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DEGENERATION OF SCHUBERT VARIETIES OF

SLn/B TO TORIC VARIETIES

by R. DEHY and R. W.T. YU

Introduction.

In this paper, we complete our programme stated in [3] to prove the
existence of degenerations of certain Schubert varieties of SL,, into toric
varieties, thus generalizing the results of Gonciulea and Lakshmibai [5].

The essential idea is that we use the polytopes defined in [3] to

construct a distributive lattice, and extend the method used by Gonciulea
and Lakshmibai [5] for minuscule G/P to Schubert varieties in 

Although they also prove the existence of degenerations for (and
also Kempf varieties) in the same paper, their approach is different from
the one for a minuscule G/P.

Since all the ingredients used here are based on standard monomials,
we expect that it can be adapted in the other types. However, the difficult
part is to construct a suitable distributive lattice and we shall make it more

precise below.

Let G = B be a Borel subgroup and W be the Weyl group
of G which is the symmetric group of n + 1 letters. Let ai, i = 1, ... , n, be
the corresponding set of simple roots so that (ai, CY) = a.,- where (ai,j)i,j
is the Cartan matrix, s., the corresponding simple reflections in W and let
Wi be the corresponding fundamental weights. Denote also by f (-) and ~
the length function and the Bruhat order on W.

Keywords: Schubert varieties - Toric varieties - Flat deformations.
Math. classification: 14M 15 - 14M25 - 06D05.
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Recall that for w E W, the Demazure module Ew (A) is the b-module
where b is the Lie algebra of B, U(b) its enveloping algebra

and vw x a vector of extremal weight wA of the irreducible representation
V(A) of highest weight Under certain conditions

on w, in [3], we constructed n polytopes Ai, ... , A, i where n is the

rank of G, such that the number of lattice points in the Minkowski sum
is equal to the dimension

of E,(A). The polytopes Ai,...,A~ define a toric variety X equipped
with n line bundles Li,i = l, ... , n (see [11]). The aim of this paper is

to degenerate the Schubert variety ,S’(w) = BwB/B equipped with line
bundles L,, = BwB x B C~~ into X equipped with 

We consider the homogeneous coordinate ring of a multicone over
This multicone is the BTB-orbit of wW2 in and its

coordinate ring is R - ~A dominant ®i
with A = Lz kiwi. In [8], it has been shown that the map

is surjective and its kernel I is a multigraded ideal generated by elements
of degree (ki , ... , with = 2. On the other hand, we encounter
an analogous situation considering the toric variety X defined by the

polytopes A 1, ... , A~. Let Bk1,...,kn be the vector space over C generated
by x’, a a lattice point in Then ,S’ _ Bk1,...,kn is the
homogeneous coordinate ring of a multicone over the toric variety X, and

= H°(X, ®ZL 1 LOk,,). Moreover, since the polytopes Di can be
triangulized by simplices of minimal volume, that is of volume I/ (dim Ai)!,
the map ,5’ is surjective and its kernel
J is a multigraded ideal generated by elements of degree (ki , ... , with

£j ki = 2; in other words ,S’ = where H a-,-7 I is the set of
all lattice points in polytopes Ai, i = 1,..., n.

The basic idea is that one can put a structure of a distributive lattice
on the set H, of lattice points of A 1, - - - , An - This distributive lattice,
denoted H equipped with operations V, A, is such that for a, ,~ E H we
have a ~ ~3 = a V ,~ ~ c~ l~,~. Hence that the algebra where I (H)
is the homogeneous ideal generated by is the ring S.
Therefore using Theorem 2.5 proved in [5], one obtains a flat deformation of
R to which is the homogeneous coordinate ring of a multicone
over the toric variety X.

The paper is organized as follows. In Section 1, we recall results from
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[3]. The theorem on degeneration of [5] is stated in Section 2. Sections

3,4 and 5 are devoted to showing that the conditions of the theorem are
satisfied. Finally in Section 6, we discuss briefly which Schubert varieties
fall into our context.

We shall use the above notations throughout this paper.

