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, 687-

BINOMIAL RESIDUES

by E. CATTANI, A. DICKENSTEIN and B. STURMFELS

1. Introduction.

By a binomial residue we mean a rational function in 2n variables
xl, ..., xn, yl, ..., Yn, which is defined by a residue integral of the form

Here a,, a2, ... , an are non-zero lattice vectors which span 7~d, -y is any
vector in ~31, ... , ,!3n are positive integers, and F ranges over a certain
collection, specified in (3.7) below, of compact d-cycles in the torus ((C*)d.
In this paper we study analytic, combinatorial, and geometric properties of
binomial residues. On the analytic side, we view binomial residues as hyper-
geometric integrals [18, page 223] and, consequently, as rational solutions
of a certain A-hypergeometric system of differential equations, in the sense
of Gel’fand, Kapranov and Zelevinsky ~11~, [12]. The A-hypergeometric sys-
tem annihilating (1.1) is the left ideal in the 2n-dimensional Weyl algebra
generated by the operators

Keywords: Binomial residues - Hypergeometric functions - Lawrence configurations.
Math. classification: 33C60 - 05B35 - 14M25 - 32A27.
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Here ~ = 8)/ ... 8)/q for u E N". In the notation of [11], [12], [18], this is
the system 2013~) associated with the (n + d) x 2n-matrix

where In denotes the n x n identity matrix. The matrix A is called the
Lawrence lifting of ai , a2, ..., an. Such matrices play an important role in
combinatorics [3, §9.3] and Grobner bases [17, §7, page 55].

We next introduce a combinatorial invariant associated with a con-

figuration of vectors. For the Lawrence lifting A, this invariant agrees with
that of the submatrix M := (al’...’ an); see Remark 2.9. The matroid
complex of M is the simplicial complex A(M) consisting of all subsets
I such that the corresponding vectors ai, i E I are lin-

early independent. Let x(M) denote the Euler characteristic of the ma-
troid complex A(M), i.e., the sum of (-1)111 for I E A(M). The integer
Ix(A) L = equals the Mobius invariant of the dual matroid [2, Propo-
sition 7.4.7] and, via Zaslavsky’s Theorem [21], it counts the regions of the
hyperplane arrangement (2.5). Lemma 2.11 implies

with equality if all d-tuples I ail 1 * * * I aid I are linearly independent.
We note that x(A) = 0 if and only if A has a coloop, i.e., some linear

functional on vanishes on all but one of the points a1, ... , an . If this
is the case, then every A-hypergeometric function is a monomial times a
solution of a smaller system (1.2) gotten by contracting the coloops. Thus,
we will assume without loss of generality that 0-

A rational function f in xl, ..., xn, Yl, - - -, Yn is called unstable if it is
annihilated by some iterated derivative Otherwise we say that f is
stable. Thus f is unstable if it is a linear combination of rational functions
that depend polynomially on at least one of the variables. We denote by

the vector space of rational solutions of HA ( -,Q, --y), by 
the subspace of unstable rational solutions, and we set

Our main result gives an integral representation for stable rational A-
hypergeometric functions, when A is the Lawrence configuration (1.3).

THEOREM 1.1. - Let (3 E The space 
of stable rational A-hypergeometric functions of degree (-{3, -7) has
dimension and is spanned by binomial residues Rr (x, y).
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We illustrate this theorem with three examples. First consider d =

1, n = 3,~i = a2 - a3 = 1 E 31 = 02 =/?3 = 1, and, = 3. The Euler
characteristic is x(A) _ -2. The binomial residues are the integrals

By integrating around the three poles t = -xilyi, we obtain

These residues form a solution basis for the hypergeometric system

This is the Aomoto-Gel’fartd system for a 2 x 3-matrix, which is holonomic
of rank 3; see [18, §1.5]. The space of rational solutions modulo

unstable rational solutions has dimension 2 = since

contains no xi and is hence unstable. This identity expresses the fact that
the sum of all local residues of a rational 1-form over I~1 is zero.

