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For a locally symmetric space M, we define a compactification
M U M(oo) which we call the geodesic compactification. It is constructed
by adding limit points in M(oo) to certain geodesics in M (see 1.1-1.2).
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The geodesic compactification arises in other contexts. Two general
constructions of Gromov for an ideal boundary of a Riemannian manifold
give M(oo) for locally symmetric spaces (see 1.3-1.4). Moreover, M(oo)
has a natural group theoretic construction using the Tits building (see 1.5).

The geodesic compactification plays two fundamental roles in the
harmonic analysis of the locally symmetric space: 1) it is the minimal

Martin compactification for negative eigenvalues of the Laplacian (see 2.1),
and 2) it can be used to parameterize the eigenfunctions of the Laplacian
in continuous spectrum on L2 (see 2.2).

1. Introduction: geometry.

The introduction is in the first two sections. This one contains

geometric results, and §2 contains applications to harmonic analysis.

1.1. The geodesic compactification. - Let M be a complete
Riemannian manifold. A ray in M is a map r: [0, +oo) 2013~ M that is

locally isometric, i.e. a half geodesic parameterized by distance. We want
to compactify M by adding limit points to rays in M.

Euclidean space. - Consider first the case of Euclidean space M = R’.

Choose a base point p E M. We can compactify M by adding a sphere
M ( oo ) at infinity, which has a point q E M ( oo ) for every ray emanating
from p G M. If we choose a different base point p’ E M, then we get the
same compactification. A ray eminating from p’ converges to the same point
as a ray eminating from p if and only if the rays are parallel. So M(oo)
can be identified with the set of parallelism classes of rays in M. (The
same construction works in a Hadamard manifold, i.e. a simply connected,
nonpositively curved, complete manifold [BGS], §§2-3, except that parallel
classes of rays are replaced by equivalence classes of rays defined below.)

More general manifolds M. - If M is, for example, a locally symmetric
space, we cannot hope to define a compactification M U M(oo) in which
every ray converges to a point in M(oo). The reason is that some rays
don’t "go to infinity" at all - they wander around forever, reentering a fixed
compact subset of M infinitely often. A ray(’) is called distance minirrzizing,
or DM, if it is an isometric embedding of [0, +oo) into M. These are the

(1) In this paper, every geodesic is directed and has unit speed.
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rays that "go to infinity", so these are the rays for which we want to add
limit points. All rays on Euclidean space, or on a Hadamard manifold,
are DM. (2)

We want to define an equivalence relation on DM rays analogous to
parallelism in Euclidean space, determining when two will converge to the
same point in the compactification. We say that DM rays ’)’1, q2 in M

are equivalent if they remain at finite distance from each other as they go
to infinity, i.e., if sup (t), ’)’2 (t))  +oo, where d( - , .) is the
distance function on M. Let M(oo) denote the set of equivalence classes
of DM rays in M.

For a general complete Riemannian manifold M, we find two

assumptions (see 9.11, 9.16) under which the set of equivalence classes
of DM rays M(oo) forms the ideal boundary of a canonical Hausdorff
compactification M U M(oo). We call this the geodesic compactification
of M (see 9.17). The construction of the topology on MUM ( (0) is

somewhat technical, but the idea is this: M(oo) is topologized so that two
points in M(oo) corresponding to nearby rays are nearby. So topologized,
we call M(oo) the geodesic boundary of M. The geodesic boundary M(oo)
is glued on to M so that each DM ray in M converges to its equivalence
class in M(oo).

1.2. Locally symmetric spaces. - Now we restrict attention to a
manifold M which is a locally symmetric space. In other words, M = rBX
where X is a Riemannian symmetric space with automorphism group G,
and f C G is an arithmetic subgroup of G that acts properly and

discontinuously on X. In this case, the geodesic compactification exists
because

THEOREM (see 11.7). - The space M = FBX satisfies the assump-
tions 9.11 and 9.16, and hence M U M(oo) defines a Hausdorff compacti-
fication. -

We will now discuss three other constructions that give the same

space M(oo) at infinity. This shows that the geodesic compactification of M
is a natural mathematical object. The first two come from geometry and can,

(2) There is a history of work on DM rays. Hadamard studied rays on nonpositively
curved surfaces systematically in [HAD]. For locally symmetric spaces, importance of
DM rays has been noticed by Siegel [SI], §23, Selberg [SE1], pp. 101-118, Garland &#x26;

Raghunathan [GR], Thm. 4.6.
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like the geodesic compactification, be defined for more general manifolds.
They don’t always coincide with M(oo), but for locally symmetric spaces
they do. The third uses the structure of the group G, so it can only be
defined for locally symmetric spaces.

1.3. The Gromov compactification. - In [BGS], §2, Gromov intro-
duced a compactification MG for any complete Riemannian manifold M,
by embedding the manifold into a space of continuous functions using the
distance function (see 12.5).

THEOREM (see 12.11). - The Gromov compactification MG of
M = rBX is homeomorphic to the geodesic compactification M U M(oo).
In particular, the Gromov boundary 9MG can be identified with the
geodesic boundary M (oo) .

1.4. The tangent cone at infinity. - In [GR2], §7 and [GR1], 3.16,
Gromov introduced the tangent cone at infinity of a metric space M,
denoted by TooM (see 5.4). This is a metric cone which reflects shape of
the space M viewed from infinity (see the introduction of [GR3]).

THEOREM (§5.16). - For M = ]FBX, the tangent cone at infinity
Too At exists and is a cone over the geodesic boundary M(oo).

1.5. The Tits compactification. - Let AQ(G) be the rational Tits
building of G (see 3.4). Then r C G acts simplicially on AQ(G) and the
quotient is a finite simplicial complex called the Tits complex
of rBX and denoted by 0(rBX) (see 3.6).

THEOREM (see § 11.3, 11.8). - The geodesic boundary M(oo) of

M = rBX is homeomorphic to the Tits complex 

Therefore the geodesic compactification M U M(oo) may be identified
with rBX U A(rBX). The compactification rBX U may be

constructed directly using reduction theory, without appeal to geodesics
(see Theorem 8.8). In this context, we call it the Tits compactification
of rBX and denote it by rBX T . ~3~ For technical convenience, in this

(3) It follows from the last two characterizations of the geodesic boundary that the
tangent cone at infinity T coM is the cone over the Tits complex A(FBX). This result
was stated without proof by Gromov in [Gr3], 3.Il. When X = SL(n,R)/SO(n,R)
and r is a congruence subgroup of SL(n, R), this result on ToorBX is due to Hattori
[HA2], Theorem B, [HA1], Theorem B.
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paper we will treat the Tits compactification first and use it to study the
compactifications mentioned earlier.

1.6. The metric link. - For any point q E M(oo) in the geodesic
boundary of a complete Riemannian manifold M, we define the metric
link S(q) of q as follows: The point q corresponds to an equivalence
class of rays. S(q) is the quotient of this equivalence class by a finer
equivalence relation called N equivalence: Two geodesics are considered
N-equivalent if the distance between them to zero as they go to

infinity, i.e., if limt-+,,,, sup d(-yl (t), ~y2 (t)) = 0 for suitable parametrizations
of The metric link is a metric space, with a metric induced

by limt-+,, sup (t), -y2).
If M is a locally symmetric space, the metric link is itself a Riemannian

manifold which is a product of Euclidean space with a complete Riemannian
manifold S(q) of finite volume. We call S(q) the reduced metric link of q
(see 14.10 and 14.13). It is a locally symmetric space of smaller dimension.
It depends only on which open simplex q is in (where "simplex" refers

to 0(hBX) which is identified with M(oo)). These metric links play an
important role in parametrizing the generalized eigenfunctions (see 2.2
below).

1.7. Other compactifications. - The reduced metric link is a

boundary component of the reductive Borel-Serre compactification (see
[GHM], [BJ]) of a locally symmetric space hBX, which is important for
certain applications. In fact, the reductive Borel-Serre compactification
itself can be constructed by placing an equivalence relation on the set
of DM rays. This is carried out in § 14. The Borel-Serre compactification
is similarly constructed.

2. Applications to harmonic analysis.

We give two cases where the geodesic boundary of TBX solved a
problem about the harmonic analysis of rBX. In both cases, the problem is
to classify certain eigenfunctions of the Laplacian. The first case is positive
functions with negative eigenvalues, leading to the Martin compactification.
The second case is the continuous spectrum of the Laplacian on L2 (with
positive eigenvalues).
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2.1. The Martin compactification. - For any complete Riemannian
manifold M and any A less than the bottom of the spectrum of the

Laplace operator A on M, there is a Martin compactification M U 8xM
(see 15.2). Each point in the Martin boundary 8xM corresponds to a
positive solution of Au = Au and these functions generate the cone

CB(M) = ju E C°° (M) I Du = Au, u &#x3E; 01 (see 15.4). Extremal elements
in C~ (M) are called minimal functions and form the minimal Martin

boundary 8x,m;nM C 8xM.

PROPOSITION (see 15.13, 15.15) . If M = rBx is a locally symmetric
space, the geodesic boundary M(oo) can be canonically embedded into the
minimal Martin boundary for any ,B  0. ~4~

This proposition implies that there exists an injective map i : U

rBX (00) -~ rBX U 8xr)X for any A  0 which restricts to the identity
on rBx.

CONJECTURE (see 15.14). - The map t
8ÀfBX is a homeomorphism, so r)X(oo) is the Martin boundary 8ÀfBX,
and every boundary point in 8xr)X is minimal.

2.2. Paramatrization of the continuous spectrum. - It is a known fact
that the continuous spectrum as a subset in R of a noncompact manifold
does not change under compact perturbations. A natural question is to
understand relation between the continuous spectrum and the geometry at

infinity. The geometry at infinity can be interpreted as compactifications
of the space and also as structure of geodesics going out to infinity. One
version of the above question is to parametrize the generalized eigenspaces
for the continuous spectrum in terms of boundaries of compactifications
defined in terms of geodesics. We carry this out for locally symmetric
spaces.

Consider triples (q, Sp, r) where q is a point in the geodesic boundary
M(oo), yJ is a basis element of the space of eigenfunctions of the Laplacian
on the reduced metric link S(q) (see 1.6 above), and r is a positive real
number. For every such triple, we define a generalized eigenfunction of
the Laplacian on M, E(q, r). These are all distinct. The eigenvalue

(4) Since TBX has finite volume, = 0. For A = 0, the Martin compactification
of hBX is just one point compactification.
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of E(q, ’P, r) is the r plus the eigenvalue of cp and a positive constant
depending only on q.

PROPOSITION (see 13.15). - The functions E(q, cp, r) form a basis of
the continuous spectrum of the Laplacian on L2M.

We can call the point q E M(oo) the source of E(q, cp, r). The idea
is this: By separation of variables, E(q, cp, r) gives rise to a solution of
the Schroedinger equation on M x R*. This solution represents a particle
coming in to M from q with internal excitation Sp and velocity determined
by r. The particle scatters in M and leaves at various points q’ E M(oo).
So this theorem may be regarded as a connection between a "classical"
picture (DM rays) and a "quantum" picture (scattering). (5) After the first
version of this paper was written, stronger results connecting the rays
of rBX and the generalized eigenfunctions E(q, W, r) have been obtained
for FBX of Q-rank 1 in [JZ].

The functions E(q, W, r) are given by Eisenstein series, and this result
is a reinterpretation of Langlands’ theory of Eisenstein series [LA], [AR2],
[OW2].

2.3. Other spaces. - We have developed a paradigm here for locally
symmetric spaces: The geodesic boundary, which is defined using the
intrinsic geometry of M, classifies certain eigenfunctions of the Laplacian.
We expect that this paradigm will apply to some other Riemannian
manifolds "of finite type" .

For example, consider the case of Euclidean space M = R~. The

analogues of all of the results mentioned above hold (except that the
Tits compactification doesn’t make sense). As already remarked, geodesic
boundary M(oo) is a sphere. This coincides with the Gromov boundary,
and the tangent cone at infinity is the cone over M(oo). The Martin
compactification coincides with the geodesic compactification. The metric
link is a Euclidean space so the reduced metric link is a point.
Therefore triples (q, W, r) are just pairs (q, r). The function E(q, r) is wave
with direction q and wave length 27r/r~. The fact that these waves form
a basis of the continuous spectrum is just the Fourier transform. See 14.22

and §16 for more discussion.

(5) See the survey by Keller [KE1] for connection between rays and scattering on
domains in Euclidean spaces.
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3. Algebraic groups, Tits building 
and Tits simplicial complex 0(rBX).

3.1. In this section, we recall some basic facts of algebraic groups.
The basic references are [BOl], Chap. III, [B03] and [BT], §5.

In 3.2, we introduce Weyl chambers and their faces, which are used
to describe parabolic subgroups in 3.3. In 3.4, we recall the rational Tits
building AQ(G) and the finite Tits simplicial complex In 3.5,
we recall the Langlands decomposition of parabolic subgroups (see 3.5.1)
and the induced horospherical decomposition of X (see 3.5.2). Finally, we
use Weyl chambers and their faces to give a geometric realization 
of AQ(G) (see 3.6.2) and hence of (see 3.6.3).

3.2. Let G be an affine algebraic group defined over Q. The radical RG
of G is the greatest connected normal solvable subgroup of G, and the
unipotent radical NG is the greatest unipotent normal subgroup of G. The
group G is called semi-simple if RG - fel, and reductive if NG - ~ e ~ .
In the following, we assume that G is a connected semi-simple algebraic
group defined over Q. Denote the real locus G(R) by G, which is a

semisimple Lie group with finitely many connected components.

An algebraic group T over Q is an algebraic torus if T(C), the
complex locus of T, is isomorphic to products of GL1 (C). If T is isomorphic
to products of GLI over Q, then T is said to split over Q or called a Q-split
torus. All the maximal Q+split tori in G are conjugate to each other by
elements of G(Q), and their common dimension is called the Q-rank of G,
denoted by rQ (G)

Let S be a maximal Q-split torus in G. Define 

the group of characters of S defined over Q, and

= the group of one parameter subgroups in S

defined over Q. Then X(S)o and are torsion-free abelian groups
of rank Furthermore, there is a unimodular Z-bilinear form ( , )
on X(S)o x such that and are dual to each other.
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Since S consists of semi-simple elements, the adjoint action of S on G
is diagonalizable:

where

and a E X(S)Q (here the action of a character is written in the form so
that the group operation on is addition). If 9a =1= 101, a is called
a rational root of G with respect to S. The set of all such rational roots
is denoted by ~ ( G , S ) and forms a root system in X ( S ) ~ = X(S)Q 0 R
(see [BO1], Thm. 11.4). Each a E ~(G, S) defines a hyperplane Ha in

The connected components of the complement of these hyperplanes
Ha in are called Weyl chambers. Let N(S) and Z(S) are the

normalizer and the centralizer of S in G respectively. Then the Weyl group
W(G) = N(S)/Z(S) of G with respect to S acts simply transitively on
the set of these Weyl chambers. Every Weyl chamber C determines a
linear order on ~(G, S): a root a is positive if and only if (a, Y) &#x3E; 0 for

all Y E C. Denote the set of positive roots by ~+ (G, S) and the set of
simple roots by ~++ (G, S). For any subset I C ~++ (G, S), we can define
a Weyl chamber face CI by

which is an open simplex of dimension rQ (G) - ]1] .

3.3. The Weyl chambers and chamber faces can be used to describe
the rational parabolic subgroups. Recall that a closed subgroup P of G
is called parabolic if P contains a maximal connected solvable subgroup,
i.e., a Borel subgroup of G. If P is defined over Q, then P is called a rational

(or Q) parabolic subgroup.
If P is a minimal rational parabolic subgroup, then there exists a

Q-split torus S contained in P such that

where Np is the unipotent radical of P and Z(S) is the centralizer of S in G.
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Furthermore, there exists a Weyl chamber C such that the Lie algebra np
of Np is given by

- 

, , /

This gives rise to an one-to-one correspondence between the minimal
rational parabolic subgroups containing S and the Weyl chambers C in S

[BT], Cor. 5.9. Because of this correspondence, we also denote ~+(G, S)

Non-minimal rational parabolic subgroups correspond to proper Weyl
chamber faces. More precisely, let P be a minimal rational parabolic
subgroup, and S a maximal Q-split torus in P as above. For any subset
I c ~++ (G, S), denote by SI the identity component of naEl ker a C S.
Then SI is a Q-split torus of Let PI be the subgroup
generated by Z(SI ) and Np. Then PI is a rational parabolic subgroup
containing P, whose unipotent radical Np, has Lie algebra ~’ ga, where
the sum is over all the positive Q-roots which are not linear combinations
of elements of I, i.e., all the positive roots which do not vanish on SI.
Such a rational parabolic subgroup is called a standard rational parabolic
subgroup associated with P, S. Any rational parabolic subgroup containing
the minimal rational parabolic subgroup P is a standard one [BT], Cor. 5.18,
and hence corresponds to a unique Weyl chamber face of the Weyl
chamber C associated with P.

Under this correspondence, the opposite of the inclusion relation for
the rational parabolic subgroups is the same as the face relation of the

Weyl chamber faces. This implies that there are only finitely many rational

parabolic subgroups containing any minimal rational parabolic subgroup,
while each non-minimal rational parabolic subgroup contains infinitely
many minimal rational parabolic subgroups.

3.4. We recall the spherical Tits building AQ (G) associated with G
over Q (see [TI1], [TI2], Thm. 5.2). Simplexes of AQ(G) correspond
bijectively to proper rational parabolic subgroups of G. Each proper
maximal rational parabolic subgroup Q corresponds to a vertex of A(Q(G),
denoted by Q. Vertices Qo , ... , Qk are the vertices of a k-simplex if and

only if Qo n ... n Qk is a rational parabolic subgroup, and this simplex
corresponds to the parabolic subgroup Qo n ... n Q k .

If G has Q-rank one, AO(G) is a countable collection of points.
Otherwise, AQ(G) is a connected infinite simplicial complex. For any
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maximal Q-split torus S, all the rational parabolic subgroups containing S
form an apartment in this building. This subcomplex gives a simplicial
triangulation of the sphere of dimension rQ ( G) - 1. This is the reason

why is called a spherical building.

The rational points G(Q) of G act on the set of rational parabolic
subgroups by conjugation and hence on AQ(G): For any g E G(Q) and any
rational parabolic subgroup P, the simplex of P is mapped to the simplex
of gPg-1. Let r C G(Q) be an arithmetic subgroup of G(Q). Then by
reduction theory (see 4.4) and the discussion in 3.3, there are only finitely
many r-conjugacy classes of rational parabolic subgroups. Therefore, the
quotient is a finite simplicial complex. This simplicial complex is
called the Tits complex of rBX and denoted by 

3.5. We recall the Langlands decomposition of rational parabolic
subgroups and the induced horospherical decomposition of the symmetric
space.

For a rational parabolic subgroup P, its Levi quotient Lp = P/Np is
defined over Q. Let Sp denote the maximal Q-split torus in the center of Lp,
and Ap - S(R)° the identity component of the real points S(R) of S.
Let 1 Then the real locus of the Levi quotient splits
as a direct product Lp(R) = 

Let X be the symmetric space of the maximal compact subgroups
of G (R). Then any point xo E X corresponds to a maximal compact
subgroup K C G(R). There is a unique algebraic Cartan involution 0
of G(R) whose fixed point set is K and which extends to G, and there
is a unique lift io : Lp - P of the Levi quotient such that the image
Lp (xo ) = io (Lp ) is 0-invariant [BS], Prop. 1.6 and Cor. 1.9. We also obtain
lifts Sp (xo), Ap(xo) and Mp (xo) of the subgroups Sp, Ap and Mp
respectively.

The real locus P(R) of P is denoted by P, Np(R) by Np, and the
image io (Mp (R)) by We then have the Langlands decomposition

i.e., the map (u, a, m) E Np x x Mp(xo) J---+ uam E P is a

diffeomorphism. Note that Ap (xo ) commutes with Mp (xo ) , and hence
the Langlands decomposition is also written as
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Since P acts transitively on X, any x E X can be written as

where u(x) E Np, a(x) E Ap (xo), m(x) E Mp (xo), and u(x), a(x)
are uniquely determined by x. Define Xp - where

Kp = K n Mp (xo ) . Then Xp is product of a symmetric space of non-

compact type with a possible Euclidean space and hence called the boun-

dary symmetric space associated with P. Then the above decomposition
decomposition of X induces a diffeomorphism

This decomposition is called the horospherical decomposition of X with
respect to P.

If Q D P is another rational parabolic subgroup, then NQ C Np,
SQ C Sp, and AQ C Ap. The above lift io also determines inclusions

and AQ (xo ) C Ap (xo ) . In

particular, for a minimal rational parabolic subgroup P and a standard
rational parabolic subgroup PI defined in 3.3, Ap,(xo) - Ap(xo) I
aQ == 1, a E Il c Ap (xo), where the action of the character a on Ap (xo)
is the composition of its action on Ap with the map io : Ap - Ap (xo ) .

If xl E X is a different basepoint, then the lifting map i1 is conjugate
to io by some element of P, and thus the lifts of 

are also conjugate to Lp(ro), Sp (xp), Ap (xo), 
respectively. From now on, this basepoint xo will be fixed and omitted
from Ap (xo), Mp (xo), etc., unless necessary.

3.6. We use Weyl chambers and faces to give a concrete realization of
the spherical Tits building AQ (G) .

For any rational parabolic subgroup Q, let aQ, nQ be the Lie algebra
of AQ, NQ respectively. Then aQ acts on uQ, and the set of roots is

denoted by cp+(Q,AQ), and the subset of the simple roots is denoted by
~++ (Q, AQ ) , If P is a minimal rational parabolic subgroup contained in Q
and Q is of the standard form C~ - PI, then ~++ (Q, AQ ) is canonically
identified with ~++ (G, P) B I.

