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THE QUANTUM DUALITY PRINCIPLE

by Fabio GAVARINI

"Dualitas dualitatum

et omnia dualitas"

N. Barbecue, "Scholia"

Introduction.

The quantum duality principle is known in literature under at least
two formulations. One claims that quantum function algebras associated to
dual Poisson groups can be considered to be dual - in the Hopf sense -

to each other; and similarly for quantum enveloping algebras (cf. [FRT]
and [Se]). The second one, due to Drinfeld (cf. [Dr]), states that any

quantisation of the universal enveloping algebra of a Poisson group can
also be understood - in some sense - as a quantisation of the dual formal
Poisson group, and, conversely, any quantisation of a formal Poisson group
also "serves" as a quantisation of the universal enveloping algebra of the
dual Poisson group: this is the point of view we are interested in. I am now

going to describe this result more in detail.

Let k be a field of zero characteristic. Let g be a finite dimensional

Lie algebra over k, U(g) its universal enveloping algebra: then U(g) has
a natural structure of Hopf algebra. Let F[[g]] be the (algebra of regular
functions on the) formal group associated to g: it is a complete topological
Hopf algebra (the coproduct taking values in a suitable topological tensor

Keywords: Quantum groups - Topological Hopf algebras.
Math. classification: 17B37 - 20G42 - 81R50 - 16W30.
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product of the algebra with itself), which has two realisations. The first
one is as follows: if G is an affine algebraic group with tangent Lie algebra
g, and F[G] is the algebra of regular functions on G, then F[[g]] is the me-
completion of F[G] at the maximal ideal me of the identity element e E G,
endowed with the me-adic topology. The second one is F[[g]] := U(,g)*,
the linear dual of U(g)), endowed with the weak topology. In any case,
U(g) identifies with the topological d ual of F[[g]], i.e. the set of all k-

linear continuous maps from F[[g]] to k, where k is given the discrete
topology; similarly F~~g~~ = U(g)* is also the topological dual of U(g) if we
take on the latter space the discrete topology: in particular, a (continuous)
biduality theorem relates U (g ) and F[[g]], and evaluation yields a natural
Hopf pairing among them. Now assume g is a Lie bialgebra: then U(g) is
a co-Poisson Hopf algebra, F[[g]] is a topological Poisson Hopf algebra,
and the above pairing is compatible with these additional co-Poisson and
Poisson structures. Further, the dual g* of g is a Lie bialgebra as well, so
we can consider also U (g * ) and F[[g*]].

Let g be a Lie bialgebra. A quantisation of U(g) is, roughly speaking,
a topological Hopf k[[h]]-algebra which for h - 0 is isomorphic, as a
co-Poisson Hopf algebra, to U(g) : these objects form a category, called

Similarly, a quantisation of F[[g]] is, in short, a topological Hopf
k[[h]]-algebra which for h = 0 is isomorphic, as a topological Poisson Hopf
algebra, to F[[g]] : we the category formed by these objects.

The quantum duality principle (after Drinfeld) states that there exist
two functors, namely
QUEA, which are inverse of each other, and if Uh (g) is a quantisation of

U(g) and Fh[[g]] is a quantisation of F[[g]], then Uh(g)’ is a quantisation
of F[[g*]], and Fh[[g]]v is a quantisation of U(g*).

This paper provides an explicit thorough proof (seemingly, the first
one in the literature) of this result. I also point out some further details
and what is true when k has positive characteristic, and sketch a plan for
generalizing all this to the infinite dimensional case.

Note that several properties of the objects I consider have been

discovered and exploited in the works by Etingof and Kazhdan (see ~EK 1~ ,
[EK2]), by Enriquez (cf. [E]) and by Kassel and Turaev (cf. [KT]), who
deal with some special cases of quantum groups, arising from a specific
construction, and also applied Drinfeld’s results. The analysis in the present
paper shows that that those properties are often direct consequences of
more general facts.
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I point out that Drinfeld’s result is essentially local in nature, as it
deals with quantisations over the ring of formal series and ends up only
with infinitesimal data, i.e. objects attached to Lie bialgebras; a global
version of the principle, dealing with quantum groups over a ring of Laurent

polynomials, which give information on the global data of the underlying
Poisson groups will be provided in a forthcoming paper (cf. [Ga2]): this is
useful in applications, e.g. it yields a quantum duality principle for Poisson

homogeneous spaces, cf. [C G] .

Acknowledgements. - The author thanks Pierre Baumann and

Alessandro D’Andrea for their valuable remarks.

1. Notation and terminology.

1.1. Topological k[[h]]-modules and topological Hopf k[[h]]-
algebras. - Let k be a fixed field, h an indeterminate. The ring k[[h]]
will always be considered as a topological ring w.r.t. the h-adic topology.
Let X be any k[[h]]-module. We set Xo := X / hX == k X, a k-
module (via scalar restriction

.........

which we call

the specialisation of X at h = 0, or semiclassical limit of X; we shall also

use notation X h-’-° Y to mean Xo ~ Y. Note that if X is a topological
k~~h~~-module which is torsionless, complete and separated w.r.t. the h-adic
topology then there is a natural isomorphism of k~~h~~-modules X ’--" Xo [ [h] ]:
indeed, choose any of Xo, and pick any subset 
such that 03B2i mod h = then an isomorphism as required is given by

(however, topologies on either side may be different).
For later use, we also set FX := k((h)) X, a vector space over

k((h)), which is not equipped with any topology.
If X is a topological k[[h]]-module, we let its full dual to be

X* := Homkjjhjj (X,k[[h]]), and its topological dual to be X* .- ~ f E
X * I f is continuous}. Note that X* = X* when the topology on X is the
h-adic one.

We introduce now two tensor categories of topological k[[h]]-modules,
T~ and 7~~ : the first one is modeled on the tensor category of discrete

topological k-vector spaces, the second one is modeled on the category of

linearly compact topological k-vector spaces.