Our second example is the Lawrence lifting of the twisted cubic curve:

Fix (3 == (1,1,1,1) and -y = (1, 1). The space of A-hypergeometric functions
is 10-dimensional, and the subspace of rational solutions is 3-dimensional.
A basis for consists of the three binomial residues
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Other residues can be computed by the Orlik-Solomon relations (cf. §5) :

For our third example take f a,, ... , an) to be the positive roots in
the root system of type Ad. This means n = ( 2 ) and ( 1.1 ) looks like

where td = 1. This is the Selberg type integral studied by Kaneko [14] and
many others; see [18, Example 5.4.7]. The holonomic rank of the associated
A-hypergeometric system equals dd-2, , the number of labeled trees on d
vertices. The following explicit formula for the number of stable rational
hypergeometric functions of Selberg type is given in [15]:

This paper is organized as follows. In §2 we examine hypergeometric
Laurent series solutions, and we derive the upper bound in Theorem 1.1.
In §3 we establish the connection to toric geometry, by expressing binomial
residues as toric residues in the sense of Cox ~10~ ; see also [5], [6]. Formulas
and algorithms for computing binomial residues are presented in §4. In §5,
we complete the proof of Theorem 1.1, and we prove Conjecture 5.7 from
our previous paper [8] in the Lawrence case.

2. Laurent series expansions and Gale duality.

In this section we establish the upper bound in Theorem 1.1 for

arbitrary rational A-hypergeometric functions. The Lawrence hypothesis
is not needed for this. The main idea is to look at series expansions, which
leads to counting cells in a hyperplane arrangement. We fix an arbitrary
integer r x s-matrix A of rank r and an integer vector a C Z’~.
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DEFINITION 2.1 (~11~, [12], [18]). - The A-hypergeometric system
is the left ideal HA (a) in the Weyl ~s, ~i,..., 9s) gener-
ated by the toric operators au - av, for u, v E N’ such that A - u = A ~ v,
and the Euler operators Ejs=, ai for i = l, ... , r. A function

f (xl, ... , xs), holomorphic on an open set U C CS, is said to be A-

hypergeometric of degree a if it is annihilated by the left ideal HA(a).

A rational A-hypergeometric function admits Laurent series expan-
sions convergent in a suitable open set. In the terminology of [18] these are
logarithm-free hypergeometric series with integral exponents. We review
their construction and refer to [18, §3.4] for proofs and details.

Given a vector v E C , we define its negative support by

A vector v E C’ is said to have minimal negative support if there is no
integer vector u in the kernel of A such that nsupp(u + v) is properly
contained in nsupp(v). The following set of integer vectors:

is used to define the formal Laurent series

where

The Weyl algebra acts on formal Laurent series by multiplication and
differentiation. The following is Proposition 3.4.13 in [18]:

PROPOSITION 2.2. - Let a = A. v. The series Øv(x) is annihilated
by HA (a) if and only if the vector v E C~ has minimal negative support.

In order to ensure that the A-hypergeometric series 0,(x) have a
common domain of convergence, we fix a generic weight vector w E R~. A
vector v E C~ is called an exponent for HA(a) with respect to w if v has
minimal negative support and

I / , ’ I , , B ’ I - , J

The following is a restatement of tl8, Theorem 3.4.14, Corollary 3.4.15~ :
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THEOREM 2.3. - The set ~~~, : v E Z~ and v is an exponentl is
a basis for the space of hypergeometric functions of degree a admitting a
Laurent expansion convergent in a certain open subset U~, of CS .

For a more precise description of hypergeometric Laurent series, we
next introduce the oriented hyperplane arrangement defined by the Gale
dual (or matroid dual) to A. Set m = s - r and let B be an integral s x m
matrix whose columns are a Z-basis of kerz(A). The matrix B has rank m
and A ~ B = 0. Note that B is well-defined modulo right multiplication by
elements of GL(m, Z). We identify B with its set of row vectors, and we
call this configuration the Gale dual of A:

Our assumption 0 translates into the condition bj = 0

for all j - 1,..., s. As remarked in the Introduction, the study of A-

hypergeometric functions, for arbitrary A, easily reduces to this case.

