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THE LIFTED ROOT NUMBER CONJECTURE
FOR FIELDS OF PRIME DEGREE

OVER THE RATIONALS:
AN APPROACH VIA TREES AND EULER SYSTEMS

by C. GREITHER and R. KU010DERA

Introduction.

For any G-Galois extension K/F of number fields, Chinburg defined
in [Ch] an invariant SZ = Q(3, K/F) in the class group of the integral group
ring Z[G]. The so-called Root Number Conjecture (RNC for short) states
that Q is the root number class; in particular Q is conjecturally zero if G is
abelian or of odd order. The invariant Q measures, very roughly speaking,
the discrepancy of Galois module structure between the unit group and the
class group of K, but the actual description is much more subtle, involving
the canonical class of K/F and so-called Tate sequences. Until the year
2000, the conjecture had only been proved in special cases, but not even
for all K which are absolutely abelian. One problem is that the conjecture
"does not localize well" .

In [GRW], a lifted invariant was presented. This new invariant, let
us call it exists if the Stark conjecture holds for K. It lies

in a relative K-group and it maps to Q(3, K/F) under the
canonical epimorphism from the to the class group of Z[G].
At least for absolutely abelian K, the lifted invariant exists, and the

Keywords: Lifted root number - Euler systems - Combinatorics - Trees.
Math. classification: 11R18 - llR33 - 11R37 - 05C05.
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so-called Lifted Root Number Conjecture (LRNC) states that it is zero.

The lifted conjecture has the great advantage to localize well, that is, it

is equivalent to a collection of local statements wp == 0 with p running
through all prime numbers. The reader may also consult the survey
article [GRW1]. Burns and Flach [BF] introduced so-called equivariant
Tamagawa numbers which are actually obtained from
a more general construction by specializing to the motive Q( 0) K, and
Burns [Bu] has proved that TQ(Q(0) K , Z[G]) agrees with up to an

involution of Z[G] when G is abelian and w(K/ F) is defined. So actually
LRNC is a special case of the Equivariant Tamagawa Number Conjecture.

Ritter and Weiss [RW] proved that W (K/F) is zero for the case that
F = Q and K is abelian of prime degree 1 over Q such that is tame and

at most 2 primes ramify in K. Our principal result (Theorem 6) removes
the latter restriction: we prove LRNC for all K which are tame and abelian

of odd prime degree over Q, that is, we prove that 0 for these

fields. The tameness condition is presumably not necessary, but we have not
done the extra calculations. Anyway, the only prime which might ramify
wildly is l. In the whole paper we assume to be odd, since for 1 = 2 there
is no difference between the lifted and the unlifted conjecture. It should

be mentioned here that in a very recent preprint [BG] of David Burns and
the first-named author, a proof for LRNC up to its 2-primary part is given
for all absolutely abelian fields K, using rather involved methods; but it is
hoped that the explicit approach of the present paper retains some interest.

Unfortunately it would carry us way too far afield to develop the
arithmetical interpretation of the Lifted Root Number Conjecture even in
the fairly simple case that F = Q and K is abelian of (odd) prime degree 1
over Q. For this, we have to refer to the paper [RW]. Suffice it to say that
the unlifted conjecture is known to be true in this case since the so-called
kernel group D(Z[G] ) is trivial and the Strong Stark conjecture is known
for K; and in order to pass from the unlifted to the lifted conjecture, one
has to show that two integers c and c’ agree modulo L.

This sounds modest, but already the definition of c and c’ is not so

simple. The number c is a determinant of a matrix constructed via local
norm residue symbols, attached to the primes pl,... , p, which ramify in K
and some auxiliary primes. The number c’, very roughly speaking, has to
do with the way the classes ~~ 1 ~ , ... , ~p s ~ sit in the whole class group cl(K)
of K. (Here p, denotes the unique prime of K above pi . ) Ultimately, c’ will
be calculated by finding the valuations at p, of a certain A-power root 
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of the last element E K in a series of elements /’1;j ( j  s - 1) attached
to a suitable Euler system in K. Here A denotes the element o, - 1, with
~ a chosen generator of G = Gal(K/Q), so by Hilbert 90, an element is a
Ath power iff its norm is 1. The /’1;2 are (up to L-th powers, where L is a
very high power of 1) explicit circular numbers; but it is fairly complicated
to extract higher A-power roots of them, and this is made possible by the
use of trees as a bookkeeping device. The main technical result is Theorem
3 in §3, which is later applied via Lemma 15. The reader who wishes to
see this machinery at work in a less complicated setting is advised to skip
directly to the final Section §8, whose content is explained at the end of
this introduction. The construction of the Euler system, which is actually
inspired by the final part of [RW], is done in §§6-7.

It perhaps requires some explanation why one goes to such lengths,
only to treat a fairly limited class of fields K. The point is that if G does
not have prime order, one does not even know how to start since the Z[G]-
module cl(K) defies classification. (That this works for G ( prime is a bit
of luck: cl(K) is killed by the norm N, and Z[G]/(N) happens to be a
Dedekind ring.) So the plan of this work was to consider a setup where
the algebraic situation is amenable, and to see whether one can deal with
the arithmetic. The fact that this is indeed the case if one sufficiently
belabors the method of Euler systems, sheds a slightly more optimistic
light on the matter than the concluding comment of the first paragraph in

[RW]. Actually it seems novel that an Euler system is used in a seriously
non-semisimple situation. In many previous situations one worked with an
arbitrary Galois group, admitting however nonzero integral fudge factors
in all annihilation statements, which is practically just as good as tensoring
with Q and making the situation semisimple. In the present setup we cannot
afford any fudge factors.

In §8 we use our techniques in a more concrete setting in order to
illustrate a generalization of the theorem of Rédei and Reichardt. Let us
explain this general theorem: Assume as before that is an odd prime. K
is supposed to be a tame absolutely abelian field of degree and conductor
Pi ’’ ps, so all p. have to be congruent to 1 modulo l. Genus theory tells
us that the class number of K is divisible by zS-I, more precisely: the G-
coinvariants of the 1-part cl (K) form a vector space of dimension s-1 over
Z/lZ. (This is in complete analogy with the case 1 = 2 where s - 1 equals
the number of cyclic factors of the 2-primary part of the narrow class group,
i.e., the number of invariants of cl+ (K) divisible by 2. The classical theorem
of Rédei and Reichardt determines the number of invariants divisible by 4.)
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There is an s x s matrix A = over Z/lZ whose non-diagonal entries
are determined by the following condition: ~~ 2’’ Here Kj is
the field of degree l and conductor pj; each ~~ is a generator of Gal(Kj/Q)
uniquely determined by a fixed generator of G = Gal(K/Q) as explained
at the beginning of Section 8; and is the global Artin symbol,
i.e. the Frobenius of pi on Kj. The diagonal of A is filled by the requirement
that all row sums of A be zero. Then by construction, A has corank at least
one, and our theorem à la Rédei-Reichardt is now:

THEOREM 7. - The a2-rank of cl(K) equals s - 1 - rk(A).

(Here A - a - 1; the notion "A 2-rank" is explained in full detail in §8.)

Let us mention here that the first published version [RR] of the

classical theorem (l = 2) does not use the corank of a matrix, but
a subsequent paper of Rédei [R] does, up to terminology. There is a

considerable literature on this theorem, see for example the references given
in [Hu].

After proving Theorem 7 by a fairly short argument from class field

theory, we have another look at it from the viewpoint of cyclotomic units.

Any divisibility statement concerning hK implies existence of certain roots
of cyclotomic units, via the analytic class number formula. In general, it is
almost impossible to lay our hands on these roots. The point of everything
following the proof of Theorem 7 is to make clear that in this very special
setting, our methods allow to see perfectly well how these roots can be
extracted. We even reprove a part of Theorem 7: the A 2-rank of cl(K) is

positive if and only if the rank of A is less than s - 1. We do not know
whether our techniques allow to go further than that.

