
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Hua CHEN, Zhuangchu LUO & Hidetoshi TAHARA

Formal solutions of nonlinear first order totally characteristic type PDE
with irregular singularity
Tome 51, no 6 (2001), p. 1599-1620.

<http://aif.cedram.org/item?id=AIF_2001__51_6_1599_0>

© Association des Annales de l’institut Fourier, 2001, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2001__51_6_1599_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


FORMAL SOLUTIONS OF NONLINEAR FIRST ORDER

TOTALLY CHARACTERISTIC TYPE PDE

WITH IRREGULAR SINGULARITY

by H. CHEN, Z. LUO and H. TAHARA

1. Introduction.

Let (t, x) E Ct xCx, N={1,2,...}, Z+ = {O, 1,2,...}, and denote
by (C ~ ~t, x~ ~ ] (resp. by (C ~ ~x~ ~ ) the ring of formal power series in the variables
(t, x) (resp. in the variable x).

Let us consider the following nonlinear singular first order partial
differential equation:

where u = u ( t, x ) is an unknown function, and F (t, x, u, v ) is a function

defined in an open polydisc A centered at the origin of Ct x Cx x Cu x Cv -
Set Ao = 0 ~1 ~t = 0, u = 0 and v = 0}. We impose the following condition
on F(t, x, u, v):

(Fl) F(t, x, u, v) is a holomorphic function on 0;

(F2) F(O, x, 0, 0) = 0 on Do.

Then by the Taylor expansion in (t, u, v) we can express F(t, x, u, v)
in the form

Keywords: Formal solution - Totally characteristic PDE - Gevrey index.
Math. classification: 35A07 - 35A10 - 35A20.
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and a(x), b(x), -y(x), ai,~,a (x) are all holomorphic functions on 00.
If ~y (x) - 0 on 00, the equation (1.1) is called a non-linear Fuchsian

type PDE (or is called a "Briot-Bouquet type PDE" in [4], [5]); this

situation has been discussed by [4]-[7]. If 1(0) -# 0, we can solve au/ax
from the equation (1.1) and then we can apply the Cauchy-Kowalewski
theorem. 0 and 1(0) == 0, the indicial operator C(A, x, 9/9.r) ==
A - b(x) - is a singular differential operator; in this situation the
equation (1.1) has been called a totally characteristic type PDE by [1], [2]
and [3]. Thus, in this paper we assume:

(F3) 1(X) = xpc(x) for p E N and c(O) :~ 0.

In the case p = 1 we already have the following result.

THEOREM 1.1 (Chen-Tahara [2]). - Assume p = 1 and 
0 for any (zj) E N x Z+. Then we have

(1) The equation (1. 1) has a unique formal solution u(t, x) E 
with u(o, x) - 0.

(2) Moreover, if c(O) E (C B ~0, oo) holds the unique formal solution in
(1) is convergent in a neighborhood of (0, 0) E Ct x CX.

In this paper we shall discuss the case p &#x3E; 2. In this case the indicial

operator C(A, has an irregular singularity
at x = 0 E C and the formal power series solution of (1.1) is not convergent
in general; but still it belongs to a formal Gevrey class.

DEFINITION. - Let s ?:- 1 and a &#x3E; 1. We say that a formal power
series belongs to the formal Gevrey
class G~t, x~~s,~~ if the power series

is convergent in a neighborhood of (0, 0) E Ct x Cx .

The following result is a consequence of the main theorem (Theorem
2.1 ) of this paper.

THEOREM 1.2. - Assume p &#x3E; 2 and b(0) g N. Then

(1) The equation (l.l~ has a unique formal solution u(t, x) E (C~~t, x]] ]
with u(O, x) -= 0.
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(2) Moreover, it belongs to the formal Gevrey class G(t, x I(,,,) for

The result of this type is often called a Maillet’s type theorem (see
[6], [7], [9]).

In this paper, we have confined ourselves to the study of formal
power series solutions u(t, x) G C[[~,.r]] of (1.1). The relation between true
solutions of (1.1) and the formal solution obtained in this paper will be
discussed in a forthcoming paper.

2. Main results.

We discuss the same equation (1.1) as in 31 under the conditions
(F1),(F2),(F3), and p &#x3E; 2.

Our equation is written as

where a(x), b(x), c(x), ai,j,, (x) are all holomorphic functions on Ao, c(0) #
0, and the right hand side is a holomorphic function on A with v = 0u /0x.