Fix an exponent v E Z~. We identify the lattice Z"~ with the sublattice

imagez ( 3 via the affine isomorphism A F-4 B - A + v.
Under this identification, the affine hyperplane

corresponds to the coordinate hyperplane xj = 0 in kerz(A) + v C 7ls. Let
1t denote the arrangement in R’ consisting of the hyperplanes (2.3) for
j - 1,..., s. We define the negative support of a vector A in R’ as the

negative support of its image under the above isomorphism:

The set of points with the same negative support will be called a cell

of the hyperplane arrangement ~C. Note that our definition of cell differs

slightly from the familiar subdivision into relatively open polyhedra by the

hyperplanes in ?~. Our cells are unions of these: they are also polyhedra
but they are usually not relatively open.

Consider the following attributes of a cell E in H. We say that

E is bounded if E is a bounded subset of R’.

E is minimal if the set E n Z, is nonempty and the support of the
elements in this set is minimal with respect to inclusion.

E is w-positive, for a given vector w on jRn, if there exists a real

number p such that (w, A) &#x3E; p for all A E E.
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We can now rewrite the hypergeometric series (2.1) as follows:

If E is bounded then Or, is a Laurent polynomial, and if E is w-positive
then Or, lies in the Nilsson ring (cf. [18, §3.4]) associated with w, and hence
defines an A-hypergeometric function on Uw when E is minimal.

The following is an immediate consequence of Theorem 2.3:

PROPOSITION 2.4. - The series OE where runs over al1 w-

positive minimal cells in 1t form a basis for the space of A-hypergeometric
functions of degree a admitting a Laurent expansion convergent in Uw C
C~. Restricting to bounded cells ~, we get a basis for the subspace of
hypergeometric Laurent polynomials.

Recall that we say that a rational function f is unstable if there exists
u E NS such that the partial derivative (9u(f) is identically zero. We extend
this terminology to functions admitting a Laurent series expansion.

LEMMA 2.5. - A-hypergeometric Laurent polynomials are unstable.

Pooof. By Proposition 2.4, it is enough to show that for any
bounded minimal chamber E, the common negative support of all mono-
mials in OE does not equal {I, ... , s~. In fact, suppose

The negative support of any lattice point in is a proper subset of

{1,2,...,?~}, and we conclude that E is not minimal. 0

If we differentiate an A-hypergeometric function of degree cx with

respect to x2 then we get an A-hypergeometric function of degree a - ai. If
we iterate this process long enough, for all variables, then only the stable
functions survive. The following definition is intended to make this more
precise. The Euler-Jacobi cone is the following open cone in R d:

Note that (-{3, 2013~) lies in the Euler-Jacobi cone in Example (1.7).

PROPOSITION 2.6. - If a E -Int(pos(A)), then every A-hypergeo-
metric series of degree a is stable.
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Proof - Suppose there is an unstable A-hypergeometric series.
Then, by Theorem 2.3, it can be written as a linear combination of series 0,
as in (2.1) with minimal negative support. Since negative supports are pre-
served under derivation, it is then sufficient to show that a hypergeometric
series 0, cannot be unstable. Fix a strictly negative vector v E Q’o with
Av = Av = a. Let k be a positive integer such that kv E Zs. For each inte-

ger i c N, the vector has negative support contained in nsupp(v).
Since v is minimal, we conclude that v)) = nsupp(v) for all

Let I := li ~ {1,..., sl : vi &#x3E;, O}. For all i E I, we have v2 &#x3E; vi, and

so all the coordinates in I of the vectors v ~- .~(v - v) strictly increase with
~. This shows that q5, cannot be decomposed as a finite sum of Laurent
series that depend polynomially on one variable. D

THEOREM 2.7. - If a E -Int(pos(A)), then the dimension of
the space of A-hypergeometric Laurent series of degree a with a common
domain of convergence is bounded above by the Euler characteristic 

Proof. Consider the central hyperplane arrangement gotten from
~ by translating all s hyperplanes so as to pass through the origin. This
central arrangement consists of the s hyperplanes
(2.5) for j = 1, 2, ... , s.
Since a is in the Euler-Jacobi cone, the minimal cells E of ?-~ are all un-

bounded and correspond to certain maximal cones of the central arrange-
ment (2.5). Fix a generic linear functional w on A basis for the relevant

space of A-hypergeometric Laurent series is indexed by the w-bounded,
minimal cells of ?-C. Their number is bounded above by the number of w-
bounded maximal cones in the central arrangement.

