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ERGODIC AVERAGES

WITH DETERMINISTIC WEIGHTS

by F. DURAND and D. SCHNEIDER

1. Introduction.

The purpose of this paper is to study ergodic averages with deter-
ministic weights. More precisely we study the convergence of the ergodic
averages of the type k where

bounded sequence and u = a strictly increasing sequence of

integers such that for some 6  1,

i.e., there exists a constant C such that SN (0, U) , CN~. We define 6 (0, u)
to be the infimum of the 6 satisfying xl for 0 and u.

About in the case where 0 takes its values in U (the set of complex
numbers of modulus 1), it is clear that for all sequences 0 and u, 6(0, u) is
smaller than or equal to 1 and it is well-known (see [Ka] for example) that
it is greater than or equal to 1/2. Few explicit sequences 0 are known to
have 6 (0, u) strictly smaller than 1.

When uk = k, for all k c N, we know [Ru], [Sh] that for the Rudin-
Shapiro sequence (and its generalizations [AL], [MT]) we have 6(0, u) = 1/2.

Keywords: Weighted ergodic averages - Central limit theorem - Almost sure conver-
gence - q-multiplicative sequences - Substitutive sequences - Generalized Thue-Morse
sequences.
Math. classification: 37A05 - 28D05 - 11K99.
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For the Thue-Morse sequence s (e, u) _ (log 3) / (log 4) [G]. When 0 is a q-
multiplicative sequence we will give a way to construct sequences fulfilling
Hi .

When u is a subsequence of N we will also give some examples of
sequences 0 satisfying More attention will be payed to the special
case + where v = is non-decreasing with
v~ =  1.

We say (X, B, /t, T) is a dynamical system if (X, B, p) is a probabilistic
space, T is a measurable map from X to X and p is T-invariant. A

good sequence for the pointwise ergodic theorem in LP(p), p &#x3E; 1, is an

increasing integer sequence (un ; n E N) such that for all dynamical systems
(X, B, p, T), for all f E LP (p), we have

Our main result is the following.

THEOREM 1. - Let 6 = (O(n); n E N) be a bounded sequence of
complex numbers and u = (un; n E N) be a strictly increasing sequence of
integers. Suppose that Condition is satisfied.

Then, for any dynamical system (X, B, p, T) and any f E L2(J-L) we
have 

- _ _ -

Moreover, for all ) and for all 0 &#x3E; (6 -f- 2)/3 we have
x

Remark that if u is a good sequence for the pointwise ergodic theorem
in then the first conclusion is satisfied for all f 

Under the stronger Condition 1í2 given below we can give more
information about the speed of convergence when f belongs to L 2 (A). Let
0 = (~); A; E N) and u = (Uk; k E N) be as in Theorem 1. We say they
satisfy Condition 1í2 if for some 0  p  1 and D &#x3E; 0 we have
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for all m  n where ((n) = for all c &#x3E; 0. We remark that ~-~C2 implies
HI, When 0 is a q-multiplicative sequence we prove that Conditions ?-Cl
and 7~2 are equivalent.

We will show (Section 2.2) in the special case of a rotation dynamical
system we have some more precise results than those of Theorem 1. We

will exhibit a large class of functions for which the speed of convergence is
uniform in x. In this case and when 0(k) = 1 and (i.e., the standard
ergodic mean) we knew, using the Denjoy-Koksma inequality, that we can
obtain the speed of convergence whenever f is has bounded variations (see
[KN] or [GS]).

For u = (k 2; k E N) we do not know sequences that satisfy But

when 0 is a q-multiplicative sequence we prove the following result.

PROPOSITION 2. - be a q-multiplicative sequence with empty
spectrum. Then, for all real number a,

The main difficulty in the proof of this result is when a is an irrational.
In this case we use an ergodic approach and the van der Corput inequality.

For more information about Proposition 2 we invite the interested
reader to look at the article of M. Mend6s France [M], especially Corol-
laire 2.

As noticed by the referee Proposition 2 can be extended to the case
where k 2 is replaced by any polynomial of degree d &#x3E; 2 with rational

coefficients. We can prove this result using an induction on the degree of
the polynomial and the van der Corput inequality. Then it can be easily
extended to the case where ak 2 is replaced by any polynomial of degree
d &#x3E; 2 with at least one irrational coefficient.