Let Tg be the category whose objects are all topological k[[h]]-
modules which are topologically free (i.e. isomorphic to V[[h]] for some
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k-vector space V, with the h-adic topology) and whose morphisms are the
k[[h]]-linear maps (which are automatically continuous). This is a tensor
category w.r.t. the tensor product Ti§T2 defined to be the separated h-
adic completion of the algebraic tensor product TI Q9k[[h]] T2 (for all Ti,
T2 E T~--)

Let P® be the category whose objects are all topological k[[h]]-
modules isomorphic to modules of the type k[[h] ]E (the Cartesian product
indexed by E, with the Tikhonov product topology) for some set E: these
are complete w.r.t. to the weak topology, in fact they are isomorphic to the
projective limit of their finite free submodules (each one taken with the h-
adic topology); the morphisms in P® are the k~~h~~-linear continuous maps.
This is a tensor category w.r.t. the tensor product defined to be

the completion of the algebraic tensor product PI Q9k[[h]] P2 w.r.t. the weak

topology: therefore ) yields
all Pi, P2 C

Note that the objects of and of 7~. are complete and separated
w.r.t. the h-adic topology, so by the previous remark one Xo[[h]]
for each of them.

We denote by ltA’0 the subcategory of T~i whose objects are all

the Hopf algebras in 7’0 and whose morphisms are all the Hopf algebra
morphisms in T® . Similarly, we call the subcategory of P® whose
objects are all the Hopf algebras in Pj and whose morphisms are all the
Hopf algebra morphisms in Moreover, we define to be the full

0

subcategory of whose objects are all the H E whose (weak)
topology coincides with the IH-adic topology, where IH := hH + Ker(,E)
c-1 (hk[[h]]).

As a matter of notation, when dealing with a (possibly topologi-
cal) Hopf algebra H, I shall denote by m its product, by 1 its unit el-

ement, by A its coproduct, by c its counit and by S its antipode; sub-
scripts H will be added whenever needed for clarity. Note that the ob-

jects of and of are topological Hopf algebras, not standard
ones: in particular, in a-notation the sum is

understood in topological sense.

DEFINITION 1.2 (cf. [Dr], § 7).

(a) We call quantized universal enveloping algebra (in short, QUEA)
any H E such that Ho := H /hH is a co-Poisson Hopf algebra
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isomorphic to U(g) for some finite dimensional Lie bialgebra g (over k);
in this case we write H = Uh (g), and say H is a quantisation of U(g). We
call QUEA the full subcategory whose objects are QUEA, relative
to all possible g (see also Remark 1.3 (a) below.

(b) We call quantized formal series Hopf algebra (in short, QFSHA)
any K E HAø such that Ko . := K /hK is a topological Poisson Hopf
algebra isomorphic to F[[g]] for some finite dimensional Lie bialgebra g
(over k) ; then we write H = Fh ~ ~g~ ~ , and say K is a quantisation 
We call Q OSHA the full su bcategory whose objects are QFSHA,
relative to all possible g (see also Remark 1.3 (a) below.

(c) If HI, H2, are two quantisations of U(g), resp. of F[[g]] (for some
Lie bialgebra g), we say that HI is equivalent to H2, and we write Hl = H2,
if there is an isomorphism H, H2 (in QUEA, resp. such

that cp = id mod h.

Remarks 1.3. - (a) If H E is such that Ho := H /hH
as a Hopf algebra is isomorphic to U(g) for some Lie algebra g, then
Ho = U(g) is also a co-Poisson Hopf algebra w.r.t. the Poisson cobracket
6 defined as follows: if x E Ho and x’ C H gives x = x’ -E- hH, then

then (by [Dr], §3, Theorem 2)
the restriction of 6 makes g into a Lie bialgebra. Similarly, if K E is

such that Ko := K~hK is a topological Poisson Hopf algebra isomorphic
to F[[g]] for some Lie algebra g then Ko - F[[g]] is also a topological
Poisson Hopf algebra w.r.t. the Poisson bracket { , } defined as follows:
if x, y E Ko and x’, y’ E K give then

then g is a bialgebra again, and F[[g]] is
- 

, ,

(the algebra of regular functions on) a Poisson formal group. These natural
co-Poisson and Poisson structures are the ones considered in Definition 1.2

above.

In fact, specialisation gives a tensor functor from QUEA to the
tensor category of universal enveloping algebras of Lie bialgebras and a
tensor functor from QOSHA to the tensor category of (algebras of regular
functions on) formal Poisson groups.

(b) Clearly QUEA, resp. QOSHA, is a tensor subcategory of 
resp. of 

(c) Let H be a QFSHA. Then H is complete w.r.t. the weak topology,
and F[[g]] for some finite dimensional Lie bialgebra g, and the weak
topology on Ho !2--- F~~g~~ coincides with the Ker(EHO )-adic topology. It
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follows that the weak topology in H coincides with the IH-adic topology, so
is a subcategory of In particular, if H then

0

equals the completion of H w.r.t. the topology.

DEFINITION 1.4. - Let H, K be Hopf algebras (in any category)
over a ring R. A pairing 7r = (, ) : H x K - R is called perfect if it
is non-degenerate; it is called a Hopf pairing if for all x, x 1, x2 E H, y,

y2 E K, the elements and

are well defined and we have

1.5. Drinfeld’s functors. - Let H be a Hopf algebra (of any type)
over k[[h]]. For each n C N, define H®n by Ao := E, ~l :- idH,
and An := (~0 id~(n-2)) 0 if n &#x3E; 2. For any ordered subset

E = {i I, ... , ikl C with ii ...  ik , define the morphism
by with bi : 1 if i V E

and birn := for 1 ~ m  k ; then set

By the inclusion-exclusion principle, the inverse formula 0 E 
holds. We shall also use the notation 03B40 :== 8ø, 6n := 03B4{1,2,...,n}. Then we
define

Note that the useful formula 6n = (id, o A" holds, for all n E N+.
Then H splits as H = k ~ [h] ] ~ and (id -e) projects H onto
JH . := Ker(E): so (id -E)0n projects H0n onto JH0n; therefore 6n(a) -

JH0n for any a E H.