A classical result in combinatorics due to Zaslavsky [21] states that the
number of w-bounded maximal cones is the absolute value of the Mobius

invariant p(B) of the matroid associated with B. Our assertion now follows
from the following identity from [2, Proposition 7.4.7 (i)]:
(2.6) 
In words, the Mobius invariant of a matroid equals (up to sign) the Euler
characteristic of the dual matroid. D

The following corollary implies the upper bound in Theorem 1.1:

COROLLARY 2.8. - For any cx E the complex vector space of
rational A-hypergeometric functions of degree a modulo the subspace of
unstable functions has dimension at most 
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Proof. We represent the rational A-hypergeometric functions by
Laurent series expansions which have a common domain of convergence.
Hence it suffices to prove the asserted dimension bound for the space of

convergent A-hypergeometric Laurent series modulo unstable ones.

Choose u E NS so that a - Au lies in the Euler-Jacobi cone. The

operator 8u induces a monomorphism from S(a) into S(a - Au). By
Proposition 2.6, S(a - R(a - Au), hence the dimension bound
follows from Theorem 2.7 applied to a - Au. 0

Remark 2.9. - Passing from ~al, ... , to its Lawrence lift-

ing (1.3) corresponds under Gale duality to the operation of replacing
~bl, ... , by its symmetrization {~i,...,6~, 2013~ ..., -b~~; see [3, Propo-
sition 9.3.2]. This process does not change the geometry of the hyperplane
arrangement (2.5) and hence it does not change the Mobius invariant 
In view of (2.6), we conclude that the Euler characteristic of (ai , ... , any
equals the Euler characteristic of its Lawrence lifting as stated in the In-
troduction.

COROLLARY 2.10. - The space has dimension at most

|X (A)|

We conclude this section with one more result from matroid theory
which we need to complete the proof of Theorem 1.1. A maximally
independent subset of B is a basis of B. Note that E J} is a basis of
B if and only if (aj : j g J} is a basis of A. A minimally-dependent subset
of B is a circuit of B. If C = f bi 1 , ... , is a circuit and ii  ...  it
then the set is a broken circuit. A basis of B is called an nbc-basis

if it contains no broken circuits.

LEMMA 2.11. - The number of nbc-bases of B equals IX(A)1.

Proof. This result follows from (2.6) and Proposition 7.4.5 in [2].El

3. Binomial residues and toric geometry.

This section is concerned with global residues of meromorphic forms
whose polar divisor is a union of hypersurfaces defined by binomials. The
analogous case when the polar divisor is defined by linear forms has been
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extensively studied, for instance, by Varchenko [20] and Brion-Vergne [4].
Our situation can be regarded as a multiplicative analogue to that theory.
The binomial hypersurfaces are embedded in a suitable projective toric
variety, which places binomial residues into the framework of toric residues

[5], [6], [10]. This will allow us in §5 to find bases of A-hypergeometric stable
rational functions for Lawrence liftings in terms of binomial residues, and
to give a geometric meaning to the linear dependencies among binomial
residues. We refer to [13], [19] for the definition and basic properties of
Grothendieck residues.

Let X be a complete d-dimensional toric variety and ,S its homoge-
neous coordinate ring in the sense of Cox [9]. Let T ~ (C*)d denote the
dense torus in X. The zero-locus of a homogeneous polynomial in S is a
Weil divisor in X. Suppose Go, Gi,..., Gd are homogeneous polynomials
in S‘ whose divisors Di satisfy

Any homogeneous polynomial H of critical degree determines a meromor-
phic d-form on X with polar locus contained in Do U... U Dd,

where SZX is a choice of an Euler form on X [1]. The d-form defines

a Cech cohomology class relative to the open cover

of X. Here UdX denotes the sheaf of Zariski d-forms on
X [10]. The class is alternating with respect to permutations of
Go,..., Gd. If H lies in the ideal (Go,..., Gd) of S then is a Cech
coboundary. Thus, depends only on the image of the polynomial H
in the quotient ring ,5’/ (Go, ... , Gd) .

The toric residue E C is given by the formula

where Trx : -~ C is the trace map.

The following proposition can be deduced from Stokes Theorem (cf.
[13], [19, §7.2]). It follows directly from the definition of toric residue.