The following theorem investigates the statistics of dynamical sys-
tems. We prove a central limit theorem for some weighted ergodic means
in the case of the rotations. First we need two definitions.

Let (Zn; n E N) be a sequence of real ramdom variables defined on
the probability space (X, B, p). We say that (Zn; n E N) converges in law
to the Gaussian random variable A/~(0,1), and we write it Zn lN(0, 1) ,
if
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We define lip(a) to be the set of functions f E L2(M) such that

THEOREM 3.

satisfying Condition Hi. Let 8+ be the sequences in f 0, 1 IN defined
by 9+(~) = (0 (k) + 1)/2 and B-(I~) _ (1 - 0 (k)) / 2. Let (1f, Ra) be a
rotation dynamical system where a is an irrational number. For all {3 E]8, 1[,
if there exist a &#x3E; 1 - {3 and ( such that I~ - (I - O(N-a) then
there exists a continuous function f on 1r such that

Moreover, if d is the Diophantine type of a then / is lip(a) with a 
(1 - 3)/d.

We have the same conclusions for B-.

This work is divided into four sections. In Section 2 we prove The-

orem 1 and Theorem 3 and we deduce some corollaries. For example we
remark that the conclusions of Theorem 1 also hold when is

a non-bounded centered sequence of i.i.d. random variables with a finite

second moment (see [SW]). We also make some comments in the case there
is no dynamical system structure. The third section is devoted to the q-
multiplicative sequences. We recall some results established in [LMM] and
we give an efficient sufficient condition for q-multiplicative sequences tak-
ing values in a finite set to fulfill condition In the last section we prove

Proposition 2 and we obtain further results about ergodic averages in the
case where 0 is a q-multiplicative sequence.

2. Convergence of ergodic weighted averages
under Condition 

In what follows we will write e(x) instead of exp(2z7nr).

2.1. Proof of Theorem 1.

We start with the proof of the second conclusion. We first prove it
when N tends to infinity along some subset of N. Then we come back to N.

ANNALES DE L’INSTITUT FOURIER
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. From the Spectral Lemma (see [Kr]) we

where pf is the spectral measure of T at f. We set ~30 - (b + 2)/3 and
we take {3 &#x3E; ,30 . Hence we can choose 7 E R such that 1/(o - b)  7 
1/2(12013/3). We set Nq = 1~, where [.] is the integer part function.
From the choice of -y it comes that

Consequently

Now we come back to the whole set N. There exists K such that

IB(k)1 ]  K for all Let M &#x3E; 0, sufficiently large, and let N be the
unique integer such that [N’*] x M  [(N + 1)1’]. Then

From the first step of the proof, the first term tends to zero. We have
to prove the second term also tends to 0. Without loss of generality we
can suppose f is positive. We set f = fi + f 2 where f 1 - and

being the characteristic function of the set Á. We
have

where B is such that , for all N E N. Now we look

what happens with f2. To prove that
I ,
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it suffices to prove that ~ is the general
term of a convergent series. The measure p being T-invariant we have

We set and we will study the series

, the Holder inequality gives

The last series converges because f belongs to £2 (J-L). The second also
converges because ap = 1 + E/2. Moreover

consequently ,S’ is finite. This ends the proof of the second conclusion.

The same computation with and

p = q = 2 allows us to obtain the first conclusion. 0

Remark. - The first conclusion of Theorem 1 can be extended to

every f E with p &#x3E; 1. On the other hand if (Uk; k E N) is a good
sequence for the Ergodic Theorem in then we know from Banach

Principle (see [Kr]) that the set of functions for which we have almost sure
convergence (this set contains L2 (~C) ) is closed in L 1 (~) . Hence, L2 (J-l) being
dense in L1 (J-l), the first conclusion holds in 

COROLLARY 4. - Let (0(n);n E N) be a sequence of complex
numbers and E N) be a strictly increasing sequence of integers.
Suppose for some 6  1 we have and for some 11 s we have
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Then, the conclusions of Theorem 1 hold.

Proof. It follows the lines of the proof of Theorem 1. 0

Condition H3 is useful in the case where the sequence 0 is given by a
random process (see [DS]).

Now under Condition 1í2 we give more information about the rate of

convergence in Theorem 1 when f belongs to L2 (p).