(the k[[h]]-subalgebra of FH generated the second identity follows

immediately from for all n  m), and define

HV := h-adic completion of the k[[h]]-module H~

( Warning: HX naturally embeds into FH, whereas HV a priori does not,
for the completion procedure may "lead outside" FH) . Note also that
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1, = J~ + h . H (with J, as above), so H’ = 1:,,,o and

H~ = h-adic completion of

We are now ready to state the main result we are interested in:

THEOREM 1.6 ("The quantum duality principle"; cf. [Dr], §7).
Assume char(k) = 0.

The assignments H H H’ and H H H’ respectively define functors
of tensor QUEA and QUEA These

functors are inverse to each other. Indeed, for all Uh(g) E QUEA and all
on e h as (cf. ~ 1. 2)

that is, if Uh(g) is a quantisation of U(g) then Uh(g)’ is a quantisation
of F[[g*]], and if Fh[[g]] is a quantisation of F[[g]] then F[[g*]]v is a

quantisation of U(g* ) .

Moreover, the functors preserve equivalence, that is Hl - H2 implies

Our analysis also moves us to set the following (half-proved)

CONJECTURE 1.7. - The quantum duality principle holds as well
for char(k) &#x3E; 0.

2. General properties of Drinfeld’s functors.

The rest of this paper will be devoted to prove Theorem 1.6. In this

section we establish some general properties of Drinfeld’s functors. The first
step is entirely standard.

LEMMA 2.1. - The assignments H H H* = H* and H - H*
define contravariant functors of tensor categories ( )*: 7’0 --~ ~® and
( ) * : 7~® 2013~ which are inverse to each other. Their restriction gives

antiequivalences of tensor categories and, if

The following key fact shows that, in a sense, Drinfeld’s functors are
dual to each other:
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PROPOSITION 2.2. - Let and let 7r =

(, ) : H x K - k [ [h] ] be a Hopf pairing. Then 7r induces a bilinear pairing

If in addition 7r is perfect, and the induced k-valued pairing 7ro: Ho x
Ko ---~ k is still perfect, then H’ = = ~r~ E FH I (TI, Kx) C k[[h]]l
(ul.r.t. the natural k((h))-valued pairing induced by scalar extension). In
particular, if H = K* and K = H* the evaluation pairing yields k[[h]]-
module isomorphisms H’ ~ (Kv) * and (H’ ) * .

Proof. - First note that, for all x, x2 E H, ~, y2 E K, the
elements and :==

(cf. Definition 1.4) are well defined: in fact K acts
- via 7r - as a Hopf subalgebra of H*, hence acts - via 7r Q9 7r - as

a Hopf subalgebra of H*~5H* = (K~5K)*, due to Lemma 2.1. Therefore it
is perfectly meaningful to require 7r to be a Hopf pairing.

Now, scalar extension gives a Hopf pairing (
which restricts to a similar pairing (, ) : H’ x K" -~ k( (h) ) : we have to

prove that the latter takes values in k [ [h] ], that C k [ [h~ ] , for
then it will extend by continuity to a pairing in

addition, this will also imply H’ C 

Take ci , ..., cn then (1, = e hk~~h~~. Now, given y e H’,
consider

(using formulas in §1.5) and look at the generic summand in the last ex-
pression above. Let I BII = t (t  n) : then I

- - --

by detinition of bBl1. ’1’hanks to the previous analysis, we
have , and because

y E H’; thus we get whence

The outcome is ~) E h nk[[h]] for all y E H’,
, -- -- __ __

and therefore C k[[h]] for all n E N, whence

, q.e.d. 
--

We are now left with proving C H’: we do it by reverting the

previous argument.

Let q E (K’)0: then (TI, h-s IKS) E k[[h]] hence
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for all In particular, for s = 0 this C k[[h]], whence -
thanks to non-degeneracy of Jro - we get q E H. Let now n E N and ii , ...,
in E IK; then

therefore ( . In addition, H splits as K = k[[h]] .
1 K EB J~, so KO’ splits into the direct sum of J K0n and of other direct
summands which are again tensor products but in which at least one

tensor factor is k[[h]] . 1K. Since
- 0} (the subspace of H orthogonal to we have

. Since E (cf. §1.5), this analysis

yields whence - due to the non-degeneracy of

the specialised pairing - we get C h n H0n. Therefore 77 E H’; hence
we get C H’, q.e.d.

For the last part of the statement, since K’ is the h-adic completion
of KX one has (KV)* = (K x ) *, so now we show that the latter is equal to
(KX)O = H’. On the one hand, it is clear that H’ = (K X ) * . On
the other hand, pick f C (K X ) * : then f is uniquely determined by f , and
by construction and because

f ~K" ) C k[[h]]. Therefore f) E K* = (H*)* = H (by Lemma 2.1),
thus whence

LEMMA 2.3. - Let , Then I

In particular this holds true for any HI,H2 E QFSHA.

Proof. Clearly , and the assump-

tion on topologies implies that is the I - -adic completion of
HlOH2
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Then, for each we can find an expression
such that for all m; as (I~ )m is

H,gH

the completion we can in fact write

for some (for all m, r,
s), with for all m  n if Thus for any

E 
’--"

H@H

from which one argues that the natural morphism HX --~ H’ induces
a similar map Conversely, -"

(for all m) implies whence one gets by

completion a continuous morphism 2013~ inverse of the

previous one. This gives the equality in the claim.