For the rational parabolic subgroup Q, define an open simplex
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and a (closed) simplex

where ( . , .) is the Killing form on the Lie algebra. It is clear that 
is a closed simplex of dimension rQ(G) - rQ(MQ) - 1, and is an

open simplex. From the correspondence between the rational parabolic
subgroups and the Weyl chamber faces in 3.3, we can see that 
is isomorphic to the simplex in associated with Q in 3.4. If Q’
is another rational parabolic subgroup containing Q, then A+, (00) is a face
of the simplex AQ (oo) .

Define a complex

where Q runs over all the proper rational parabolic subgroups of G, and the
equivalence relation is given by the inclusion above for any pair of rational
parabolic subgroups Q’ D Q. This simplicial complex is a realization of the
spherical Tits building for G:

As a set is a disjoint union of the open simplexes

For an arithmetic subgroup r c G(Q), let be a set

of representatives of r-conjugacy classes of proper rational parabolic
subgroups. Then the Tits simplicial complex A(r)X) in 3.4 has the

following realization:

where the equivalence relation is defined as follows: ~4p (oo) is identified

with a face of Ap (oo) if and only if a F-conjugate of Pi contains Pj . Then
as a set, 

By the reduction theory in Proposition 4.4, there are only finitely many
r-conjugacy classes of rational parabolic subgroups, i.e., n is finite, and
hence A(FBX) is a finite simplicial complex.
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4. Classical and precise reduction theories.
4.1. In this section, we recall the reduction theory by Borel and

Harish-Chandra [BH], Borel [B01] [B04], and the refinement by Langlands
[LA], Arthur [AR1], Osborne and Warner [OW1], and Saper [SA]. The
refined reduction theory plays an important role in the study of the
tangent cone at infinity T oofBX in §5 and the geodesic compactification
rBxurBx(oo) in §11.

In 4.2, we define (generalized) Siegel sets associated with parabolic
subgroups which are not necessarily minimal. The reduction theory of

[BO1] is stated in 4.4, and the refined reduction theory is stated in 4.6.

4.2. We first recall the definition of Siegel sets and generalizations.
Let xo E X be the basepoint fixed in 3.5. For any rational parabolic
subgroup P of G, let Q1,...,Qr be the simple roots in ~++ (P, Ap )
(see 3.6). For r-tuple of positive numbers t = (tl, ..., tr), define

which is a shift of the positive chamber

Since P = NpMpAp by the Langlands decomposition and G = PK, G
can be written as G = NpMpApK. For any bounded set w in NP Mp ,
the set S = wAp,tK in G is called a (generalized) Siegel set in G, and the
subset Sxo C X a (generalized) Siegel set in X.

4.3. When P is a minimal rational parabolic subgroup and

ti - - - - try, Sxo is the usual Siegel set in the reduction theory. In
terms of the Siegel sets for minimal rational parabolic subgroups, the
reduction theory in [BO I], [B04], Thm. 1.10, can be stated as follows:

4.4. PROPOSITION. Let G be a semisimple algebraic group defined
over Q and r an arithmetic subgroup If P is a minimal rational

parabolic subgroup of G, then is finite, i.e., there are only
finitely many r -conjugacy classes of minimal rational parabolic subgroups.
Furthermore, there exists a Siegel set S = wAp,txo associated with P and
a finite subset C C G(Q) such that Q = CS is a fundamental set for r, i.e.,
it satisfies the following conditions :

is finite.
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4.5. Siegel sets for nonminimal parabolic subgroups are needed to

get a fundamental domain for T, which is a fundamental set without

overlap between the translates by r. This is the so-called precise reduction

theory and achieved by giving a partion of FBX into disjoint union of
generalized Siegel sets. This theory was developed by Langlands [LA],
Arthur [AR1], and Osborne and Warner [OW1], §3. We follow the

presentation in [OWl], §3 and [SA].

By the discussion in 3.3 and Proposition 4.4, there are only
finitely many r-conjugacy classes of rational parabolic subgroups. Let

be representatives of T-conjugacy classes of maximal

rational parabolic subgroups. For i = l, ... , m, let atax be the Lie algebra
of Aiax, the unique split component of Piax determined by the basepoint xo
in 3.5. Define a vector space

Then for any rational parabolic subgroup P, there is a canonically defined

map

where ap is the Lie algebra of Ap.

This map Ip plays an important role in this paper and can be defined

briefly as follows (see [OWI] , p. 330). For any maximal rational parabolic
subgroup Q, there exist an element 1 E r and a unique index io such that

Q = Taking the AQ component of -y into consideration, we
define a map aQ which is independent of the choice of ~y. Then Ip
is the composition of

For any rational parabolic subgroup P, let Qi, ... , (~r be all the

maximal rational parabolic subgroups containing P. Then there is a direct
sum decomposition

obtained as follows: For any j, aQ, is a subspace of ap, and the

projection map from ap to aQ., is the orthogonal projection. Note that
this decomposition is not orthogonal in general.

Using the decomposition (4.5.3), we define the map Ip as follows: For
any H E a, the image Ip (H) E ap is the unique point whose projection
in aQ, is equal to IQ~ (H).
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If dim ap = 2, then the decomposition ap = a, o a2 is illustrated in
Figure 4.5.4, where a, = aQl’ and a2 = 

Figure 4.5.4

For any T E a, define

which is the translate of Ap by Ip (T) .
Using these canonically chosen (generalized) Siegel sets, we can state

the refined, precise reduction theory as follows.

4.6. PROPOSITION (see [OWI] , Thm 3.4 and [SA], Thm. 9.6). - Let
Po - G, P1, ... , P n be representatives of r conjugacy classes of rational
parabolic subgroups of G. Then for any T E a, T » 0 and i = 0,..., n,
there exist bounded sets Wi C such that

1) Each Siegel set wiAp,,TXO is mapped injectively into fBX.

2) The image of wi in r n is compact.

3) Identify wiAp,,TXO with its image in fBX. Then rBX can be
decomposed into the following disjoint union

4.7. Remark. - In [SA], Thm. 9.6, Saper obtained a f-equivariant
tiling of X by manifolds with corners, which also extends canonically to
the Borel-Serre completion of X. Projecting this tiling of X to gives
the disjoint decomposition in Proposition 4.6. In fact, his result shows that
the image of wi in r n is a compact manifold with corner, and
the image of wiAp,,,TXO in 1’BX is also a manifold with corner. The corner
structure of the image of Wi does not play any role in this paper, though we
use the fact that the image of Wi is compact as stated in Proposition 4.6, 2).
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4.8. Note that the set woApo,TXO corresponding to G is a compact
subset. When dim Ap = 2, the partition of rBX induces a decomposition
of the positive chamber Ap in Figure 4.8.1.

5. Tangent cone at infinity 

5.1. In this section, we use the precise reduction theorem (Pro-
position 4.6) to prove Theorem 1.4 (see 5.16). The basic idea is that

Proposition 4.6 reduces the problem to understanding a metric subspace
Ap,,T, dind) of r)X (see 5.7). We compare this subspace with an

auxiliary metric space polyhedral cone with a simpli-
cial metric (see 5.9).

More precisely, in 5.2, we recall the Hausdorff distance of two

metric spaces. Then we define the Gromov-Hausdorff convergence in 5.3.

In 5.4, we define the tangent cone at infinity of a metric space. In 5.5,
we introduce length spaces, and we show how to associate a length
structure to a locally defined distance function in 5.6. In 5.7 and 5.8,
we introduce the subspace (1l7=0 Ap,,T, dind) and reduce Theorem 1.4 to
understanding the metric structure of Ap2,T, dind). In 5.9, we define
the auxiliary metric space Ap~,T, ds). Then we use Proposition 4.6
to compare Ap,,T, dind) with in 5.11-5.14. We

determine ds ) in 5.15 and hence Too(fBX) in 5.16.

The results of this section, in particular, Corollary 5.13 and

Lemma 5.14 have been used in [J2], Thm. 7.6, to prove the Siegel conjecture
on metric properties of Siegel sets.

5.2. DEFINITION (see [GR1], p. 35). - If X, Y are two subsets of a
metric space (Z, d), then the Hausdorff distance dz (X, Y) between X, Y
in Z is defined as follows:



474

If X, Y are any two metric spaces, then the Hausdorff distance dH (X, Y)
between them is defined by

where Z is a metric space, and /:~2013~Z,/:y2013~Z are isometric
embeddings.

5.3. DEFINITION. Let (Mn, dn, xn), n &#x3E; 1, be a sequence of pointed
metric spaces, where dn is the distance function of Mn and xn is a basepoint
in Mn. Then (Mn, dn, xn) is defined to converge to a pointed metric space
(Moo, doo, in the sense of Gromov-Hausdorff if for all R &#x3E; 0, the

Hausdorff distance between the metric ball B (xn, R) in Mn and the metric
ball B(x,,, R) in Moo goes to zero as n --+ oo.

5.4. DEFINITION. - Let (M, d) be a metric space. For any t &#x3E; 0,

t d defines another metric on M. Let xo C M be a basepoint. If the

Gromov-Hausdorff limit t d, xo) exists, then it is a metric cone
and called the tangent cone at infinity of M, denoted by TooM. This limit
is clearly independent of the choice of the basepoint xo .

5.5. DEFINITION (see [GR1], 1.7). - A metric space (M, d) is called
a length space if the distance between any two points in M is equal to the
infimum of the lengths of all curves joining them.

If (M, g) is a complete Riemannian manifold and dg is the induced

distance function, then (M, dg) is a length space. exists, it is also
a length space (see [GR1], 3.8).

5.6. LEMMA. - Let M be a topological space with a distance
function d defined locally, i.e., when x, y belong to a small neighborhood,
d(x, y) is defined. Then there is a canonical length structure .~ associated
with d as in [GR1], 1.4.

Proof. It is shown in [GR1], pp. 1-2, that a distance function
canonically defines a length structure. Since the dilation is defined locally,
the same argument works for a locally defined distance function. D

5.7. Let Po = G, P1, ... , P~ be representatives off-conjugacy classes
of rational parabolic subgroups of G, and Ap2,T be the shifted cone as
in 4.5.5. Fix aT» 0 and identify with the subset 117=0 
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in hBX as in Proposition 4.6. Then the Riemannian distance function

on FBX induces a distance function on the subspace Ll’o denoted

by dind. Note that we can not exclude right away the possibility that some
points x, y in one may be connected by a distance minimizing curve
not entirely contained in 

5.8. LEMMA. - If the tangent cone at infinity Ap,,T, dind)
of the subspace (U7=0 Ap,,T, dind) exists, then also exists and is

equal to Ap,,T, dind)-

Proof. From the precise reduction reduction theory in Proposi-
tion 4.6, it is clear the Hausdorff distance between (U7=0 dind) and
1’BX is finite. Then the lemma follows easily. D

5.9. We define another length structure on order to

study this induced distance function dind.

Identify Ap~,T with a cone in the Lie algebra ap, through the
exponential map and endow it with the metric defined by the Killing form.
Denote this metric by ds, called the simplicial metric. Then 
is a cone over A+, (oo), where A+, (oo) is the open simplex in the Tits

building associated with Pi in (3.6.1). In fact, with a suitable
simplicial metric on A+, (oo), ds ) is a metric cone over Ap2 (oo) . (6)

We now glue these metric cones ds) together to get a local
distance function on U7=0 Ap2,T. Since Ap2,T is a translate of the positive
chamber Ap2 , is isometric to ds). Identify 
with (Ap2, ds). Let (Ap2, ds) be the closure of (Ap2, ds) in (Ap,, ds).
Any face F of the polyhedral cone Ap2 is the chamber ApF of a rational
parabolic subgroup PF containing Pi (see 3.3 and (4.2.2)). The group PF
is r-conjugate to a unique representative Pj above. Identify Ap~ J with the
face F. Gluing all the spaces A+, together using this face relation gives
a topological space Ap2 /-. Suppose that ~4p J is glued onto a face

of ~4p . Since both metrics on ~4p and ~4p are induced from the Killing
form, they coincide on Therefore, all the metric spaces (Ap2 , ds) are
compatible and can be glued together to give a locally defined distance

(6) The metric on Ap2 (oo) induced from the distance function of Ap2 defined by the
Killing form is not a simplicial metric, since, by definition, Ap 2 (oo) is a part of the
unit sphere in Ap~. 
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function on ( By Lemma 5.6, there is an induced length function

denoted by ts -

As a topological space, U7=0 Ap2 /- is a cone over the Tits complex
in 3.6.3; and as a set, has a disjoint decomposition

o Ap2 that can be identified with Therefore, the length

space
, ,, , 1

defines a length structure on Apt,T, denoted

An important property of this length space the

following Lemma 5.10. The basic idea of the proof is that since all

the minimal rational parabolic subgroups P (and hence their positive
chambers Ap) are conjugate, there is no shortcut in Ap,,T, is)
connecting two points in one chamber Ap by going through other chambers.

5.10. LEMMA. - For any i = 0,..., n, Ap~,T convex subspace
of the length space other words, for any two points
in Ap,,T, any curve that connects x, y and realizes the distance between
them is contained in and is hence a straight line segment contained
entirely in In particular, on each is == ds, where ds is the
simplicial distance on Ap,,T defined by the Killing form.

Proof. Suppose P 1, ... , are representatives of minimal rational

parabolic subgroups in the list Then ... , ,APm,T
cover the space and hence

To prove the lemma, it suffices to prove that that for any i = 1, ... , m
and two points x, y E Ap~,T, any distance minimizing curve connecting
x, y is contained in To do this, we notice that any two minimal
rational parabolic subgroups are conjugate to each other by an element
in G(Q). This implies that the metric spaces 1, ... , m,
are isometric to each other. We claim that for every 1  i  m, there is a

continuous map 7r which restricts to the isometry
on each (Ap. ,T, ds ) . This map is basically given by folding the complex of
simplicial cones Ap,T onto the simplicial cone Ap ,T .

To prove the claim, we note that there is a unique isometry from

(Ap,,T, ds) to ds) induced by conjugation of an element in G(Q).
In fact, Pj is conjugate to Pi, Pi for some 1 E G(Q). Since ~4p~
is the unique split component stable under the Cartan involution 0 for the
basepoint xo, this proves the existence of the isometry. On the other hand, -/
is unique up to left multiplication by an element in Pi, and the uniqueness
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of the isometry also follows. When the chambers Ap~ ,T and Q are
contained in a common maximal split torus A, the isometry is given by the
action of an element of the Weyl group; in particular, when shares

a wall of codimension 1 with Api,T, the isometry is the folding onto 
using the reflection associated with the wall. Since U7=I Ap~ ,T is connected,
we can fold any chamber in Ap,,T onto -Ap,,T and get the map,7r.

Now suppose that there is a distance minimizing curve -y in

connecting x which is not contained completely
in By projecting ~y into Ap2,T using the map 7r, we get a curve 7r(-Y)
in which is not a straight line segment. Since 7r restricts to an isometry
on each fS(7r(,)) - ~s’(~)- Since, is distance minimizing
and x, y are connected by a line in Ap,,T, ~s(’Y)  ds(x, y), and hence
ts(7r(-~))  ds(x,y). But 7r(,) is a not straight line in This is a

contradiction. Therefore, , is contained in Ap2,T. This proves the lemma. 0

Next we use the precise reduction theory in 4.6 to compare

0 dind), whose metric dind is induced from the Riemannian

distance of rBX, with the length space == 

defined above. Briefly, the precise reduction theory says that 11’ is a

skeleton of rBX = ~o úJiApt,TXO. The map p in the following proposition
is obtained by shrinking the space to the skeleton. For Riemann surfaces
with hyperbolic metric, the map is shown in the following Figure 5.11:

Proof. By the precise reduction theory in Proposition 4.6,

which restricts to the identify map on the subset

5.11. PROPOSITION. - There is a continuous map ~o : : 

and hence for any x E rBX, there exist a unique index i and points z E 
a E Ap2,T such that x = zaxo. Define a map ~?:rBX 2013~ Ap,,T, tS)
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by cp(x) = a. Clearly, this map p is well-defined for T » 0 and depends on
the parameter T. We fix the parameter T » 0 as in 5.7.

It is clear that p restricts to the identify map on the subset

I1~ Ap,,TXO- We need to show that p is continuous. It is

clear that the restriction of cp to each Siegel set is continuous.

We need to show that p is continuous across the boundaries of these Siegel
sets. For any I E {0,1,...,?~}, suppose x~ is a sequence in 

converging to x,, E rBX and Xoo f/. wiAp,,TXO-
Write x~ = zkakXO, where E Wi, ak E Since the image of Wi

in r n is compact (4.6.2), the only way for the sequence Xk to
leave the set wiAp,,TXO is that the component ak leaves Ap,,T- Since Xk
is bounded, ak is also bounded. This means that ak converges to a boundary
point of Ap,,T, i.e., for some roots a E 4D++ (Pi, Ap,~),

Let I be the subset consisting of all such roots. Then I determines a
and hence a rational parabolic

subgroup Pi,I containing Pi (see 3.3).
Let Pj be the unique representative in the list Po, ... , Pn (see 5.7)

that is r-conjugate to Pi, I . Then WjApJ,TXO. For simplicity, we can
assume that Pj = Pi,l. Since converges to the orthogonal projection
of ak on Ap2,I converges to the component of xoo, which is By
the gluing procedure of Ap,,T in 5.9 and equation (5.11.1), this implies
that converges to Therefore ~p is continuous. 0

5.12. PROPOSITION. - For any i = 1, ... , n, the induced metric dind
on Ap,,,T = equal to the simplicial metric ds on Ap,,T-

Proof. For any two points x, y E let 1 be a curve in fBX
connecting them and realizing the distance between them, i.e., the length
111 = dind (r, y). Then under the map p of Proposition 5.11, the image 
is a continuous curve in U§ Ap,,T connecting x = cp(x) and y = p(y).
We claim that

where I is the length of the curve E In fact, let

-y : [0, - rBX be the unit speed parametrization of q. Then the claim
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follows from the following inequality. For each subinterval [a, b] C [0, 1-YI],
if ~y(~a, b]) C for some i, then

Lift both segments

the factor By Lemma 10.3.2, this projection is distance decreasing.
This implies that md hence

The claim is proved, and hence

Since is a continuous path in ( connecting x and y,

According to Lemma 5.10,

On the other hand, x and y are connected by a line segment in 
and hence

Therefore, dind (x, y) = ds (x, y). This completes the proof. 0

Recall that 11~ Ap,,T is identified with the subset 11~ 
in rBX (see 5.7). Then by the same arguments as above, we get the
following.

5.13. COROLLARY. - For any two points .c

5.14. LEMMA. - There exists a finite constant c such that for any
n
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ProoL - Let -y be a curve in Apt, T, f s) connecting x, y and
realizing the distance between them. Since f s = ds on every Ap2,T, ’Y
has at most n linear pieces. Each linear piece in Ap,,T lifts to a line

segment in C r B X . So we have a broken curve in r B X . Connecting
the ends of this broken curve by distance minimizing curves in fBX,
we get a continuous curve i in rBX connecting x, y. Since wi’s are

bounded and at most n - 1 curve segments are filled in, there exists a
constant c independent of x, y such that length(q) + c, and
hence ~)  y) + c. D

5.15. PROPOSITION. - The tangent cone at infinity 1
exists and is equal to (11~ 

Proof. For any t &#x3E; 0, is isometric to (Ap,,T, ds).
So by Lemma 5.10, (11~ Ap~,T, tis) is isometric to in

particular, is) exists and is equal to Ap,,T, is).

By Corollary 5.13 and Lemma 5.14, the Hausdorff distance between

(11~ dind) and Ap2,T, is) is finite. Therefore, Ap2,T, dind)
exists also and is equal to D

5.16. THEOREM (see 1.4). - The tangent cone at infinity Too(rBX)
exists and is equal to Ap2,T, and hence equal to a metric cone over
the Tits complex in (3.6.4).

Proof. It follows from Lemma 5.8 and the previous proposition that
exists and is equal to (11~ Ap,,T, is). Since each ds) is a

metric cone over where is given a suitable simplicial
metric (see 5.9), by Lemma 5.10, is a metric cone over the

Tits complex A(rBx). Therefore, is a metric cone over 

D

6. Define a topology using convergent sequences.
6.1. In this section, we recall a few basic facts concerning how to

define a topology using convergent sequences. The reason is that in the
following it is easier and more intuitive to describe a topology in terms of
convergent sequences than a neighborhood system.

In 6.2, we introduce a closure operator and the induced topology.
In 6.4, we define a convergence class of sequences. Finally, in 6.5 and 6.6,
we use a convergence class to define a topology.
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6.2. A topology on a space can be defined using a closure operator
[KU]. More precisely, a closure operator for a space X is a function that
assigns to every subset A of X a subset A satisfying the following properties:

1) For the empty set 0, 0 = 0.

2) For any two subsets A, B C X, A U B.

3) For any subset A c X, A c A.

4) For any subset A c X, A = A.

Once a closure operator is given, then a subset A of X is defined to
be closed if and only if A = A, and a subset B of X is open if and only if its
complement is closed. Using the four properties listed above, we can check
easily that the open subsets define a topology on X.

6.3. A closure operator on a space can be defined using class of con-
vergent sequences. Let X be a space, and C be a class of pairs 
of a sequence {Yn} and a point in X. If a pair C, we say
that yn C-converges to and denote it Yoo; otherwise, 

Motivated by the convergence class of nets in [KE2], Chap. 4, we
introduce the following.