Acknowledgements. - The authors would like to thank Peter Sarnak
for pointing out the existence of the Kirchhoff-Tutte theorem, and Manfred
Kolster for directing us to the paper [Hu]. Some of the work of the first
author was supported by a NSERC grant; the second author was supported
by grant 201/97/0433 of the Grant Agency of the Czech Republic.

1. Some identities in a group ring.

Remark. - This section is technical and its details may well be

skipped on the first reading.
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Let I &#x3E; 1 be an integer, and let G be the direct product of s cyclic
groups of order with generators O"l, ... , ~s . The aim of this section is to

prove a few identities in the integral group ring 7~ ~G~ ; most of these are
fairly technical, and the principal results are Lemmas 5 and 7, which will
be important in the sequel.

DEFINITION. - For any integer i let

So St = 0 if t  0 or t &#x3E; s (l-1)

DEFINITION. - For any T E G and any integer c -&#x3E; 0 we define

(where ure put ( 01 ) = 1 and (°) - (2) - ... - 0). For brevity, sometimes
yve shall also write OT for 0, and NT for 0° _ 7i.

LEMMA 1. - We have (7 - = 0 and (7 - = l - NT. For

any integer c &#x3E; 2 we have

Proof. This is done by a direct computation. 0

LEMMA 2. - For any integer c ~ 0 we have

Proof. The former identity is an easy consequence of
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The latter identity can be obtained by the following calculation:

and the lemma is proved. D

DEFINITION. - We put do = 1 and for any positive integer c we define

where N means the set of positive integers.

LEMMA 3. - For any positive integer c we have
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Proof. We have

and the lemma follows. D

LEMMA 4. - For any positive integer c and any T E G we have

Proof. We shall use induction with respect to c. If c = 1 there

is nothing to prove. Suppose that the lemma already holds for a positive
integer c. Using Lemma 2 we have
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due to Lemma 3, and the lemma follows.

DEFINITION. - We define

and for any positive integer c we put

LEMMA 5. - For any integer c ~ 0 we have

Proof. It is easy to see that

But (~ ~~~1~) means the number of possibilities of distributing c

balls into ji holes (there can be any number of balls in any hole).
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Distinguishing possibilities with cl balls in the first )l holes, C2 balls in the
next j2 holes, etc., we obtain

, - - q , S , -1

so

and the lemma is proved.

LEMMA 6. - For any positive integer c we have

Proof. Let us fix an integer t &#x3E; 0 for a moment and write t = al + b
with integral a, b, 0 ~ b  l (so a = [~] and b = l (I)). We have

Computing the number of possibilities of putting c balls into (t - rl + 1) +
(1 - 1) holes (there can be any number of balls in any hole) we get the
following identity:

Hence
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We have obtained

The lemma follows using the definition of r c and the following identity:

which can be easily proved by comparing the coefficients.

LEMMA 7. - For any positive integer c we have
,..

Proof. It is easy to see that rONal = (Do. Lemma 4 and Lemma 6
give

We have

due to Lemma 3. Hence

and the lemma follows.
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LEMMA 8. - Let us suppose that I is a prime and let Zi mean the
1-adic integers. Then for any T E G, O~L 1 ~ is invertible in 7lz[G] and the
inverse is congruent to T-1 modulo l.

Proof. It suffices to check that

LEMMA 9. - Let us suppose that I is a prime and mean the

I-adic valuation on Z (so, e.g. vl (Ii) = i). Then yve have

(a) For any integer c &#x3E; 0

(b) For any integer i &#x3E; 0

Proof. (a) We shall use induction with respect to c. The case c = 0
is clear. Let us suppose that c &#x3E; 0 and the lemma has been proved for any
index less than c. Lemma 3 gives

It is enough to show that

for any c - 1. This is clear for j &#x3E; 1 - 2. On the other hand it is

easy to see that G~~) is divisible by l for any j e {O, 1, ... , l - 3}.

(b) Lemma 3 gives

Using (a) we have
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So if j &#x3E; 1 - 2 then

If j E {O, 1, ... , 1 - 3} then (11 +j) is divisible by l and again

Therefore

Induction with respect to i gives the result. 0

2. Circular numbers.

Let us fix an odd prime l, positive integers s x s’ and a high power L
of L (we suppose that L satisfies vl (L) &#x3E; where vl is the 1-adic valuation
defined in Lemma 9). Let pi , ... , ps, be different primes all congruent to 1
modulo l . We put 7 = {1,..., s) and I’ = (s + 1, ... , s’l. We assume that
pi - 1 (mod L) for each i E I’. There is a reason for this non-symmetry:
later on we shall apply results of this section to a situation, where primes
pl , ... , ps will be given, while primes ps+1, ... , ps~ will be obtained by means
of the Euler system machinery.

For any i E I U I’ let 03B6i be a fixed pith primitive root of unity and Ki
be the unique degree l subfield of ~(~2). For any subset J C I UI’ we define
(j = fliej (i. Let C be the group of circular numbers of i.e., the

subgroup of generated by all nonzero 1- (ÏUl’ with a E Z. (Thus
the intersection of C and the group of all units of is the group of

circular units Let G = For any i E I U I’ let

ai E G be a fixed generator of 

For any positive integer c and any i E I we define

while for any i E I’ we put
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Moreover, for any i E I U I’ we define

It is easy to see for i E I that Ti can be understood as the norm operator
from Q((i) to Ki. One can also see that there is a bridge between from

the previous section and our namely: putting G = Gal(IIiEI 
and letting ai stand (by abuse of notation) also for the restrictions of the
new above, we obtain

for any subset J C I U I’ and any j E J n I.

We define an s’ x s’ matrix A = over in the following
way: the non-diagonal entries are given by the condition that the restriction
of ~~ 2~ is the Frobenius automorphism of pi in Kj. The diagonal entries
are chosen so as the matrix A has zero row sums: aii = - 3ot 

Let J C I U I’ and let T be a tree on J with root r E J (i.e., a directed
graph with the set of vertices J without circuits such that the out-degree
of r is 0 and out-degree of any other vertex equals 1). We denote the root
r of T by dT and define the valency function vT : letting
vT (i) be the in-degree of i C I. Moreover, we define

where (1, d’) means the edge going from i to j and runs through the set

E(T) of all edges of T.

For any J C I U I’ and for any mapping v : J - N U ~ 0 ~ we put

Moreover, let v : defined as follows:

THEOREM l. Suppose that J C I U I’, that w : J - N U fol
satisfies 1, and that w(i)  l for each i E J r1 I. Put
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n == IJI-1-lwl andrrz= Then

with

where T runs through the set 7i ( w) of all trees T on J with the root i and
valency function vT satisfying vT = w.

Remark. - If any tree T e 7§(w) is to exist, we must have I VT I -

= Iwl I (mod l - 1), so 1 - I n. Hence the theorem states in particular
that

Proof. The proof is done by means of induction over I J 1. Notice
that J ~ s~. If J = fil then Iwl = n = m = 0 and (1 - = pi; on the

other hand, there is just one tree T and for this tree A(T), as an empty
product, equals 1.

Let us suppose that I J &#x3E; 1 and that the theorem holds for any proper
subset of J. Since n &#x3E; 0, there is t E J such that w (t) = 0. Let us choose
and fix one such t and put Jo = J - Let wo be the restriction of w to

Jo. The well-known relation on circular units gives

Now, for appropriate Tj C G, we also have (considering atj as its positive
lift)

where the are and all we require to know about them is that

they go to at, under the augmentation map. Therefore
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where

For each j E Jo, we want to show that

where the sum is taken over all the trees T E T (w) containing the edge
going from t to j. Since Et (w) - o, this will prove the theorem.

Let us distinguish three cases depending on j.

1. At first, let = 0. Then (aj - = 0 and 03B1j = 1. On the
other hand, there is no tree T e 7J (w) with (t, j ) E E(T) in this case.