PROPOSITION 5. - = (9(n); n E N) be a bounded sequence
of complex numbers and u = (sun ; n E N) be a strictly increasing sequence
of integers. Suppose Condition x2 holds.

Then, for all dynamical systems (X, B, /-t, T), all f E £2(J-t) and all
,3 &#x3E; p we have

Proof. Let f E L2 (~c) and {3 &#x3E; p. From the Spectral Lemma (see
[Kr]) for all we have

where pf is the spectral measure of T at f. Then we proceed as in the

proof of Theorem 1 with 1 ) and let N be the unique
integer such that
t A/f20131 1

The first term tends to 0 and we have
I I f I

which tends to 0 (B is as in the proof of Theorem 1. This ends the

proof. D
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2.2. A precision in the case of the rotations.

The goal of the following proposition is to investigate the uniform

convergence properties of the previous ergodic means. We look at the
particular case of the rotation dynamical systems. Let be the set

of functions with summable Fourier coefficients, where T is the one-

dimensional torus.

PROPOSITION 6. - Let (’IC, ,t~, ~c, Ra) be a rotation dynamical sys-
tem where a is an irrational number. Under the assumptions of Theorem 1,
for all f E A(T ) we have

uniformly in x for all ,Q &#x3E; 8.

where . oJ . Consequently Condition and the

fact that the map mod 1 is onto imply that

which ends the proof. D

Now we make a remark in the case we do not have a dynamical system

structure, i.e., we are interested in the sequence
N). If 0 satisfies Condition Hi and f belongs to A(T) then the same
computation as before leads to
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2.3. Proof of Theorem 3.

We first establish the following result.

THEOREM 7. - Let H E~O,1~. Let be a strictly increas-
ing sequence such that there exist ( E]O, 1] and o’ &#x3E; 1 - H for which we

have

Then there exists a function f E £2 (J-t) such that

Moreover if d is the Diophantine type of a, then we can choose f to be in

lip(a) with a  (1 - H)/d.

Proof. From x4 we obtain the following estimation:

We set

From the Spectral Lemma we get

But 1 - H - ~ is negative, hence AN converges to 0. Now from a result of

Lacey (Theorem 1.1 in [La]) there exists a function f E so that

Moreover if d is the Diophantine type of a, then Theorem 1.1 in [La] allows
us to choose f to be in lip(a) with a  (1 - H)/d.

We conclude the proof applying Slutsky Theorem. 0



570

We prove Theorem 3 for 9+ . No new arguments are needed to prove
it for 8- . Let {3 &#x3E; 6. Let N E N, we have

From the Spectral Lemma and Condition the first term goes to

0 with respect to ~.~2,~? hence in probability. Theorem 1.1 in [La] implies
there exists f in lip(a), with a  (1 - 3)ld, such that the second term
converges in law to ~V(0,1). Consequently by Slutsky Theorem

This concludes the proof of Theorem 3.

2.4. Discussion about Condition 

Let us consider a strictly increasing sequence u = (Uk; k E N) and a
sequence fulfilling Condition i.e., there exists 6  1 such

that S(N, u) = O(N~). Let (,~~; k E N) be an increasing sequence such that
there exists 1  1 with (3k = Then the sequences ~ = 
and u = satisfy Condition Hi, in fact for b = Max(6, -y) we
have 

,

To show this it suffices to remark that
1 w r . /1 a r

This remark allows us to construct deterministic sequences of weights
satisfying Condition ?~1 with Uk = 1~ + [log(k + 1)] for example, where [.] is
the integer part map. In fact when u = the sequence f satisfies
a condition of type H4-

A definition of the Thue-Morse sequence 9 - (0,,; n E N) is the

following. For all n E N, let r(n) be the sum modulo 2 of the digits of
the expansion of n in base 2, then 0 can be defined by 0(n) = (- 1) r (n).
We said in the introduction that b (8, is equal to (log 3) / (log 4)
[G]. Hence from what we said before it comes that ’8 is also less than

where i
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3. q-multiplicative sequences.

The goal of this subsection is to give some example of sequences
satisfying Condition Hl. We mainly focus on q-multiplicative sequences.
We recall some known facts and results about these sequences and give a
sufficient condition for a q-multiplicative sequence to fulfill ~ 1.