6.4. DEFINITION. - A class C of pairs is called a

convergence class of sequences if the following conditions are satisfied,:

1) If (yn ) is a constant sequence, i.e., there exists a point y E X such
that yn = y for n &#x3E; 1, y.

then so does every subsequence of y,,.

then there is a subsequence ~yn2 ~ such that

for any further subsequence (

4) Let be a double sequence. Suppose that for each fixed

m, and the sequence Then there exists

a function n : l~‘ -~ such that oo and the sequence
c---t 

6.5. LEMMA. Suppose C is a convergence class of sequences in a
space X. For any su bset A of X, define

A = ~ y E X ~ there exists a sequence in A such that 

Then the operator A - A is a closure operator.
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Proof. - The properties 1), 2) and 3) in 6.2 follow directly from the
definition. For property 4), we need to show that for any point E A,
there exists a sequence ym in A such that Ym -S y. By definition, there
exists a sequence y,,,,, in A such that Since A, there
exists a sequence in A such that Ym,oo’ Then (6.4.4)
shows that there exists a sequence Ym,n(m) in A such that c 
and hence y,, E A. D

6.6. PROPOSITION. A convergence class of sequences C in X defines

a unique topology on X such that a sequence in X converges to a

point y E X with respect to this topology if and only E C. The

topological space X is Hausdorff if and only if every convergent sequence
has a unique limit, and X is compact if and only if every sequence in X has
a convergent subsequence.

Proof. The statement that the convergence class C defines a unique
topology follows from Lemma 6.5 and the discussion in 6.2. For the rest,
see [KE2], Chap. 2. p

6.7. Remark. - Frechet [FR] introduced Frechet L*-spaces, using
class of sequences satisfying only 1), 2) and 3) of 6.4, and hence Frechet
L*-spaces are not topological spaces in the usual sense. The idea of using
convergence class of sequences comes from the Moore-Smith convergence

theory of nets (see [KE2], Chap. 2). Since we only deal with metrizable
topologies, sequences are sufficient.

7. Borel-Serre compactifications
7.1. In this section, we recall the Borel-Serre compactification 

[BS] and the reductive Borel-Serre compactification fBXRBS [ZU1], p. 190,
[HZ], 1.3 (b). These compactifications motivate the construction of the Tits
compactification in the next section and are used in the process
of classifying DM rays in §10. They also play an important role in

parametrizing the continuous spectrum of FBX in §13.
In 7.2, we give a general procedure of compactifying hBX. In 7.3, we

recall In 7.5, we define Finally in 7.7, we point out the
connection between them.

7.2. Both compactifications and are defined using
the following procedure:
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1) Construct a boundary component for every rational parabolic
subgroup of G.

2) Add these boundary components to get a partial compactification
of X.

3) Show that the arithmetic subgroup r acts continuously on this
partial compactification of X with a compact Hausdorff quotient, which is
a compactification of rBX.

7.3. The Borel-Serre compactification fBX is defined in [BS]
using the geodesic action and the associated corners. We use convergent
sequences to describe its topology as in §6. For more detailed discussions of
this approach and its equivalence to the approach in [BS], see [BJ].

For any rational parabolic subgroup P of G, P = NpApMp is its

Langlands decomposition with respect to the basepoint xo (3.5.1), and
Xp - Mp / Kp is the boundary symmetric space associated with Mp
in 3.5.

Define the boundary component e (P ) for P by e (P ) = Np x Xp. The
Borel-Serre partial compactification X BS of X is the set X U ~p e(P) with
the following topology.

7.3. 1. - A unbounded sequence yn in X is convergent in if and

only if there exists a rational parabolic subgroup P such that in terms of
the horospherical decomposition, yn = (un, zn, exp(Hn)) E Np x Xp x Ap
(3.5.2), the components Un, zn, Hn satisfy the following conditions:

2) un converges to a point Np, and zn converges to a point

Then the limit of yn in ,

7.3.2. - A unbounded sequence yn - (un, zn) in a boundary
component e(P) = Np x Xp is convergent in X BS if and only if the

following two conditions hold:

1) un converges to some element of Np.

2) zn is a unbounded sequence in Xp and converges in the partial
compactification XpBS as in 7.3.1 above. Assume that the sequence

zn C Xp converges to a boundary point where P’

is some rational parabolic subgroup of Mp. The rational parabolic
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subgroup P’ of Mp corresponds to a unique rational parabolic sub-
group P" of G contained in P that satisfies
and Mp,, = Mp~ .

Then the limit of yn in X BS is I

These are two typical convergent sequences, and general convergent
sequences are combinations of them.

7.4. PROPOSITION (see [BS], Prop. 7.6, Thm. 9.3). - The action of
G(Q) on X extends continuously to XBS , and every arithmetic subgroup
r C G(Q) acts properly discontinuously on X BS . The quotient is

a Hausdorff compactification offBX and denoted by fBX .

7.5. The reductive Borel-Serre compactification is defined

in [ZU1], p. 190, [HZ], 1.3 (b), and plays a crucial role in [GHM], §8. We
will explain in § 13 that it also plays an important role in parametrizing the
continuous spectrum of rBx.

For any rational parabolic subgroup P, its boundary component ~(P)
is defined by e(P) - Xp, i.e., the boundary component is obtained from
the Borel-Serre boundary component e(P) = Np x Xp by reducing the
nilpotent factor Np to a point, which is the reason why this compactification
is called the reductive Borel-Serre compactification.

The topology of the partial compactification .
is defined as follows:

7.5.-/. - A unbounded sequence yn in X is convergent in X RBs
if and only if there exists a rational parabolic subgroup P such that
in terms of the horospherical decomposition with respect to P (3.5.2),
y. = (un, zn, exp(Hn)) E Np x Xp x Ap, the components un, zn, Hn
satisfy the following conditions:

2) zn converges to a point Xp.

Then the limit of yn is z,, E 6(P).

7.5.~. - A unbounded sequence in a boundary component e(P) = Xp
is convergent in X RBS if and only if it is convergent in the partial
compactification Xp RBS as in 7.5.1. Assume the limit of yn in Xp RBS
belongs to the boundary component ~(P’) of a rational parabolic
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subgroup P’ of Mp. Let P" be the unique rational parabolic subgroup
of G contained in P corresponding to P’ as in 7.3.2 above. Then the limit

These sequences are typical convergent sequences. General convergent
sequences are combinations of them. As in 7.4, we have the following [ZU1],
Prop. 4.2 (see also [BJ], Prop. 4.4, Thm. 4.6):

7.6. PROPOSITION. - The action ofG(Q) on X extends continuously
to XRBS, and the quotient fBXRBS by an arithmetic subgroup r is a
Hausdorff compactification of FBX. This compactification is also denoted
by 

7.7. From the above descriptions, it is clear that there is a natural

surjective continuous map from to fBXRBS. For each point in
the boundary of fBXRBS, , its inverse image in is a nilmanifold.

If the Q-rank of G is equal to the R-rank of G, then for any rational
parabolic subgroup P, Xp is a symmetric space of non-compact type,
and hence is isomorphic to the maximal Satake compactification

in [SA2].

8. Tits compactification 

8.1. In this section, we follow the procedure in 7.2 to define the
Tits compactification (see 2.4, see also 8.12 for a more direct

construction). It will be clear from the definition that is comple-
mentary to fBXBS, instead of being a quotient of (see 8.11).
As mentioned in §2, the Tits compactification is the basic compactification
in this paper unifying various compactifications of hBX, because of its close
relation to the reduction theory.

In 8.2, we define the boundary components of rational parabolic sub-

groups. In 8.3 and 8.4, we define a topology on the partial compactification
X U In 8.5, we use the conic compactification of X to show that the

topology on X U is Hausdorff. The G(Q)-action on X is extended
continuously to X U in 8.6 and 8.7. Then in 8.8 we prove that the

quotient rBX U defines the Tits compactification Finally,
we compare it with (see 8.11) and point out in 8.12 a more direct
construction of and the advantages of the first approach.
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8.2. We first define the boundary components and the boundary of
the partial compactification of X. Let P be any proper rational parabolic
subgroup of G. Define its boundary component to be (3.6.1), which
is the simplex in the rational Tits building corresponding to P.
These boundary components are glued together as in (3.6.2) to
form the geometric realization of the rational Tits building 
We note that the spherical metrics on all the apartments of 
are compatible and define a distance function on (see [TI1],
pp. 214-215). The simplicial complex is the boundary of the partial
Tits compactification X U of X, whose topology is defined below.

8.3. BVe now define the class of convergent sequences of X U 
and hence the topology.

For any sequence C X U AQ(X), it is defined to be convergent if
one of the following alternatives holds:

1) If (yn) belongs to eventually and converges to a point
E with respect to the simplicial topology, is defined

to converge to 

2) If (yn) belongs to X eventually and converges to X with

respect to the topology induced from the invariant Riemannian metric,
is defined to converge to 

3) If there exists a rational parabolic subgroup P so that in the
Langlands decomposition with respect to P (3.5.1),

where £n e NpMp, Hn e ap, the components in and Hn satisfy the
following properties:

(a) There exists e such that as n ~ +00, Hoo.

(b) Let d(.,.) be the distance function on X. Then as n - +00,
Under conditions (a), ( b) , ~ yn ~ is defined

to converge to the boundary point Hoo E C 

4) If both X and contain infinitely many terms of 
, and both sequences

~ y,,, 1, converge to AQ (X) according to 1) and 3) above
respectively, then ly,,l is defined to converge to Yoo.
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8.4. LEMMA. The class of convergent sequences defined in ~8.3
above is a convergence class in the sense of §6.4 above and hence defines a
topology on xu 

Proof. We need to check that all the conditions in 6.4 are satisfied.

The first three conditions are easily seen to be satisfied. We now show that
the condition 4) is also satisfied.

Let be a double sequence in X U such that for

each m, converges to as n - +00, and converges to 

as m -~ +00.

Assume first that X. Then there exists a sequence ~ 2013&#x3E; 0

such that where is the metric ball

of radius E with center For every m, there exists n(m) such that
C and +00 as m ---+ +00.

Then the sequence converges to 

Next, we assume that I . Let P be the unique rational

parabolic subgroup such that belongs to the open simplex 
i.e., is an interior point of the simplex Ap(oo).

We assume first that P is minimal. Then for all m » 0, either

X or Ap(oo). Without loss of generality, we can assume
that

1) either for all

2) or for all m %

For case 1), we can assume

(a) either for all n,

(b) or for all n, m &#x3E; 1,

If (a) is true, then it can be shown as above that the condition 4) is
satisfied in this case. If (b) is true, then there exists a sequence 0

such that 2 ~~-,2), where is the metric

ball with respect to the spherical metric on Since E X

and there exists a sequence n(m) with +oo

as m ~ +oo and an integer mo such that
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Then the sequence converges to as m - +oo, and hence

condition 4) is also satisfied in this case. The case 2) can be checked
similarly.

If P is not minimal, then either E X or Yrn,n E Ap, (oo)
eventually, where P’ is a rational parabolic subgroup contained in P. Here
we have used the fact that A+, (oo) is a face of A+ if and only if P’ D P.
Similarly, we can prove that there exists a subsequence 
and the condition 4) is satisfied.

Therefore, the class defined above forms a convergence class of

sequences. By Proposition 6.6, these convergent sequences define a topology
on X u Ag(X) . 0

8.5. PROPOSITION. - The topology on X U AQ(X) defined in §8.4 is
HausdorfF.

Proof. We claim that for any unbounded sequence in X, there
is at most one rational parabolic subgroup such that the alternative 3)
in 8.3 is satisfied.

To prove this claim, we need to introduce the conic compactification
X U X(oo) (see [BGS], ~~3-4, and 9.2 below). The boundary X(oo) is the
set of equivalence classes of geodesics in X, where two geodesics 
in X are defined to be equivalent if sup d(-yl (t), 1’2 (t) )  +00. The

topology of X U X (oo) is defined as follows: A unbounded sequence yn in X
converges to an equivalence class [1’] of geodesics if the geodesic from xo
to yn converges to a geodesic in the class [-~].

The boundary X(oo) has a simplicial structure A(X), called the
spherical Tits building of X (see [GJT]) and the rational Tits building

is embedded in A(X). Briefly, for each real parabolic subgroup P
of G, let Ap be the maximal real split torus in P. Then At ( (0) can
be identified with a subset of X(oo), and X(oo) == UP At(oo). For any
rational parabolic subgroup P of G, P = is a real parabolic subgroup
of G. The maximal real split torus A of P contains the maximal rational

split torus Ap. Therefore,

We can check easily that a sequence satisfying the condition 3)
in 8.3 converges in the conic compactification X U X(oo) to the point H 00
in Ap(oo) C X(oo). Since the compactification X U X(oo) is Hausdorff

and A+, (oo) n A+ ( 00) == 0 for two different rational parabolic subgroups
P’ and P, the claim is proved.
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Using the claim and the Hausdorff property of X and 
we can prove easily that every convergent sequence in X U has

a unique limit. Therefore, by Proposition 6.6, the topology of X U 
is Hausdorff. 0

8.6. To show that the G(Q)-action on X extends continuously to
X U AQ(X), we first define an action of G(Q) on the points of 
Recall from 3.4 the G(Q)-action on the Tits building For any

1 E G(Q) and any rational parabolic subgroup P, a maximal parabolic
subgroup Q containing P is mapped to a maximal parabolic subgroup
-yQ-y-1 containing 1P1-I. So the conjugation P H induces a

bijection from the set of the vertices of the simplex Ap (oo) to the set of
vertices of the simplex

Then the G(Q)-action on the underlying topological space of the Tits
building AQ (X) is defined as follows: Any y E A+ (oo) is mapped to the

point in with the same barycentric coordinates with respect to
the corresponding vertices. Combined with the isometric action on X, this

gives a G(Q)-action on X U AQ(X) .

8.7. LEMMA. - The G(Q) action on X U defined above is

continuous.

Proof. First, we express the and com-

ponents of 1X in the decomposition (3.5.1) associated with the parabolic
subgroup 1P1-1 in terms of the components of x with respect to P. Since
G = KP, where K is the maximal compact subgroup corresponding to the

basepoint xo, write 1 = 101p, where 10 E K, 1p E P. Write 1p = £(1)a(1),
, For any

I is normalized in Ap, it follows

and hence

It is then clear that for any -y E G(Q), is a convergent sequence
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in X U AQ (X) with limit in then the sequence converges

acts continuously on ~

The main result of this section is the following:

8.8. THEOREM (see 1.5). - The quotient rBX U is a compact
Hausdorffspace and hence a compactification This compactification
is independent of the choice of the basepoint xo in 3.5, and its boundary is
equal to the Tits simplicial complex A(rBx) of rBX defined in 3.4. This
compactification is called the Tits compactification and denoted by rBXT.

A general method to show that the quotient is compact is the following
criterion:

8.9. PROPOSITION (see [SA2], Thm. 2.1’). Let r be a group acting
continuously on a Hausdorff space X. Suppose that there exists a subset n
of X satisfying the conditions:

2) Q is compact;

3) there exist finitely many elements 1i in r such that if 1 E rand
then ,

Then the quotient FBX is a compact Hausdorff space.

8.10. Proof of Theorem 8.8. - We need to construct a subset n of
X U satisfying the conditions in Proposition 8.9.

Let P be a minimal rational parabolic subgroup of G, and Q be the
finite union CS of the Siegel sets in Proposition 4.4, where S = wap,txo,
and w is compact. Let 0 be the closure of Q in the partial compactification
X U AQ(X). We claim that n satisfies all the conditions in Proposition 8.9.

Let S be the closure of S in X U AQ (X). Then S ~ At(oo), because
the sequence exp(nH), n &#x3E; 1, converges to HEAt ( (0). For any element
g E G (Q), by the proof of Lemma 8.7, there exists a Siegel domain
S’ associated with the minimal rational parabolic subgroup gPg-1 such
that S’, and hence Since any minimal rational

parabolic subgroup is r conjugate to one of the groups gPg-1, g E C,
it follows that Fil = X U and hence condition 1) is satisfied.

To show that Q is compact, it suffices to show that S is compact.
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From 3) of the definition of the topology in 8.3, it follows that

S = wAp,tXo U where Ap,t is the closure of Ap,t in Ap. Since w is
compact, S is compact.

To check the condition 3), we note that if for some -y E r, 0,
then for some 91, 92 E C, n g2S # 0. Thus it suffices to show that
there exist finitely many y2 E r such that if -y E r and n g2S # 0,
then = for some Assume n g2S # 0.
If n g2S # 0, then by Proposition 4.4.2, there are only finitely many
such ~ in r. Otherwise, by the previous paragraph, = A+ p, (00)
for some rational parabolic subgroup PI containing the minimal rational

invariant, which in turn implies that PI. By the
definition of the G(Q)-action on in 8.6, acts as identity
on A+, T ( 00 ), and hence y acts as
Therefore the condition 3) is satisfied, and hence hBX U AQ(X) is compact
and Hausdorff.

From the definition, it is clear that rBX U AQ (X) contains FBX as a
dense open subset and hence is a compactification of rBX.

To show that the compactification hBX U AQ(X) is independent of
the choice of the basepoint xo, we notice that for any parabolic subgroup P
and the Langlands decomposition with respect to it, choosing a different
basepoint is equivalent to conjugating the Langlands decomposition by an
element of P (see 3.5). This implies that the convergence of a sequence and
its limit point in X U AQ (X) are independent of the basepoint. Therefore,
the partial compactification X U and hence the compactification
FBX U are independent of the choice of the basepoint xo.

The boundary of the compactification is which is, by
definition, the Tits simplicial complex A(FBX) in (3.6.3).

8.11. Remark. - As shown by Zucker in [ZU2], the Borel-Serre
compactification dominates all Satake compactifications of FBX,
in particular, the Baily-Borel compactification for Hermitian locally
symmetric spaces. It is natural to ask whether the Tits compactification
FBX’ is also dominated by the Borel-Serre compactification 
In fact, hBXT is complementary to in particular, not dominated

by rBXBS.
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The fact that hBXT is complementary to fBXBS can be seen from
the partial compactifications and X U In XBS, we add
at infinity the NpMp part of a rational parabolic subgroup P, while
in X U we use the spherical section Ap(oo) of the cone Ap. Using
this description, we can prove easily that the greatest common quotient
of and is the one point compactification of hBX if the Q-
rank of G is greater than 1 and the end compactification if the Q-rank of G
is equal to 1.

In § 13, we show that the pair ]pBXT and fBXRBS are needed to
parametrize the continuous spectrum of This gives another evidence
that they are complementary to each other.

8.12. Remarks. - Using the precise reduction theory in 4.6 instead
of the classical reduction theory in 4.4, the compactification can also

be defined as follows. Let

be the disjoint decomposition in Proposition 4.6. Each cone Ap~,T can
be compactified at infinity by adding the directions at infinity.
This induces a compactification of where the convergence of

sequences of points to boundary points does not depend on the component
in wi. Gluing these compactifications together as in 3.6, we get fBXT. It
can be shown that this compactification does not depend on the height
parameter T in 

But the approach using the rational Tits building has the

following advantages:

1) The boundary arises as a natural quotient of the Tits

building and hence construction in this section provides strong
support for the philosophy of Tits [TI1], p. 217, concerning compacti-
fications of a Lie group G and its symmetric space X: "The ’most natural’

choice for the ’space at infinity’ of G or X is ’often’ closely related to the
spherical Tits building of G" .

2) It fits into the general pattern of compactification in 7.2.

3) The relation of ]pBXT to - BS is easily described in 8.11.

4) It is analogous to the construction of compactifications of symmetric
spaces X using the spherical Tits building of X in [GJT].
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9. Geodesic compactification M U M ( oo ) of a
Riemannian manifold M.

9.1. In this section we introduce a general method to compactify
a noncompact complete Riemannian manifold M in terms of distance
minimizing (DM) rays (see 9.17). When M is a Hadamard manifold, i.e.,
nonpositively curved and simply connected, this compactification is the

well-known conic compactification whose boundary is the set of equivalence
classes of geodesics (see [BGS], §§3-4, and 9.2 below).

The ideal boundary M(oo) of the expected compactification is the
set of equivalence classes of DM rays or eventually distance minimizing
(EDM) geodesics in M, where two rays 1’l(t),1’2(t) are defined equivalent
if limt-,,,,  +oo as in 1.1. Under suitable conditions

on M (see 9.11, 9.16), we can put a topology on M U M(oo) such

that it is a Hausdorff compactification of M (see 9.17). Because of its
connection with geodesics, this compactification M U M(oo) is called

geodesic compactification.

In 9.2, we recall the conic compactification of a Hadamard manifold to
motivate the construction of the geodesic compactification. In 9.3 and 9.4,
for every compact base subset c~, we define an auxiliary space Rú) of pointed
rays from w in order to define a topology on M U M(oo). By the evaluation
map, RW projects to a subspace M~UM~(oo) of MUM(oo) (see 9.10). To get
a topology on M~UM~(oo), we introduce Assumption 9.11. In 9.12, we prove
that M~ U M~(oo) is a compact Hausdorff space under Assumption 9.11.
We construct an example in 9.15 such that Mw is always a proper subset
of M for any compact subset cJ. Then we introduce Assumption 9.16 to
define the geodesic compactification M U M(oo) in 9.17.

9.2. Though we are mainly interested in nonsimply connected

manifolds, we recall the conic compactification(7) of a Hadamard manifold
to motivate the construction in this section.

Let M be a Hadamard manifold, and M(oo) the set of equivalence
classes of rays in M. Note that since M simply connected and nonpositively
curved, every ray in M is DM.

(7) This compactification M U M(oo) of a Hadamard manifold is called the conic

compactification in [GJT] because open neighborhoods near the boundary M(oo) are
given by truncated cones and called the conic topology. It seems that it is better to

call it the geodesic compactification.
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Fix a basepoint xo E M. Then the topology on the conic

compactification M U M(oo) is defined as follows: A unbounded sequence yn
in M converges to an equivalence class [1’] if the ray from xo and passing
through yn converges to a ray in the class [1’].