1. Distributive lattice on 

For a fundamental weight Wi, i = l, ... , n, let Ww2 be the subgroup
of the Weyl group W, stabilizing Wi, that is = {r C W 
Denote the quotient WIW,, by Wi. The set Wi can, on the one hand, be
identified with the subset of W consisting of elements T such that T ~ 
for j # i, i. e. the set of minimal representatives and, on the other hand,
with the set of i-tuples (rl, ... , ri) such that 0  r,  ...  ri  n. The
connection between these two identifications is that (tri,..., rz) corresponds
to where s(a, b) = The induced

Bruhat order on Wi, which we shall also denote by can be expressed
under the above identifications by a = (aI, ... , ai ) -~ b = (bl , ... , bi ) if and
only if bk, 1  1~  i. Furthermore, Wi becomes a distributive lattice

(for generalities on distributive lattices, see [6] or Section 2 of [5]) under
where

Recall (see for example [3]) that any w E W has a unique factorization
in the form s(a1, bl)s(a2, b2) ... s(ak, bk) with 1  al  a2 ...  ak , n.
We shall be interested in the w’s satisfying b2 _&#x3E;- - - - &#x3E; b.

For an element w E W, let fT E Wi T W-1, where w is the
representative of w in Wi. Denote by Let us recall the

following partial order from Section 8 of [3].

DEFINITION 1.1. - Let i ~ ~’ and w = with

we define
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where and

WJW, let

We say that ~w T if ~ -~ T, or equivalently if ~ ~ T, and we define

TVO:= TVO (E W3’ (see Equation (1.1)).

A simple consequence of the definition is the following lemma.

LEMMA 1.2. - Let w be as in Definition 1.1. Then together with
the above operations, WW is a distributive lattice.

An essential property of this partial order is the following theorem
proved in [3].

THEOREM 1. 3. - We have T in if and only if there exist

liftings 0’, T’ in W of ø, T such that ~’ ~ T’ ~ w.

As we shall see in the next sections, this is used extensively in the

proof.

Remark 1.4. - In [3], we constructed for each fundamental weight
Wi, a polytope Ow such that the number of lattice points in the Minkowski
sum is equal to The set of vertices of the

polytope A, is indexed by the set and these are the only lattice points of
Di. Moreover considering 0, T E as vertices, we have Ø+T = 
The polytopes Ai have also the important property that they can be

triangulized by simplices of minimal volume so that a lattice point of
~i Di can be written as the sum of 1~1 lattice points of O1 and k2

lattice points of 02 and so on. This property gives information on the

generators of the toric ideal defined by the Ai.

We shall end this section by proving certain facts concerning T V

Ç and T A 0 which will be needed throughout the paper. These are

generalizations of certain results obtained in [5]. Let us suppose that w
is as in Definition 1.1.

LEMMA 1.5. Let and be two non-

comparable elements in W ~’ . Let a = T V 0 = T A ø. Then

Proof. This is just a direct consequence of the fact that 0 + T =
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the polytope described in Remark 1.4, see [3].
It is also a straightforward computation by using the fact that if

LEMMA 1.6. - Let j &#x3E; i and 0 E W22", T E WjW with a = T V ~
and ~ = 7 n 0. Then, ure have the following:

(1) if s.... and f(a) == + k, then si ... s. ’ae - ;;. with
f (k) + k = ~(~); or equivalently si,_ == ~;

(2) if Sjl with f(a) == f(Ø) -f- l, then Sjl ... = T with

£(T) _ + 1;

(3) the sets and have empty intersection and Sip’ s 3q com-
mute.

Proof. Note that as a consequence of Definition 1.1, we have
cr = and k Using Lemmas 7.17 and 7.18 of [5], we conclude that
there exist aik and aj ...... all simple enjoying the properties
stated above. D

2. Theorem on degeneration.

Let us recall some basic facts on standard monomials.

Let 0 E Wi and 0 - sil be a reduced expression for 0. Then
the vector Qp :- X-0152~r ... X-0152~l vw2 is an extremal weight vector in 
of weight ~(c.~2). It is shown in [10] that Qo is independent of the choice of
reduced expression of 0. Further, we have the following lemmas from [10]:

LEMMA 2.1. - The set is a Z-basis for

Let f P, IT c be the Z-basis of Vi (Wi) dual to r e 
Then the set fP, r E wl is a Z-basis for =

§g* ( ) w ’I .
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LEMMA 2.2. - &#x3E;-- ~ C Wi and a = and

~(cr) 2013 = r. Then we have -

For a field k, let us denote the canonical image of Pw in ,CW2 )
E Wi.