Set

We have

THEOREM 2.1. - Assume (Fl),(F2),(F3), p &#x3E; 2 and b(O) ~ N.
Then, the equation (2.1) has a unique formal solution u(t, x) E (C~~t, x~~
with u(O, x) =- 0 and it belongs to the formal Gevrey class G~t, x~(5,~~ for
any ( s, ~ ) satisfying

and a ) p/(p - 1).

The proof of this theorem will be given in §4. Note that
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and therefore s &#x3E; p/(p - 1) implies the condition (2.2). Thus, Theorem 1.2
follows from Theorem 2.1.

As a particular case, we have

COROLLARY 2.2. - the unique formal solution u(t, x)
belongs to the class G~t, x~(l,p~(p_1)).

This implies that the formal solution is holomorphic in the variable t.

For f (x) = E (C~~x~~ we write f (x) » 0 if 0 holds for

all j &#x3E; 0. The following proposition asserts that our condition (2.2) is the
best possible result in a generic case.

PROPOSITION 2.3. - Assume (Fl), (F2), (F3), p &#x3E;, 2 and N.

Moreover, assume the following additional conditions:

and

and I

and

Then, the unique formal solution u(t, x) in Theorem 2.1 belongs to the
class G~t, x~(S,~) if and only if (s, a) satisfies (2.2) and a ?:- pl(p - 1).

The proof of this proposition will be given in §5.

Thus, we may say that the index (so, ao) defined by

is the formal Gevrey index of the equation (2.1).
For other types of partial differential equations, the formal Gevrey

index is calculated by [6], [7], [8], [9].

Example 2.4. - Let p, q, l, m, n E Z+ satisfying p &#x3E; 2, n &#x3E; 1 and

l + m + n &#x3E; 2. Let us consider

We have

1) (2.4) has a unique formal solution u(t, x)E(C~~t, x]] with u(O, x) = 0.
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2) When q &#x3E; 1, u(t, x) belongs to the class G~t, x~(s,~) if and only if

and

3) When q = 0, u(t, x) belongs to the class xl (,,,) if and only if

and

3. Preparatory discussions.

Before the proof of Theorem 2.1 we shall present some preparatory
lemmas.

For we write

is a variation of the Borel transform of f (x) . For f (x) -
g(x) = write f (x) « g(x) if ~ holds

for all j &#x3E; 0.

It is easy to show (see also ~7~ ) :

LEMMA 3.1. - For a &#x3E; 1, a(x), we have

and 0(0) = 0 then

and then
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6) S(f ) (x) « and B,(S(f))(x)  B, (-!2- If I) 
We say that f (x) E C[[x]] belongs to the formal Gevrey class Gf xl,

if B~ ( f ) (x) is convergent in a neighborhood of x = 0. The following lemma
is used to construct a formal solution of (2.1).

LEMMA 3.2. - Let b(x), c(x) E C[[x]], p &#x3E; 2, k G N and assume
that b(o) ~ k. We have

1) For any g(x) E C[[x]], the equation

has a unique solution w(x) E 

2) If b(x), c(x), g(x) E Gfxf, for some a ?:- p/(p - 1) we have
w(x) E and moreover b(0) ~ &#x3E; pk with p &#x3E; 0 we have

where

holds.

Note that

Proof. 1) is verified by a calculation. Since (3.1) is written as

by using the B, -transformation and 5) of Lemma 3.1 we have

which leads us to the conclusion of 2). Lemma 3.2 is proved.

In order to estimate the term we need the following
lemma.

LEMMA 3.3. - Let and satisfies
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1, we have

Proof. Assume that f (x) (E Gfxl, satisfies (3.3). Then

Combining this with

(since 0  R  1) we obtain (3.4). Note that the function 1/(R - x)’ is

expressed as

Therefore, if we prove the inequality

a simple calculation shows that (3.5) follows easily from (3.3).
Since a sharp form of the Stirling’s formula for the r-function guar-

antees

for

(see [10]), the inequality (3.6) is verified as follows:

LEMMA 3.4. - Let and

and
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where , and Then we have 1)

Proof. 1) is verified by

By using the Stirling’s formula (3.7) we have

which proves 2). Since nzp ) 1 and 1, we have

and therefore

which proves 3). Thus Lemma 3.4 is proved.

4. Proof of Theorem 2.1.

Now, by using Lemmas 3.1 N 3.4 we shall give here a proof of
Theorem 2.1.
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In this section we p/(p-1); then the condition (2.2) is written
as

Since b(0) g N is assumed, we can find a p &#x3E; 0 such b(O)1 ?:- pk
holds for all k c N.