2. Now, suppose j E I’ and w ( j ) &#x3E; 1. We have ((Jj - 1)D(l) -
If &#x3E; 1 then (p’+Jm-3) - 3 3 3 w.7 ) 3

and

Hence both cases give (aj - 1)D~2"~~» - (mod Let

Wj : Jo - N U {O} be determined by = w(j) - 1 and = w(i)
for i # j . Then we have

Using the induction hypothesis for the right-hand side, we have 
= n, so

and (*) follows by means of the bijection between T~(~) and {T E

~ (w); (t, j ) E defined by the following way: add the edge (t, j )
to any tree from 

3. Finally, let j E I and w(3) -&#x3E; 1. If w(j) &#x3E; 1 then

Since 1 ~ TJ induces a monomorphism ]-modules ]
to ~~(~~)~ sending 0~ ~’~~~ 1~ to (in fact, this is the corestriction
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map), Lemma 8 gives that there is c E Z[G] satisfying

On the other hand, if w(j) = 1 then (~~ - &#x3E; = lTj - Nj and we
see that (**) holds true again, moreover we can suppose c - ajl (mod l )
in this case due to Lemma 8. Treating both cases simultaneously, let us
define two mappings Wj, wj : Jo - N U 101 by the following conditions:
Wj (i) - = w(i) for any i 7~ j, and w(j) - 1, while

w~ ( j ) = l - 1. Then (**) implies

Using the induction hypothesis for the first term on the right-hand side,
we compute = n, so

Doing the same for the second term on the right-hand side of (***), we
have

] E 
the induction hypothesis gives

At first, suppose l -1 ~’ n. Then 7§ (w) = due to the remark

following Theorem 1. If 0 x m’ = = m ( l -1 ) - ( t -1 ) 
n - (1 - 1)  n, and 7§(wJ ) = 0, so (1 - 3 Ei 
Of course, the last holds true also for m - m and it is trivially satisfied if
m’  0. Therefore, we have proved that 1 - 1,~ n implies (*).

Finally, consider 1 - 1 ~ 1 n. The above mentioned remark gives
that T (w~ ) - o if w(j) &#x3E; 1. It is easy to check that the mapping
{T e 7§(w); (t, j) E E(T ) ~ -~ u given by "cut off the edge
(t, j)" is bijective. (If w(j) = 1 then trees are mapped to the first or second
set depending whether the vertex j becomes a leaf or not.) Then (*) follows
using the fact that w(j) = 1 implies c - (mod l ) and n’ = n - (l - 1),
so m’ == m - 1.

The theorem is proved. D
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Remark. - Theorem 1 treats circular units (1 - (j) D (v) for map-

pings v : J - N U {0} which are "low", i.e., satisfy w(i)  1 for each

z E J n I. The following Theorem 2 shows how to do the same job for the
other mappings: we just transfer them to a "low" one.

THEOREM 2. - Suppose J C I U I’, and v : J - N U 101 satisfies
I J I - 1. Then we define another mapping w : ~I -~ N U ~ 0 ~ by

Let us denote ~ and

have

Then we

Proof. For any i E I and any positive integers t, r such that

t - r (mod l ) we have

and

Let t be a positive integer and let r = 1 (~) be its rest upon division by
l. Similarly as in the proof of Theorem 1, Lemma 8 implies that for any
positive integer k there is y such that

if r = 0 and

ifr~0. Let
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For any X ç JI and any Y C J2 we define J -~ {0,1,..., ~ - 1} by

Then due to the two congruences above for any positive integer 1~ we have

for suitable yi E Z[G]. We have w = v,,,. Let us denote nx,y =

1 - and easy to see that if X 7~ o or

Y =,4 o then we have

which implies nX,Y + (~V)(~ 2013 1) &#x3E; n,,, and mX,Y + (~Y) &#x3E; = m.

If n x,y &#x3E; 0 then the remark following Theorem 1 gives

which holds also true if nX,Y  0 since the right-hand side should be
understood simply as C in this case. So

On the other hand, if 1 - 1 0 then mX,Y + (#Y) &#x3E; m and again
Theorem 1 gives (*). Hence we have

The theorem follows since Theorem 1 gives that

is modulo congruent to a rational number. 0

DEFINITION. - Let us define
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THEOREM 3. - Suppose s &#x3E; 1. Let w1 : I’ --~ ~ 1 ~ be the constant

map with value 1 and let us dehne 3 = (1 - . Then we

have

where

the summation running over all trees T on I U I’ with root i such that the

in-degree in any j E I’ equals 1.

Proof. Let H denote the subgroup of G generated by o-1, ... , (J" s.
For each i E I we identify aihl in H/Hl with aj E G from the previous
section, so we have G - It is easy to see that 1 ~ T induces

a monomorphism of Z[H]-modules from Z[G] to Z[H] which satisfies

Ac-4 TAc for any positive integer c, ho H Tr, and IIiEI v2» H D(v)
for any mapping v : I ~ I~‘ U ~ 0 ~ . Let us consider the identity given
by Lemma 7 for c - s - 1 and modify it by Lemma 5. Applying our
monomorphism to both of its sides, we obtain

where vo : 1 - ~0~ is the constant map with value 0 and h’ is determined
by hS _ 1 H 1,’ . Then 0 equals (I - raised to the right-hand side of
the previous identity multiplied by D(wi). It is clear that

For any v : I - N U ~ 0 ~ let v : I U I’ - N be determined by the
following conditions: = v ( j ) for any j E I, and v ( j ) = 1 for any j C I’.
Hence D(v) = D(v)D(wi) and s - lvl = s’ - 

Using Theorem 1 for a = ( 1 - we obtain n = s - 1 and

m = L=1 ~ . So due to the remark following Theorem 1 either l - 1

and and again a C C’ since m &#x3E; 0 in this case.

Therefore
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So the first two summands are negligible; we shall concentrate on
the last one. Consider any i 1 ~ and any v : I - 
satisfying Iv = i. Put m = Let us distinguish two cases.

1. Let 1 - I I s -1- i or max3 E I v ( j ) &#x3E; l. Use v as input to Theorem 2,
in order to make w. Then |w|  |v| and even lwl  Iv if 1.

Hence m’ == m. Moreover, if l - 1 s’ - 1 - Iwl then m’ &#x3E; m.

Theorem 2 gives

Since maxjeI w( j )  l, Theorem 1 implies
Finally, due to Lemma 9 we have

But there is an integer on the left-hand side, so + (m + 1) ~
s - 1 and

2. Let l - 1 1 s-l-z’ and maxJEl v(j) 
and Lemma 9 implies = m (1 - 2) and

Theorem 1 gives

where

Therefore

Putting everything together we need only to show that

for any j E I U I’. But this is easy to see and the theorem follows.
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Example. - Assuming s’ = s, Theorem 3 gives for any s &#x3E; 2 that

For example, for s = 3 we have obtained the following result: let K be a

cyclic field of odd prime degree I, where precisely three primes pl, p2, p3
ramify, assume PlP2P3, and put 71 - ~Q(:{i,2,3})/~(~ ’ ~f 1,2,31 ) . Then
A2 = r-1 (mod Cl2 ), where r is defined by means of root-trees on three
vertices 1, 2, 3. For example, with 1 being a root we have the following three
root-trees:

Hence r is given by

3. Trees and determinants.

Consider the complete symmetric digraph r on the set of vertices
I = ~l, ... , 5} (i.e., there is exactly one edge from every vertex to every
other vertex see [Deo], p. 197). In this section, A = will be supposed
to be an s x s matrix over Z whose row sums are zero. (For later applications
we remark that any s x s matrix over 7l/l71 whose row sums are zero can
be lifted to a matrix over Z whose row sums is zero.)

