
Assertion 1 implies that A is a modulus. Hence the modality of f is at

least 1 provided that assertion 1 is proved.

Assertion 3 follows from Lemma 4.8 and from the fact that the

9-equivalence group is a subgroup of the V-equivalence group K.

It remains to prove assertion 2.

Define the quasi-homogeneous weight of x2yj to be i + 2 j .

LEMMA 4.9. - The map-germ is V-equivalent to a holo-

morphic map-germ of the form (.

Proof. The holomorphic map-germ (/?: (C , 0) ~ (CC2, 0) admits an
expansion of the form

Hence ((C2, 0) - (C~2, 0) is of the form

Consequently, we get the expansion

where the brackets are equal to the following 2 x 2 determinants:

Denote by - the V-equivalence relation.

We substitute ~2 by -x4 in [x, y] and x4 by -y2 in [x, x’]. We get the
V-equivalence

This proves the lemma. 0

Define the family of function-germs Ea depending on the parameter
a E C by Ea (x,y) = ay3+ x6

The next lemma concludes the proof of Proposition 4.4.
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LEMMA 4.10. If a holomorphic map-germ of the type (H, Ea + 6(6))
is V-equivalent to a holomorphic map germ of the type (H, Eb + õ(6))
then a2 = b2.

Proof. - Denote the two holomorphic map-germs by (H, Ea + rl )
and (H, Eb + r2) with rl, r2 E F7.

Assume that there exists an invertible 2 x 2 matrix A with elements

in C~ and biholomorphic map-germs g : (C2, 0) -~ ((C2, 0), ~ : (C, 0) - (C, 0)
such that

Remark that this equation is in fact a system of two equations. We shall
call them the first and second equation of the system (14).

The matrix A is of the type

E 0.

Write

Equating the terms of quasi-homogeneous weight 2 in the first equation of
the system (14), we get that n = 0.

Equating the terms of quasi-homogeneous weight 4 in the first

equation of the system (14), we get the equality

where c denotes a non-zero constant.

Thus p - :f:m2, q == 0. Consequently, the map-germ g admits an

expansion of the type

The second equation of the system (14) is of the form



875

Equating successively the terms of weight 4, 5 and 6, we get that 7 E F3.
Consequently the following equality holds:

By identification of the coefficients of x6 and y3 in this equality, we get the
equalities

The lemma is proved. D

This lemma concludes the proof of Proposition 4.4 and that of

Theorem 3.2.

5. Proof of Theorem 3.3.

For notational reasons, we assume that p and q are strictly positive
integers.

Let P : x CC2, 0) ~ ((C, 0) be the holomorphic function-germ
defined by the polynomial

~Cxl, ... ~ C~~), ~ _ ~~1, ... , ~q).
Denote by

an arbitrary deformation of the holomorphic function-germ

and by G a representative of G.

The function (7(~,.) has a Morse critical point in a neighbourhood
the origin provided that q is small enough.

A translation sends an inflection point of a curve to an inflection

point of the translated curve. Consequently, we can assume without loss of

generality that the Morse critical point of 0(-y,.) is the origin.
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LEMMA 5.1. - The deformation (G, AG) is 9-equivalent to a

deformation induced from (P(c~, (3, x, y), 

Proof. - The holomorphic function-germ f = G(o, .) belongs to
the P-singularity class Thus Proposition 4.2 implies that the

following 9-equivalence holds:

Hence (G, AG) is 9-equivalent to a deformation of

Define the deformation

by the polynomial mapping

Using the g-equivalence (15), we get by direct computations that the
tangent space to the deformation A is TA - (0 x 0). Thus, the G-versal
deformation theorem (Theorem 2.2) implies that the deformation A is

9-versal. Consequently (G, AG) is 9-equivalent to a deformation induced
from A.

Denote respectively by q, A the parameters of the deformations G
and P. We have A = (0152,{3) E Cp+q. Put p = (,u 1, ... , ~5 ) . We use the
old-fashioned notation

for a map inducing the deformation equivalent to (G, AG) from A.