To show that the topology does not depend on the choice of the
basepoint xo, we use the following fact: Let xl be another basepoint and y
be any other point. Denote the ray from xi to y by l’i, i = 0, 1. Assume

. Then for any

This fact can be proved by comparison with the Euclidean space.

For a non-Hadamard manifold, there are several problems with the
above definition of topology on M U M(oo). For many points y, there do
not exist DM rays passing through xo and y (see the example in 9.15).
Even if there exist such connecting DM rays, Inequality (9.2.1) does not
necessarily hold either.

The basic idea is to replace the basepoint xo by a base compact subset
and to consider all DM rays issuing from this base compact subset. Then
we have to show the independence on the base compact subset.

9.3. We begin our construction of the topology on M U M(oo) by
defining an auxiliary space of pointed rays.

Recall from 1.1 that a DM ray is an isometric embedding

Let w C M be a compact subspace. Define

Two pointed rays (-y2, t2) are defined to be equivalent if and
only if

An equivalence class of pointed rays is denoted by [1’, t]. The set of

equivalence class ~-y, t] is denoted by 
A topology on can be defined as follows. A sequence t,,]

in 7ZW is defined to converge to to] if and only if one of the following
alternatives holds:
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1) If to  oo, then tn -7 to and -yn (t) -~ uniformly for t in

compact subsets as n --~ oo.

2) If to = oo, then for any representative (qn, tn) of tn] and any
subsequence (’)’n’ , tn, ), there exists a further subsequence (~y~~~ , tn~~ ) such
that tn" -7 oo, and -Yn" converges uniformly for t in compact subsets to a
ray equivalent to 

See Remark 9.5 below for reasons of the restriction to a compact base
and the passage to sub-subsequences.

9.4. LEMMA. - The convergent sequences in 9.3 form a convergence
class and hence define a topology on Rw.

Proof. - We can see easily that the first three conditions in 6.4 are
satisfied. To check the condition 4), we note that a family of rays qn
converges to uniformly for t in compact subsets if and only if

Now let be a double sequence such that

the condition 4) is clearly satisfied. We assume 1

Since w is compact and - , there exists a subsequence n’
are convergent. This implies

Denote the limit
- 

. , , ", ,,.,.....

Then by assumption,

.. -

By assumption, [ Then for

any subsequence m’, there exists a subsequence m" such that t’ -----&#x3E; oo,
and ~ym",~ (t) converges uniformly for t in compact subsets to a ray ~~ ~
equivalent to or equivalently, d(-y,,,,,,co, 7" c,,, : ~0,1~) - 0. By the
above choice of n(m), it is clear that

as m" -~ oo. Therefore the condition 4) is satisfied, and the above

convergent sequences define a topology on Rw . 0

9.5. Remark. - The complicated condition of passing to a sub-subse-
quence in 2) above is required by the equivalence relation on Rw (9.3.2).
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For example, take two disjoint equivalent rays ~y2 . Then ~-yl , n], ~-y2 , n]
both converge to the same point [1’1, oo] = ~~y2, oo] E But -yl is disjoint
from -~2, and hence the sequence of rays 1’n defined by 1’2n = -Yl, ’Y2n-1 = q2 , i
n &#x3E; 1, does not converge to any geodesic uniformly for t in compact subsets
as required by the analogue of condition 2) above.

We can see from the above proof of Lemma 9.4 the restriction that
the rays start from a fixed base compact is important for the condition 4)
in 6.4. In fact, it is necessary. For example, let M be an Euclidean space,
and 1’m be disjoint rays parallel to a ray q with the initial points 
going to infinity and = oo. Then = [1’,00]. Define 1’m,n = 1’m
and = n. Then for every m, [1’m,n, tm,n] - [1’m, but for any choice

of n = ’Tn &#x3E; 1, there is no subsequence of 1’m,m(n) which converges to
any ray.

9.6. LEMMA. - The topological space TZW is compact and Hausdorff.

Proof. A convergent sequence of type 1) clearly has a unique limit.
Let [1’n, tn] be a convergent sequence of type 2) with limit [-yo, 00]. Let 1’n’
be a subsequence such that 1’n’ converges uniformly over compact subsets
to a ray equivalent to 70. Assume ~~yo, oo] is another limit of ~-yn, Then

[-Yn’, tn~ ~ -~ [7o? oo]. By definition, there is a further subsequence 1’n" of 1’n’
such that 1’n" converges uniformly over compact subsets to a ray equivalent
to 1’b, which has to be equivalent to 1’0 since limn’-&#x3E;oo 1’n’ exists and is

equivalent to 70. Therefore, [1’b, oo] = [1’0, oo], and hence TZW is Hausdorff.

Next we prove the compactness. Let tn] be any sequence in 7Z,,.
Choose representatives Since 1’(0) E w and w is compact,
there exists a subsequence such that both 1’n’ (0) and (0) converge
as n’ -~ oo. This implies that converges to a DM ray 70 with 1’0(0) E w.
Depending on whether tn, is bounded or not, we can clearly get a further
subsequence which is convergent either of type 1) or type 2). This proves
that is compact. D

9.7. LEMMA. - If Wl C w2 are two compact subsets of M, then TZwI
is a closed subset of 7Z,, -

Proof. Since wl C w2, there is clearly an inclusion C RW2’ It is
clear from the definition that the topology of RW2 restricts to the topology
of Therefore, is a closed subset of RW2 . D
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9.8. Recall that M(oo) is the set of equivalence classes of DM rays
in M. Then a map Jr : can be defined as follows:

) is the equivalence class containing q.
This map 7r may not be surjective (see the example in 9.15). Let

Mw = n M, then Mw is the union of DM rays issuing from a point
in K.

9.9. LEMMA. - Mw is a closed subset of M.

Proof. - Let y be a point in the closure of Mw in M. Then there
exists a sequence of DM rays ,n with qn(0) E K, and tn &#x3E; 0 such that

y in M. Since w is compact and y is at finite distance from W,
by passing to a subsequence if necessary, we can assume that ~ converges
to a ray ,0 and tn - tao. Then clearly qo(0) E cJ and qo (to) = y. Since ,n
is DM, ,0 is also DM. Therefore Rw, and y = -yo(to) E Mw, and
hence M, is closed. 0

9.10. Let M (oo) = n M ( oo ) , the set of equivalence classes of
rays contained in Mw. Then 7r defines a surjective map M~, U Mw (oo).
Define a topology on Mw U as follows:

1) The topology on Mw is the induced subset topology from M.

2) Let [-y] E Mw be an equivalence class of rays. Then a unbounded
sequence yn in Mw converges to [-y] in M, U M (oo) if and only if there
exist pointed DM rays tn) E Mw such that = Yn and the class

3) A sequence in Mw converges to a point [-y] if and only if

in Rw.

4) If a sequence Yn in Mw U M~, (oo) is combination of a sequence yn~
in Mw and a sequence Yn" in then yn is convergent if and only if
both sequences and Yn" converge to the same limit in the sense of 2)
and 3) above respectively.

To show that these convergent sequences form a convergence class, we
need the following

9.11. ASSUMPTION. - Let úJ be any compact subset of M and y,,, y’ n
be any two sequences in Mw going to infinity with d(Yn, Y’) bounded.
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Suppose there exist two sequences of pointed rays Rw
with 1n(tn) == Yn and _ Y, . If1n(t) -t - 1’(t) uniformly
for t in compact subsets as n - oo, then -y is equivalent to -y’.

This assumption says roughly that if two DM rays from w connect
the same point at infinity, then they are equivalent. It is important even
for the special case that since there could be many DM rays

connecting w and unless M is a Hadamard manifold.

9.12. LEMMA. - Under Assumption 9.11, the convergent sequences
in 9.10 define a convergence class and hence a topology on Mw U 

Proof. Clearly, the first three conditions of 6.4 are satisfied. We need
to check the condition 4). Let ym,n be a double sequence in Mw U 
with and - M~, then the condition 4)
is clearly satisfied. Assume that Mw (oo) .

For simplicity, we assume one of the following two cases holds:

1) For all m,

2) For all m,
Case 1) is a special case of Lemma 9.4. In Case 2), choose n = n(m)

such that  1. Since 2Jm,n, Ym,oo E Mcv, there exist pointed
rays ( , such that "

be a representative in the class 
We claim that ~ oo] , and hence 2013~ 2Joo,oo.

Since ~~ym, ~ , tm, ~ ~ -~ for any subsequence m’, there is a
further subsequence mil such that -~ oo, and ~ oc~ which
is equivalent to 1’(X),(X)’ Since (~ is compact, by the same argument as in
Lemma 9.6, there is a further subsequence m* of mil such that &#x3E;
converges to a DM ray 1’~. By the choice of n(m),  1.

Then by Assumption 9.11, 1’~ is equivalent to "/~oo and hence equivalent
to ~00,00. Therefore, by definition, -~ and the

claim is proved. 0

9.13. PROPOSITION. Under Assumption 9.11, the topological space
Mw U is a Hausdorff compactification of Mw .

Proof. Since any ray class [q] can be approximated by points 
along the ray q, it clear that Mw is dense in Mw The compactness
of Mw U follows easily from Lemma 9.6.
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To prove the Hausdorff property, we need to show that every

convergent sequence yz~ in Mw U has a unique limit. By Lemma 9.6
again, it suffices to consider the case that yz~ is a sequence in Mw going
to infinity. The nonuniqueness of the limit of yn could only come from
nonunique choices of pointed rays (7n, tn) with 7(tn) = yn. But by
Assumption 9.11, different choices lead to the same ray class in Mw (oo).
Therefore, the sequence yn has a unique limit. D

9.14. LEMMA. - Let wl C c,~2 be two compact subsets of M. Under

Assumption 9.11, the inclusion i : Mwl U M’2 U (00) is an
embedding.

Proof. It is clear that i is injective and continuous. To show i is a

homeomorphism, it suffices to prove the image i(Mwl U Mwl (oc)) is closed.
Let y,, be a point in the closure of i(MW1 U (oo)) in M’2 U M’2 ( 00 ).
If MW2’ then MW 1 since MW 1 is closed in M by Lemma 9.9.
So we assume MW2 (oo). Let yn be a sequence in Mwl that converges
to with respect to the topology of MW2 U This means that

there are pointed rays (7n, tn) in RW2 with 7n(tn) = yn such that ~’Yn, tn] is
convergent in RW2. On the other hand, yn E M,, and is hence connected
by pointed rays (7~, E = yn . By passing to a subsequence if

necessary, we can assume that is convergent. By Assumption 9.11,
Therefore,

9.15. Example. - If M is a Hadamard manifold, then Assump-
tion 9.11 is clearly satisfied, and for any compact subset in particular a
point, Mw = M, and the compactification Mw U Mw (oo) defined in 9.13 is
the conic compactification recalled in 9.2. In general, Mw could be a proper
subset of M. Such an example can be constructed as follows. Remove small
discs whose centers have integral coordinates from the plane R 2 and glue
back a very tall hump to every removed disc as in Figure 9.15.1.

Then for any compact subset w, M. The reason is that a DM

ray does not go through the top of a hump unless it starts from the top
since it is quicker to go around it.

To get a compactification of M, we need another assumption.

9.16. ASSUMPTION. - There exists a compact subset cJo C M such
that Mwo = M, i.e., any point in M can be reached by a DM ray starting
from 
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Figure 9.15.1

9.17. THEOREM. - Under Assumptions 9.11 and 9.16, for any

compact subset wo, lvlw U Mw (oo) is equal to M U M(oo) and defines a
compactification of M. This compactification does not depend on the choice
of the base compact subset wand is called the geodesic compactification.

Proof. For any such wo, MW = M and Mw(oo) = M ( oo ) . Then
the first statement follows from Proposition 9.13, and the second statement
from Lemma 9.14. 0

9.18. Remark. - Assumptions 9.11, 9.16 should hold for all

"geometrically finite" manifolds. (8) The precise meaning of this geometric
finiteness is not clear. On the other hand, these conditions seem to be

necessary in order to define a compact topology on M U M(oo) in terms of
DM rays.

Any compact perturbation of a Hadamard manifold satisfies these
assumptions, and locally symmetric spaces of finite volume hBX also
satisfy them (see §11). The latter is the main example we have in mind.

10. DM Rays in rBX.

10.1. In this section, we classify all DM rays or eventually distance
minimizing (EDM) geodesics on FBX (see 10.18) using the Dirichlet domain
for r (see §10.16). The results of this section play a crucial role in identifying
all DM rays in FBX and hence the geodesic compactification rBXUfBX (00).

~g~ The example in § 9.15 is not of geometrically finite because of the infinite appearances
of the humps.
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Recall that a geodesic -y: R --+ rBX is called EDM if there exists a
number to » 0 such that for any to, ~(~(~1)~(~2)) = lt2 - 
where d( . , .) is the distance function of rBX. In other words, for to » 0,
the ray, : [to, oo) -~ rBX is DM. For convenience, we will use DM rays and
EDM geodesics interchangeably .

In 10.2, we recall the metric behavior of X with respect to the

horospherical decomposition (3.5.2). In 10.5, we use the precise reduction
theory to construct EDM geodesics in FBAB The rest of the section is to
prove that these geodesics in 10.5 exhaust all the EDM ones. Specifically,
we prove the crucial separation property of Siegel sets in 10.8 and use
it to study the Dirichlet fundamental domain of r in 10.16. Using the
information on the Dirichlet fundamental domain, we prove in 10.18 that

every EDM geodesics in rBX is one of those constructed in 10.5.

10.2. To list and classify all DM rays or EDM geodesics in hBX, we
need to understand the Riemannian metric of X and 1,BX near infinity.
For any rational parabolic subgroup Q, recall the Langlands decomposition
Q = NQ AQ MQ (3.5.1) and the induced horospherical decomposition of X:
X = NQ x XQ x AQ (3.5.2). Using this, we identify (u, z, a) E NQ x XQ x AQ
with the corresponding point x = uaz in X.

10.3. LEMMA (see [B02], Prop. 1.6, Cor. 1.7).

1) Let dX2 , da2 and dZ2 be the invariant metrics on X, AQ and XQ
respectively induced from the Killing form. Then at (u, z, a) E X,

/

where ha (z) is a metric on the root space ga which depends smoothly on
zEXQ.

2) For any two points (u

where dX ( ~ , ~ ) and 6~(-,-) are the distance functions on X and AQ
respectively.

For any H E A+ (oo), u E NQ and z E XQ, define a curve in X:
= (u, z, exp(tH)), t E From the above description of the metric

of X, the following corollary is clear.

10.4. COROLLARY. - The is a geodesic in X.
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10.5. PROPOSITION. Let -y be the projection in rBX of the above
geodesic i in X. Then -y is an EDM geodesic in TBX.

Proof. - Recall from Proposition 4.6 the disjoint decomposition
of rBx:

Clearly, Q is r-conj ugate to a unique Pi. Since we are concerned
with the image of y in rBX, we can assume that Q = Pi. Note that
when T 2013~ +oo, the subset wi in AP,,TXO increases and converges to
rp, BNpz x Therefore, when T » 0, w E wi. Then for to » 0, the
ray E [to, oo), is contained in WAPz,TXO C u)iAp,,TXO. Then the
simplicial metric ds on APz,TXO in 5.9 defines a metric ds on WAPz,TXO.
The ray E [to, oo), is clearly DM with respect to this metric ds.
By the same proof of Proposition 5.12, we can show that the Riemannian
distance of FBX restricts to ds on wAp,,TXO. Therefore, the ray q(t),
t E [to, oo), is DM, and hence the geodesic -y is EDM in rBX. 0

10.6. Remark. - Proposition 10.5 is due to Hattori [HAI] , [HA2],
Thm. A, when G = SL (n) and r is a congruence subgroup, and due to
Leuzinger [LE], Cor. in §4, for general. G. Our approach here is intrinsic,
dealing with FBX directly instead of doing computation in the universal
covering space X. For another proof of this proposition, see 10.17 below.

10.7. The purpose of this section is to show any EDM geodesic in

rBx is one of the geodesics in Proposition 10.5. For any t &#x3E; 0, define

which is a special case of (4.2.1) when ti = t, and

Let w C NQ x MQ be any compact subset. Then the subset C X

is a Siegel subset associated with Q in 4.2.

A technical result of this section is the following separation property
of cvAQ,txo under translations by elements in F.
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10.8. PROPOSITION. - For any compact subset w as above, there
exists a positive number to - to (r, w) such that for any ao c AQ,to ~
al E where r n Q, the following
inequality holds:

10.9. Before proving this theorem, we recall the fundamental

representations of G defined over Q ~BOl~, ~ 14, [BT], §12, which will
be used to compute the AQ-component of the Langlands decomposition.
Let P be a minimal rational parabolic subgroup of G. For any

a E ~++(G,P) ~ (see 3.2), there is a strongly rational

representation of G whose highest weight A, is orthogonal to

-4~++ (P, Ap) - and (A,, a) &#x3E; 0. Then the weight space of A, is

invariant under the maximal parabolic subgroup [BT], §12.2.
Fix an inner product )) . )) on which is invariant under K and

the Weyl group W(G), and with respect to which Ap is represented
by self-adjoint operators. Let eo be a unit vector in the weight space
of A,. Let P~++_{al - the Langlands
decomposition of ~++_~ (3.5.1). Then for any p e N~++ _ ~ a ~ M~++ _ 1 a ~ ,

and for any g E G,

where a(g) is the A,,,++ -I,,l component of g in the Langlands decomposition

10.10. LEMMA. - I be any subset. For a E Ap r
and b E ApT, if there exist positive constants Co such that

any a , then

where c is a positive constant independent of a, b, and ~) ’ ~~ is the norm

on aI induced from the Killing form.

Proof. For any
vector such that
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be the vector dual to the root a

for some positive constant d,.

By assumption,
). This implies that

Write

Taking

10.11. LEMMA (see [BO1], Thm. 11.4 and § 11.6.4). Let W (G) _
N(S)/Z(S) be the Weyl group of the maximal Q split torus S, and fwl
a set of representatives in N(S)(Q). Then u~e have the following Bruhat
decomposition :

being the unipotent radical
of the minimum rational parabolic subgroup P- whose Weyl chamber is
opposite to the chamber of P.
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10.12. Proof of Proposition 10.8. - From Lemma 10.3, we get that

where 0(1) only depends on w. Assume that Q is a standard rational
parabolic subgroup PI containing P. Let g - and a(g)
be the AI component of g in the Langlands decomposition of PI. Then
by Lemma 10.3.2,

We use the fundamental representations 7fa to get a lower bound for

11 For any a E ~~~ 2013 I, there are two cases to consider:

In case 2), using Lemma 10.11, write 7-1 uwtmv, where

Since aü1q21ao and belong to compact subsets,
U-(~), and al 1(mvql)al E NIMI, it follows that there

exists a positive constant bo = 1T a) such that
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where in the third equality, we have used the fact that = =i=eo for

p E NJ MI (Eq. 10.9.1).

By the proof of [B01], Cor. 15.3, Eq. 3, there exists a positive number
61 = such that for all -y E r and any a E Q++, the component t
of -y-1 satisfies that tÀa &#x3E; 61. So we get

where 6 = 8081.

By assumption, q g P4&#x3E;++-{a}’ If w o A, = ~a, then w would fix
the Weyl chamber face associated with the subset ~++ - (a) in 3.2, and
w E P,++ _j,j , and hence, E P4&#x3E;++-{a}’ This is impossible, and thus

where c{3 are non-negative integers with at least one being non-zero.
By [BT], Prop. 12.16, ca &#x3E; 1. Then

by the assumption that ao E AQ,to , and hence

This is the estimate we need for the case 2).
To finish the proof, we apply Lemma 10.10. Since ’r (j. PI, there

exists at least one a E ~++ - I such that -y ¢ By assumption,
. Apply Lemma 10.10 to a = aü1a1 and b = a(g). Then

( 10.12.1 ) and (10.12.2) show that when to » 0,

This completes the proof of Proposition 10.8.

10.13. We now recall some properties of Dirichlet fundamental

domains. For any subgroup h C Isom(X) - G which acts properly
discontinuously and freely on X and any xo E X, the domain

is called the Dirichlet domain for T with center xo . Except for spaces of
constant curvature, D is not bounded by totally geodesic hyperplanes, and
its shape is complicated. To study global metric property of rBX, it is

important to understand D.
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10.14. LEMMA (see [SI], §21). - The Dirichlet domain D is a

fundamental domain for the h-action and is star shaped, i.e., for any x E D,
the geodesic from xo to x belongs to D, and no interior point of D is
identified with other point of D under T.

10.15. LEMMA. - Let xo E rBX be the projection of xo E X.
A geodesic ray -y(t), t &#x3E; 0, in hBX with ~y(0) - xo is DM if and only if
its lift ~(t) to X with ~(0) = xo belongs to the Dirichlet domain D with
center xo .

Proof. - For any x, y E X, denote their projections on hBX by x, y.
Then and the lemma follows from the

definition of D. 0

10.16. PROPOSITION. - Assume that F is a neat arithmetic subgroup.
For any (uo, zo) E NQ x XQ and any sequence yn - (un, zn, an) E

a E ~+(Q, AQ), there exist a compact neighborhood w of (uo, zo) and
such that when n &#x3E; no, the Dirichlet domain Dn for r with center

(un, zn, contains w x when j » n.