Finally, by Remark 1.3 (c) any fulfills the

hypotheses. 0

PROPOSITION 2.4.

(a) Let H E Then HV is a unital (topological) k[[h]]-algebra
in T’0’ °

(b) Let H E Then HV E and the k-Hopf algebra H’o&#x26;’

is cocommutative and connected; if char(k) - 0, it is a universal enveloping
algebra, and HV 

Proof

(a) We must prove that HV is topologically free: by the criterion
in [KT], §4.1, this is equivalent to H’ being a torsionless, separated and
complete topological k~~h~~-module. Now, H is torsionless, so the same is
true for FH hence for H X too; as HV is the h-adic completion of 7~,
it is torsionless as well, and by definition it is complete and separated.
Furthermore, by construction HV is a (topological) k[[h]]-algebra, unital
since 1 H E 77~.

(b) Let I := IH (cf. §1.5). The definition yields SH(I) = I, whence
SH (h-’I’) = h-nln for all n E N, so S’H (H" ) = HX, so one can define
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by continuous extension. As for A, the assumption on topologies
implies that (H0H)v = by Lemma 2.3. Moreover, definitions
yield (for all n), hence

so that C thus one gets A HV by continuity. Finally,
by construction 6~ extends to a counit for It is clear that all axioms

of a Hopf algebra in T- are then fulfilled, therefore H’ E Now, since

the unital topological algebra H’ is generated
Consider iv E JH", and j . - E then 0 =

and IM(62) C- 7~ Q9 J H (cf. §1.5) give

Therefore

which maps (through completion) into

whence we conclude that

Thus J/ mod hHv is contained in the set of primitive elements
of since J/ mod hHv generates H o - as J~/ generates Hv - this
proves a fortiori that generates H o, and also shows that H o is

cocommutative. In addition, we can also apply Lemma 5.5.1 in [M] to the
Hopf algebra H o, with Ao = k . 1 and A1 = J/ mod to argue that

is connected, q.e.d.

If char(k) = 0 by Kostant’s Theorem (cf. for instance [A], Theorem
2.4.3) we have U(g) for the Lie (bi)algebra g = We conclude

that H E 0

LEMMA 2.5 ([KT], Lemma 3.2). - Let H be a Hopf k~~h~~-algebra,
let a, b E H, and let 4l be a finite subset of N. Then 

In addition, jf ~ 7~ 0 then

PROPOSITION 2.6. - Let H E Then H’ E and the

k-Hopf algebra H’o is commutative.
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Proof. First, H’ is a of H, for the maps 6n
(n E N) are k[[h]]-linear; to see it lies in we resort to a duality
argument. Let K : :== H* E so H = K* (cf. Lemma 2 .1 ) , I and let
~r: H x ~C 2013~ k[[h]] be the natural Hopf pairing given by evaluation. Then
Proposition 2.2 gives 7~ ~ (KV)* E Pø, thus since K~ is a unital algebra
we have that H’ is a counital coalgebra in Pj, with A, = and

EHi - EHI H, . In addition, by Lemma 2.5 one easily sees that H’ is a k[[h]]-
subalgebra of H, and by construction it is unital for 1 H E H’. The outcome

Finally, the very definitions give x - 61 (z) + E(x) for all x E H.

If x E H’ we have 81(X) E hH, hence there exists xl E H such that
61 (x) - Now for a, b E H’, write a = hal + E(a), b = hb, + E(b), hence
ab - ba = hc with c = h(al bl - bl al ); we show that c E H’. For this we
must check that is divisible by for any finite subset 4D of N-~: as
multiplication by h is injective (for H is topologically free), it is enough to
show that ba) is divisible by Let A and Y be subsets of 4)

such that A U Y - -cD 0: then + IYI ~ 11&#x3E;1 + 1. Now, 
is divisible by I and is divisible by hi y I: from this and the second
part of Lemma 2.5 it follows that ba) is divisible by The

outcome is ab -= ba mod hH’, so H’o is commutative. D

LEMMA 2.7. - Let H2 C Then == HI 0H2 .

Proof. Proceeding as in the proof of Proposition 2.6, let Ki :=
__ --J 

Lemma 2.1), and Hi’ - (i - 1, 2), and similarly (HI0H2)’ -
Then applying Lemma 2.3 we get

LEMMA 2.8. - The assignment H ~--~ resp. H - H’, gives a
well-defined functor ",

Proof. In order to define the functors, we only have to set them
on morphisms. Let H, K K); by scalar ex-

gg

tension it gives a morphism FH -&#x3E; FK of k( (h) )-Hopf algebras, which maps
h-’I,, into h-lIK, hence HX into KX: extending it by continuity we get
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the morphism E Mor,,- we were looking for. Similarly, let
19

and then = (for all n E N),~ 
0

so C K’: thus as (H’, K’) we simply take 0
® 

3. Drinfeld’s functors on quantum groups.

We focus now on the effect of Drinfeld’s functors on quantum groups.
The first result is an explicit description of when Fh[[g]] is a

QFSHA.

3.1. An explicit description - Let 

and set for simplicity
and . Then (for some n E N)
as topological k-algebras. Letting 7r: Fh ~ Fo be the natural projection, if
we pick an Xj C ~r-1 (Xj) for any j, then Fh is generated ... , as

a topological k~~h~~-algebra, that is to say Fh = Fh~~g~~ = k[[zi , ... , xn, h]].
In this description we have I := IFh = (Xl"’" Xn, h), I and If identifies
with the space of all formal series whose degree (that is, the degree of the
lowest degree monomials occurring in the series with non-zero coefficient)
is at least f , that is

for all £ E N (hereafter, we set Idl :- ds for any d = (do, dl , ... , dn ) E
N~n+1). Then -Fh x,, ] ] ((h))’ and

where - and denotes the degree of a polynomial or a
series f in the Xj ( j = 1,..., n), whence we get

Moreover, we easily see that nREN (0) , hence the natural comple-
tion map Fh’ ---~ Fhv is an embedding. Finally, when taking the h-adic
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completion we get

that is

i

as topological k ~ ~h~ ~-modules.