Following Tutte (see [Tu], 3.1 on p. 468), we declare the edge (i, j)
going from i to j to have conductance aij. Then the Kirchhoff-Tutte

matrix constructed by Tutte (loc. cit.) satisfies _ -A.

The theorem of Kirchhoff and Tutte (see [Tu], 3.6 on p. 470) states that
the sum of A(T), where T runs over all subtrees of r converging to a fixed
vertex t (i.e., with root t), equals the (t, t) minor of (c--). For easier reference
later on we are stating it directly for the matrix A here:
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THEOREM 4 (Kirchhoff Tutte). - The (t, t) minor At of A is given
by the following formula:

Proof. The proof in [Tu] is rather difficult to understand, so we
include a sketch of proof based on ideas of Kasteleyn (see [Ka], p. 79). It is
easy to see that both sides of (*) do not depend on the t-th row of A at all
and that they both are multilinear in the other s -1 rows. Hence it is enough
to prove (*) for matrices of the following shape: the t-th row is zero, every
other row has 1 at the diagonal position, one other entry -1, and all the

remaining entries zero. Now there is a one-to-one correspondence between
the set of all these matrices and the set of all digraphs (without self-loops)
on I where the out-degree of j is 1 if j and 0 if j - t (the arrows of
such a digraph correspond to the positions of - l’s in the matrix). If such
a digraph is not a tree then it has to contain a circle and both sides of (*)
equals 0 (the sum of rows corresponding to the circle is zero, so the minor
is zero, on the other hand each summand on the right-hand side is zero). If
such a digraph is a tree then both sides of (*) equals 1 (there is a common
reordering of rows and columns which changes A into an upper-triangular
matrix, while there is just one non-zero summand on the right-hand
side) . D

4. More on trees, and some linear algebra.

We review some notation and introduce some more:

Let pl , ... , ps be distinct primes all congruent to 1 modulo l (a fixed
odd prime); let Ki be the degree l subfield of Q((p,), k the compositum
of all the Ki, ~i a fixed generator of and G = (This
cancels a previous meaning of G.) So with an evident abuse of notation, G
is Z/lZ-free with basis a~l , ... , Let K c K be the subfield fixed by the
subgroup generated by al a 21 , ... , Thus K is cyclic of degree l; if
G denotes its Galois group over Q, then G is generated by a, the common
image of all 7~ in G. We set I = ~ 1, ... , 

Later on (when we use Euler systems) we shall also use auxiliary
primes ql,...,qs-,. For notational reasons we put qi - ps+- for i =

1,...,s- 1; let I’ = {5 + 1,.... 2~ - I}.
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We previously chose a generator of Gal(Kj /Q) for all I E I U I’ (in
fact for i E I’ we even had to choose a generator of Gal(Q((p~)/Q), and we
abuse notation in letting stand aoe for the restriction to KZ as well), and we
defined a reciprocity matrix A = of shape 2s - 1 by 2s - 1 as follows:
the Frobenius of pi in Kj is for i 7~ j, and all row sums of A are equal
to zero (this defines the diagonal of A).

The link with Euler systems will come from Theorem 3 above. Note
that in this theorem it does not matter that A is only defined modulo l.

We have a look at the statement of Theorem 3. Let us think of the

indices i C I as blue vertices and the indices i C I’ as orange vertices. A

blue tree will just mean a tree on I. Call a tree T on I U I’ well-colored if
all orange vertices have valency (that is, in-degree) 1, and the root is blue.

(Then the leaves are blue, too.) We have the following lemma:

LEMMA 10. - A tree T on I U I’ whose root and leaves are blue,
and which has no two orange vertices connected by an edge, is already
well-colored.

Proof. We define a map a : I - I by sending each orange vertex
to some blue vertex directly above it (this is possible since no orange vertex
is a leaf). Clearly a is injective and misses the root, so it is bijective, which
shows that every orange vertex has exactly one (blue) vertex directly above
it. D

We look at the exponent bi of p- on the right hand side in Theorem
3, but only for i E I (a blue vertex). The expression for b2 involves a sum
running over all trees with root i such that the valency of every orange
vertex is 1, in other words, over all well-colored trees. This will be very
useful since well-colored trees also show up in the context of determinants

as follows:

Let us consider a general matrix B with integer coefficients, with rows
and columns indexed by I U I’. We suppose that the southeast square block
indexed by I’ x I’ is zero and further that the all row sums are zero. Thus
B is a block matrix

with U an I’ x 1-matrix with all row sums zero, and ,S’ an I x I’-matrix.

So neither U nor ,5’ are square matrices: U has an excess column and S

an excess row. Let Ui (resp. Si) denote the square matrix obtained by
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deleting the i-th column from U (resp. i-th row from S). The Kirchhoff-
Tutte theorem (see Theorem 4) boils down to the following:

LEMMA 11. - Under the above hypotheses on the matrix B we have
for all i E I:

Proof. - We claim that the right hand sum is unchanged when we
omit the restriction that T be well-colored. It is no problem to admit all T
containing an orange-orange edge, because B(T) is zero for these. A tree
T with no orange-orange edge and with blue root is either already well-
colored, or, by Lemma 10, it must have an orange leaf. For the rest of the
proof we only deal with trees not having any orange-orange edge. Then we
can show that the sum £ B(T) over all T having at least one orange leaf is
zero. In fact, for any nonempty J C I’ let Lj be the set of all trees whose
set of orange leaves is just J. Pick r E J; then a tree T E Lj is given by a
tree T’ on I U I’ - {r} and the specification of an i E I, the (blue!) vertex i
just below r, and B(T) = Our hypothesis that the row sums of
B are all zero now yields LTELJ B(T) = 0.

Now, by Theorem 4, the full sum F_,I-T-,, B(T) equals ( -1 ) 2 s -1-1 Bi =
Bi. (For a square matrix B, Bi is the (i, i)-minor of B.) It is easy to see
that the minor Bi is equal to det(Soe) det ( Ui ) . D

Now we connect this with Theorem 3. We make an assumption:

Splitting Assumption. - For all i, j - l, ... , s - 1 such that i ~ j,
the prime qi is (totally) split in the field of conductor qj and degree l over
Q, and (totally) split in K.

The first part of this assumption is tantamount to: the I’ x I’ block
of the reciprocity matrix A is zero off the diagonal. The second part of the
assumption is easily seen to be equivalent to: the row sums of U are zero.
Since the overall row sums in the whole matrix A are zero by construction,
we see that under the Splitting Assumption, the entire I’ x I’ block of A
is zero.

Under this assumption we may write A = U o as we did before
for B. Theorem 3 together with Lemma 11 yields (note that the factor
(20131)~ ~+~ from Theorem 3 has now become just a minus sign, because of
the factor (-l)s-1 in the last lemma and since s’ = 2s - 1) :
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THEOREM 5. - The Splitting Assumption implies that

where the exponents are given by

and u is an integer divisible only by primes among ql,’.’, q, - 1 - 0

To conclude this section, we put a technical result on record.

The exterior prod uct on the vector space of column vectors V = A~

(1~ any field whatsoever) is defined as follows: One has the canonical pairing
(-, -) : V x V - k given by ((xl, ... , xn), (yl, ... , yn)~ = xlyl +...+xnYn.
Then for any (n - I )-tuple of vectors tl, ..., the exterior product T =

ti x ... x tn-i is the unique vector satisfying det(tl, ... , v) - (T, v)
for all v E V. It is easy to express this by determinants: let T be the matrix
whose columns are t 1 through tin- 1. Then Ti = (Again, TZ
is obtained from T by deleting the i-th row.) We then have the following
result which we dub the Multilinear Lemma.