Proof. Fix any compact neighborhood w’ of (uo, zo). For any n,
when j By Proposition 10.8, there exists n1 &#x3E; 1 such

that for any 11

We next adjust this compact neighborhood w’ of (uo, zo) such that
the above inequality also holds for 1 E r~, -y ~ id. Consider the Dirichlet
domain for the r Q action on X with center (un, zn, an)’ For any

). Then is a cross

section of DQ,n at the height aj. Consider as a subset of NQ x XQ.
We claim that there exist a neighborhood Doo of (uo, zo ) and no &#x3E; n 1 such

Assume that this claim is true first. Choose a compact neighborhood w
of (uo, zo ) contained in both and Doo. Then when n &#x3E; no and j » n,

L,;, and hence for any -y E r, ’"’( 1= id, and q E w,

and hence c
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We now prove this claim. By assumption, r is neat, and hence r Q
is torsion free (see [BOI], §17). By [BS], Prop. 1.2, rQ is contained in

NQMQ, leaves the AQ component fixed and hence acts discretely and
freely NQ x XQ. The subgroup rN = rQ n NQ acts freely and discretely
on NQ, and rX = acts freely and discretely on XQ.

and

a cross section of Dn,.y at the height a. Consider Ðn,-y,j as a subset

of NQ x XQ. We need to understand the asymptotic behavior of 
as j -&#x3E; +oo. The idea is to use the different shrinking rates of various parts
of NQ x XQ as aj ~ oo.

From the expression for the metric dx2 in 10.3,

as j 2013~ +oo, and hence

uniformly over compact subsets as j ~ +oo. Since zn - zo as n --* oo,
and rX is torsion free, zo if and only if -YZn 54 z,, for n » 1. Let

Then

and hence

uniformly over compact subsets.

On the other hand, if 1
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if and only if

where d Zn ( . , .) is the distance function one i
For simplicity, denote 6~(’,’) by d ( ~ , ~ ) . It thus suffices to compare

d((u, aj), (un, an)) and d((u, aj), an)) for -y E rN, and to determine
the asymptotics of

a cross section of the set

For simplicity, we assume that dim AQ = 1; otherwise, we need to

compare rates of a(log aj) going to infinity for various a E ~+ (Q, AQ)
and decompose the root spaces correspondingly. If there is only one element
in ~+(Q, AQ), then

and hence

and

uniformly over compact subsets. If -4~+(Q, AQ ) contains more than one
elements, say two elements al and a2, a1  a2, for simplicity. Let

nQ == nl + n2 be the decomposition of the Lie algebra of NQ according to
the roots QI, a2. Let Nl and N2 be the images in NQ of n, and n2 under
the exponential map from nQ to NQ. Then NQ is a bundle over N2 with
fiber N1. Trivializing the bundle, we write NQ = N1 x N2. Correspondingly,
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Then by the metric expression in 10.3, as j ~ oo,

and hence

uniformly over compact subsets.

Similarly, as j - oo,

and

uniformly over compact subsets.

the above discussions show that either

or

uniformly over compact subsets.

In summary, for any 7 E r~, ~y ~ id, the double limit

., ’

exists and is equal to a hypersurface in NQ x XQ which does not
contain (uo, zo), i.e., do((uo,zo),Do,,) &#x3E; 0, where the distance function

do(., .) on NQ x XQ is the induced distance by identifying NQ x XQ with
N~ x XQ x {id} C X ; and for any positive number c, there are only finitely
many such hypersurfaces Do,.y such that do ( (uo, zo ) , Do,.y )  c. Then the

claim follows easily. The proof of Proposition 10.16 is now complete. D

As a corollary of Proposition 10.16, we get another proof of Pro-

position 10.5 that is independent of the precise reduction theory in

Proposition 4.6 and the results in §5.
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10.17. COROLLARY. - Assume that F is a neat arithmetic subgroup.
Then for any (u, z) E NQ x XQ and H E the projection of the
geodesic ;.

Proof. Consider the curve %y(t) - (u, z, exp(tH)) instead of a

sequence yn = (un, zn, an) in Proposition 10.16, the same proof shows that
for to » 0, the Dirichlet domain for r with center (u, z, exp(toH)) contains
;Y(t), t » to. By Lemma 10.14, the Dirichlet domain is star shaped and
hence contains the geodesic ray ’1’( t), t 2: to. Then the projection of this
ray in rBX is DM by Lemma 10.15. Therefore the geodesic q(t), t E R,
is EDM. 0

Another application of Proposition 10.16 is the following main result
of this section.

10.18. THEOREM. - Any EDM geodesic on rBX is the projection
of a geodesic in X of the form ’
where u C NQ, z E XQ, a E AQ, and H E for some rational

parabolic subgroup Q.

Proof. We assume first that T is neat. Let &#x3E; 0, be a
DM ray in FBX. Then 1-y(t) t &#x3E; 01 is clearly not contained in any
compact subset of rBX. By the compactness of (see 7.4), there
exist a boundary point ~ E and a sequence tn - +oo such
that ~ ~. Let Q be a rational parabolic subgroup whose boundary
component e(Q) = NQ x XQ contains an inverse image ~ of ~ .

Let B(~) be a neighborhood of ~ E e(Q). Then for any to &#x3E; 0,
the intersection of X with a neighborhood of ~ in X BS . Thus

for tn » 0, q(tn ) has an inverse image in X of the form qnan E 
where qn E B(~), and an E AQ,t,, and for all

By Proposition 10.16, if B(~) is a small compact neighborhood and
to is large enough, then the interior of the Dirichlet domain D for T with
center (qn, an), n » 1, contains B(~) x when j » n; in particular,
(qj, aj) is an interior point of D. On the other hand, -y(t), t &#x3E; 0, is

distance minimizing; hence by Lemma 10.15, the lift I(t) of 7(t) with
(qn, an) also belongs to D for t &#x3E; tn. Since (qj, aj) and are

projected to the same point -y(t.), it follows that ~y(t~ ) _ (qj, aj). By taking
a subsequence, if necessary, we can assume that log aj /11 log converges
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to some It then follows that

From the fact that the distance between any two geodesics in X
grows at least linearly if they do not converge to the same point in X ( oo) ,
where X(oo) is the sphere at infinity and classifies the equivalence classes
of geodesics in X [BGS], §§3-4, (see also 9.2), it follows that converges
to H E X(oo) as t - +oo. Since i(tn) converges to ~ E e(Q), H E 
By the classification of geodesics according to their limits in X(oo) given in
[KA], §7, ~y(~) has the form i(t) = (u, z, a exp(tH)) up to reparametrization,

Assume now that r is not necessarily neat. By [BO1], Prop. 17.4,
r admits a neat subgroup F’ of finite index. If 1 is a DM ray in rBX, then
any of its lifts in h’BX is also a DM ray. The previous discussions applied
to h’BX show that these lifts of 1(t) and hence 1(t) itself is of the form in
the proposition. This completes the proof of the proposition. 0

To classify EDM geodesics in rBX, we need the following:

10.19. PROPOSITION (see [BS], Prop. 10.3). be a r Q invariant
subset of NQ x XQ with compact quotient. Then for any to » 0, two points
in (D x AQ,to are h-equivalent if and only if they are r Q-equivalent.

10.20. COROLLARY. - Two geodesics = G

NQ x XQ x AQ, i = 1, 2, project to the same EDM geodesic in FBX up to
reparametrization if and only if I-11 - H2, log a, - log a2 is a multiple of
Hl, and (ul, zl) = g(u2, z2) for some g E rQ.

Proof - By Theorem 10.18, the projections in rBX of ii(t) are
EDM geodesics. By Proposition 10.19, when t » 0, - -Y2(t + s) for
some constant s if and only if the conditions in the proposition are satisfied.
By the uniqueness of geodesics, 11 (t) = 12 (t + s) is true for all t if and only
if it is true for all t » 0. Then the proposition is clear. 0

11. Existence U fBX(oo) and FBX U rBXT.
11.1. In this section, we use the classification of EDM geodesics (or

DM rays) in §10 to show the geodesic compactification hBX U rBX(oo)
exists (see 11.7) and is homeomorphic to the Tits compactification 
(see 11.8).
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In 11.2, we show that Assumption 9.16 is satisfied by We use

the precise reduction theory in 4.6 and the results in §5 to study the growth
behavior of the distance between two DM rays in hBX in 11.4 and 11.5 and
use it to show that Assumption 9.11 is also satisfied. Then the main results
of this section follow easily. In 11.19 we show how to recover the Tits metric
on defined in §4, intrinsically from ]FBX.

11.2. LEMMA. - Assumption 9.16 is satisfied for rBX. That is, there
exists a compact subset such that every point in rBX is contained
in a DM ray starting from w.

Proof. By Proposition 4.6, FBX = IIN Note that

Po - G, Apo,T consists of the identity element, and WoXo is a compact
subset of 1,BX, which can be thought of as the core of ]FBX. We claim that
the compact subset WoXo satisfies the property in the lemma.

For any x C rBX - woro, there exists a unique i &#x3E; 1 and

w E wi and H E Ap2 such that x = w exp(H + Ip2 Define a ray
Then -~(0) = w exp lp, wo

and q( [H) ) = x. By Proposition 10.5, ~ is a DM ray.

We also need to show that points in are also contained in DM

rays. For any x in wo, take a sequence of points yn in rBX diverging to
infinity. Connecting x to yn by a DM geodesic Then there exists a

subsequence n’ such that qn, converges uniformly to a ray -Y with q(0) = x.
Since qn is DM, the limit -y is also a DM ray. D

11.3. PROPOSITION (see 1.5). - Every DM ray in rBX converges
to a boundary point in rBXT as t - -~oo. Two DM rays in rBX converge
to the same boundary point if and only if they are equivalent. And any
boundary point of rBXT is the limit of a DM ray in rBx. Therefore the set

of equivalence classes of DM rays in rBX can be identified with
the Tits simplicial complex ~(rBX). (9)

Proof. By Theorem 10.18, any DM ray q in rBX is the projection
of a geodesic in X of the form = (u, z, a exp(tH)) E Np x Xp x Ap
for some parabolic subgroup P, where u E Np, z E Xp, H C A$(oo),
a E Ap. This ray %y clearly converges to H in the partial compactification

(9) The last statement that rBX (00) = 0(TBX) has been conjectured by Hattori [HAl]
[HA2] and Leuzinger [LE].
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X U AQ(X) in 8.5. Therefore, ~y(t) is convergent in the compactification
rBXT as t ~ +oo, and = H E where we have

identify At(oo) with its image in A(FBX) = rBAQ(x) (3.6.4).
We now show that two DM rays converge to the same boundary point

in rBXT if and only if they are equivalent.
First we prove that any two DM rays with the same limit are

equivalent. For H E 0(rBX) and the ray ~(t) above, suppose that qi (t) is
another DM ray that also converges to H as t - +oo. We claim that there is

a lift in X of that is of the form (ul, zi, a, exp(tH)) E Np x Xp x Ap,
where P is the same rational parabolic subgroup as above.

Let (UI, zi, a,i exp(tHi)) be a lift of i,i in X, where ul E 1VP1’
zl E Hl E and P 1 is a rational parabolic subgroup.
(By Theorem 10.18, every lift in X of qi is of such a form.) By the
above discussions, converges to H, in fBXT, in particular, Hl - H
in A(rBX). This implies that PI is r-conjugate P, and Hl is mapped to H
under such a conjugation. Therefore, there exists another lift of qi of the
form (ul, zi, a1 exp(tH)) E Np x Xp x Ap in the claim.

From the claim and Lemma 10.3, it is clear that -y and qi are

equivalent.

Next we show that if two DM rays and ~y2 (t) converge to

different limits H, and H2 in then they are not equivalent. Let
(Ui, zi, ai exp(tHi)) E Np1 x Xp~ x Ap, be the lifts of ~y2 in X as above,
i = 1, 2. By the above discussion, the equivalence classes of the rays do
not depend on u2, zi, ai. For simplicity, we assume that id, zi - xo,
and ai - exp Ip2 (T), where Ip, : a - ap, is the map in (4.5.2), and T E a
is chosen as in Proposition 4.6. Since H2 in AQ(rBx), either PI is
F-conjugate to P2 but Hl is not equal to H2 under the conjugation, or P,
is not conjugate to P2. Then under the map (~:FBX 2013~ in

Proposition 5.11, and p(q2) are two different rays from the vertex
of the polyhedral cone By Lemma 5.10, these two rays
are clearly not equivalent in Then Corollary 5.13 and
Lemma 5.14 show that ~1 and ~2 are not equivalent either in rBX.

The last statement that any point in A(FBX) is the limit of a DM ray
follows from Proposition 10.5 and the above discussion. 0

11.4. LEMMA. - If two DM rays ~I and q2 in FBX are not equivalent,
then exists and is positive.
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Proof. As in the proof of Proposition 11.3, the existence and
value of

depend only on the equivalence classes of 1’1, -y2 . So we can assume as
above that are two rays in Ap,,T, is) with the vertex
as their initial point, where r~_ is the map in

Proposition 5.11. By Lemma 5.10, the limit

exists and is positive. Then Lemma 11.4 follows from Corollary 5.13 and
Lemma 5.14. 0

11.5. LEMMA. If a sequence of DM rays in rBX
converges to a ray uniformly for t in compact subsets, then

More generally, for any

Proof. From Lemma 5.10, it is clear that the analogous result holds
for the polyhedral cone f s) - Then by the same argument as in the
previous lemma, the result also holds in ]FBX. 0

11.6. PROPOSITION. - Assumption 9.11 is satisfied by FBX. That
is, for any two sequences of DM rays converging to rays 1’0 and -y’ 0
respectively, if there exist two sequences of numbers tn, tn ~ such that

d( 1’n (tn), bounded, then 1’0 is equivalent to 

Proof. Since the DM rays 1’n and yn start from a compact subset
offBX and is bounded, it is clear that tn - tn is bounded.

Suppose that 1’0 is not equivalent to 1’b. Then by the same argument
as in the proof of Lemma 11.4, there exists a positive constant c such that
for any n &#x3E; 1,

On the other hand, by Lemma 11.5,

3,re bounded,
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this implies that as n ~ 

But this contradicts Inequality (11.6.1) above. Therefore 1’0 is equivalent
to l’b. p

11.7. THEOREM (see 1.2). - The geodesic compactification ]FBX U
rBX(oo) exists and is Hausdorff.

Proof. - Lemma 11.2 and Proposition 11.6 show that Assump-
tions 9.11 and 9.16 are satisfied by 1’BX. Then Theorem 11.7 follows from
Theorem 9.17. D

11.8. THEOREM (see 1.5). - The Tits compactification is

homeomorphic to rBX U rBX(oo).

Proof. By Proposition 11.3, the identity map on X extends to a

map ; 1

We first prove that i is continuous. Assume that yn is a sequence

in rBX which converges to a boundary point Hoo E 0(rBX). Let rBX =
be the decomposition of rBX in Proposition 4.6. Write

and i depends on n. Then

converges 

Define a ray = &#x3E; 0. By
Proposition 10.5, qn is a DM ray with initial point W, E cvo and passing
through yn . Since wn belongs to a compact subset and Hn/IHnl converges
to HOC), it is clear that the pointed ray class [rn, tn] is a convergence sequence
of type 2) in 9.3 with limit oo], where = exp(tHOC) + ¡Pi (T))xo,
where Pi is the subgroup such that HOC) E Ap2 (oo). Since 7r (H,,,,) - 
this proves that 7r is continuous.

are compact and Hausdorff,
the map 7r is a homeomorphism.

11.9. Remark. - For any two points , define

By Proposition 11.3 and Lemma 11.4, this limit is well-defined and

gives a metric on A(r)X) = (Note that this metric is not a

simplicial metric.) Using the geometric realization of as a subspace
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in (3.6.4), where has been identified

with Ap2 , we get from the proof of Lemma 11.4 that this metric dT is the
restriction of the metric f s .

By Lemma 5.6, the metric space induces a length
structure (0(hBX ), .~T). Then the metric iT is the spherical metric defined
in [Til], §4. More precisely, Tits defined a spherical metric on and

the induced metric on the quotient = is equal to .~T.

12. Gromov compactification F)XG and I
12.1. In this section, we define the Gromov compactification

of a complete Riemannian manifold (see 12.5) and prove the Gromov
compactification is homeomorphic to the Tits compactification
hBXT (see 12.11).

12.2. Let M be a noncompact complete metric space, in particular
a Riemannian manifold, its Gromov compactification MG is introduced in

[BGS], p. 21, and several key properties are given as exercises.

Let C(M) be the space of continuous functions with the topology of
uniform convergence on compact subsets of M, and C* (M) be the quotient
of C(M) by the subspace of constant functions. Denote the distance

function on M by d(.,.). For any y E M, dy : x E M H d(y, x ) E R defines
a continuous function on M. Denote the image of dy in C* (M) by dy. Then
we get a map i : M -~ C* (M) defined by i(y) = dy. *

12.3. LEMMA. - The map i : M - C* (M) is an embedding.

Proof. First we show that i is injective. For any two points
Y1, Y2 E M, if i(yl) - i(Y2), then dyl - d Y2 is a constant function, i.e.,
there exists a constant c such that for any x E M, dyl (x) - c.

Setting x = yl, we get -d(Y2, y1 ) = c. Setting x = Y2, we get d(yi, Y2) = c.
Therefore, d(yl, y2) = 0 and yl = y2. This proves that i is injective.

Since dy depends continuously on y E M, the map i is continuous.

To finish the proof, we need to show that for any sequence Yn E M, if l4n
converges to dyo for some yo E M, then yn - yo.

By definition, there exists a sequence of constants Cn such that

uniformly for x in compact subsets of M.



518

Suppose that yin - yo, i.e., d(yo, Yn) ~ 0 as n - 00. For simplicity,
we assume that there exists a positive constant do such that d(yo, yn) &#x3E; do
when n &#x3E; 1 and the distance minimizing geodesic segment from yo
to yn converge to a segment qo (t) with qo(0) = yo. Fix a positive to such
that to  do.

Setting x = yo in (12.3.1), we get

Since ), we obtain that as n - 

In the second equality, we have used the assumption to  do  d(Yn, yo),
and in the last inequality, we have used (12.3.2).

On the other hand, by ( 12 . 3.1 ) , ~ 1
This implies that -to = to, and hence to = 0. This contradicts the positivity
of to. Therefore D

12.4. LEMMA (see [BGS], p. 21, Exercises 1 and 2). - The closure of
i(M) in C* (M) is compact.

Proof. For any y E M, dy satisfies the following inequality:

For any representative of the class dy, the same inequality holds. Fix a
basepoint xo E M. For any function dy, choose a representative dy such
that dy (xo) = 0. Then the family M} is equicontinuous on any
compact subsets on M. It follows that for any sequence yn in M, there
exists a subsequence such that dyn, converges uniformly over compact
subsets to a continuous function on M. That is, any sequence in i(M) has
a subsequence converging to a point on the closure of i (M) . Therefore, the
closure of i(M) is C* (M) is compact. D

12.5. DEFINITION. - The closure of i(M) in C*(M) is called the

Gromov compactification of M and denoted by MG .
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12.6. PROPOSITION (see ~BGS~, ~ 3) . - If M is a Hadamard manifold,
i.e., nonpositively curved and simply connected, then MG is the same as
the conic (or geodesic) compactification M U M(oo). In particular, for the
symmetric space X, X G = X U 

This is the only example whose Gromov compactification has been
identified before.

12.7. LEMMA. - If M = R’, then for any representatives d~, d’ 00
of two different boundary points in MG, their difference doo - d’oo is not
bounded.

Proof. It follows from the explicit computation in 16.1 that for

any v E R’(oc), i.e, v E R , Ivl = 1, the associated boundary function is
x E (v, x), up to a constant. Then Lemma 12.7 is clear. 0

12.8. LEMMA. - Let M = the polyhedral cone
with the simplicial metric in 5.9. Then 8MG == (oo), and for
any representatives Roo, f’ 00 of two different boundary points in MG, their
difference Roo - f’ 00 is not bounded.

Proof. For any two points x, y E we claim that

there exist closed conic domains Cx 3 x, Cy 3 y and an Euclidean space 
such that (Cx U Cy, is) can be isometrically embedded into 

If y is not on the cut locus of x, then there exist conic domains Cx 3 x,

Cy 3 y such that for any u E Cx, v E Cy, v is not on the cut locus of u and
hence connected to u by a unique DM geodesic 7u,,. By Lemma 5.10, the
DM geodesic -yu,, is piecewise linear and contained in the same collection
of cones The union of where u E e Cy, forms a subset
of U that can be straightened out and embedded isometrically into
some Euclidean space 

Suppose now that y is on the cut locus of x. The cut locus of x is a cone
of codimension 1. Similarly, the cut locus of y is a cone of codimension 1.
Let be a small closed conic domain on one side of the cut locus of y
and Cy 3 y be a small closed conic domain on the side of the cut locus
of x which is closer to Cx. Then any points u E Cx, v E Cy are connected
by a unique DM geodesic ~y~,v . The same argument as above shows that

(Cx U Cy, Rs) can be isometrically embedded into some Euclidean space 
This proves the claim.

Then Lemma 12.8 follows from the claim and Lemma 12.7. D
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12.9. LEMMA. - Let P be a rational parabolic subgroup of G. For
any x E X, let exp Hp (x) be the Ap component of x in the horospherical
decomposition X = Np x Xp x Ap (3.5.2). Then for any H E 

and the supremum can be achieved.