PROPOSITION 3.2. - If then _

Namely, we have Fh ~~g~~ ~’ = Uh(g*) (where g* is the dual Lie bialgebra to
g), that is

Proof. Let Fh[[g]] set for simplicity Fh . := Fh[[g]],
, and let

7r: Fh ~ Fo be the natural projection.

From the discussion in §3.1, we recover the identification Fh -
k[[x1,...,.xn,h]] (for some n E N) as topological k [[h]]-modules, where
Xj E Fh for all j and gives Fo = k ~ ~x 1, ... , and generate
m := Taking if instead of xj (for any j),
we can assume in addition that the xj belong to J := Ker(EFh ), so this
kernel is the set of all formal series f whose degree in the call it 8x ( f) ,
is positive. From ~3.1 we also have as topological
k~~h~~-modules.

Since Fo is commutative, we have zzzj - = hx for some x E Fh,
and in addition we must have x e J too, thus x =  o c (h) xj +
f(zi , ... , zn , h) where cj(h) E k[[h]] for all j and f (x1, ... , xn, h) E

k[[xl,..., x,,, h]] with 8x ( f) &#x3E; 1. Then

where E l~ ~~ 1, ... , xn] ~ [h] ~ is formally obtained from

simply by rewriting xj = h£j for all j. Then since

aX ( f ) &#x3E; 1 we have , whence

This shows that the k-span of the set of cosets mod hFh ~~-1,...,n is a
Lie algebra, which we call C~ . Then the identification Fh = k [:k 1, ... xn~ ~ ~h~ ~ ]
shows that Fo = U(~), so that Fh E QUEA, q.e.d.
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Our purpose now is to prove g* as Lie bialgebras. For this we
have to improve a bit the previous analysis. Recall that( ) 9 := (m/m2)*,
that m (the unique maximal ideal of F[[g]j) is closed under the Poisson

bracket of F[[g]], and that the dual Lie bialgebra g* can be realized as
g* = m~m2, its Lie bracket being induced by the Poisson bracket.

Consider Jv := h-’J C Fh . Multiplication by h-1 yields a k[[h]]-
~

module isomorphism Furthermore, the specialisation map
2013~ Fo = U(~) restricts to a similar map -~ 

iv / iv n The latter has kernel iv n we contend that

this is equal to (J + In fact, let y E iv n hF/: then the se-

hy E J has 8x(q) &#x3E; 0. As above we write y - h-1-y as

: then y = E 

means &#x3E; 1, or = 1 and &#x3E; 0 (i.e. , e hk~~xl, ... , xn, h~~),
i.e. exactly which proves our claim true. Note

also that

Now, recall that g* - m /m: we fix a k-linear section v: g* ~2013~ m of

the projection p: m --~ m /m = g* such that ,(m2) C !)3 + J2. Moreover,
the specialisation map --~ Fo restricts to 7rf:

m; we fix a k-linear section ,:m ~ J of 7r’. Now consider the
composition map a~ := q 0 JL 0 , o v: g* --~ C~. This is well-defined, i.e. it

is independent of the choice of v and q. Indeed, if v, v’: g* - J~ are two
sections of p, and a, ~’ are defined correspondingly (with the same fixed
q for both), then Im (v - v’) C Ker (p) - so that

Similarly, if ~--~ J are two

sections of 7r’, and a, ~’ are defined correspondingly (with the same v for
both), we have Im thus

a q.e.d. In a nutshell, a is the composition
map

where the maps v, i, jl, fj, are the ones canonically induced by v, 1, /-1, q,
and v, resp. i, does not depend on the choice of v, resp. 1, as it is the inverse

of the isomorphism
induced by p, resp. by 7r’. We use this remark to show that a is also an
isomorphism of the Lie bialgebra structure.

(1 ) Hereafter, the product of ideals in a topological algebra will be understood as the
closure of their algebraic product.
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Using the vector space isomorphism a~: g* =-~C~ we pull-back the Lie
bialgebra structure of # onto g*, and denote it by (g*, [ , I ~, , b, ) ; on the
other hand, g* also carries its natural structure of Lie bialgebra, dual to
that of g (e.g., the Lie bracket is induced by restriction of { , }), denoted
by (g*, [ , ] x’ 8x): we must prove that these two structures coincide.

First, for all x1, X2 E g* we have [~1,~2]. == [Xl, X2] x.
Indeed, let

. - , , ..... , . _ ,- . _ ,

(i = l, 2) . Then

The case of cobrackets can be treated similarly; but since they
take values in tensor squares, we make use of suitable maps V0 := v02,
70 ~= 7~ etc; we set also X0 :== T/0° /10 == (q o /1) 02 and V := 0 - 0°p.
Then for all x E g* we have b, (x) = 8x (x) .

Indeed, let Then we

have

where the last equality holds because 6x (x) is uniquely defined as the

unique element in g* 0 g* such that ~2?~x(~)) = ([~1~2]~) for
all ul , U2 E g, and we have

Now we need one more technical lemma. From now on, if g is any

Lie algebra and x E U(g), we denote by 9(:r) the degree of x w.r.t. the
standard filtration of U(g).

LEMMA 3.3. - Let Uh be a QUEA, let x’ E Uh , and let x E
Uh B hUh, n E N, be such that x’ = hnx. Set x :== x mod hUh E (Uh) o’
Then 9(~) ~ n.
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Proof (cf. [EK], Lemma 4.12). - By hypothesis 6n+1(z’) E hn+l
hence therefore 6n+1(lt) = 0, i.e. x E

Ker where g is the Lie bialgebra such that
But the latter kernel equals the subspace
(cf. [KT], §3.8), whence the claim follows. 0

PROPOSITION 3.4. - Let Fh be a QFSHA. Then = Fh.