LEMMA 12. - Suppose given two (n - l)-tuples wl, ... , Wn-I and
of column vectors in V ; let T = ti x ... x tn _ 1. Then

Proof. The function det(wi, ... , wn_1, T) is linear in every wi,
and in every tj ; moreover, it is alternating in the w’s, and alternating
in the t’s. All this is just as true for the determinant on the right hand
side of the statement. We may thus suppose that we are in the following
special situation: The (n - 1 )-tuple of the w’s is the tuple obtained from
the canonical basis n-tuple (el, ... , en) by deleting exactly one entry, let
us say Ck; likewise the tuple of the t’s is obtained by deleting el from

(el, ... , en). If 1~ f= I, then T = and the left hand side in the statement

vanishes. So does the right hand side: the determinant we got there is

obtained by deleting row k and column from the identity matrix of size
n x n, and this results in a singular matrix l. We may therefore

assume that k = l, so the string of w’s actually coincides with the

string of t’s. Then the matrix the identity matrix
i,j  n

of rank n - 1, so its determinant is 1. On the left hand side we find
= = (T, T) which is also 1 since

T = ~e~ . D
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5. How to calculate certain valuations.

The following result provides the link between the tree calculus

and the valuations that we need further on in the proof. Recall K is

cyclic of degree l over Q, ramified in the rational primes pi,... ps, and
G = (~~ = Gal(K/Q). Put A = cr - 1 E Z[G]. As in the first section, we let
L.1. == L.1.a = F_1-1 CLUa .

LEMMA 13. - Let K/Q be any G-Galois extension, and assume
pi,... ,ps (with s &#x3E; 1~ ramify (totally) in K. Denote the prime above pi by
p-. Suppose C K* is in the kernel of N, the norm element ofZ[G] acting
on the multiplicative group K*. Suppose further that there is a rational
number r such that

Then

(a) a power in K;

(b) = 

1 

with a E K. The rational number r is an ls-2-th

power, and is the precise power of pi dividing r, then is

congruent to E, mod ulo l.

Proof. (a) We have ~ By our

hypothesis, this last term is congruent to 1 modulo that is,
this last term is an ls-l_th power in P := Thus, r~°S 2 is an ls-2-th
power in P. Now exponentiation by l is the same as exponentiation by AA
on P since P is killed by N; therefore exponentiation by A is injective on
P, because K does not contain the 1-th roots of unity. From all this we may
conclude that q is a power in P; the definition of P now yields (a).

For (b) we calculate as follows: By the very hypothesis, 
1 

= r

modulo The evident equality N2 = l N gives N ( l - N) = 0, so

(l- N)2 = L(l - N), and by induction (L - N)’ = N) for i &#x3E; 0. This

gives

Therefore cx-Nls 2 - r modulo ls-1-th powers. This implies that r

is an power in K, and hence also in Q. Let us write r =
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(r’pEl , , , with r’ not divisible by any Pi’ Then
modulo 1-th powers. But is rational. Again since K*l n Q = we

even have

Finally, the exact exponent to which p, divides cxN is vp~ (a), which finishes
the proof. D

It is vital in the preceding lemma to have an element q of norm one.
We need another small lemma which will ensure later on that such a choice

is possible in the construction of our Euler system.

LEMMA 14. - If r, N is an L-th power (in K or in Q, this is the same
thing), then there is a L/l-th power 1 E K, such that for r~’ = we obtain

Ií:,N == 1.

Proof. We can write r, N - tL for some t E Q. Then it suffices to
pose ~’ = 

6. An outline of the main argument.

Here we explain how our Euler system is going to be set up, postpon-
ing some details to the next section. We also show how the Euler system
once it is established will lead to the proof of the main result.

The starting point is the paper [RW]. There, an element E K is

defined as the highest possible A-power root ~I ) . We retain
this element, but we will call it ao.

We know by genus theory (cf. [RW]) that on putting R = Z[~]/(N)
we may write the l-part of the class group of K as follows (the isomorphism
is an isomorphism of G-modules!):

Here hl , ... , are positive integers. By this isomorphism, we do mean
that the ideal class ci maps to a generator of the i-th summand of the

right hand side. We then have hl ~ ... + hS-1 == h, where lh is the maximal
power of l dividing hK. The socle of cl(K)z, that is, the maximal submodule
killed by À, is then Z/lZ-free with basis ... , also need

the obvious fact that all classes [pi] (i = 1,..., s) are in the socle.

Now, using a fairly standard Euler system, we shall successively find
the following data for i = 1, ... , s - 1: qi, ri, cxi . Here qi is a prime in K
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of degree one, with qi in the class ci, and qi (the rational prime below qi)
is congruent to 1 modulo a high power L of l. Furthermore qi will be an
1-th power modulo qj for all i, j E ~ l, ... , s - 1 ~ with i elements

~i C K are furnished by the Euler system as usual (we shall explain). The
algebraic integers cx2 are, roughly speaking, obtained from ri by extracting
A-power roots.

We need to specify the high 1-power L: Let h* be the smallest integer
not smaller than and for i = 0, ... , s - I let L. = 

Thus, Lo, ..., L,-, is a sequence of 1-powers with linearly decreasing
exponents. We let L = Lo. Some more notation: If 0 ~ x, y are elements of
a field E which is clear form the context, then x means that is

an L-th power of an element of E. If band c are ideals in a field E which

is clear form the context, then b means that b/c is an L-th power of a
(fractional) ideal in E. Thus x =L y implies (x) =L (y) but not vice-versa.
A note to the reader: the precise choice of the 1-powers in all congruences
that follow is of course important, but should perhaps be ignored at first

reading: think of all occurring 1-powers just as "sufficiently high" .

We need to assure that the elements 0152I,..., 0152s-I will have two

properties, one coming from the statement of the lifted root number

conjecture in [RW], and the other to make them fit our calculations. Let
us state the first one:

where a is supported on the conjugates of the ideals q. with j  i and the

ramified primes p i , ... , p . In order to see that these elements do fit in with

[RW], we have to work a bit:

LEMMA 15. - The determinant of the matrix

over Z/lZ equals the quantity c’ defined in [RW].
Proof - We have to look at Lemma 5.1 in [RW] which mentions a

quite similar matrix; let us however denote the elements in that matrix by
c~2 and the matrix by V’ to distinguish it from ours. We will show that

V’ is gotten from V by elementary operations on rows; of course this will

prove det(V) = det(V’), and the latter equals c’ by loc.cit.
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The defining property of 0152~ is (0152~) = qi h2 1 a’ with a’ supported on
The element a2 will be reached from az by induction over i

(for i = 0 one takes - ao) and a combination of the following three
operations: (1) multiply 0152i by a product of conjugates of with j  i;
(2) multiply 0152i by a rational factor; (3) multiply ai by an 1-th power in
K. Then operations (2) and (3) do not even change the matrix V, and
operation (1) amounts to row operations. In order to do the details, we
now write

with a2 supported and all xj E Z[G]. Then ~a2 ~ is in the

socle, so the product ql ... is in the socle, and this forces that in
R := Z[G]/(N), all exponents x. become divisible by One can

therefore + now qN is generated by the rational
prime qj, so we can by dint of operation (2) assume that k. = 0. By
operation (1) one can achieve that yl , ..., yz-i become zero. (Note here
that Li divides all Lj with j  i, so the congruence remains intact.) Since
every Li-th power of an ideal whose class is in cl(K)i is an 1-th power of

a principal ideal (we chose Li divisible by operation (3) produces
an 0152~ which has the desired defining property = as stated

above. D

Let us now explain the second requirement. Associated to the set of
q 1, ... , q- i we constructed a reciprocity matrix A; one

assumption made in the construction of the qi ensures that A has the shape

* s The assumption is, then, that the matrix productu 0

is lower triangular with -1
on the diagonal

for i - s - 1, where i means the part of ,S’ having column index  i.

The reader will instantly see that there is an apparent circularity in this
condition, because the i-th column of ,s only becomes defined at the instant
where qi is chosen! This circularity will be eliminated as follows: one goes
ahead and choses the i-th row of S, just to fit (II), and then, by some happy
coincidence, one is able to prove, after having chosen q-, that this row is
the right thing.