First, let us look for a formal solution u(t, x) of the form

Under (4.2) the equation (2.1) is decomposed into the following recurrent
family:

and for I~ &#x3E; 2

where = m + - - - + mj and Inl = n 1 + ... + Therefore, if N

by Lemma 3.2 we can determine (k = l, 2, ...) inductively
on k. Thus, we have obtained a unique formal solution u(t, x) in (4.2).

Next, let us prove that this formal solution u(t, x) belongs to the
formal Gevrey class G~t, xl (,,,) if s satisfies the condition (4.1). To do so,
we set

Then we have = + xwk (x) and by (4.3),(4.4) we have

and for
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Choose0R 1 and A &#x3E; 0 so that 

Put and take B &#x3E; 0 such that

Similarly, choose and so that

and that

are convergent in a neighborhood of the origin of (Ct x ~~ x C, . We may
assume that .

Using these constants, let us consider the following functional equa-
tion with respect to Y:

(4.10)
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where 0 - (4ea)a and

Note that by 2 we have 4z + 2~’ + 2a - 3 ~ 1.

Since (4.10) is an analytic functional equation with respect to Y, by
the implicit function theorem we see that (4.10) has a unique holomorphic
solution Y - Y(t, x) in a neighborhood of the origin of Ct x Cx with

Y(0, x) = 0. If we expand Y into the form

we see that the coefficients Yk (x) (k ?:- 1) are determined by the following
recurrent formula:

and for 1~ &#x3E; 2

Moreover we can prove by induction on k that Yk (x) has the form

with constants Ml = A and Mk ) 0 2).
In addition, we have the following lemma.

LEMMA 4.1. - Let 0 = (4ea)a, and let u(t, x) be the unique formal
solution in (4.2). If s satisfies the condition (4.1) uTe have the following
estimates for all 

(4.15) k

(4.16) k

(4.17) k
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This implies that our formal solution u(t, x) in (4.2) belongs to the
class 

Thus, to complete the proof of Theorem 2.1 it is sufficient to give a

proof of Lemma 4.1.

Proof of Lemma 4.1. - Assume that s satisfies the condition (4.1 ) .
We have

for any

First let us prove the case k = 1. Since A is assumed, we
have

which is (4.15) 1. Using (4.9) and Lemma 3.3 we can verify (4.16) 1, (4.17) 1,
(4.18) 1 as follows:

Here we used the conditions 1 « 1/(R 2013 x) (since 0  R  1) and
{3 = (4ea)a.

Next, let us show the general case 1~ &#x3E; 2 by induction on k.
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2 and suppose that (4.15)i N (4.18)i are already proved for
all i  I~ - 1. Then by (4.7) and the induction hypotheses we have

Therefore, by 1), 3) of Lemma 3.4 and by using the inequality 
1 we have

Hence, if we note that

we have

By comparing this with (4.13) and by using --f- j + Ci,j,a, I
4i + 2 j + 2a - 3 &#x3E; 1 and 1 « 1 / (R - we can easily obtain (4.15) ~ .
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Let us show (4.16)k, (4.17)k and (4.18)k. To do so, it is sufficient to
prove

(see (4.14)). In fact, if we know this, by using 1 « 1 / (R - x)’ and (4.14)
we have (4.16)k, and by applying Lemma 3.4 we can obtain (4.17)k and
(4.18) ~ .

Let us prove (4.21) from now. By applying 2) of Lemma 3.2 to (4.8)
we have

with

h is estimated by (4.20):
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Since Y (x) has the form (4.14) and 0  R  1 is assumed, we have

By using this and the induction hypotheses, we see

Therefore, by 1), 3) of Lemma 3.4 and by the same argument as in (4.20)
we obtain

In order to estimate I3 we note
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here we used 6) of Lemma 3.1, the induction hypotheses, the inequality
(30152, and

Therefore, using this and xY (x) « Y (x) we can estimate 13 in the following
way:

If c~ = 0, then by 1), 3) of Lemma 3.4 we have

as in the proof of (4.20). If a &#x3E; 0 and = 0, we have = 0

and nothing to do. If cx &#x3E; 0 and ai,j,a (0) # 0, we know that s satisfies the
condition (4.19); in this case by 2) of Lemma 3.4 we have
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Hence, applying (4.25) and (4.26) to (4.24) we obtain

Thus, by (4.22), (4.23) and (4.27) we have

and by comparing this with (4.13) we obtain

which proves (4.21).

Thus, the proof of Lemma 4.1 is completed.