Proof. By [HC], Lemma 21, if H is the vector H~ satisfying
,~(Ha ) - ba,~, where E ~++ (P, Ap ), the above supremum is finite.
Since any H is a positive linear combination of such vectors Ha, the

supremum is also finite. Since F acts properly continuously on the partial
Borel-Serre compactification X BS (see §7.4) and Hp (x) for

q E r p = r n P, the supremum can be achieved by some element in F. p

12.10. PROPOSITION. - Let yn be a sequence in FBX going to
infinity. If yn is convergent in the Tits compactification rBXT, then yn is
also convergent in the Gromov compactification 

Proof. Assume that yn converges to a boundary point N00 E

Ap(oo) c A(]FBX). Then there exists a lift yn of yn such that yn converges
to ~oo E C in the partial compactification X U 
In the decomposition X = NpMpApxo (3.5.1), yn - 
where £n C Np Mp and Hn E ap satisfy the following conditions in 8.3:

We claim that converges to a continuous function
on rBX uniformly for x in compact subsets of F)X . Then Proposition 12.10
follows from the claim.

Let x E X be a lift of x. Then

For any q E F, it follows from Lemma 10.3 and the conditions on §n above
that
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where o( 1 ) stands for functions going to zero uniformly for x in compact
subsets as n ~ oo. By Lemma 12.9, for every x, there exists 1’0 E r such
that

Since Hn/IHnl ~ we get that as n 2013~ 

and hence as n - 

uniformly for x in compact subsets. Then the claim, and hence the

proposition, follows easily. 0

12.11. THEOREM (see 1.3). - The identity map on X extends to a
homeomorphism from to 

Proof. From Proposition 12.10, it is clear that the identity map
extends to a continuous map from to Since both 

are compact and Hausdorff, to show that the extended map is a
homeomorphism, it suffices to prove that it is injective.

Let be two sequences in rBX converging to different limits
E 0(rBX). Denote the limit of in rBXG by d~, d’co

respectively. Let doo, d’ 00 be representatives of doo, We claim that

d’ 00 is not bounded on rBX, in particular, doo =1= ~.
Recall the disjoint decomposition of X in 4.6: rBX = Ljo wiAp2,Txo.

Suppose that Ap2 (00) and H~ E At, 2 (oo). By Proposition 12. 10,
we can assume that yn - exp(Hn)xo E exp(Hn)xo E
Ap,,TXO- Identify yn and yn with two sequences in the polyhedral cone

Recall the map fBX ---t is) in 5.11. By Corollary 5.13
and Lemma 5.14, there exists a constant c &#x3E; 0 such that for any x E FBX,

Since Hoo =1= H~, the claim follows from Lemma 12.8. Therefore, the
extended map from is injective. 0
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13. Continuous spectrum and compactifications of FBX.
13.1. In this section, we study relations between the continuous

spectrum of hBX and compactifications of FBX. As mentioned in 2.2,
a natural question is to parametrize the generalized eigenspaces of the
continuous spectrum using boundaries of geometric compactifications of

rBx. The main contribution of this section is to interpret the spectral
decomposition of due to Langlands [LA] as a parametrization
of the generalized eigenspaces in terms of the pair of compactifications
rBX U 1,BX (oo), (see 13.14-13.15).

13.2. As mentioned in 2.2, the continuous spectrum of A as a subset
in R of a complete noncompact Riemannian manifold does not change
under compact perturbations. This follows from the so-called decomposition
principle in [DL], Prop. 2.1. This implies that the continuous spectrum as a
set only depends on the geometry of the end of the manifold. On the other
hand, behaviors of generalized eigenfunctions of the continuous spectrum
under compact perturbations are more complicated. Therefore, a more

interesting question is to understand relations between the generalized
eigenfunctions and the geometry near infinity.

Since the first version of this paper was written, stronger results on
relations between the generalized eigenfunctions and the geodesics which
are EDM in both directions have been obtained in [JZ]. The classification
of EDM geodesics in this paper palys an important role in [JZ]. See the
comments in 13.18 for more details.

13.3. The generalized eigenfunctions of hBX are given by Eisenstein
series. We first recall several basic facts about Eisenstein series and the

spectral decomposition of L2(rBX) following [LA], [AR2], [MW] and [OW2].
Let P be a proper rational parabolic subgroup of G, and hMp be

the image of rp in Mp under the projection Ap Np Mp ~ Mp. Then hMp
is a cofinite discrete subgroup acting on Xp - Mp /K n Mp. Let ap be
the dual of ap. For any L2-eigenfunction cp of the Laplace operator A on
the boundary locally symmetric space fMp BXp, we define an Eisenstein
series A), A E ap 0 C, as follows:

where pp is the half sum of the positive roots in -4~+ (P, Ap ) with multiplicity
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equal to the dimension of the root spaces, and

as in (3.5.2). When Re(A) E pp -I- the above series converges uniformly
for x in compact subsets of X (see [LA], Lemma 4.1 ) . It is a theorem of
Langlands [LA], Chap. 7, [MW], Chap. 4, [OW2], Chap. 6, that A)
can be meromorphically continued as a function of A to the whole complex
space ap 0 C, and A) is regular when Re (A) - 0.

The Eisenstein series are clearly r-invariant and hence
define functions on 

13.4. LEMMA. - If p has eigenvalue v, i.e., Ap = vcp, then for any

Proof. From the horospherical expression of A [HC], p. 19, [MU],
Eq. (1.2), p. 479, [KA], Thm. 15.4.1, it is clear that the term exp((pp + A)

in the Eisenstein series satisfies the above equation.
Since A is invariant under G, other terms also satisfy the equation,
and hence the Eisenstein series satisfies the equation in the

region of absolute convergence. Since the equation is preserved under the

meromorphic continuation, the lemma is proved. D

For any define a function f on rBX by

It is known that f E L2(fBX) (see [OW2], pp. 328-329 for example). For
every such pair of P and p, denote the span in L2(fBX) of all such functions
f above by 

These subspaces induce a decomposition of L 2(FBX) . Denote the
subspace of spanned by L2-eigenfunctions of the Laplace
operator A by Lâis(fBX), called the discrete subspace, and the orthogonal
complement of Lais (rBX) in L2 (fBX) by called the continuous

subspace. Then

The subspace L 2. (fBX) can be decomposed into the subspaces "
[LA], Chap. 7, [OW2], Thm. 7.5).
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13.5. PROPOSITION. - With the notation as above,

where P sums over all proper rational parabolic subgroups of G, and ~p is
over eigenfunctions of rMp BXp which form a basis of BXp ) .

13.6. COROLLARY. - For any A &#x3E; 0, the generalized eigenspace of

FBX with eigenvalue A, in the sense defined in 13.16 below, is spanned
by where P is a parabolic subgroup, cp an L2 eigenfunction
of rMp BXp with eigenvalue v satisfying v  ~ - I pp 12, and A E A ap
satisfying = A - I pp I 2 - v.

Proof. It follows from Lemma 13.4 and Proposition 13.5. D

The sum of the subspaces in Proposition 13.5 is not direct, and the
Eisenstein series for different P are not linearly independent. In
order to find a basis of the generalized eigenspace, we need to study relation
between various Eisenstein series and subspaces spanned by
them. 

13.7. DEFINITION. - Two rational parabolic subgroups P1, P2 of G
are called associated if there exists g E G such that Ad(g )ap1 == ap2’

In the above definition, the split components Apl , Ap2 are the lifts
with respect to the fixed basepoint in 3.5, and hence the element g E G
above does not necessarily belong to G(Q).

Clearly, PI and P2 are associated if they are conjugate. But the
converse is not true. Let C be an association class of rational parabolic
subgroups of G, and CI, ... Cr be the G-conjugacy classes in C. Let Pi E Ci,
i = 1, " -, r, be representatives of G-conjugacy classes in C.

For any two associate parabolic subgroups Pi,P2, denote by
W(ap1’ ap ) the set of bijections w : ap1 - ap2 induced by conjugation
under some elements in G.

Denote apt by ai. Then we have the following decomposition of the
set of regular elements of ai [LA], Lemma 2.13, [OW2], p. 67.

13.8. LEMMA. - For any i E {I, ... , r}, the following union:

is disjoint and is equal to the set of regular elements in ai, where an element
H E ai is regular if for all a E ~(Pi, Q(H) =1= 0.
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When C is an association class of minimal rational parabolic subgroups
P of G, r = 1 and the above lemma is equivalent to the fact that the Weyl
group W(g, ai ) acts simply transitively on the set of chambers in ai. On the
other hand, when the parabolic subgroups in C are not minimal, W(g, ai )
does not act simply transitively on the set of chambers, and the number of
orbits is equal to r in the lemma.

For an association class C of parabolic subgroups, define a subspace

where p runs over eigenfunctions of rMp BXp which form a basis of

Then we have the following direct sum decomposition of 
[LA], Lemma 7.1, [OW2], Thm. 7.5.

13.9. PROPOSITION. - The continuous subspace is the

direct sum over all association classes C of proper parabolic
subgroups.

This result implies that Eisenstein series coming from non-associated
parabolic subgroups are linearly independent.

Let C be an association class of parabolic subgroups, and Pi be
representatives of the G-conjugacy classes Ci in C as above. For every
i let I  p  ri, be representatives of F-conjugacy
classes in the G-conjugacy class Ci. Then Pi~, 1  i  r, 1  ~c  ri, are
representatives of F-conjugacy classes in the association class C.

For a positive number 
; 

v, let be the L 2 eigenspace with
eigenvalue v of The spaces are not trivial only when v
is an eigenvalue of TMpu BXp2 . In the following, we always assume that v
- - .. -. ,u&#x3E; . 

t I!: - , - - - -

belongs to the union of the discrete spectrum of

BXp,,,. Denote this union by Specd(C),
For every i = 1, ... , r, define
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For convenience, identify aptll- with ai = apt under conjugation of some
elements in K, p = 1,..., ri.

13.10. PROPOSITION (see [OW2], Thm. 6.4). - For any i, j E

~l, ... , r 1, Ai E ai 0 C, and wji i E W (aj , ai), there exists a meromorphic
family of intertwining operator

satisfying the following conditions :

1) For any k

in particular, when = 0,
its bijective and unitary.

13.11. PROPOSITION (see [OW2], Thm. 6.2). - With the notation as
above, the Eisenstein series satisfy the following functional equation : For
anyi, j E 

13.12. Proposition 13.10.2 shows that dim£j(v) for

any Z, i E {I, ... , r}. Denote this common dimension by d. Choose a basis
of ~o~ 21, ... p/ of such that each pj belongs to one subspace (v).

For any define

where tL is uniquely determined by the inclusion and
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Denote by
consisting of functions
that satisfy the following condition: For any

B

For any , define a norm

where f = dim ai and c is the number of chambers in a2, both of which do

not depend on i, and define

13.13. PROPOSITION (see [AR2], Main Theorem,
is an isometric

Denote this image

This proposition shows that the functional equations for Eisenstein
series in 13.11 are the only relations between them. We can reformulate

Proposition 13.13 as follows.

13.14. PROPOSITION. - For any rational parabolic subgroup P and
an L2-eigenfunction cp on rMp BXp, identify with a subspace
of L2 (rBX) through the map

Then the continuous subspace
sum:

is equal to the following direct

i I

where P is over all r-conjugacy classes of proper rational parabolic
subgroups, and ~p is over an orthonormal basis of eigenfunctions of
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Proof. For any function

it follows from the definition and Proposition 13.11 that for any

By Lemma 13.8, for each fixed i, and 1  j  r, are disjoint and
their union is a dense subset of ai of full measure, i.e., its complement is of
measure zero. This implies that

By Proposition 13.10.2, cji(wji, Ai) is unitary for and hence

The above equations together with Proposition 3.13 implies that

Since Proposition 13.9 implies that

...., _ .., 

which is equivalent to the decomposition in the proposition. 0

The decomposition of the continuous subspace L 2 in 13.14
can be interpreted as a parametrization of the generalized eigenfunction in
terms of the pair of compactifications and 

First we describe a correspondence between the boundary components
of FBXT and Let P1, ~ ~ ~ , Pn be representatives of F-conjugacy
classes of proper rational parabolic subgroups of G. Then
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where A+, (oo), BXp, are called the boundary components of fBXT,
respectively. These boundary components correspond to each

other through convergence of DM rays as follows. For any point q E

rBX(oo), let H E A+, (oo) C A (F)X) be the unique element corresponding
to q under the identification rBX(oo) = A(FBX) in 11.3. The geodesic
exp(tH)xo, t E R, in X projects to an EDM ray q (t) in FBX converging to H
in the Tits compactification This ray q(t) also converges in 
to a unique boundary point in rMp This correspondence between
the boundary components is inclusion reversing, i.e., A+ (00) is a face of

if and only if rMpl BXp, is a boundary component of rMp BXp,
i.e., rMp, BXp, is contained in the closure of rMp BXp. Because of this
correspondence, rBXT and form a pair of dual compactifications.

For every q E rBX(oo), identify it with H E Ap(oo) C rBXT as
above, and identify H with a point in ap using the Killing form. For each
L2-eigenfunction cp on the boundary locally symmetric space rMp BXp and
a positive number r, define

Let cpl, ... , cp~, ~ ~ ~ be eigenfunctions on rMp BXp, = which form

a basis of Then we have the following.

13.15. PROPOSITION (see 2.2). For q E rBX (oo), r &#x3E; 0 and n &#x3E; 1,
the set of functions E(q, r) form a basis of the generalized eigenspace of
eigenvalue. in the continuous subspace 

Proof. Let Pl, ... , Pn be representatives of all the r-conjugacy
classes of proper rational parabolic subgroups in G as above. For every
Pi, 1 :S i  n, let cpi,l,  , cpi,, ... , be eigenfunctions on r Mp of

eigenvalues which form an orthonormal basis of Then

by Proposition 13.14, we get

were i is identified with a subspace of (FBX) through the
map



530

Combined with Corollary 13.6, this implies that for any A in the
continuous spectrum of rBX, the generalized eigenspace of rBX with
eigenvalue A has a basis of A), where Vi,k  A - Ipp,1’, and

implies that a basis of the generalized eigenspace of A is given by r),
where q E the eigenvalue v of cp satisfies v  A - IpPI2, and

This completes the proof of the proposition. D

13.16. Remark. - The generalized eigenspaces for the continuous
spectrum are defined as follows. When a spectral decomposition of the
Laplace operator A is obtained by a Fourier type transformation, the
set of functions appearing in the transformation satisfy the eigenfunction
equation DE - AE. If E is square integrable, E is an eigenfunction,
otherwise, E is called a generalized eigenfunction. Then for any A in the
continuous spectrum, the set of generalized eigenfunctions of eigenvalue A
span the generalized eigenspace of A by superposition (or direct integral).
In the example of R’, the generalized eigenfunctions are the exponential
functions ~~W&#x3E; , and for rBX, the generalized eigenfunctions are

Eisenstein series. The point of the above proposition is to get a basis
of the generalized eigenspace.

There is some ambiguity in the definition of a basis of generalized
eigenspaces. As a Hilbert space, L2 ( ~ ap2 ) = This implies
that we can only parametrize a basis of a generalized eigenspace up to a set
of measure zero. In order to get a concise statement in Proposition 13.15,
we used L2 ( ~ ap2 ) instead of L2 ( ~ api ) .

As mentioned in 2.2, Proposition 13.15 can be interpreted as

follows. The wave function exp(pp + A Hp(x))cp(zp(x)) coming
from infinity in the direction of H and propagates into hBX along the
geodesic ~y(t). After scattering in this wave function produces a wave
function on hBX, which is exactly the Eisenstein series where

A = A qTH. Proposition 13.14 shows that every wave function on hBX
is obtained this way, and different triples (H, cp, r) produce different wave
functions.

In scattering theory of Schrodinger operators on R’ or its domains,
there is a close connection between rays in geometric optics and the

quantum scattering (see [KE1] and [ME]). Proposition 13.15 gives the first
connection between rays and scattering on 

Since the reductive Borel-Serre compactification plays a very
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important role in describing the wave functions (or scattering states) as
above, a natural question is the following.

13.17. QUESTION. - Can be described intrinsically in terms
of DM rays?

The answer is positive and worked out in §14. In fact, the boundary
components can be identified with the metric links of DM rays as described
in 1.6.

The scattering of the wave from infinity

along directions in A+, ( (0) of another parabolic subgroup P’ is given by
the intertwining operators introduced in 13.10. For a function in L2(rBX),
whether it belongs to the discrete subspace or the continuous

subspace is determined by its constant terms along rational
parabolic subgroups of G. If P’ is associate to P and p is a cuspidal
eigenfunction, then the constant term Ep, (P ~ cp, A) of A) along P’
is given by [HC], Thm. 5, p. 44,

Because of this equation, the intertwining operators c(w: A) are also called
scattering matrices. Then a natural question arises:

13.18. QUESTION. - HouT to understand the scattering matrices in
terms of DM rays?

If rBX is a Riemann surface, Guillemin proved in [GU] a beautiful
relation between the scattering matrix and the sojourn times of scattering
geodesics, where scattering geodesics are those geodesics which are EDM
in both directions and the sojourn time is a suitably normalized length of
the segment of scattering geodesics contained in the compact core of FBX.
This gives a much stronger relation between the geometry at infinity and
the scattering theory than Proposition 13.15.

In [JZ], Guillemin’s result has been generalized to all FBX of Q-rank 1,
i.e., when the Q-rank of G is equal to 1. Instead of an exact expression
for the scattering matrices in terms of sojourn times of the scattering
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geodesics, it is shown in [JZ] that the frequencies of oscillation of the
scattering matrices c(w: A) as A - oo are exactly the sojourn times of the
scattering geodesics. The method of [JZ] only works for the Q-rank 1 case.
One difficulty in the higher Q-rank case is that instead of 1-dimensional
scattering geodesics, we should also consider higher dimensional scattering
flats, and the sojourn times need to be generalized.

and DM rays.

14.1. In this section, we recover the boundary components 
and from DM rays converging to them (see 14.12-14.13), in

particular, we identify the boundary components of with reduced

metric links of DM rays as mentioned in 1.6, thus answering Question 13.17
positively. Combining this description with the results in §13, we propose a
description of the continuous spectrum of a "geometric finite" Riemannian
manifold in (14.20). We also identify the boundaries and

with certain equivalence classes of DM rays (see 14.16, 14.19).
This section is closely related to the study of geodesics in the symmetric
space X in [KA].

In 14.2-14.4, we study the Q-rank 1 case and introduce the N-

relation. In 14.5-14.6, we introduce congruence bundles of DM rays and
use it to define the rank of a DM ray in 14.7. In 14.8-14.9, we define
the L-relation on DM rays. In 14.10, we define the mobility degree of a
DM ray. Then in 14.12-14.13, we recover the boundary components of

and in terms of DM rays converging to them. In 14.14,
we introduce the R-relation on DM rays. We prove in 14.16 that the set of

RL-equivalence classes can be identified with lgrBXBS and in 14.19 that
the set of NRL-equivalence classes can be identified with arBXRBS.

14.2. PROPOSITION. - If the Q-rank of G is equal to 1, then the set
of EDM geodesics in rBX corresponds bijectively to through
the map -Y(t).

Proof. First, we show that every EDM geodesic is convergent
in fBXBS. By Theorem 10.18, every EDM geodesic ,(t) in FBX is the
projection of ~y(t) - (u, z, exp(tH)) E Np x Xp x Ap for some rational
parabolic subgroup P. From the description of the topology of in 7.3,
it is clear that converges to the boundary point (u, z) E e(P) in XBS,
and hence -y(t) converges to the image of (u, z) in as t - 
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Therefore, the map 7(1) ~ Hindoo ’Y( t) is well-defined and is easily seen to
be surjective.

By assumption, dim Ap = 1. Then by Corollary 10.20, 7(1) is uniquely
determined by the image of (u, z) E e(P) in 8(fBXBS). This implies that
this map is also injective. 11

14.3. DEFINITION. - Two EDM geodesics -y2 (t) in are

N-related (nil), denoted (t) ~ ,2 (t), if limt-+,, d(-yl (t), ’Y2 (t)) = 0 for
suitable parametrizations of’I, ’Y2.

14.4. LEMMA. - For every rational parabolic subgroup P, and two
geodesics ii(t) - (ui, zi, ai exp(tH)) E Np x Xp x Ap with H E ap,
log ai 1 H, i = l, 2, when t » 0,

where (zi, ai) also denotes the image of (zi, ai) in rMp BXp x Ap, and zi
denotes the image of zi in Fm, BXp.

Proof. Since

suffices to prove that for every g E r,

On the other hand, when 9 (j:. rp - r n P, Proposition 10.8 implies that
for t » 0,

This completes the proof. D

14.5. PROPOSITION. Assume nQ(G) == 1. The N-relation is an

equivalence relation, and all the EDM geodesics in one equivalence class

converge to the same boundary point in Furthermore, the set
of the N-equivalence classes corresponds bijectively to through
the 1(t).
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Proof. - Since dominates it follows from Propo-
sition 14.2 that every EDM geodesic converges to a boundary point in

and every boundary point is the limit of some EDM geodesic.
We need to show that two EDM geodesics converge to the same boundary
point if and only if they are N-related.

If two EDM geodesics I t - 1, 2, are projections of -

(ui, zi, ai exp tHi) E Np2 x Xp~ x Ap2 as in Theorem 10.18, and P1, P2 are
not F-conjugate, then Proposition 11.3 implies that are not equivalent
and hence not N-related. On the other hand, when Pi , P2 are F-conjugate,
we can assume that Pl - P2. By Lemma 11.4, when -y1 is N-related to

72? Z1, Z2 project to the same point in fMp1 and hence 1’l(t),1’2(t)
converge to the same boundary point in fBXRBS. On the other hand,
when 1’1 (t), q2 (t) converge to the same boundary point in we can

choose lifts 11 (t), 12 (t) such that zi = z2. Since dim Ap2 = 1, we can choose
al = a2 = id. Then Lemma 10.3 implies that dX(11(t), §2 (t)) = 0
and hence 1’1, 1’2 are N-related. 0

14.6. To study the higher Q-rank case, we need to introduce further
relations between EDM geodesics. For any EDM geodesic -y in FBX, define
the congruence bundle(10) of EDM geodesics containing 1 as follows:

{V ~ 7(t)) = c a constant, for t &#x3E;&#x3E; 01,
where 1" is given a suitable parametrization. Define b(~y, ~y’) = c, which
is also equal to d(-y(t), -y’), where d(1(t), 1’) = I
s E Similarly, for any two EDM rays 11,12 E C-Bundle(1’), we can
define b (~yl , ~y2 ) . 