No use has yet been made of most of the previous work, that is: no
valuation has yet been calculated explicitly! This is done only at the last
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stage: Theorem 3 will be used to show that for i = 1..., s the following
congruence holds modulo 1:

The valuations of the ai with i  s - 1 are not needed explicitly. This is
not a reason for suspicion, because all these ai are used very seriously in
the making of the last one 

Assuming (I)-(III), we shall now show how the Lifted Root Number
Conjecture follows. Afterwards we shall supply the missing details of the
construction.

Let T be the exterior product of the columns of S. Thus, Ti =
Since the row sums of U are zero, we get det Uoe =

(-1)i-1 det (U1), so from (III) we get vpi (03B1s-1) = (-1)i-1 det (Si) det (U1) =
The Multilinear Lemma gives

using (II). From this we get

On the left hand side, we have the determinant c’ from 5.1 in [RW], by
Lemma 15. Thus we must show that the right hand side is the determinant
c = det(C) where C = is again defined in [RW]. We do this by relating
C and U:

LEMMA 16. - U is obtained from C by deleting the first row of C (its
index is 0, not l~, and by changing the signs of all the remaining entries.

Proof. Let 1  i  s -1. Then cij is given in [RW] by the equation
(qi, Kp, /QP1) == The left hand side is a local norm residue symbol, and
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go is in loc.cit. the chosen generator of G = Gal(K/Q) , which is 03C3 in our

notation. We recall: Kj is the degree l extension of Q with conductor pj ;
aj is a fixed generator of Gal(Kj/Q), extended in the obvious way to an
automorphism of K = Kl ~ ~ ~ Ks, so that Gal(K /Q) is the free Z/lZ-vector
space with basis a,, ... , and all aj restrict to cr. We pick a prime fl3j of
K over p3 and consider T := Since the inertia group of pj
in Gal(K /Q) is just (~~ ~, we obtain T = aj for some a E Z/lZ. By looking
at the restriction of T to Ap we find a = Cij. On the other hand we may
restrict T to where Pi is the prime of Kj below ~3_~ . This gives the
equality We now apply the product formula to the
principal idele qi of the field Q. This gives

Here r runs through all rational primes, and is short for 

a chosen extension of r. Now all terms on the right are 1 except possibly
the terms for r = pj and r - qi. We calculated the former; the latter

equals the global Artin symbol (= Frobenius) ( K~,~~ ~ of qi in This

shows

- , 

B L~ ~ 
- 

.,

our lemma follows, since we have by definition

Since the sum of the first row of C is -1 (this is again shown with
the product formula, and was also used in [RW] Section 7), we get

c = det(C) == -1 det(C without row 0, column 1)

This finally shows c = c’, so the Lifted Root Number Conjecture will be
proved as soon as we shall have set up the Euler system with all required
properties. This we do next.

7. Construction of the Euler system.

We already fixed a certain high power L of the prime l. The Euler

system we will use is the following: to any list of primes Q = {~i? - - - all

congruent to 1 modulo Ll, one attaches the root of unity ((Q) = (91 " ’ ~q2
and the element
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exactly as in [RW]. The elements Iii == IiQ are provided by the general
theory; we shall recall their construction as soon as we need it. We use the
following trick here: The results in [Ru] will sometimes be applied with the
exponent Ll, sometimes (for instance Theorem 3.1) with the exponent L
(Rubin’s notation for the exponent is always M). It is easy to see that the
primes (À in Rubin’s notation) produced by that theorem can be assumed
to lie over a rational prime which is - 1 modulo Ll, not only modulo L.

Before we start, we choose a rational prime qo once and for all, whose
Frobenius on K is a, as in [RW]. We shall require that in addition to
condition (I) (see last section) all ai be chosen as algebraic integers coprime
to qo. (No problem with ao which is already chosen: it is supported only
on the primes that ramify in K.)

Let us suppose i ~ {1,..., and assume all qj, lij, a~ with j  i

have already been constructed, such that

with c., &#x3E; 0 and a some product of conjugates of r  j, in particular
a = 1 for j - 0. For i = 1, we just need cxo and Ko. The element ao has
been defined already, and we let We will see that this fits into the

general scheme.

The choice of the next prime qi is governed by a certain G-

homomorphism 7jJ: V --&#x3E; (Z/LZ) [G]. We choose V to be the G-submodule

generated by the following list ao, ... , ai-I; PI, ... , ps; qo; and
all rational primes q 0 ~pl, ... , which divide the norm of any aj with

(note qo will not be among them, but ql, ... , will: this

follows from condition (I) in §6 since aj is an algebraic integer, so the fac-
torisation of must contain some conjugate of qj and hence qj divides
the norm of if one prefers, one may include ql,..., explicitly in the
preceding list). The columns numbered 1 through i - 1 of S’ exist already;
we pick t*,i, the i-th column of ,S’, to fulfil the requirements

The first condition is void for i = 1; all congruences are meant modulo L.
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There are two very important things we have to say at once: (1) We
announced that S’ is a block in the reciprocity matrix, and now we are
picking a column of ,S’ almost at random! The trick is that we will prove, as
soon as the induction step has been completed: is indeed the exponent
t in (pk, K,+-) a;+i. (2) The existence of the new column is not obvious
and will be proved by induction over i. It is at least clear that this works
for i = 1, since the row vector is nonzero modulo l by [RW] (see
Lemmas 2.1c) and 2.2(ii),(iii), or the proof of our Lemma 20).

We now can describe the map o we will use. Again, the proof of well-
definedness is postponed. Thus, 0 is the unique G-homomorphism from V
to (Z/LZ)[G] satisfying

Recall that q runs over the rational primes except pl , ... , p, which divide
for some 0 x j x z 2013 1. Note that for i = 1, the first and the last

condition are void. We recall that N = sometimes N also

denotes the norm K - Q, which should not lead to any confusion.

Now (assuming that V) exists) we invoke Theorem 3.1 in [Ru] to find
an unramified prime q2 in K of degree one, with the following properties:

(i) q. represents the class ci;

(ii) qi (the rational prime below qi ) is congruent 1 modulo Llql ... 

(iii) for all x E V, the qi-adic value of x is 0 E Z/LZ, and (x) = 
for a unit u of Z/LZ. (The notation cp is again from [Ru] p.400ff.)

As in [RW] Lemma 6.1 we may achieve u = 1 by the device of changing
the choice of generator of 

The condition Spq2 (qj) == == 0 for j  i entails in particular
that qj is an L-th power modulo qi. We have as well that qi is congruent
to 1 modulo qj by condition (ii). This will ensure our Splitting Condition
and nullity of the southeast block of our reciprocity matrix A.

Now the general theory (see again [Ru]) provides an element r,, E K.
We shall have to worry later about its actual construction, but right now
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we only need the following. For all x E V we have by [Ru] Theorem 3.1
(iii) :

modulo L-th powers of ideals. One checks from the definition and formula

(*) that indeed x = E V, and so we get by Proposition 2.4 of [Ru]:

modulo L-th powers of ideals, where a is supported on We

prove right away:

LEMMA 17. is an Ll-th power in Q.

Proof. - We recall that all our qj are congruent to 1 modulo Ll, not

just L. Now Lemma 2.2 in [Ru] tells us that with 0 an Ll-th

power in 7~(((Q)), where Q = ~ql, ... , ,9j and (1 - 
where v is the norm from Q( (I) to K.

It therefore suffices to show that z~ is an Ll-th power in I~(~(~))).
If we raise zQ to the N, the exponent v gets replaced by the absolute
norm on Q( (I ). Thus there exists an element, in the augmentation
ideal of (actually in its s-th power), such that zg

It now follows as in Lemma 2.1 in [Ru] that this is

an Ll-th power. (Our element 1 - ((Q) is not quite the same as Rubin’s Ç,r,
but the reasoning is absolutely the same.) D

We are now in a position to apply Lemma 14 (with Ll instead of L
of course), and assume that Kj is in the kernel of the norm N from K to Q
without destroying the congruence (ri) -L .