Proof. As a matter of notation, we set Jv := and we

denote by x e Fov the image of any E Fhv inside = 

Now, for any n E N, we have this can

be read as

which gives Fh 

Conversely, let x’ E (F//) B ~0~ be given; as Fh’ E T~, there are
(unique) " such that x’ - hnx. By Proposition 3.2,

is a QUEA, with semiclassical limit 7(~) where # = g * if Fo = ~[[0]].
Fix an ordered and a Fhv such that
x~ = bx for all A; in particular, since # c we can choose the z x
inside JFh := so = for some x~ e for all A e A.

Since Lemma 3.3 gives 8(lt) # n, that is x E 1= (§ e
- , . .... - . (J V ,-

by the PBW theorem we can write x as a polynomial
in the ba of degree d  n (with coefficients in k); then

_ , ,, , _ ,

mod that is for some

x(j) E H’. Now we can write XO := p (I X,B 1,B E A) - 
where every js E is a homogeneous polynomial in the x’ of degree
s, and jd # 0; but then because d  n.
Since Fh C (F h V)’ - thanks to the first part of the proof - we get also

thus

with and c 

If := is zero we are done; if not, we can repeat the

argument for in the role of := x’ : this will provide us with
an xl C Fh" and an X(2) E FhV such that = h’+lxl + hn+2X(2)’
with hn+lxl E Fh and ~Fh~~’. Iterating, we eventually find a
sequence C Fh’ such that E Fh for all £ c N, and x’ -

in the sense that the right-hand-side series does converge
to x’ inside Furthermore, this convergence takes place inside Fh as
well: indeed, the very construction gives
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(where Pd, is a suitable polynomial of degree 
n + ~) and this last element belongs to IFh +x: but Fh is a QFSHA, hence
it is complete w.r.t. the IFh -adic topology, so the series x’ =  o 
does converge (to x’) inside Fh. 0

3.5. An explicit description of Uh (g)’ (for char(k) = o) . - When
char(k) = 0, for any Uh (g) E QUEA we can give an explicit description of
Uh (g)’, as follows.

Like in the proof of Proposition 2.6 consider Uh (g) * E 
and its natural Hopf pairing with Uh (g) : then we showed that Uh (g)’ -

Note that this time we have in addition Fh ~~g~~ E 
I

with

Pick any basis of g, endowed with some total order; then

(PBW theorem) the set of ordered monomials is a basis of

U(g) : hereafter, (Nl)o denotes the set of functions from I to N with finite
support, and for all e E (NI) 0 and all indeterminates
~i,..., xn. Let be the pseudobasis(2) of g* dual to f xi endowed
with the same total order; then the set of "rescaled" ordered monomials

(with e! := that’s where we need char(k) = 0)
is the pseudobasis of U(g)* = Fh[[g]] dual to the PBW 
of U(g), namely for all

Lift to a subset Uh (g) such that xi = xi mod
hUh(g), and to a subset C Fh[[g]] such that yj mod

hFh[[g]]: then is a topological basis of Uh (g) (as a topological
k[[h]]-module) and similarly ~2~e~e~~eE _ ( ~z &#x3E;o is a topological pseudobasis of

Fh[[g]] (as a topological k[[h]]-module), and they are dual to each other
modulo h, i.e. for all e, e’ C (N-) 0. In

addition, for all e’ E where

Now, also contains a topological basis dual to call

it indeed, from the previous analysis we see - by the "duality

mod h" mentioned above - that such a basis is given by
for some Iso is

(2) From now on, this means that each element of g* can be written uniquely as a
(possibly infinite) linear combination of elements of the pseudobasis: such a (possibly
infinite) sum will be convergent in the weak topology of g*, so a pseudobasis is a

topological basis w.r.t. the weak topology.
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a lift of the PBW basis of U(g). Since is a

topological pseudobasis of Fh [[9]] and for all e’, the
set is a topological basis of the topologically free k[[h]]-

module ~Fh ~~g~~ ~ V : then the dual pseudobasis of ( to

this basis so is the set

Now observe that (hx)e = mod hUh(g)~ by construc-
tion ; therefore

Finally, up to one can also choose the xi so that 6(~) = 0.

To summarize, the outcome is the following:

Given any basis of g, there exists a lift of it in Uh (g)
such that E(xi) = 0 and Uh(g)’ is nothing but the topological k[[h]]-
algebra in Pgg generated (in topological sense) thus Uh (g) -

as a subset of Uh(g).

Remark. - This description of Uh (g)’ implies that the weak topol-
ogy on Uh(g)’, which coincides with its IUhCg)/-adic topology, does coincide
with the induced topology (of Uh (g)’ as a subspace of Uh(g), the latter be-
ing endowed with the h-adic topology). This defines the topology on Uh(g)’
in an intrinsic way, i.e. without referring to any identification of Uh(g)’ with
the dual space to some X E ~® (as we did instead to prove Proposition 2.6).

PROPOSITION 3.6. - Assume char then

Uh(g)I E QOSHA. Namely, we have Uh(g)’ = Fh[[g*]] (where g* is the

dual Lie bialgebra to g), that is

Proof. Consider (cf. Lemma 2.1);
then implies
By Proposition 3.2, Fh [[g]] v is a QUEA, with semiclassical limit U(g*); by

. , B / , * ,

Proposition 2.2 we have thus is a QFSHA with
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semiclassical limit F[[g*]] : indeed, implies Uh ( g 1 ’ =

claimed. 
I 

D

PROPOSITION 3.7. - Assume char(k) - 0. Let Uh be a QUEA.
Then (Uh’) v = Uh.