°

14.7. LEMMA. - For any EDM geodesic 1 in fBX, ~( -, -) defines a
metric on C-Bundle( 1’), and the metric space (C-Bundle( 1),8) is complete.

Proof. By Theorem 10.18, there exists a parabolic subgroup P
such that a lift in X of -y(t) is of the form 1( t) == (u, z, a exp(tH)) E
NP x Xp x Ap, where u E Np, z E Xp, a E Ap, and H E 
log a 1_ H. By Proposition 11.3, any 1" in C-Bundle(-y) has a lift in X of the
form q’(t) = (u’, z’, a’ exp(tH)) E Np x Xp x Ap, where log a’ -L H. Since
dr~x (-y(t), ~y’(t)) = c when t » 0, where c is a constant, there exists a lift y 1

(10) The name of a bundle of EDM geodesics is suggested by the bundles of geodesics
in [KA].
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such that dX (%y(t), ~y’(t)) = c when t » 0. By Lemma 10.3, this implies that
u = u’. Conversely, when u = u’, any two such geodesics i, 7-’ in X project
to two congruent geodesics in rBX. These two geodesics ~, 7’ project to
the same geodesic in TBX if and only if (z, a), (z’, a) project to the same
point in rMp BXp x Ap. Therefore, we get the following identification:

where is the orthogonal complement in ap of the line Span(H)
containing H, and hMp is the discrete subgroup of Mp projected from rp
under the map P = Np Mp Ap -~ Mp.

By Lemma 11.4, under this identification, 6(.,.) is the distance

function on rMp BXp x Span(H) induced from the Riemannian metric of
f Mp BXp x Ap and hence complete. 0

14.8. DEFINITION. - For any EDM geodesic q in fBX, the rank of -y
is defined as

An EDM geodesic q’ in C-Bundle(’Y) is defined L-related (linearly) to "I
ifq, q’ belong to one of a congruence bundle C-Bundle(-Y) of the
isometric action where r = r( "I).

14.9. LEMMA. - The L-relation is an equivalence relation on the set
of EDM geodesics in FBX.

Proof. If ~y(t) is the image of ~y(t) - (u, z, a exp(tH)) E

Np x Xp x Ap with H E a+, then the rank of q is equal to dim Ap,
i.e., the Q-rank of P. By definition, if two EDM geodesics are L-

related, then they belong to the same congruence bundle. Two geodesics
~2 - 7 i = 1,2, 7 in C-Bundle(-y) project to two L-related
EDM geodesics in hBX if and only if ul, u2 project to the same point
in FN, BNp, and ZI, Z2 project to the same point in hMp BXp. Then it is
clear that the L-relation defines an equivalence relation. 0

14.10. DEFINITION.

1) For any EDM geodesic in FBX, the hnite bundle of EDM geodesics
containing q is defined as
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2) A finite bundle F-Bundle(-y) of EDM geodesics corresponds to an
equivalence class defined in (1.1, 9.1) and hence a point q = [-y] E fBX( (0).
The set of the N-equivalence classes in this finite bundle, F-Bundle(-y)IN,
is called the metric link of the finite bundle F-Bundle(-y), and denoted
by 9(~). It is also called the metric link of the point q E rBX(oo), and
denoted by S(q) as in 1.6.

3) The L-relation restricts to an equivalence relation on a F-Bundle(-Y),
and the dimension of the quotient is called the mobility
degree of the EDM ray 7.

4) The L-relation defines an equivalence relation on the metric link
,5’(~y), and the quotient is called the reduced metric link and denoted

by S(-y). (See Remark 14.20 for another definition of the reduced metric
link. )

Remarks. 1) The F-Bundle(~) is just the equivalence class of EDM
rays containing -y in the sense (see 1.1, 9.1). Such a set of geodesics in the
symmetric space X is called a finite bundle by Karpelevic in [KA]. Since we
have several relations in this section, we use the finite bundle to distinguish
it from other relations.

2) The metric link can be identified with the congruence bundle

C-Bundle(q) in 14.5.

14.11. Recall from 7.3 that for any rational parabolic subgroup P,
e(P) = Np x Xp is the boundary component associated with P in the partial
compactification X Bs. Then the image of e(P) in is where

Tp - r n P. Let P 1, ... , Pn be representatives of F-conjugacy classes of
proper rational parabolic subgroups in G. Then

are called the boundary components
Similarly, 

’ ’ 

where i is the image of Ti i under the
are called the boundary components
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14.12. PROPOSITION. - Every EDM geodesic q converges to

a boundary point in Let FiBe(Pi) be the unique boundary
component containing 1’(t). Then can be identified with

the set of L-classes in F-Bundle(1’).

Proof. - By Theorem 10.18, l’ is the projection in FBX of a
geodesic in X of the form = (u, z, a exp(tH)) E Np x Xp x Ap,
where u E Np, z E Xp, a E Ap, and H E converges to

(u, z) E e(P) in X BS as t ~ +cxJ, and hence 1’(t) converges in to

the image of (u, z) in riBe(Pi), where Pi is the unique representative which
is r-conjugate to P. By Proposition 11.3, all EDM geodesics in F-Bundle(q)
have lifts in X of the form (u’, z’, a’ exp(tH)) E Np x Xp x Ap, where
u’ E Np, z’ E Xp, a’ E Ap. Then it is clear from the definition of the

L-relation that the quotient can be canonically identified
with by mapping the geodesic (u’, z’, a’ exp(tH) ) to the image of
(u’, z’) in fi Be(P i)’ 0

Similarly, we have the following description of the boundary
components of 

14.13. PROPOSITION (see 1.6). - Every EDM geodesic -y converges
to a boundary point in Let be the unique boundary
component containing the limit point 1’(t). Then rm, B6(pi) can be
identified with the reduced metric link 8(1’), i.e., the boundary component
hM2 Be(Pi) can be identified with the reduced metric link S(q), where
q = M E rBx (o’o) .

In the following, we introduce more equivalence relations on EDM

geodesics and identify the boundaries 8(fBXBS) and 8(fBXRBS) with
certain equivalence classes of EDM geodesics.

14.14. DEFINITION.

1) Two L-equivalence classes and are R-related (rotatio-
nally) if there exist representatives and and a family of EDM

geodesics 1’s(t) connecting them such that the mobility degree of 1’s(t) does
not change, and = S2 I t when t &#x3E; 0, where c is some
constant.

2) Two geodesics 1’o(t) and 1’1 (t) are RL-related if their L-classes

and [1’1(t)]£ are R-related.
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14.15. LEMMA. - The RL-relation is an equivalence relation on EDM
geodesics on FBX.

Proof. - From the proof of Lemma 14.9, we see that any EDM -y
geodesic in FBX which is the projection of a geodesic in X of the form

- (u, z, a exp(tH) ) E Np x Xp x Ap has mobility degree equal to
dim Np + dim Xp.

We claim that another EDM geodesic Y is RL-related to -y if and only
if Y has a lift in X of the form -y’ (t) = (u, z, a’ exp(tH’)) e Np x Xp x Ap,
where a’ E Ap, H’ E a+ are arbitrary. Then the lemma follows easily from
the claim.

Suppose first that V has such a lift. Recall the disjoint decomposition
X = LI~ from Proposition 4.6. By the proof of Lemma 14.9, the
L-equivalence class of 7 does not depend on a. We can choose a = a’
and log a » 0 such that for some i and t &#x3E; 0, ~y(t), 7’(t) E 
Connect -y and -~’ by the family of DM rays which are projections of

= (u, z, a exp(tHs)) E Np x Xp x Ap, where H, = sH + (1 - s)H’,
s E [0, 1]. Then this family satisfies the property in Definition 14.14. In
fact, let w be the component of ’"’( (0) == ’"’(’ (0) in Wi. Then the family of rays
’"’( s (t), t 2 0, are contained in By the same proof of Proposition 5.12,
we can show that the Riemann distance of fBX restricts to the metric ds
on induced from the Killing form. Then the property in
Definition 14.14 is clear.

On the other hand, suppose that -y and V / are RL-related.

Then ’"’((0) == ’"’(’(0). Let ? (t) = (u’, z’, a’ exp(tH’)) E Np, x Xp’ x Ap,
be the lift of ’"’(’ (0) with i’ (0) = E X. we claim that P’ = P.

If not, the connecting family of EDM geodesics also lifts to a

family = (u(s), z(s), a(s) exp(tH(s))) E Np (s) x Xp (s) x Ap (s) with
i~(0) = ~(0), where P(s) is a parabolic subgroup. Since P ~ P’, the
dimension of will change as s changes from 0 to 1. By the first

paragraph, this implies that the mobility degree of -ys will change also. This
contradicts the assumption on the family -ys. So P’ = P. Since ~(0) = i’(O),
uaz = u’a’z’. By the uniqueness of the horoshperical decomposition (3.5.2),
u = u’, z = z’, and hence the claim is proved. D

14.16. PROPOSITION. - All the EDM geodesics in a RL-equivalence
class converge to the same point in 8(fBXBS), and the set of the RL-
equivalence classes corresponds bijectively to 8(fBXBS) through the map

, , - ’B.
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Proof. From the definition of that an EDM geodesic
which is the projection of a geodesic in X of the form (u, z, a exp(tH)) E
Np x Xp x Ap converges to the image of uz in 8(rBXBS). Then
Proposition 14.16 follows from the claim in the proof of Lemma 14.15.

n

14.17. DEFINITION. - Two EDM geodesics 1’1 and 1’2 in 1,BX are
NRL-related if there exists a EDM geodesic 1" such that -y’ is RL-related
to and 1" is N-related to 72 -

14.18. LEMMA. - The NRL-relation defines an equivalence relation.

Proof. By Lemma 11.4 and Proposition 11.3, two EDM rays
1’1,1’2 in hBX are N-related if and only if they have lifts of the form

- zi, ai exp(tHi)) E Np x Xp x Ap with zl - Z2, a1 == a2, and
Hl - H2 for some rational parabolic subgroup. Combining with the proof
of Lemma 14.15 which identifies RL-classes, we conclude that two EDM

rays 1’1,1’2 are NRL-related if and only if they have lifts of the form
= (ui, zi, ai exp(tHi)) E Np x Xp x Ap with z2. D

14.19. PROPOSITION. - The set of the NRL-equivalence classes cor-
responds bijectively to 8(fBXRBS) through the map q - 1’(t).

Proof. It follows from Proposition 14.13 that every EDM geodesic
in 1,BX converges to a boundary point of Then the proposition
follows from the conclusion in the proof of Lemma 14.18. 0

14.20. Remark. - Proposition 14.13 shows that is analogous
to the Karpelevic compactification of the symmetric space in [KA], § 13. In
fact, as mentioned above, the definitions of finite bundles and N-relation
are adapted from [KA].

Before divided out by the L-relation, the congruence bundles

C-Bundle(1’) have infinite volume in general (see the proof of Lemma 14.6).
So the L-relation is a renormalization procedure.

If we want to recover only the boundary components of from

EDM geodesics converging to them, there is a better alternative way as
mentioned in 1.6, which can be generalized to other manifolds.

Given an EDM geodesic -y in hBX, consider the finite bundle of EDM
geodesics F-Bundle(1’). Identifying any two geodesics which are N-related,
we get the metric link 8(1’), which can also be identified with C-Bundle(1’).
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By the proof of Lemma 14.7, this metric link is the product of
a boundary locally symmetric space f Mp BXp of finite volume and an
Euclidean space. Then we renormalize the metric link by dropping
the Euclidean factor to get the reduced metric link §(7) that has finite
volumes (11)

The advantage of this definition of the reduced metric link is that it
can be generalized to other manifolds in the next remark.

14.21. Remark. - It seems that the approach in 14.20 can be

generalized to a "geometrically finite" complete noncompact Riemannian
manifold to yield boundary components of reductive Borel-Serre type. Then
these boundary components may form the boundary of a compactification
of the manifold which is dual to the geodesic compactification, whose

topology satisfies the property that an EDM ray converges to a point in its
boundary component. And this pair of dual compactifications can be used
to describe the continuous spectrum of the manifold (see the next remark).

More precisely, by a geometric finite manifold M, we mean that

Assumptions 9.11 and 9.16 are satisfied. The finite bundles and the N-
relation on them can clearly be defined, and so the metric link can

be defined. By normalizing the metric link in a suitable way, we get the
reduced metric link of finite volume. The reduced metric links are analogues
of the boundary components in the reductive Borel-Serre compactification.
Clearly, two equivalent EDM geodesics define the same reduced metric link.

14.22. Remark. - Using this construction of boundary components,
we propose the following description of the continuous spectrum of a
"geometrically finite" complete manifold M. Any equivalence class of EDM
rays [-yl E M(oo) and a function (or an eigenfunction) on the boundary
component of -y produce one dimensional continuous spectrum (a half line);
and the union of these spectra is the continuous spectrum of M.

The results in §13 (see Proposition 13.15) show that this picture is
true for FBX. If M = X is a Riemannian symmetric space of noncompact
type, then the above picture is also true. In fact, for every geodesic -Y in X,
its metric link is a product of a Riemannian symmetric space of noncompact
type of lower dimension and an Euclidean space [KA], §7. Since both factors

(11) We need this normalization in order to get square integrable eigenfunctions on the
reduced metric link.
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have infinite volume, the reduced metric link is a point, and hence the dual
compactification is the one point compactification M Then Harish-

Chandra’s theory of Plancherel formula shows that the above description
of the continuous spectrum holds for X (see [Jl] for more details).

If M is a manifold with corners and the metric is an exact b-metric as

in [ME, 7.9], then Assumptions 9.11 and 9.16 are easily seen to be satisfied,
because the metric has product structure near every point at infinity. The
boundary components of EDM geodesics are the boundary faces of the
manifold, and the dual compactification is homeomorphic to the manifold
with the corners. And the above picture is consistent with a conjecture of
Melrose [ME], Conj. 7.1. In fact, for boundary face of M of codimension p,
it seems that the set of EDM classes in M(oo) whose boundary component
is the given face form a simplex of dimension p - 1. This should be the

"(pseudo-)manifold" as remarked by Melrose in [ME], Footnote 38, p. 93.

15. The Martin compactification of FBX.

15.1. In this section, we construct a minimal function in 

ju E C’ (]FBX) Du = Au, u &#x3E; 01, A  0, for every point in the geodesic
boundary hBX(oo) (see 15.7). When the Q-rank of hBX is equal to 1, we
show that every minimal function in C.x(fBX) is one of those constructed
above and hence identify the minimal Martin boundary with

hBX(oo) (see 15.15). Suggested by these results, we conjecture that the
geodesic compactification rBX U fBX (00) is the Martin compactification
of rBX (see 15.14). Since the geodesic boundary hBX (oo) is the same as
the Tits complex 0(hBX) (see 11.3, 11.8), in the following, we use the Tits
compactification fBXT and its boundary A(FBX) instead of the geodesic
compactification for technical convenience.

In 15.2-15.4, we introduce the Martin compactification of a Rie-
mannian manifold and related concepts. For every point in 0(1,BX), we
define an Eisenstein series in 15.5. To prove that these Eisenstein series are

minimal 15.7, we recall the Martin compactification of X in 15.8-15.10.
Then the minimal property follows from the ergodicity of the h-action on
the maximal Furstenberg boundary of X. To identify minimal functions in

(see 15.15), we use the Harnack inequality to show that every
element in has moderate growth (see 15.17) and a minimal one
is an automorphic form 15.18-15.19. Then the Q-rank 1 assumption allows
us to identify these automorphic forms.
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15.2. Let M be a complete non-compact Riemannian manifold, A its
Laplace operator which is normalized to be non-negative, and Ao(M) the
bottom of the spectrum of A, 

-

Then it is known that the cone Cx(M) = {tt E C°°(M) Du = Au,u &#x3E; 01
is non-empty if and only if a  Ao(M) (see [SU2]). Clearly, C~ (M) is a

convex cone. A basic question in potential theory is to understand this

cone, in particular, its generators.

We recall several basic facts about the Martin compactification. For
more detailed discussions, see [GJT]. For A  Ao(M), let Ga (x, y) be the
Green function of A - A. Then G,B (x, y) &#x3E; 0 for

every y. Fix a basepoint xo and define K~ (x, y) - 
Then K.B (xo, y) = 1 for any y =1= xo.

A sequence yn in M going to infinity is called a fundamental sequence
for the Martin compactification for A if converges uniformly
over compact subsets to a function on M. Two fundamental sequences
are equivalent if they give rise to the same limit function. Then the

Martin boundary 8xM is defined to be the set of such equivalence
classes of fundamental sequences. For each equivalence class ~ E 9,BAf,
we denote the corresponding limit function by ç), which clearly
satisfies (A - 0, 1, &#x3E; 0 for all x E M.

The topology of the Martin compactification M U 8)..M is defined as follows:
a sequence yn in M U 09AM converges to a boundary point ~ if and only
if yn ) converges to KA (X, ~) uniformly for x in compact subsets of M.

For Ao = Ao(M), if G)..o (x, y) exists and is positive, we define

the compactification M U 8)..oM as above. Otherwise, the cone CBQ is

one dimensional, and hence M U 8)..0 M is defined to be the one point
compactification.

15.3. DEFINITION. - A function u E Cx(M) is called minimal if any
function v E C,B (M) which is bounded by u is a multiple of u. A boundary
point ~ E 8x M is called minimal if the function K~(x, ~) is minimal.

Clearly the minimal functions are the extremal elements of the

cone C).. (M). Denote the set of these minimal points in 8xM by 8)..,rninM.
Then 8)..,rninM is a G5 set, i.e., the union of a countable open sets. In some
cases, for example, symmetric spaces X of rank greater than or equal to 2,
it is a proper subset of (see [GJT] and Proposition 15.8 below).
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The motivation for the introduction of the minimal Martin boundary
is the following integral representation formula.

15.4. PROPOSITION. - Given any positive solution u of Au - Au,
i.e., u E C~ (M), there exists a unique positive measure M on 8x,minm such
that

This measure is called the representing measure of u. If v is another positive
solution bounded by u, then the representing measure of v is absolutely
continuous with respect to In particular, all the minimal functions in

C~, (M) are multiples E 8x,minm.

Proof. For domains in Rn and A = 0, this result was proved by
Martin in [MA], Thm. III, p. 160. The same argument also works in the
more general situation here. 0

The existence of åÀ,minM and the integral representation formula can
also be obtained from Choquet Theorem in abstract potential theory [BR].
But the approach of Martin compactification is constructible.

In general, among this family of compactifications, the most

interesting one corresponds to a - 0, which is the classical Martin

compactification and describes positive harmonic functions.

In our situation, M - fBX, 0, and all positive
harmonic functions are constant, and hence FBX U 80r)X is the one

point compactification. Therefore, in the rest of this section, A is assumed
to be negative unless otherwise specified.

15.5. We now construct functions of using Eisenstein series.
For any rational parabolic subgroup P, let pp be the half of sum (with
multiplicity) of the positive roots in ~+ (P, Ap ) . Identifying the dual ap
with ap using the Killing form (., .), we get pp E ap .

For ~ C Ap(oo), i.e., ~ E a+ and == 1, choose a positive number
c = c(~) such that

(this choice of c(~) is explained in the proof of Lemma 15.6 below).
Since A  0, such c(~) exists and is unique. For any E X, write



544

Eisenstein series A) for ~ by

This Eisenstein series is a special case of A) in 13.3 when p = 1.

15.6. LEMMA. - The series defining converges absolutely,
and E~ (x, A) is a positive solution of Au = Àu.

Proof. - By a result of Godement [HC], p. 31, Remark 1, this series
converges uniformly for x in compact subsets, and hence defines a positive
smooth function on X. Since Tp = F f1 P leaves Hp (x) invariant, E~ (x, A)
is T-invariant and hence descends to a function on rBx.

From the expression for the horospherical part of the Beltrami-Laplace
operator A of X (see also the proof of Lemma 13.4), we get

(This equation explains the choice of c = c(~) above.) D

Normalize the value of E~ (x, A) at xo by setting

Then Eç(x, À) &#x3E; 0, Eç(xo, À) = 1, and (A - À)Eç(x, A) = 0. If E

AQ (X) - UP are conjugate under F, then EÇ1 (x, A) = EÇ2(X, A).
Therefore, we can define a unique function E~ (x, À) for every boundary
point in ~ E 0(rBX).

15.7. PROPOSITION. - For any E A (FBX), the function E~_(x, À) is
minimal. And if ~’ E is a different point, then A) =,~- A).

To prove this proposition, we need to recall several results on

the Martin compactification of X. Since X uses the real Langlands
decomposition while 1,BX uses the rational Langlands decomposition, we
need to point out the difference between these two decompositions.

For every real parabolic subgroup P of the Lie group G = G(R),
let Ap be the maximal split torus in P stable under the Cartan involution
of the fixed basepoint xo, and Mp the complement of AP in the Levi factor
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of P. Then P admits a real Langlands decomposition P = NpMpAp as
in ( 3. 5.1 ) . Define Xp == n Mp. Then X p is a symmetric space of

noncompact type and called the boundary symmetric space for P. The
real Langlands decomposition of P induces an horospherical decomposition
X = Np x X p x Ap as in (3.5.2). For any x E X, denote its component
in Ap by exp(Hp (x) ), and its component in Xp by zp (x).