The proof of Theorem 2.1 is also completed.

By the above proof, we can say more. Let p &#x3E; 2 and a ) p/ (p - 1).
Assume the conditions: (i) a(x), b(x), c(x) are all formal power
series in x belonging to the class and (ii) the series

is convergent in a neighborhood of the origin of Ct x ~~ x (Cu x C~.

Let us consider the following formal equation:

Then we have

THEOREM 4.2. - Let p &#x3E; 2 and &#x3E; p/(p - 1). Assume the above
conditions (i) and (ii). Then, if l(0) g N, the formal equation (4.28) has a
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unique formal power series solution û(t,x) E C[[t, x]] with û(O,x) = 0 and
it belongs to the formal Gevrey class for any s satisfying

where and

5. Proof of Proposition 2.3.

Before the proof of Proposition 2.3 we shall show the following lemma.

LEMMA 5.1. - Let p &#x3E; 2 and q &#x3E; 1 be integers, let A &#x3E; 0, C &#x3E; 0,
K &#x3E; 0, and let us consider

We have

1) (5. 1) has a unique formal solution u(t, x]] with u(O, x) = 0.

2) u(t, x) belongs to the class x I(,,,) if and only if

and

Proof. Let u (t, x) be the formal solution of (5.1) in 1). Since

Theorem 2.1 is already proved, we have only to show that u(t, x) E

implies the condition (5.2). Note that in case p = 2 the

condition (5.2) is given in [11].

Suppose that u(t, x) E holds. Without loss of generality
we may assume A &#x3E; 1, C &#x3E; 1 and K ) 1; if otherwise, we apply the change
of variables t -~ hlt, x --~ h2x for sufficiently large hl, h2 and we can
reduce the equation to the case where A &#x3E; 1, C &#x3E; 1 and K &#x3E; 1 hold. Then,
the formal solution w(t, x) E C[[t, X]l of

with ~(0,.r) = 0 satisfies 0 « « u(t, x) and therefore we

have E in particular, we have E and

E Gf xl, -
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It is easy to see that w(t, x) has the form

and the coefficients are determined by the following recurrent formula:

and 1

By solving the equation (5.4) we have

Since w, (x) = (8wj8t) (0, x) E is known, we have

which immediately leads us to the condition a ) p/ (p - 1).
Since » 0 is known, by (5.5) we have

and by repeating this k- times we have

Since is given explicitly in the equality (5.6), by putting
andx=Owehave
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and therefore

Thus, by the condition u(t, 0) E we obtain

which immediately leads us to the condition s &#x3E; 1 + ( 1 / (p - I)q) .

Thus, we have proved that u(t, x) E G~t, xl(s,,) implies the condition
(5.2).

Proof of Proposition 2.3. - Let u(t, x) be the unique formal power
series solution of (2.1) with u(0, x) * 0. Since Theorem 2.1 is already
proved, to complete the proof of Proposition 2.3 it is sufficient to show

that u(t, x) E implies the condition (2.2) p/(p - 1). If
~I = 0 we have nothing to do; hence from now we assume that J # 0 holds.

By the conditions cl) - c4) we see that u(t, x) » 0 and we can choose
&#x3E; 0 and

al = (aaj ax) (0) &#x3E; 0. Take any (i, j, a) E J. Then,

Therefore, we can see that the unique formal solution w (t, x ) E C[[t, x]] of

with ~(0,~) = 0 satisfies 0 « w(t, x) « u(t, x) and therefore we have
w(t, x) E 

Moreover, w(t, x) has the form
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and by (5.7) we have

- 

Thus we can see also that the unique formal solution W (t, x) E C[[t,x]] of
(5.8)

with ~V(0,~) = 0 satisfies 0 « W(t, x) « w(t, x) and W(t, x) E

Now, let us apply Lemma 5.1 to (5.8). Since W(t, x) E is

known, we can conclude that (s, a) satisfies

and

Since (i, j, 0152) E J is taken arbitrarily, we obtain

which implies the condition (2.2).

Thus, the proof of Proposition 2.3 is completed.

Remarks By the above proof we can see the following: if the

equation (2.1) satisfies

we can remove the assumption a (o) &#x3E; 0 from the condition cl) in

Proposition 2.3.

Example 5.2. - Let p, l, n E Z+ satisfying p &#x3E; 2, n &#x3E;, 1 and

l + ~ ~ 2. Let us consider

Then, the unique formal solution u(t, x)
to the class G~t, x~~s,~~ if and only if

with u(O, x) = 0 belongs

and
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