Proof. Consider Fh := Uh* E Q.FSHA (cf. Lemma 2.1): then
Proposition 3.4 yields = Fh ; furthermore, Uh = (Uh*)* = Fh*,.
Applying Proposition 2.2 to the pair (H, K) _ (Uh, Fh) we get i

and Fh - (Uh’) ". By Proposition 2.4 (as Fh E C nC.,4.®-! , by- 0

Remark 1.3(c)) and by Proposition 2.6 we can apply Proposition 2.2 to the

pair (H, K) = thus getting

LEMMA 3.8. - Drinfeld’s functors on quantum groups preserve
equivalences: if H, =- H2 resp. in then H2v in
QUEA, resp. Hl’ =- H2’ in QTSHA.

Proof. Let Hl , H2 E be two equivalent quantisations of
some F[[g]], and identify them - as k ~ ~h~ ~-modules - with H : = F ~ ~g~ ~ ~ ~h~ ~ ,
so that the equivalence 0: H = Hl - H2 = H reads 0 = id, for

some 0+ E Endk[[h]] (H). By definition, ~+ _ (o - idH ) / h; therefore, for all
we have

Now, let J := Ker(EH): since 0 is a Hopf isomorphism, it maps J into
itself, hence also 0+ (J) - J. Letting mn: H0n -+ H be the
n-fold multiplication, we have

i. e. 0+ (J’) C J" for all n, so 0’ (H’) C H~ , where ~+ is the extension
of 0+ to Hv. Thus 0’ - idHv +hø+ with 0’ E Endk[[h]] (HI), so ØV is an
equivalence 
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Similarly, let Hl , H2 E be two equivalent quantisations of
some U(g), and identify them - as k[[h]]-modules - with H := U(g)[[h]].
Then the equivalence cp: H2 reads cp - id, for some cp+ E

Endk[[h]] (H) . As above,
,. , "

so (tor ~p is a Hopt isomorphism !), hence

for all n E N. Therefore

that is for all n E N, so C H’; hence
with yJ+ ) , E Endk[[h]] (H’), so is an

equivalence in QFSHA. 0

Finally, our efforts are rewarded:

Proof of Theorem 1.6. - It is enough to collect together the previous
results. Proposition 3.2 and 3.6 together with Lemma 2.8 ensure that
the functors in the claim are well-defined, and that relations (~) do hold.

Proposition 3.4 and 3.7 show these functors are inverse to each other.

Finally, Lemma 3.8 prove that they preserve equivalence. 0

3.9. Generalizations. - In this paper we dealt with finite dimen-

sional Lie bialgebras. What about the infinite dimensional case? Hereafter
we sketch a draft of an answer.

Let g be an infinite dimensional Lie bialgebra; then its linear dual
g* is a Lie bialgebra only in a topological sense: in fact, the natural Lie
cobracket takes values in the "formal tensor product" g*~g* := (g 0 g)*,
which is the completion of g* 0 g* w.r.t. the weak topology. Note that a
vector subspace g’ of g* is dense in g* w.r.t. the weak topology if and only
if the restriction g x g" - k of the natural evaluation pairing is perfect.

If g is a Lie bialgebra in the strict algebraic sense (i.e. 6g C then

U(g) is a co-Poisson Hopf algebra as usual; if instead g is a Lie bialgebra
in the topological sense (i.e. 6. C g~g) then U (g) is a topological co-
Poisson Hopf algebra, whose co-Poisson bracket takes values in a suitable
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completion U(g)0U(9) of U(g) ~ U(g). On the other hand, for any Lie
bialgebra g (both algebraic or topological) we can consider two objects to
play the role of F[[g]], namely F[[g]] := U (g ) * (the linear dual of ~7(~)),
endowed with the weak topology, and ~[[~]], the me-adic completion of
F[G] - provided the latter exists! - at the maximal ideal me of e E G,
with the me-adic topology. Both P[[g]] and l’° [[g]] are topological Poisson
Hopf algebras (the coproduct taking values in a suitable topological tensor
product), complete w.r.t. to their topology. Moreover, there are natural
pairings of (topological) Hopf algebras between U(g) and P[[g]] and

between U(g) and ~°[[~]]? compatible with the Poisson and co-Poisson
structures. We still have P[[g]] D ~° ~~g~~, but contrary to the finite

dimensional case we may ~ r[[g]].

Let resp. be defined as in ~1.1. In addition, define 
to be the tensor category of all (topological) Hopf k[[h]]-algebras H such
that: (a) H is complete w.r.t. the IH-adic topology; (b) the tensor product
HIW2 is the completion of the algebraic tensor product HI H2
w.r.t. the topology; in particular, the coproduct of H takes
values in H0H. Then we call QU.EA A, resp. resp. 

the subcategory of resp. of resp. of composed of all

objects whose specialisation at h = 0 is isomorphic to some U(g), resp. some
~[[~]], resp. some F[[g]]; here p is any Lie bialgebra. However, note that
if H E QUEA A then the Poisson cobracket 6 of its semiclassical limit
Ho = U(g) (defined as in Remark 1.3(a)) takes values in Ho 0 Ho, so
that Ho is an algebraic (not topological) co-Poisson Hopf algebra hence
g is an algebraic Lie bialgebra; this means that if we start instead from a
topological Lie bialgebra g we cannot quantize U(g) in the category 
what’s wrong is the tensor product 0 because, roughly, is "too

small" ! Thus one must define a new category To with the same objects
than T, but with a "larger" tensor product 0 (a suitable completion of
(Dk[[h]]) and then consider the tensor category HA0 of all (topological) Hopf
algebras in 70, and the subcategory whose objects have some U(g)
as specialisation at h = 0: then in this case the Lie bialgebra 0 might be of
topological type as well.