Now define ei as follows: it is the greatest natural number e such that
the equation

e-

is solvable, with a, a E K*, and a a product of conjugates of aj with j  i.

Let ai be a chosen solution of this equation with e = ei . (It is easy to
see that the above solution cannot be solvable for arbitrarily high values
of e, since A’ is divisible by in Z[G], and the term a lies in a finitely
generated multiplicative group.)

It is instantly clear from Hilbert 90 that ei &#x3E; 1 since Iii is in the kernel

of N; thus any solution 0152i may be at will multiplied by a rational number;
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later on we shall use this liberty to achieve (among further properties) that
0152i is an algebraic integer coprime to qo.

We now have a fairly long list of things which have to be proved by
induction over i:

(a) The column t*i used in the above construction does exist;

(b) 7t"’ (the ex-post justification of our choice of the
new column in the matrix 6’);

(c) the map V) is well-defined;

(d) is modulo Lzth powers of ideals supported on p1, ... , ps,
ql, ... , q2; i

(e) we have the inequality hi - 1.

Remarks. - (1) These conditions make sense from i = 1 onward,
except (d), which makes sense, and is true, for i = 0 as well, by [RW],
Lemma 2.2.

(2) From [RW], p.lf., we know that eo, the maximal exponent such
that Ko = ~, is a A’-th power, is exactly h = hl + ... ~ hs-1. (We use
s &#x3E; 2 implicitly, because otherwise Ko is not of absolute norm 1, and we
need ~o to have absolute norm 1 to make sure that (1.3) in [RW] and our
definition of eo agree. For s == 1, the Lifted Root Number Conjecture is
true; see [RW].)

We now proceed to prove (a)-(e) for i, assuming of course that
everything is proved for j  i.

Proof of (a). - It was already said that this presents no problem for
t = 1; let us suppose t &#x3E; 2. For any x E K*, let v(x) stand for the vector
(VPl (x), ..., vps (x)) taken modulo l. By obvious linear algebra over the field
Z/lZ, the column t*i fulfilling the requirements specified above exists if and
only if v(ai-1) is not in the span of v(ao),..., V(ai-2)- Just suppose the
contrary; we shall obtain a contradiction with the maximality of We

recall that ei-, is not zero.

Thus we suppose there is a multiplicative combination 6; of ao,...,
a2-2 such that = v(E). We look at x = and the factorisation

of the ideal (x). Then vpi (x) can be written as nil l with ni E 7l, and we
have a congruence modulo powers of ideals:
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with exponents 6j E ZG. Then the 
L 
are all principal. As in the proof

of Lemma 15 we see that then the image of 8j in R = must be

divisible by À for 1 - j - s - 1; so we can write 6i (a - 1)b~ ~ kjN
for suitable 6,’ E ZG and kj E Z. If we let r = ps ns
and y = xr, then the fractional ideal (yN ) is (1) modulo an Li-l-th power
of an ideal. If we change r suitably by a L’-th power of a rational number
(L’ = then actually becomes the unit ideal, so the rational
number yN is ::l:1, and of course we may assume it is 1. By Hilbert 90 we
can find some, E K with

In other words, On raising this to the power Àe2-1 (note
that eoe-1 &#x3E; 0) we find

for some product a of conjugates of aj’s with j  i - 1. Now is just
as well a product of conjugates of aj with j  i - 1, and we may stuff it
into a; thus we have achieved a contradiction with the maximality of ei-l,
see its definition above!

Proof of (b). - This is already proved in [RW] Lemma 6.1 (iii) . Their
(7 is our N; t is chosen to be our which does fit, given our definition
of the homomorphism 1/J (same notation in [RW~ ) .

Proof of (c). - (1) We claim that with A any product
of conjugates of 0152O, ... , 0152i-2, and r rational, has no solution in K. Indeed,
if it did, then (since is positive) we would get {3Àe~-I+l == A/7
contradicting the maximality of 

(2) Let V’ be the submodule of V generated by the following list of
rational primes: PI, ... , ps; qo; and all q V ~pl, ... , ps I dividing some 
with j x i - 1. Let R = Z[G]/(N). Then V/V’ is an R-module since the
norms of the aj ( j  i) are rational numbers supported on p1, ... , 7 ps, and
the set of the primes q, hence belong to V’. We claim that (the classes
of) cxo, ..., I constitute an R/LR-basis of V/V’. We will even show
that the images of these elements are R/LR-independent in M/LM, where
M = K*/Q*. This goes as follows: M is a torsion-free R-module, and there
is the following general lemma which is easy to prove, taking into account
that R is a Dedekind ring:

LEMMA 18. - Let M be a torsion-free R-module, L &#x3E; 1 any 1-power,
xl, .... xn E M. Then the images of the x2 in M/LM are independent
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over R/LR iff the images of the x2 in M/~M are independent over
R/A = 7l/l71. 0

Applying this lemma to ao,..., substituted for the list xl, ... , Xn,
we are reduced to showing that there is no nontrivial dependence relation
between the a’s in M mod A-th powers. In other words, there should be no

product of the cx’s with exponents in fol ... , l - 11 not all zero, which is
equal to a rational number times a A-th power. If there is such a product, it
must involve by induction. But then the existence of such a product
leads to a contradiction, as explained in (1) above.

(3) The module V has an explicit presentation with two lists of

generators: first, the rational primes pl, ... , ps, qo along with the rational
primes q (see above) and second ao through There are two types
of relations: (a) the rational primes are not moved by G, and (b) the
norm relations; N(~) = TIr with 0152 running trough Üo, ...,

and r running through the rational primes in the first list. It is a

consequence of (2) that we already have found all the relations. It is now
easily checked that 0 is well-defined: it preserves all the relations. For

instance is a relation (q* is a number only
divisible by primes q, that is, primes in Y’ but different from all pi and qo ) ;
applying 0 gives the relation

which is true since ] .; similarly for the other cases.

Proof of (d) and (e). - We know that the map V) exists; at the

previous step we chose subject to 
1 
= ri-la with a some product

of conjugates  i -1. It then follows immediately from the definition
of 0 that

Consequently, by [Ru] Proposition 2.4, we get

with a supported on ql, - - ., qi-,. We recall 
2 
- with a some

multiplicative combination of conjugates of the a~ for j  i - 1. Now let

p be any prime of I~ which is totally split from Q. We want to determine
the p-part of the ideal (ai), that is, the exponent x(p) E Z[G] such that
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(ai) - with 1 coprime to all conjugates of p. We need a small
algebraic lemma:

LEMMA 19. - Let n, e be positive integers. Then the annihilator of

multiplication by Àe on Z[G]/(1’) is contained in the ideal generated by N
and where e* is the smallest integer not less than e/(l - 1).

Proof. Recall this is a Dedekind ring. Denote the
canonical map Z[G] - R by an overbar. Then A is a prime element of R,
and is associated to l. Suppose x E Z[G]/(l-) is killed by the factor Ae.

-e

Then = 0 in which easily implies that T E is a multiple
of the lemma follows. D

This is now applied as follows: Recall that Li = For each

j x z 2013 1, we have aj supported on pi,..., pg, ql, ... , qj modulo Ljth powers
of ideals. Thus is supported on modulo Li-1th
powers of ideals. Therefore we obtain for every split prime p of K, with the
help of Lemma 19: If p is not among ql, ... , qi, then the exponent x(p) in the
factorisation of ai is modulo Li a multiple of the norm; if p = qi, then one
first finds ei  ei-1 since e2-1 must be a multiple of e2 
and we may by induction assume eo = h, and lh properly divides the
1-power Thus ei  h, and the term e* in Lemma 19 can be majorized
by h*. By Lemma 19 we now get À~? - 1 ~~? modulo the ideal (N, Li ) .
Since the ideal p N is generated by a rational prime, just as all inert primes
of K, we get

where r is a nonzero rational number and the ideal a’ is supported on
the and the conjugates of q 1, ... , It is clear that it

is possible to replace ai by a rational multiple such that it becomes an

algebraic integer and the multiplicative congruence (**) holds with r = 1.
Then the value v = is a multiple of Li, by (**), and via replacing
cxi by we achieve that 0152i is coprime to qo, still an algebraic integer,
and (**) is not spoilt by this change. This proves (d).