When P is a rational parabolic subgroup of G, its real locus P

is a real parabolic subgroup of G. Then Np = Np, but the maximal
Q-split torus Ap is contained in the maximal real split torus Ap, and
Mp contains Mp. Unless Ap = Ap, the boundary symmetric space Xp
defined through the rational Langlands decomposition of P differs from the
boundary symmetric space X p defined for the real parabolic subgroup. In
fact, let Ap be the orthogonal complement of Ap in Ap with respect to the
Killing form. Then Xp = AP x Xp. Let pp be the half sum of the (positive)
roots of the adjoint action of Ap on Np with multiplicity as in 13.3, and pp
be the half sum of the (positive) roots of the adjoint action of Ap on Np.
Then pp - pp, and pp is perpendicular to ap, the Lie algebra of Ap
Denote by expHp(x), the Ap, Ap-components of x E X with
respect to the two horospherical decompositions X - Np x XP x Ap,
X = Np x Xp x Ap. Then for any ~ E a*P ,

Denote the maximal Satake-Furstenberg compactification of X by
X SF [SA1], [FU]. Then one of the results in [GJT], Chap. 1, ~ 1, is the

following.

15.8. PROPOSITION. - For A  Ao(X) as above,

where P is over all the proper parabolic subgroups of the Lie group G. And
the minimal Martin boundary is given by

1 

where P is over all minimal real parabolic subgroups of G, and for such P,
X P is a point.

Let P be a minimal parabolic subgroup of G. For any
the corresponding minimal function is given as follows: Let pp be
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half sum of the (positive) roots of the adjoint action of Ap on Np. Then
for 

where c = c(~) is chosen as in 15.5 above (see [GJT], Thm.8.2, [KA],
Thm. 17. 2.1 ) . The Martin kernel K).,(x,ç) for other boundary points can
also be written down explicitly.

If P is not a minimal real parabolic subgroup, then the corresponding
functions are not minimal. This implies that unless the real
locus P of the rational parabolic subgroup P is a minimal real parabolic
subgroup, every term of the Eisenstein series E~(x, A) in Equation (15.5.1)
for points in ~ e is not a, minimal function in C).,(~Y-), and hence
it is not obvious that Eç(x, À) is a minimal function in For

this purpose, we need to represent as superpositions of the
minimal ones.

15.9. LEMMA. - For any minimal parabolic subgroup P of G, I
defines a point in which is the barycenter of the simplex 
Then the union

............. -.

can be identified with the maximal Furstenberg boundary G/P 
denoted by ~(X). Furthermore, the representing measure of the constant
function 1 on X is the Haar measure on the maximal Furstenberg boundary
8(X) when identified with K/K n P.

Proof. For definition of the maximal Furstenberg boundary and
the determination of the representing measure of 1, see [FU]. For the
the identification of this union with the maximal Furstenberg boundary,
see [KA], Thm. 18.1.1. 0

For the boundary symmetric space X p of noncompact type for a real

parabolic subgroup P, denote its maximal Furstenberg boundary by 8(X p ) .

15.10. LEMMA. - Let P be a rational parabolic subgroup of G. If
the real locus P is not a minimal real parabolic subgroup of G, then for any
fl e the representing measure of the function is

supported on 8(Xp) x C (XpsF x n and is equal to
the Haar measure under the identification a(Xp) x where

Xp is the noncompact type factor of Xp, i.e., the boundary symmetric
space associated with the real parabolic subgroup P.
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Proof. By Equation (15.7.1),

Hence we can use the horospherical decomposition X = Np x Xp x Ap for
the real Langlands decomposition of P.

For any minimal positive solution b of Ob = 0 on the boundary
symmetric space X p of noncompact type, define a function on X by
x ~ where zp(x) is the component of x in

Xp in the horospherical decomposition X = Np x Xp x Ap. Then from
the above description of the minimal functions on X and hence on Xp,
it follows that the function above is a minimal

solution of Du = Au on X. Treating the function e(pp+c(ç)ç,Hp(x» as the
product of e(pp+c(ç)ç,Hp(x» with the constant function 1 on Xp, we get
from Lemma 15.9 that the representing measure of is

supported on 8(Xp) x and is equal to transplantation of the Haar
measure on a(Xp) C 0

To prove Proposition 15.7, we also need the following result from
ergodic theory.

15.11. LEMMA. - For a rational parabolic subgroup P, let rmp be
the image of rp - F n P in Mp under the projection P = NpApMp --* Mp
for the real Langlands decomposition. Then f Mp acts ergodically on the
maximal Furstenberg boundary 

Proof. It is known that for the rational Langlands decomposition
P = NpApMp, the projection of hp in Mp is a cofinite lattice (see [BJ],
Prop. 2.6). Then fMp is the image of Fmp in the quotient Mp = 
and hence a cofinite lattice in Mp also. Thus it suffices to prove that F acts

ergodically on the maximal boundary G/P, where P is a minimal parabolic
subgroup of G. Assume first that r is an irreducible lattice in G. Then [ZI],
Thm. 2.2.6, shows that P acts ergodically on G/h, and [ZI], Cor. 2.2.3,
implies that h acts on G/P.

If 1, is reducible, say h 1 x 1,2 , up to finite index, where
ri is an irreducible lattice in Gi, i = 1, 2, and G - G1 x G2. Since

G/ P = G 1 / P1 x G2 / P2 , where Pi is a minimal parabolic subgroup of Gi,
and Fi acts ergodically on Gi/Pi, it follows that facts ergodically on G/P.

1:1
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15.12. Proof of Proposition 15.7. - Consider as a IF-

invariant function on X. Since the representing measure of the sum of two
functions in C,B (X) is the sum of the representating measures, by adding the
representing measures of the summands of the Eisenstein series A),
we get from Lemma 15.10 that the support of the representing measure

dpg of on 8x,minX is equal to the closure of the following disjoint
union:

IJ -Y(a(xp) x f~1),
,Er/rp

where we have used the fact that Fp leaves the set ~(Xp) x f~l invariant,
and that the restriction of to each subset x {ç} ~ §§i(Xp) is

a multiple of the Haar measure on ~(.Xp) defined in Lemma 15.10. It

should be pointed out that since the Martin kernel functions are not h-
invariant, but rather h-quasi-invariant, this representing measure dpg is

also T-quasi-invariant, but not r-invariant.

If u E is bounded by then, by Proposition 15.4,
the representing measure dpu of u is of the form fdJ1ç, where f is an

integrable function on the support of Since dJ1u and are T-quasi-
invariant with the same module of quasi-invariance, f is invariant under h,
and hence its restriction to each subset x f~1) is invariant under

Then Lemma 15.11 implies that the restriction of f to each
subset x f~1) is constant. The F-invariance of f implies that f
takes the same value on different subsets x f~1). Therefore, the
representing measure of u is a multiple of the representating
measure of A), and u is a multiple of A). This proves A)
is minimal.

If ~’ is a different point in 8(rBXT), then the support of the

representing measure of is disjoint from that of 

Therefore is not equal to This completes the proof
of Proposition 15.7. 0

15.13. PROPOSITION. - For every A  0, there is a canonical injective
map t : FBX U given by ~ - EC(x, A) on the boundary
and equal to the identity map in the interior.

Proof. - By Proposition 15.7, for every , the

function A) is a minimal function of Then Proposition 15.4
implies that is equal to for a unique point r~ E 8,BfBX.
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This defines a map t:,9rBX’ --+ 8,BrBX, L(Ç) == q. Proposition 15.7 also
shows that this map t is injective. Combined with the identity map on 
it gives the required map c : rB

15.14. CONJECTURE (see 2.1). - The map
is continuous, and hence t is a homeomorphism. In particular, the

Martin boundary can be identified with the Tits complex
in particular, in particular every boundary point

in 8ÀfBX is minimal.

The evidence for this conjecture is as follows: The map c has a

dense image. If it is continuous, then it is surjective; since both fBXT
and rBX U are compact and Hausdorff, it follows that c is a

homeomorphism.

It can be shown that the restriction to the boundary 
continuous. The problem is the continuity from the interior to the boundary.
From the definition of 1,BX U 8ÀfBX, the continuity of t depends on the
asymptotic behavior at infinity of the Green function of rBX.
But such asymptotics are not known except for the case of Riemann

surfaces. For Riemann surfaces with hyperbolic metric, this conjecture is
true (see 16.2 below).

In the rest of this section, we prove the following weaker result.

15.15. PROPOSITION (see 2.1). - When the Q-rank ofrBX is equal
to 1, every minimal function in is a multiple A) for some
~ E and hence the minimal Martin boundary can be

identihed with the Tits complex

To prove this theorem, we need to recall some results from theory of

automorphic forms. In the following, we identify a function on fBX with
a h invariant function on X.

15.16. DEFINITION. - A function u on F)X has uniform moderate
growth if for every rational parabolic subgroup P and any Siegel set

wAp,txo, there exists A E a+ such that for any invariant differential

operator D on X, r

where and c(D) is a constant depending on D.



550

15.17. LEMMA. - If u C then u has uniform moderate

growth.

Proof. - Consider u as a positive solution of Du = Au on X. By
Harnack inequality [GT], Thm. 8.20, there exists a positive constant c such
that for any two points Xl, X2 E X with d(xl, X2) - 1, u(xl)  cu(x2). By
iteration, there exists another positive constant ci such that for any x E X,
u(x)  

By Lemma 10.3, there exists A E a+ such that for any z =

w exp(H)xo E d(x, xo)  A(H). Combining with the above
inequality, we get that

To get the bound for other invariant differential operators D, we
notice that ADu = ADu. Then the bounds follow from the Schauder

interior estimates [GT], §6.1, the above bound for u, and the induction on
the degree of D. D

15.18. LEMMA. - If u E c,B(rBX) is minimal, then for any invariant
differential operator D on X, there exists a constant X(D) such that
Du = x(D)u.

Proof. A y) on X x X defines a G-invariant integral
operator with compact support,

v n

if the following conditions are satisfied:

1) For any g E G, 4D (gx, gy) = 

2) There exists a positive constant c such that I~(x, y) - 0 if

d(x, y) &#x3E; c.

Then it follows from [SE2], p. 51, that A(Du = Since W is G-

invariant, we can see easily that ~u is h-invariant, and hence defines a
function on fBX.

We first prove that for any such integral operator 4b, is a multiple
of u.

If ~ is positive, then ~u is positive and hence belongs to CB(rBX).
It follows from the compactness of the support of 4D and the Harnack

inequality [GT], Thm. 8. 20, as in the proof of Lemma 15.17 that ~u is
bounded by u. Since u is minimal, ~u is a multiple of u.
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In general, any such integral operator q&#x3E; can be written as the
difference of two positive G invariant integral operators with compact
supports, and hence is also a multiple of u.

Next we reduce invariant differential operators to the integral
operators. Let P be a minimal parabolic subgroup of G. Let 0 be a
positive smooth function with compact support on the open chamber A+
For any e &#x3E; 0, define gbe on At by 0, (exp H) = cp(expH/E). By the Cartan
decomposition of G: G = K AtK [HE], p. 402, 0, defines a smooth positive
K biinvariant function on G, still denoted by 0,. The support of 0, shrinks
to the identity element of G as E -~ 0. Choose a constant c such that

1. Denote c§e by ~~ .
The function ~ defines a G-invariant integral operator on X with

compact support as follows: For x = g2K E X = 

By the choice of øé: above, it is clear that ~~u(x) -~ u(x) uniformly for x in
compact subsets as c - 0.

Let D be any invariant differential operator on X. Then y),
differentiated on x, is still a G-invariant integral operator with compact
support. By the above discussion, there exists a constant X, such that

Let C((X) be the space of smooth functions on X with compact
support. We claim that for any cp E if (u, cp) = fx u(x)cp(x) dx = 0,
then (Du, p) = 0.

Clearly,

On the other hand, as c - 0,

where D’ is the transpose of D. This implies (Du, cp) = 0.

From the claim it is clear that Du is a multiple of u as distribution.
Since both Du and u are analytic, Du = x(D)u for some constant x(D).
This completes the proof of this proposition. 0

Lemma 15.17 and Proposition 15.18 imply the following.



552

15.19. PROPOSITION. Any minimal function u in is an

automorphic function on rBX in the following sense:

1 ) u has moderate growth.

2) Let 3 be the algebra of invariant differential operators on X. Then
there exists a character X : 3 - C such that for all Z E 3, Zu = x(Z)u.

15.20. Proof of Proposition 15.15. - By assumption, the Q-rank
of G is equal to 1. Let P 1, ... , Pn be representatives of r-conj ugacy classes
of parabolic subgroups. For i = 1, ~ ~ ~ , n, dim Ap2 = 1, and Ap2 (oo) consists
of one point, denoted by ~i. Then pp, = For A  0, if u E 
is a minimal function, then by Proposition 15.19, u is an automorphic
function on FBX. We claim that for some positive constants cl, ... , cn,

In fact, since each (x, À) is positive, it suffices to prove that on Siegel
sets Wi x Ap2,txo associated Pi,

Since u is an automorphic function in the sense of Proposition 15.19 with
Au = Au, the constant term of u along the parabolic subgroup Pi is of
the form

where fi, i - 1, 2, are automorphic forms on rMp and

(We emphasize that it is the fact that
u is a joint eigenfunction of all invariant differential operators which allows
us to conclude the above equation for up.) Since c

Ipp, -~-c(~), there exists a constant c’ such that on the Siegel sets 

Since the Q-rank of G is equal to 1, the difference u - up2 decays rapidly on
the Siegel sets and hence the above bound on up., implies that

on the Siegel sets for some constant ci. Hence the claim is

proved. D
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By Proposition 15.7, each (x, A) is a minimal function of 
By Proposition 15.4, the claim implies that the representing measure of u on
8xF)X is supported on ~~1, ~ ~ ~ , çn} and hence of the form +...+bn8çn
for some nonnegative numbers bi. By Proposition 15.4 again, this implies
that

Since u is a minimal function and hence an extremal element of the convex

cone there exists a unique i such that u = A). This
completes the proof.

15.21. Remark. - It was claimed in the first version of this paper
that Proposition 15.15 also holds in the higher Q-rank case, but there was
some gap in the proof. For hBX of arbitrary Q-rank, let u e Cx (F)X) be a
minimal function. By Proposition 5.19, u is an automorphic function. Then
a result of Franke [FR], Cor. 1 in §6, says that u is the derivative of an
Eisenstein series, say It is conceivable that the positivity of u
should imply that cp is a constant, u is a multiple of A) instead of its
derivative, and A E pp + ap, i.e., u is a multiple of Eç (x, A) defined in 15.5.
These assertions can be proved for the Q-rank one case, but are not known
for the higher Q-rank case. The difficulty is that when A) is not a
cuspidal Eisenstein series, its constant terms are not known.

16. Examples.
16.1. Euclidean space. - This is not an example of 1,BX, but many

analogous constructions mentioned above can be written down explicitly.

The Euclidean space R’ is homeomorphic to the unit ball

E R n; llxll (  1 ~ through the map x ~--~ x / ( 1 + lixll) and hence
admits a natural compactification B U S’, where S is the unit sphere in 
This is an analogue of the Tits compactification and hence denoted by 

To identify the Gromov compactification Rn , denote the standard
metric on R n by do(.,.). We note that for any unbounded sequence Yk
in R n, the normalized distance function lykl ] is asymptotic to

+cxJ and hence converges uniformly for x in

compact subsets if and only if is convergent in S. Therefore, kn G is
homeomorphic to R-nT.

For any t &#x3E; 0, (Rn, 1 t do) is clearly isometric to (Rn, do). Therefore
T ooJRn == do) and is a metric cone over the unit sphere S.
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All geodesics in R n are distance minimizing and the set JRn (00) of
their equivalence classes can naturally be identified with the unit sphere S.
Assumptions 9.11 and 9.16 are obviously satisfied, and hence U JRn(oo)
is homeomorphic to 

For any A &#x3E; 0, Fourier analysis on R n shows that the generalized
eigenspace of eigenvalue A has a basis where w E S. This

example is the starting point for the geometric scattering theory in [ME].
For the Martin compactification, we assume that n &#x3E; 3 and A  0.

Then the Green function of A - A has the following asymptotics at infinity:

(see [ME], p. 7 or [KT], §2). From this, we can show easily that the Martin
compactification R’ U for A  0 is homeomorphic to For any

boundary point w E S, the corresponding function is exp w~ and is
minimal.

16.2. Riemann surfaces. - We want to use this example to show
some ideas and methods in the proofs of the results stated above. For more
details of this example, see [Jl].

Assume G = SL(2, R), and X = H2, the upper half plane. Then rBH2
is a finite area hyperbolic surface. This is the simplest example of locally
symmetric spaces.

Suppose FBH 2has m cusps. consists of m points. The
Tits compactification FBH2T is obtained by adding one point to each cusp.

Using reduction theory for r, we can show that for any point
z = x -E- i~ E H2, there exists a point in the orbit rz with maximum
imaginary part. Then we can show easily that TBH2T dominates the
Gromov compactification rBH2G. By examining the asymptotic behavior
of the horofunctions of the ideal points in rBH2T, we can show that FBH2T
is homeomorphic to This argument is similar to the general case of

TBX (see 12.10-12.11), but the reduction theory in 4.6 is more complicated.
To show that is a cone over A(]FBH 2), we decompose

FBH 2into disjoint union of m cusp neighborhoods and a compact region.
We notice that each cusp neighborhood can be approximated by a DM ray
(see Figure 5.11 ) . Then the result follows easily. This disjoint decomposition
is crucial and follows from precise reduction theory, whose generalization
to higher rank case is given in 4.6.
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Each equivalence class of DM rays corresponds to one cusp. This
follows from study of the Dirichlet fundamental domain. Using this, one
can check easily that the Assumptions 9.11 and 9.16 hold and hence
the geometric compactification 1’BH 2 U is homeomorphic to the
Tits compactification In this example, a stronger statement holds:
For a generic basepoint xo E FBH 2, the metric cone over can

isometrically embedded in hBH2 with vertex at xo . This result also holds
for general rank one locally symmetric spaces.

Selberg’s spectral theory of fBH2 [SE2], [HEJ] shows that for each
cusp Cj, there is an Eisenstein series which is a generalized
eigenfunction when Re(s) = 2 . The Eisenstein series Ej(z, -1 ± it), t E R,
have the same eigenvalue 4 + t2. The functional equation for Eisenstein
series shows that there are exactly m linearly independent generalized
eigenfunctions Ej (z, -1 + it), j + 1, ... m, of eigenvalue 1 +t2 . The spectral
theory for general locally symmetric spaces fBX is established by Langlands
[LA], [AR2] (see also [MW] and [OW2]) and is more complicated.

For r &#x3E; 0, the m Eisenstein series + r) form a basis of the
cone C,B(fBH2), where A = -r(l + r). In fact, the Martin compactification
hBH2 U aahBH2 is homeomorphic to fBH2T. It follows from the asymptotic
behavior of the Green function near the cusps in [HEJ], Eq.6.4, p. 47.
Unfortunately, such asymptotics are not available for general rBx.

In this example, the Borel-Serre compactification FBH 2’S is obtained
by adding a circle to each cusp. Each such circle parametrizes DM rays
going out to infinity in that cusp.

16.3. Products of Riemann surfaces fI BH2 x r2BH 2. - This is the
simplest example of higher rank locally symmetric spaces. We use it to

show the necessity of the DM condition on rays.

For simplicity, we assume that both F,BH 2 and r2BH 2have only one
cusp. Then x r2BH 2) is a simplex of dimension 1.

A ray in ri )H x r2BH 2 is DM if and only if its projections on both
factor spaces are DM. It then follows from this that the set of equivalence
classes of DM rays in x f2 BH2 corresponds to x 1,2 BH2 ) .

An interesting phenomenon here is that there exist infinitely many
rays which leave any compact subset eventually but are not DM. One such

geodesic can be constructed as follows: Take a DM ray 1’1 (t) in f 1 BH2 and
a closed geodesic q2 (t) in r2BH2, then is such a
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ray. This ray does converge in I -,but it does not converge
in the reductive Borel-Serre compactification rIBH2 x whose
boundary is ]P,BH 2 U r2BH2 U ~oo~, where the boundary point oo fills in
both cusps. This is one reason why we impose the DM condition on rays.

Another reason is the difficulty to define a relation on rays that go
to infinity but are not necessarily DM such that the set of the equivalence
classes corresponds to the Tits boundary x F2BH~). Specifically,
there exist two rays ~y’ (t) and ~y" (t) converging to the same point in

x r2BH2), but d(-y’(t), 7"(t)) = +cxJ. For example, take
~y’ (t) to be the ray constructed in the previous paragraph, and 
be a ray constructed similarly by replacing -y2(t) by a geodesic which has
deeper and deeper penetration into the cusp but returns to the compact
core infinitely many times as in [SUI] .

In ]P,BH 2 x r 2 BH2, any ray that leaves any compact subset eventually
always converges in the Tits compactification. This might be true for

general The problem is that we do not understand the structure of
such rays. It seems that the Tits compactification is the only nontrivial
compactification that might have this property (the trivial one point
compactification clearly enjoys this property). This could be another

justification for the Tits compactification 

Finally, we would like to mention that a possible relaxation of the DM
condition on rays is the almost DM condition. A ray ,(t) is almost DM

if there exists a positive constant C such that d(-y(t), ~y(o)) &#x3E; t - C for
any t &#x3E; 0. It seems conceivable that a ray in rBX is almost DM if and
only if it is DM eventually. This is true for fBH2 and f 1 BH2 x IP2BH 2
The problem here is also that we do not understand the structure of such
almost DM rays in general.
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