PROPOSITION 3.1. H the polar locus of the d-form 4~(H) is contai-
ned in the union of only d divisors, say DI U- - -UDd, then Resx ((D(H)) = 0.

The relationship between toric residues and the usual notion of

multidimensional residues is given by the following result.
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THEOREM 3.2. - Let Go,..., Ga E S’ satisfy (3.1) and suppose

Then

where denotes the (local) Grothendieck residue at ~ of the
meromorphic form b restricted to the torus and relative to the divisors
D1 nT,...,DdnT.

Proof. We note, first of all, that (3.1) implies that Vo is a finite
set and hence the sum in (3.3) makes sense. Moreover, as shown in [19,
~II.7.2j, the local residues in the right-hand side of (3.3) depend only on
the divisors Di n T and not on the choice of local defining equations.

If X is simplicial, then (3.3) is the content of Theorem 0.4 in [5]. For
general X we argue as in the proof of Theorem 4 in [6]. 0

We consider now the binomial case which is relevant in this paper.
Let al , ... , an E Zd as in the Introduction. Let Ai denote the segment
[0, ai] C R dand A = 0~ +...+Lln their Minkowski sum. This is a zonotope,
that is, a polytope all of whose faces are centrally symmetric [3, §2.2]. Let
771, -, 772p denote the inner normals of the facets of the zonotope A, where

?7j = We can write

We consider the associated projective toric variety XA. The homogeneous
coordinate ring of XA is the polynomial ring ,S’ - C[~i,...,~2p]. The
monomials := rli= 2p 1 (z""-), i for j = 1, 2, ... , d, have degree zero and define
coordinates in the torus T C XA.

To each binomial fi := xi + Yitai in the denominator of the kernel of
(1.1) we associate the homogeneous polynomial

The divisor Yi := 01 C XA is the closure of the divisor

01 C T. Moreover, for 13 C Zn &#x3E; 0 and -y E Zd, the d-form on T,
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extends to the following meromorphic d-form on the toric variety XA:

where

The polar divisor is the union of the divisors Yi, ... , Yn and
coordinate divisors Izi = 01 for indices I with  0. For degrees in
the Euler-Jacobi cone such indices I do not exist. Indeed,

(3.6) E (3i &#x3E; 0 ; + 1 &#x3E; 0)
Thus, if (2013/~ -7) lies in the Euler-Jacobi cone, the polar divisor of (D(O, 7)
equals Y, 

We are now prepared to give a precise definition of binomial residues.
Fix an index set I = ~1  il  ...  id  nj such that the corresponding
vectors ai, i E I, are linearly independent. 1,..., d, set G, - Fi,
and Dk = (G) = 01. For generic values of the coefficients xi, yi, i E I, the
divisors Di,..., Dd satisfy (3.2).

DEFINITION 3.3. - For,3 E and, E 

Define the following quantity which depends on x 1, ... , Xn, YI, ... , yn :

Each local residue in the right-hand side of (3.3) may be written as an
integral over a d-cycle "around" the point ~ E Since for generic values
of the coefficients, the map f, - ( fil , ... , f2d ) : T - (Cd is proper, it follows
from [19, §11.8], that the total sum of residues (3.3) may be written as a
single integral,

where r(I, x, y) is the compact real d-cycle r(I, x, y) C T defined by
Ilidl ( _ for small 6’d. Moreover, the cycle

r(I, x, y) can be locally replaced by a cohomologous cycle T(I) independent
of (Xl, ... , Xn, YI, ..., yn). See [18, §5.4] for further details.
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We close this section with the observation that the "basic binomial

residue" is indeed a rational A-hypergeometric function.

LEMMA 3.4. - The toric residue is a rational function of

(X, y) and is annihilated by the hypergeometric system (1.2).