Now we look at the structure of cl(K) again. The classes [pj] (j =
1,..., s) generate the socle (=largest submodule killed by À) of the 1-part
of cl (K) . This is proved in [RW]; actually we only need that [p j] is in the

socle, and this is clear. Let us split a’ = ala2, a1 supported on ~1, ... , 7 p,7
and a2 supported on the conjugates of the qj with j  i. Then since lh
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divides Li, the congruence (**) shows that the class of

must be in the socle. Since the socle is the direct sum of the cyclic
modules generated by 

1 

( j - 1, ... , s), we obtain the conclusion
ei-l - ei &#x3E; hi - 1, as claimed. This finishes the setup of the induction.

We now proceed to prove that (I)-(III) hold. The last inequality
ell-, - ei &#x3E; hi - 1, together with eo = h = hi + ... -i- hs-1 yields

for all i, so

and this inequality is strict if there is at least one i such that &#x3E;

hi - 1. We will presently show that

e~-i~~20131.

This will show that ei = hi -1 always; therefore formula (**) shows
that ai satisfies requirement (I).

The final step of the argument is now the proof of formula (III), and
concomitantly of the inequality 1. It is only at this late stage
that the complicated explicit calculations of §1-§2 are brought to bear.

The element is by construction (see [Ru], Lemma 2.2) congruent
modulo an L-th power to

We recall notation: q, is written ps+i; the notation D(v) in general is defined
prior to Theorem 1, and w, is the constant map on {s + 1, ... , 2s - 1}
with value 1. Thus, D(wi) is the product D~+1 ~ ~ ~ D2s~ 1 (notation before
Theorem 1 again). The element r is the norm element in the group ring

Finally, A = with cr a generator of Gal(K/Q).
Then xA’-’ 1 is the element 0 of Theorem 3 and 5. (Here A = 0~ E
Z[Gal(K/Q)].) We apply Theorem 5: this says that



774

with Ei = det (,S’Z ) det ( Ui ) for i E I. The same congruence then holds for

instead of Since we arranged for to be in the kernel of

the norm N, right after the proof of Lemma 17, we now get from Lemma
13: The equation

is solvable, and we have modulo l for i = 1, ... , s. This
means that in the recursion just completed above, es-l ~ s - 1, hence
C-s-i = s - 1, and can be taken to be a. This proves (III). Since (II)
holds by construction, it follows, as showed in the previous section, that
c = c’. As proved in [RW] (see in particular the introduction, and the end
of §5 (formula (LC)) of loc.cit.), the equality c = c’ in (Z/lZ)* is, finally,
equivalent to:

THEOREM 6. - The Lifted Root Number Conjecture (LRNC) holds
for all cyclic tame extensions of Q of odd prime degree. El

Let us recall here that (at least for abelian extensions of Q) the LRNC
as formulated by Gruenberg, Ritter, and Weiss is equivalent to a special
case of the Equivariant Tamagawa Number Conjecture formulated by Burns
and Flach.

8. A theorem of R6dei-Reichardt type.

We resume the following setting: is a tame abelian extension

of odd prime degree I; let be its conductor and assume s &#x3E; 2.

Then we have the reciprocity matrix A = (aij ) of shape s x s over Z/lZ,
defined by ~~ Z ~ ~ Kj) for i ~ j , and the requirement that all row sums
are zero. Here Kj is the field of degree l and conductor pj ; each aj is the
generator of Gal(Kj/Q) obtained as follows: lift the fixed generator a of
G = Gal(K/Q) to the inertia group of KKj/Q (this is uniquely possible),
and restrict this lift to Kj. Moreover (pi, Kj ) is the Frobenius of pi on Kj.
Put K = Kl ... KS .

Let C denote the 1-primary part of cl(K). Then C is a module over
R, = 7L / (N) ^--’ as before. The À2-rank of C is defined as the
number of invariants f i divisible by ~2 in any direct sum decomposition
C ~ note that R, is a discrete valuation ring with parameter
À. We have the following generalized Rédei-Reichardt theorem whose proof
is surprisingly simple (it essentially also works for 1 = 2):
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THEOREM 7. - With the above notation, the A’-rank of C equals

Proof. If C~~~ denotes the submodule of elements annihilated by
À, we have the following algebraic result whose proof is immediate:

with t the map induced by the identity on C. From genus theory we use
that the global Artin symbol induces an isomorphism

The group Gal(K/K) is a subgroup of Gal(K/Q) which is a Z/lZ-
vectorspace with basis g1, ... , o,,. We shall show:

If one identifies Gal( K /Q) with using the basis 
then the image of Ot is precisely the row space of A.

This statement, in conjunction with the above-mentioned algebraic
result, will prove the theorem, since one has the equality

due to dimZl C[y] = dimzl C /,XC == s - 1.

Now we know from [RW] that = CG is generated by the classes

[p,] of the ramified primes. We just have to show

But this is little more than the definition! i, and let T = 

Then TIKKj is the Frobenius of p. in the extension KKJ/K. By a
standard result (see for instance [N], Proposition IV 6.4), this maps to the
Frobenius of pi in Kj /Q under the canonical identification 
Gal(K/Q). This shows that the exponent with which aj occurs in T is

precisely The case i = j follows, too, since = 0 and since T is

in Gal(K/K) which contains exactly all o7c-’ with 0. This

finishes the proof. 0

Now we interpret this theorem in the light of our theory. Actually our
theory reproves a part of Theorem 7 by an entirely different method: the
A2-rank of C is positive iff A has rank less than s - 1. Let us show how this

goes. We begin with the obvious remark that the ,B2-rank of C is positive iff
ls divides the class number hK. We will now examine this latter property.
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Let Ih be the precise I-power dividing hK and put g = 
(1 - (pi " - ~ps) _ (1 - in the notation of §2. Then by [RW], h is the
maximal integer such that

is solvable in cx C K. Since h &#x3E; s - 1 by genus theory (see loc.cit.), the
equation (3)..S-l == ç is solvable. Again by Ritter-Weiss, (3 in this equation
is unique up to multiplication with a rational factor; one may assume {3
supported on the ramified primes p i , ... , ,p5. Under this extra assumption,
one can achieve that is in the set {0,..., ~ 2013 1 ~ for i = 1, ... , s
(multiply with suitable powers of pi), and this finally makes 0 unique; let
us call such a ~3 normalized.

LEMMA 20. - solvable (that is, h &#x3E;- s) if and only if for
the normalized {3 above we have vp~

Proof. Suppose a~‘S - ~. Then 13 = 0152À is a normalized solution of

{3ÀS-l = ~ in which all (13) vanish. Conversely, if all vp~ vanish, then
f3 (being normalized) is a unit, so by Hilbert 90 we can write it in the form
0152À. D

Let us also remark that the vector modulo l is the same for

all solutions 0. We now calculate this vector using our theory. By Theorem
3 (with s = s’) we have

modulo ls-lth powers, where

By Lemma 13, Ei (mod 1) for all i. By Theorem 4, Ei is up to sign
the (i, i) minor of A. Hence all VPt vanish modulo 1 iff all (i, i) minors
of A vanish; but since all row sums of A are zero, the latter property is
tantamount with the vanishing of all (i, j )-minors of A. Of course, this in
its turn is equivalent to saying that A has corank at least two. This shows,
as announced: h &#x3E; s iff A has rank less than s - 1.
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