3.1. Definitions, notations and background.

Let q be an integer greater than or equal to 2. A q-multiplicative se-
quence 0 = (8(n); n E N) is a sequence of elements of U (the multiplicative
group of complex numbers of modulus 1) such that for all integers t &#x3E; 1

we have

We remark that necessarily 8(0) - 1. The sequence 0 is completely
determined by the values of 0 (j q’) where ( j, k) belongs to {0,’ " , q -1 ~ x N.

We will call skeleton of 0 the sequence (
N). We remark easily that any sequence of U is the skeleton of some q-
multiplicative sequence.

For all integers N &#x3E; 0 and all real numbers x we set

In [LMM] the authors proved the following propositions.

PROPOSITION 8. - The following statements are equivalent:

i) is hnite,

ii) contains an isolated point,

iii) There exist r E I~ and no such that for all no and all t &#x3E; 0,
is an r-th root of unity.
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PROPOSITION 9. - If a non-periodic q-multiplicative sequence 0
takes its values in a linite subset of U, then 0 has empty spectrum, i.e., for

in R,

We set where

and consequently

3.2. A condition to fulfill Condition x1.

Let 0 be a finitely valued (i.e., 0(N) is finite) q-multiplicative sequence.
For all N E N and all 0  j  q, we set B ( j qN ) = e(bN,j) with 0 ~ bN,j  1.

We remark that bN,o = 0 for all N E N. We set

From Proposition 8 there exist r and no such that for all n &#x3E; no and

all j ? 0 the complex number is an r-th root of unity. It comes that

bn,j belongs to the (r - l)/r}. Hence the sets ~ BN ; N E N}
are finite.

Let U, V C ~q, we denote by U.V the usual scalar product in We

remark that AN (x) = BN.Eo(q N x) and of course I is

less than q for all x E R.

Remark. - ] - q if and only if for all 0 , j  q - 1 we
have

. -

where r - s means ~ r ~ _ ~ s ~ , ~ . ~ being the fractional part. Then it comes
that I- if and only if
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When the equation IBN.Eo(x)l == q has a solution there is a unique
solution belonging to [0, 1[ namely xN - 1 - bN,l (IBN.Eo(xN)1 ] = q). Of
course xN is not defined for all N. We set

and

From the above relations we deduce that I is the set of integers N
such that

We set IN = In [0,.., N - 1] and we say 0 satisfies Condition (C) if there
exist cx  1 such that we have

The following proposition together with the relations (R) provide an easy
way to construct q-multiplicative sequences fulfilling Condition Hi .

THEOREM 10. - be a finitely valued q-multiplicative se-
quence. If Condition (C) holds then there exist 0  6  1 and a

constant K such that

Proof. The set n E is finite. We claim that, for

all n ~ IN, we have Indeed

for some x, then and

IAn+1(X)1 = q. Then it comes that qn+lx == Xn+l and

consequently n E IN.

We set We have s  1.

By Condition (C) there exist a  1 and No such that for all N &#x3E; No
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we have be such that N - 2 &#x3E; No. We have

, _ , , _ ,

Hence there exist /3  1 and a constant K such that for all N E N we have

SUP.,

This concludes the proof. 0

From this proof we have 6 (0, a + (1 - a) (log s) / log q.
In the case where q = 2 and r = 2 then the belong to the

set {0,1/2}. Consequently Condition (C) becomes: there exist a  1 and

No E N such that for all N &#x3E; No we have

Then it is not difficult to see that Condition (C) holds if and only if there
exist c~  1 and No E N such that for all N &#x3E; No we have

1
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In this case the value s used in the proof is less than or equal to It

gives
~,(A~eN)) ~0,82-0,18a.

Similar conditions can be given in the general case.

3.3. Relations between Conditions (C) and H2.

In this subsection we prove that a finitely valued q-multiplicative
fulfilling Condition (C) satisfies Condition H2 (Proposition 12). We prove
this following the proof of Corollaire 1.11 in [LMM].

LEMMA 11. - Let 0 be a q-multiplicative sequence. Then for all
positive integers N, p and t we have for all x 

Proof. We set where [.] is the

integer part map. If N , 2qt, the inequality is clear. Otherwise we have
and

which ends the proof. 0

PROPOSITION 12. - Let 0 be a q-multiplicative sequence such that
is finite. If Condition (C) holds then there exist 0  a  1 and a

constant C such that

Proof. We know there exist 0  6  1 and a constant C such that
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Let t be the unique integer such that

Then the previous lemma gives

which ends the proof. 0

3.4. Some particular examples of q-multiplicative sequences.

Before giving some examples, we need to recall some definitions about
combinatorics on words.