Proof. For any choice of polynomials Go,..., Gd, the trace map
Trx in the definition of the toric residue has its image in the subfield of
C generated by the coefficients of the Gi. This implies that is an

element in the rational function field Q (x 1, .. - , xn, yi, ... , 
The kernel of the integral (3.4) is annihilated by the toric operators

8)8§ - 8J§8) in (1.2). Hence so is the integral itself, by differentiating under
the integral sign. Specifically, it follows from [6, Lemma 6] that

where is the standard basis of R d. The verification of the

homogeneity equations is immediate from the expression (3.4) for the form
~(,C3, ~y). Hence is a rational solution of HA( -(3, --y) - 11

4. Computing binomial residues.

In this section we present methods for computing the binomial residue
Here I = is a fixed column basis of the matrix

M = (al,...,a.,,). Let M1 denote the non-singular d x d matrix with
columns ai, i E I. Write - (/-lij) E GL(d, Q). We set VI - {ç E
T : fi(~) - 0 for all i E If. The points in V, are in bijection with the
characters 0 E C*) satisfying ()( ai) == -1, for all i E I. The point
(~o, ~0) E VI indexed by 0 has coordinates

There are det(M1)-many simple roots 03BE03B8 provided all are nonzero.

Let g be a function meromorphic on the torus T = ((C*)d and regular
at a simple root ~ E VI. Then the local Grothendieck residue of the

meromorphic fl at the point 03BE equals
f"l ... f" dt 1 t d
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where J~ denotes the toric Jacobian of the binomials fi = X, + yita2: i

Here aj - ail + ... + We deduce the following identity:

We obtain the following procedure for summing (4.1) over all ~ E VI.

ALGORITHM 4.1 (Computing global residues using Grobner bases).

Input: A d x d-integer matrix M1 of rank d, a Laurent polynomial g(t).

Output: The global residue

(1) Fix the field K = Q(XI’...’ Xn, YI, ... , yn) and write the Laurent
polynomial ring over K as a quotient of a polynomial ring:

(2) Compute any Crooner basis G for the ideal (fil’ ... , 

(3) Let B be the set of standard monomials for G in K~to, ... , ted] .

(4) Compute the trace of g modulo B as follows:

(5) Output the result of step (4) divided by the monomial in (4.2).

The output produced by the above algorithm is a rational function in
and the coefficients of g. In the case when g is a Laurent monomial,

one can give a completely explicit formula for that output.

LEMMA 4.2. - Let, C Zd. If v = lies in the lattice Z~
then

Otherwise the global residue R1 [tT] is zero.
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Proof. It follows from (4.1) and (4.2) that

where v Thus, the global residue is given by

and consequently it vanishes unless E M¡ Z~. In this case we have (4.3)
for, viai, and Ivl vi. D

e now compute the binomial residue for I = ~i 1, ... , id ~
as above. In view of (3.8) and (3.9), it suffices to consider the case

{3 = 1 :_ (1,..., 1). Set J :_ ~1, ... , and let Mj denote the matrix
whose columns are the vectors aj, j E J. Since the coefficients are generic,
none of the polynomials E J vanishes on any point of VI and hence

This gives rise to the following symbolic algorithm for binomial residues.

ALGORITHM 4.3 (Computing binomial residues).

Input: Vectors a1, ... , an and, as above, and a basis I = 

Output: The rational function 

(1) Run steps (1), (2) and (3) of Algorithm 4.1.

(2) Using linear algebra over the field K, compute the unique polynomial
g(t) = such that all cb lie in K reduces

to zero modulo the Gr6bner basis G.

(3) Run steps (4) and (5) of Algorithm 4.l.

The output of this algorithm is an element of the field K. It is nonzero
and has the following expansion as a Laurent series in xi, yi.

PROPOSITION 4.4. - Suppose q Then R~ ( 1, -y) ~ 0 and

where the sum is over v E Z~ and ~c E such that MJ . J-t = q.
Moreover, for every (3 E the residue is a stable rational

hypergeometric function.
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Proof. - We expand

Applying (4.3) to each term of (4.6) yields the Laurent expansion (4.5).

Suppose now that, = Mi . vo - MJ - vo E po cz There

exists a vector m E Z&#x3E; J0 such that mjaj C Hence for k E N,

and po + km is non-negative for k » 0. Hence, the series (4.5) contains
infinitely many non-zero terms. This shows that # 0.