Now let’s have a look back. We review our previous work and,
somewhat roughly, point out how far (and in which way) its results extend
to the more generals setting.

Lemma 2.1 : This turns into: Dualisation H H H*, resp. H i

H*, defines a contravariant functor of tensor categories ----+ 



831

resp. which, if char(k) = 0, restrict to QU£AÂ -
QFSHA*, resp. QFSHA* --&#x3E; QUEA^

Indeed, this suggest to define (§) in such a way that dualisation

H*, resp. H H H*, defines a functor of tensor categories 
resp. - then, if char(k) = 0, this will restrict to

, resp. ~ 

Proposition 2.2: This still holds true for any pair (H, K) E x

Moreover, it should also holds true for any pair (H, K) E 
of Hopf algebras in duality.

Lemma 2.3 still holds true up to replacing -L.,,42"-I with 

Proposition 2.4 still holds true but for replacing in part (b)
with 

On the other hand, if we consider H’ for any H E then the

sole thing which goes wrong is in general: indeed,
A(~f~) will lie in something larger. Well, the definition of the category

above should fit in this frame to give exactly H~ E Once

one has fixed this point, our arguments still prove that H’ E 
thus one has a further version of Proposition 2.4, and similarly a proper
version of Lemma 2.3 should hold with resp. RA6, instead of 
resp. 

In any case, we can also drop at all the question of what kind of Hopf
algebra HV is, for in any case the proof of Proposition 2.4 will always prove
the following:

If H E HAø’ then H’o - U(g) for some Lie bialgebra (perhaps of
topological type).

Proposition 2.6, Lemma 2.7: The proofs we give actually show the
following:
If H E HA0, then H’ If . , then

H’1H’2

To prove these results we used a duality argument, relying on Lemma
2.1. Alternatively, given H E or H E we can prove as before

that H’ is a unital k[[h]]-subalgebra of H, and also that H’ is complete
w.r.t. the IH’-adic topology and is closed for the antipode; then what one
misses to have H’ E is a control Moreover, one proves as
before that ~H’~ o is commutative.
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Lemma 2.8 : The way the action of Drinfeld’s functors on morphisms
is defined here still works for any one of the categories we are considering
now.

Sections 3.1 through 3.4 : These results also hold in a greater general-
ity.

Indeed, changing a few details we can adapt the discussion in §3.1
and the (claim and) proof of Proposition 3.2 and of Proposition 3.4

(noting that Lemma 3.3, which still holds true untouched) to the case of
The outcome is

If . I then _ namely
where g" is an algebraic Lie bialgebra which embeds in g* as a

dense Lie s u b- bi alge bra. Moreover,

Similarly, one can apply the same arguments to 
and get essentially the same result but with QUEA’ instead of 
Then again the sole real problem is to provide a proper definition for the

category (or at least which fit well with these results. Once

this (non-trivial...) point is set, the result would read

If then - namely 

Sections 3.5 through 3.7; These again hold in a greater generality.

In this case, the main tool is the use duality functor to switch
from QUEA to QFSHA and the property of Drinfeld’s functors of being
dual to each other ensured by Proposition 2.2. Therefore, our arguments
apply verbatim to the case of Uh(g) E As for Uh(g) E QUEAV,
everything goes true as well the same provided Lemma 2.1 and Proposition
2.2 have been properly extended to deal with as

mentioned above.

Lemma 3.8 : Here again (as for Lemma 2.8) our analysis still works
for any one of the categories we are considering now.

In a nutshell, we can say that, up to some details to be fixed,

The quantum duality principle holds, in a suitable formulation, also
for inhnite dimensional Lie bialgebras, both algebraic and topological.

3.10. Examples. - Several examples about finite dimensional Lie
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bialgebras can be found in [Ga2]: there we consider quantum groups "a la
Jimbo-Lusztig", but one can easily translate all definitions and results into
the language "a la Drinfeld" we use in the present paper.

We consider now some infinite dimensional samples. Let g be a simple
finite dimensional complex Lie algebra, and g the associated untwisted
affine Kac-Moody algebra, with the well-known Sklyanin-Drinfeld structure
of Lie bialgebra; let also 6 be defined as in [Gal], §1.2. Then both g* and
$ are topological Lie bialgebras, with 6 dense inside g* .

Consider the quantum groups and 11M (g) defined in [Gal], ~3.3.
We can reformulate the definition of the first in Drinfeld’s terms via the

usual "dictionary" : pick generators Hi - log (Ki) / log(q2) instead of the
K’t’s, take h = log (q) and fix k ~ ~h~ ~ as ground ring, and finally complete
the resulting algebra w.r.t. the h-adic topology; then we have exactly

11M (g) E and h-I ~(0), so ~- Us’(4) E 

(discarding the choice of the weight lattice M). On the other hand, doing
the same "translations" for and completing w.r.t. the weak topology
or w.r.t. the I-adic topology we obtain two different objects, in 

and in respectively, with semiclassical limit ?[[g*]] and l~° ~ ~C~~ ~
respectively; then we call them ~y~~g*~~ and 1 respectively, with

and
.... J

Now, acting as outlined

in [Ga2], §3, one finds Ph [[6]] v = and Uh(g)’ == ~ ~ ~C~~ ~ , whilst
instead is a suitable completion of which should be an

object indeed, we have and #* is a

topological Lie bialgebra in perfect duality with g*.

Dually, consider the quantum groups Um (6) and UM ( C~ ~ defined in

[Gal], §5; as above we can rephrase their definition, and then we find
the following. First, the formulae for the coproduct imply that 

but and I , thus
. Second, , and

, so in fact By an analysis
v

like that in [Ga2] one shows also that is an object of 

it is a suitable completion of Uh (6), and ; moreover,
A / A

On the other hand, one has Uh(h) = Fh[ [h*]] ] E
and so (uh(6)’) v = h
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