An alphabet A is a finite set of elements called letters. A word on
A is an element of the free monoid generated by A, denoted by A*. Let
x = XOX1 ... Xn-1 (with xi E A, 0  i x n - 1) be a word, its length is n
and is denoted by I x 1. The empty word is denoted by E, ~ I c = 0. The set of
non empty words on A is denoted by A+. The elements of AN are called
sequences. If x = is a sequence (with xi E A, i e N) , and I = [k, 1]
an interval of N we set x I = x, and we say that x, is a factor

of x. If k = 0, we say that x, is a prefix of x. The occurrences in x of a
word u are the integers i such that u. When x is a word, we
use the same terminology with similar definitions.

The sequence x is ultimately periodic if there exist a word u and a
non empty word v such that x = uvvV"’. Otherwise we say that x is

non-periodic. It is periodic (for lvi-periodic) if u is the empty word.

The set A is endowed with the discrete topology and AN with the
product topology. If (un ; n E N) is a sequence of words of A* such that

lun - +00 then we say that (un; n E N) converges to u E AN if
and only if (un; n E N) converges to u E AN.

Generalized Thue-Morse sequences.

Let r &#x3E; 2 be an integer and Rr be the set of the r-th roots of
unity. We consider Rr as an alphabet. Let E RT and b 
We define (a1... an) * b to be the word u of length n defined by u -
(a, b) (a2.b) ... (an.b) where x.y is the standard multiplication in C. The
word u belongs to R~. In the same way we define (ail ... an ) * (~i -’’ bm) to
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be the word ((a1 ... an ) * bl ) - - - ( (al - - - an ) * b,,,)). It can be checked that
this product is associative.

Let (un; n E N) be a sequence of blocks of R;, with 2, all

beginning with the letter 1, then the sequence of words (u1 * u2 *... * un; n E
N) converges to a sequence x E R~. We call it a generalized Thue-Morse
sequence. These sequences were defined in [Ke] for r = 2. We will say it is
of constant length whenever _ ~ for all n E N.

PROPOSITION 13. - Let r &#x3E; 2 be an integer and x be a sequence of

R~. Then, x is q-multiplicative if and only if x is a generalized Thue-Morse
sequence of constant length q.

Proof. Let 0 be a q-multiplicative sequence with skeleton (sn ; n &#x3E;,
0), then it can be checked that the sequence (SI * s2 * - - - * sn; n E N)
converges to 0 and conversely. 11

The Thue-Morse sequence x was defined in [Mo] to be the limit

of ( Un ; n E N) where Un is defined by Uo - a, Vo - b,
Urn+1 == and Vn+1 == VnUn. Let a - 1 and b = -1, then the

sequence ( ( 1 (20131))*~;?~ E N) converges to the Thue-Morse sequence, where
( 1 (- I))*’ is the n-th *-power of the word (1 (-1)). We recall that in [G]
it is proved that 6 (x, (k; k e N) ) is equal to (log 3) / (log 4).

Let 0 be a 2-multiplicative sequence on the alphabet R3 
Condition (C) is: there exist a  1 and No E N such that for all N ~ No
we have

1

1 # {0 N - 1 ; I bn+i,l) E 1(0, 0), (1/3, 2/3), (2/3, 1/3)}} a.

For example, let 0 be the 2-multiplicative sequence with the periodic
skeleton (1, j), (1, j), .. ’. From Proposition 13 we have

We clearly have a = 0. An elementary computation with Maple gives that

6(0, is less than 0, 93.

Substitutions and q-multiplicative sequences.

A substitution on the alphabet A is a map o, : A --+ A+. Using the
extension by concatenation to words and sequences, a can be defined on
the sets A* and If for some letter a the word begins with the
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letter a and that liMn-+,,- _ +oo then the sequence (an(a);n E N)
converges to a sequence x which satisfies = x: x is a fixed point of a.
We say is of constant length q whenever la(b)1 ] = q for all letters b in A

(see [Qu] for more details).

PROPOSITION 14. - If the skeleton of a q-multiplicative sequence
x is n-periodic then x is the fixed point of a substitution of constant length
q,n .