Lemma 5.1 is a consequence of the following lemma.

LEMMA 5.2. - The map-germ p vanishes identically.

Proof. Recall that G denotes a representative of the germ G.

For, small enough, the function G"(~,.) has a Morse critical point
at the origin. Consequently, Proposition 4.2, implies that for any, small
enough:

1) AG(7,.) has a Morse critical point at the origin of critical value 0;
2) the restriction of G(~y, .) to each branch of the plane curve

has a critical point of the type Ak 2.

Condition 1) implies that p5 vanishes identically. Then, condition 2)
implies that /11, ... , ~4 also vanish identically. The lemma is proved. 0
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LEMMA 5.3. - Assume that Vj E ~ 1, ... , p~, Vk c f q~, the

vectors (X 2+j, 0), (y2+k, 0) are contained in the tangent space to the

deformation (G, AG). Then the g-equivalence (G, OG) N (P(a, /3, X, y), XY)
holds.

Proof. Consider the deformation

of ( f , A  ) defined by the formula

By direct computations, we get that under the assumptions of the lemma
the tangent space to the deformation B is TB = (O x O). Thus, the G-versal
deformation theorem implies that B is G-versal.

Consequently the deformation

is induced from a deformation equivalent to B. The same argument as the
one given in Lemma 5.2 implies that (P(a, (3, x, y), xy) is induced from a

deformation equivalent to (G, AG)-
On the other hand, Lemma 5.2 implies that (G, AG) is induced from

a deformation equivalent to (P(c~, (3, x, y), xy). We have shown that:

. (G, AG) is induced from a deformation equivalent to (P(a, ,~, x, y), xy);

. (P(a, (3, x, y), xy) is induced from a deformation equivalent to

Consequently and (P(a, ~3, x, ~), xy) are ~-equivalent. The
lemma is proved. D

By definition of P-versality, these two lemmas imply that a function-

germ G satisfying the conditions of Lemma 5.3 is a P-versal deformation.
It remains to find such a deformation of f.

We assert that the deformation F : (Cp+q x (C2, 0) ~ (C, 0) defined by
the formula

satisfies the assumptions of Lemma 5.3.
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We show that the tangent space to the deformation (F, OF ) contains
the (x 2+j, 0)’s, for j  p. The proof that the (y 2+k, 0),S for k  q are
contained in the tangent space to the deformation (F, AF) differs only
in notations.

We fix an integer j  p and in order to avoid too many indices we

put aj = T. We call A = (a, (3) the parameter of the deformation F.

Final assertion: the vector (X 2+j, 0) is contained in the tangent space
to the deformation (F, OF ) .

Denote by M the 0-module

LEMMA 5.4. - The 0-module M is contained in the tangent space to
the deformation (F, AF)-

Proof. The function-germ f = ~(O? -) belongs to the P-singularity
class Thus Proposition 4.2 implies that the !9- equivalence relation

holds.

Hence the tangent space to the deformation (F, OF) contains the
extended tangent space to the map-germ

It is readily verified that the extended tangent space to this map-germ
contains the O-module M. This proves the lemma. 0

LEMMA 5.5. - The restriction to A = 0 of the function-germ 0,AF
belongs to M2.

Proof. The Hamilton vector-field of F(A,.) is

with rl (À, .), r2 (A,.) E A4 2.

A direct computation shows that this equality implies that for any
value of A, we have AF E .J~12. This proves the lemma. D

We conclude the proof of the final assertion stated above.
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By definition of the tangent space to a deformation, the restriction to
T = 0 of the map-germ

belongs to T(F, AF). Thus Lemma 5.4 and Lemma 5.5 imply that the
restriction of the map-germ

to T = 0 belongs to T(F, AF)- Since (0~F, 0) == (x2+j , 0) this concludes the
proof of the final assertion and the proof of Theorem 3.3.
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