DEFINITION 2.3 ([10]). - A monomial 

PTl,l’ where 7i,j E W22", is called homogeneous of degree (~i,..., and of

total degree 

It is called standard on S(w) if for each i, j, there exists ?i,j E W,
whose class in Wi is and ~l, 1 in W. In other words

is standard on S(w) if Tl,l ~w ~ ~ ’ ~w 2U.

THEOREM 2.4 ([10]).

(1) Let w C W. Then, denoting w the representative of w in Wi, for
T C Wi, pr 0 if and w. Furthermore, (pr T E 
is a k-basis for 

(2) The standard monomials on ,S’(w) of degree (/ci,..., kn) form a basis
of HO (,S’(w), ®i , i=i wz 

.

Let H be a finite distributive lattice. Denote by P = a E H]
and I (H) C P the ideal generated by the binomials ]
a, 0 E H non-comparable}.

Let R = HO(S(w), LÀ) be the homogeneous coordinate
ring of a multicone over S’w . By the previous theorem, R has a basis
indexed by standard monomials on S(w). Thus we have the surjective map
7r : P - R sending pa where H is the set Ww . Let I = ker 7r which

is an ideal generated by relations in total degree 2 of the form

where is non standard and the pep’l/J’s are standard. These are called
straightening relations ([1], [6], [10]).

THEOREM 2.5 ([5]). - Assume that WW is a distributive lattice

such that the ideal I is generated by the straightening relations of the form

where T, 0 are non-comparable and 8 t ø. Further, suppose that vve have

(1) = 1, i. e. PIVOPTAO occurs on the right-hand side of Equa-
tion (2.2) with coefficients 1.
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(2) T, ~ E~~, 8~= {~ E 1N2" ~ ~ ~ ~y ~ 01 for every pair (0, ’lj;) appearing
on the right-hand side of Equation (2.2).

(3) There exist integers nl,..., nd &#x3E; 1 and an embedding of distributive
lattices

where C(nl, ... , nd) is the set of d-tuples (il, ... , id) with I - ij ~ nj,
such that for every pair (O,1/;) appearing on the right-hand side of
Equation (2.2), 1(T) U = c(9) 0 where U denotes the disjoint
union.

Then there exists a flat deformation whose special fiber is P/I ( W2" )
and whose general fiber is R.

By Lemma 1.2, if w is as in Definition 1.1, then W2" is a distributive
lattice. In the next sections, we shall prove that all the conditions of the
theorem are satisfied. Let us assume in the next sections that w is as in

Definition 1.1.

3. Condition (2) of Theorem 2.5.

THEOREM 3.1 ([9], [10]). - Let i  j, T E E Ww and PTPØ
be a non standard monomial on S’(w) . Let the corresponding straightening
relation be given by

Then T, 0 -~w ()z, 1/Jz «w T, 0 for all such that 0.

Proof. The proof given here is just a generalization of the proof
of Proposition 2.5 of [7]. Among the Oi choose a minimal one, which we
denote by 8. Let us reindex the 81 so that 8 = 81 for 1  l ~ s. Note that
since 8 is minimal we have 81 Q 8 for s  l  N. Since is standard,
we can choose r~il~, ~21~ E W such that w, the class of in

Wj is 01 and the class of I~21~ in Wi is 1/Jz. Let Zl = Us I ,S’(~ll~ ) and restrict
Equation (3.1) to Zi. Then Zi is standard on Zl for 1  l  s
and 0 for s  l ~ N. By the linear independence of standard
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monomials, Equation (3.1 ) restricted to Zl is not zero. Hence 0.

This implies that T, ~ll~ . According to Theorem 1.3 (or Lemma 8.12
of [3]) we have T, 0 8; note that T (or 0) cannot be equal to 8, because

is non standard. From this argument we deduce that T, § for

all l .