Proof. - The *-product being associative we can suppose that the
skeleton of x is 1-periodic and equal to ((t~i’’’ n e N) . Let a : Rr ~
Rr be the substitution of constant length qn defincd for all a E Rr by
a(a) = (a.wl) - - - (a.wqn). Then x is the fixed point of a starting with the
letter 1. 0

In the previous example this gives cr(l) = 1 j , and

a(j2) = j21.

Generalized Rudin-Shapiro sequences.

Let (u(n); n E N) be the sequence where u(n) is the number of blocks
"11" in the binary expansion of the integer n. In [AM] the authors proved
for all t E R the sequence v(t) = (e(tu(n)) ; n is such that 6(v(t))  1

if and only if t g Z. And in particular that b(v(t), (I~;1~ E I‘~)) - 1/2 if

t E Z + 1/2. In [AL] is given a bunch of sequences for which 6 = 1/2 (see
also [MT]).

The sequence v ( 1 / 2 ) is the well-known Rudin-Shapiro sequence which
was the first example of a sequence with b(v(t), (1~;1~ E l~)) - 1/2.
It satisfies the following recurrence relation : v2n - v4n+1 - vn and

4+3 = 

4. Some precisions in the q-multiplicative case.

Let 0 = be a non-periodic finitely valued q-multiplicative
sequence. From Proposition 8 there exists no such that 0 = (9(I~);1~ &#x3E; no)
takes values in the set S’ _ ~ s 1, - - - , contained in R~., the set of the
r-th roots of unity for some r E N. We define Per(O) to be the set of integer
a such that is periodic. The sequence 0 is said to be
irreducible if Per(9) = 0.
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PROPOSITION 15. - Let 8 - be a finitely valued
q-multiplicative sequence. Let 0 : S - C. For all dynamical systems
(X, B, /1, T) and all f E Ll (JL) the limit

exists and is equal to 0 if 9 is irreducible.

Proof. We take the notations of the beginning of this subsection.
In the sequel we suppose 9 = 8 but the same kind of proof holds when 0 is
not equal to ~.

Let be a dynamical system and f E We take the

notations of the beginning of this section.

If l does not belong to Per( 0) then 8l is non-periodic and q-multiplicative.
Consequently converges to 0.

If l belongs to Per( 0) and
y is a word on/the alphabet Rr and Zi belong to Rr for all 1  i x p.
Then from Birkhoff’s ergodic theorem N converges

to (zi + ... + zp) Ix 0

4.1. The case of the squares.

We recall the van der Corput inequality (see [KN]).
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LEMMA 16. - Let N E N and (~(~);0 ~ ~ ~ N) be a finite
sequence of a Hilbert space 11. For all 0 ~ H  N - 1 we have

THEOREM 17. - be a non-periodic finitely valued q-multipli-
cative sequence. Then, for all totally ergodic dynamical systems (X, x3, A, T)
(i.e., (X, B, J-l, Tn) is ergodic for all n E Z), with T invertible, and all
f E £2(J-l) we have

p-almost everywhere.

Proof. - Let f e 1-[ - L2(JL) such that 0. We apply
the van der Corput inequality to the sequence defined by
q(k) = 9(k) f 0 Tk2. For all 0  TV - 1 we obtain

From the weak Ergodic Theorem and the facts that the system is totally
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ergodic and fx = 0, we have for all H E N,
,

It comes that

Now take g E L’(1-L). We apply what we just proved to f = gdJ.1.
Because 0 has an empty spectrum we obtain

I I K=u I 1 it,2

Moreover we know from [Bo] that is a good subsequence for
the pointwise Ergodic Theorem in £2(J1) and furthermore from standard
arguments we obtain the same conclusion for almost sure convergence. 0

From the proof of the previous theorem and without using the fact
that (k 2; k E N) is a good subsequence for the pointwise Ergodic Theorem
in L2 (~C), we obtain Proposition 2.

Proof of Proposition 2. - When a is a rational number a direct

calculus leads to the result.

Now we suppose a is an irrational number. Let 7~ be the rotation
of angle a and p be its Haar measure. It is easy to check that it is totally
ergodic. From the previous proof it comes that for J1-almost every x E ~0,1 ~ [
we have

Hence for all irrational a.
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