Suppose now that fl E Z’ is arbitrary. In view of (3.8), it suffices to
show that the derivative ~~-1 of the series (4.5) contains infinitely many
powers of each of the variables 1, ... , n. The previous argument
shows that this is indeed the case for E J and also for a variable xio ,

io E I, unless every vector E J, is in the Q-span i E I, i ~ 
But this would mean that the points io define a coloop in A, which
is impossible by assumption. 0

Our final task in this section is to identify the irreducible factors
in the denominators of these binomial residues. Let C be a

circuit, i.e., the set E C} obeys a unique (up to sign) linear relation
EIEC miai = 0 over Z such that gcd(mi, i E C) = 1. Then

is the resultant of the binomials f2, i E C. In fact, the singular locus of

--y) is described by the product of all the variables and all the
resultants Res(C ; x, y) as C ranges over the circuits (cf. [8], [11]). Let I be
a basis as above. Note that for each j tf- I, there exists a unique subset

I’ ( j ) C I, such that := I(j) U fjl is a circuit.

THEOREM 4.5. - The binomial residue, defined by I, {3" ~ as above,
equals

where P(x, y) is a polynomial relatively prime from the denominator.

Proof - We may assume that 0 - 1. It follows from a variant of
Theorem 1.4 in [7] that RI ( 1, ~y) is a rational function whose denominator
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divides a monomial times
-

Since E is the unique essential subset of faiii E I with

"essential" as defined in [8], we have that

We know by Proposition 4.4 that P is non zero. Moreover, if any of the

factors Res(I(j); x, y) were missing from the denominator of ~(1,"/), then
the Laurent series (4.5) would contain only finitely many powers of x3. The
formula in Proposition 4.4 implies that is impossible. 0

For unimodular bases, Theorem 4.5 can be refined as follows:

PROPOSITION 4.6. - Suppose that faili E 7} is a Z-basis of 7ld.
Then 

- I

where xa and yb are monomials specified in the proof.

Proof. Choose v, nj C E J, so that, = v, aj = nj.
Then

and consequently, the Laurent series (4.5) reduces, up to sign, to

5. The lower bound and the linear relations.

In this section we establish the lower bound in Theorem 1.1 by
exhibiting many linearly independent binomial residues for

fixed 03B2, y and fixed Lawrence matrix
/ r r B
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We will show that all linear relations among the arise from

Proposition 3.1 and correspond to Orlik-Solomon relations [8, ~3.1~ .
The Gale dual to the Lawrence matrix A has the form

where bn ~ C is a Gale dual According
to Corollary 2.8 and Lemma 2.11, the dimension of the space of stable
rational A-hypergeometric functions of degree (- (3, 2013~) is at most the

number of nbc-bases in B, which agrees with the number of nbc-bases
in Bo. The following converse will imply Theorem 1.1.

THEOREM 5.1. - Let (3 E Zn and 7 E Then the set of

binomial residues runs over all nbc-bases of

Bo, is linearly independent modulo the space of unstable rational functions.

It is convenient to use the following characterization for being an
nbc-basis of the dual matroid. The proof of Lemma 5.2 is straightforward.

LEMMA 5.2. - The set is an nbc-basis of Bo -
if and only if, for each io E I, there exists jo E ~l, ..., n~BI

such that jo &#x3E; io and a basis anj C 

Proof of Theorem 5.1. - Consider the space of stable ra-

tional hypergeometric functions defined in the Introduction. The deriva-
tive induces a monomorphism from into + ei, -Y), while O.Y,
induces an monomorphism into + + ai). Binomial residues are
mapped to binomial residues, with the set of irreducible factors in their
denominators preserved. We may thus assume {3 = 1. All linear spaces in
this proof are understood modulo unstable rational functions.

By Theorem 4.5, for any basis I of {~i,..., the denominator of

RI (1, -y) equals a monomial multiplied by

Let 10 denote the set of indices I complementary to nbc-bases of
Bo. Let RIo denote the linear span of binomial residues R1(1,,), I E 10 -
Clearly, n V I for any I E 10. Our goal is to show 

Let K be a circuit of jai ... , an ) which contains the index n. Define
RIo(K) to be the span of all binomial residues with I E 10 and
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1(n) = K, i.e., K is the unique circuit in I U (n) . We may decompose

The sum in (5.3) is direct because no element in RIo (K’) contains
Res(K; x, y) in its denominator, while all elements in Rio (K) do.

Thus, it suffices to fix .K = Ko and show that the binomial residues

R1(1,,) with I E 10 and I (n) - Ko are linearly independent. Let

Let nl denote the largest index which does not belong to Ko, then note that
I for any I E 11 - Indeed, if n 1 E I, I E 2’i, then we would not be able

to replace anl by aj with j &#x3E; nl and still have a basis; this would contradict
Lemma 5.2. This means that we can repeat the previous argument with 11
in place of Zo and nl in place of n and obtain a decomposition of RII as a
direct sum of subspaces Rzl (K) spanned by binomial residues 7~(1, ~) with
I E 11 and I(ni ) = K. Continuing in this manner, all subspaces 
will eventually be one-dimensional. Then, the desired result follows from
Proposition 4.4. 0

We next describe all linear relations among the binomial residues

as I varies. In the identity below, it is essential to keep track of

signs. Namely, if I’ is taken to be ordered then we must multiply 
by the sign of the permutation which orders I’ U 

THEOREM 5.3. - Let I’ be a (d- l)-subset of f 1, and indI’

the set of indices .~ such that U ~ai : i E I’l is a basis of Then

E - 0 modulo unstable rational functions,
l E ind I’

and these span all the C-linear relations relations among the 

Proof. By Proposition 4.4, all residues are stable. We

have established that the spaces have the same dimension I
for all (3 and -y. It follows that the maps o~~2 : - S(,Q + and

8~~ : - are isomorphisms. Iterating, we can assume
that (-{3, --y) lies in the Euler-Jacobi cone -Int(pos(A)). By Proposition
2.6, there are no unstable rational A-hypergeometric functions, so we are
claiming that L:£Eindl’ is zero.

We may assume that ~ai : i E I’l is linearly independent. On the
B-side, the complement of I’ has n - d + 1 elements and therefore defines a
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dependent set ~ bi , i ft We can consider as in §2, the central hyperplane
arrangement A defined by H. Consider the socle of the Orlik-Solomon
algebra of that hyperplane arrangement [16, §3.1]. The linear relation in
Theorem 5.3 is the translation to the A-side of the relation in the socle

degree of the Orlik-Solomon algebra defined In view of

[16, Theorem 3.4] and Theorem 1.1, it suffices to show that the asserted

relations are valid. It will then follow by dimension reasons that they span
all C-linear relations.

We now prove the identity ¿lEindl’ = 0 using the formu-
lation in terms of toric residues given in §2. By (3.6), all are non

negative, and so the polar divisor of the in (3.5) is contained
in the union of the divisors Yi = ~F2 = 01, i = 1,..., n.

For k = 1,..., d - 1, set GI’ Fik . Set also G§’ = and let

... z2p. Then, G,’, ... , Gd~ define divisors with empty intersection
in X = XA for generic values of the coefficients and moreover

Proposition 3.1 implies that the corresponding toric residue vanishes:

On the other hand, consider also the following n - d -f-1 families of divisors:
for any i V I’, set G k - G k for any l, ... , d - 1, GI"’ = F, and

Fj. Again, these divisors have empty intersection on X
for generic values of the coefficients and the poles are contained

in their union, and so we can consider the toric residues 
These toric residues are non-zero precisely when I E indl’ . We conclude
that the following relations hold:

The second equality follows from a variation on [19, §11.7]. Translating back
to binomial residues completes the proof of Theorem 5.3. D

In [8], we studied the problem of classifying vector configurations A
for which there exist a rational A-hypergeometric function which is not a
Laurent polynomial. We conjectured [8, Conjecture 1.3] that such a con-
figuration has to have a facial subset which is an essential Cayley configu-
ration. It is easy to see that Lawrence liftings are Cayley configurations of
segments; they are essential if and only if n = d+1. We also conjectured [8,
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Conjecture 5.7] that a rational A-hypergeometric function has an iterated
derivative which is a linear combination of toric residues associated with

facial subsets of A.

THEOREM 5.4. - Conjecture 5.7 in [8] holds for Lawrence configu-
rations.

Proof. Let A be a Lawrence configuration. The assertion of [8,
Conjecture 5.7] is obvious for unstable rational hypergeometric functions.
On the other hand, given a stable rational hypergeometric function, a
suitable derivative will have degree in the Euler-Jacobi cone and hence,
by Theorem 1.1, will be a linear combination of toric residues. D
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