Wiw. Now ()z e WjWand
1/-;z E By weight consideration, we have ()z(Wj)+1/-;Z(Wi).
Furthermore T, 0 «w 81 implies that -w 01, or equivalently a -- 01
since both belong to Wj. Therefore which implies that

Therefore 01 ~. In other words 01 r, T, ~. D

COROLLARY 3.2. - Let the notations be as in Lemma 1.5. Then

in the straightening relation p,po - 1: 8 or B = a,

w = k.

Proof. From Theorem 3.1, we know that for any pair (0, w) on the
right-hand side, a -w 8 and 1/-; , k. Moreover if a = 8, then due to weight
considerations, i. e. we see that K = 7/J. El

4. Condition (3) of Theorem 2.5.

Considering the set W2" := 11~=1 we noted at the beginning of
Section 1 that each set can be identified with the subset of i-tuples
(al, ... , ai) where 0  a,  ...  ai  n and (al, ... , ai) is smaller than the
representative of w in Wi. Hence we have ¿: W2" ~ C(nl, ... , nd). For
simplicity, we shall denote i(T) also by T. We want to prove the following
lemma:

LEMMA 4.1. - Let -r, 0 be two non-comparable elements in 
Then for any (8, appearing on the right-hand side of the straightening
relation (2.2), 8 Ü 7/J == T CJ ~.

Proof. - Let

and 0 = (bl , ... , bi ) . A necessary condition for popp to appear on the
right-hand side of Equation (2.2) is = 

Here, we shall prove that this condition immediately implies the assertion,
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i. e. The proof is by
induction on i + j.

The fact that = implies, by using Equation
(1.2) in the proof of Lemma 1.5,

Note that

and that

Then due to the equality in Equation (4.1 ), we must have =

max, There are four cases to consider.

o Case (1) tj = a j &#x3E; bi. This implies that cx j ~ ~ ~ ~ ’+0152tJ == 
Hence denoting T’ = (tl, ... , ti-1) and 8’ = (a,, aj-1), Equation (4.1)
implies that T’ (c,~ j _ 1 ) ~ ~ (c,~i ) = 0’(w 3 + 0 (wi). By induction we are done.

9 Case (2) tj - bi &#x3E; aj. Let m be the smallest number such that

&#x3E; (if such an m less than i - 1 does not exist, let m = i ) . Note
that &#x3E; &#x3E; bi-m. Set

Since i  j , we have i - k - 1  j - I~ - I  aj-k for 0 # k  i .

Therefore 7p’ E Wi. Using the fact that for 0 # k  m, we have

2-l~- 1 C~ -1~-1 C then

From Equations (4.1) and (4.2), we can conclude that + =

+ The rest follows by induction.

o Case (3) ri == bi ?:- aj is similar to case (1) -
o Case (4) ri = aj &#x3E; bi is similar to case (2). 0
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In fact, we have proved:

LEMMA 4.2. - Let j &#x3E; i, T, 8 E Wj, E Wi be such that

5. Condition ( 1 ) of Theorem 2.5.

PROPOSITION 5.1. - Let T, 0 E W" be two non-comparable
elements. Then in the straightening relation (3.1), PIIOPTAO occurs with

Proof. As before, Note that

r, (~ (that is there exist liftings T, ~, 3 in W such that T, ~ -~ ~ -~ w).
Corollary 3.2 implies that the restriction of Equation (3.1) to the Schubert
variety ,S’(a~) is where a # 0. Since standard monomial basis
is characteristic free, this holds in any characteristics. Hence a = ~ 1. 0

So now we have to prove that a = 1. Since the irreducible repre-
sentation -f- appears as a direct sum in the decomposition of

V(Wj) 0 into irreducible representations, we have an imbedding
V(w7. + ~ Y (w~ ) 0 Note that since the weight space of weight

is one-dimensional, the element belongs to The

imbedding above induces a projection H° (G/B, 0 H° (G/B, --~

0 For simplicity we shall denote the image of f 0 g
under this projection by f g. We shall construct a basis for + Wj)
which is a "rank two" version of the one given in [10].

In the following let i ~ J’ (that is no element of can be bigger
than an element of and recall from Lemma 2.1 that, for 0 E Wi, we
have denoted by Qo an extremal weight vector in of weight 

Let there exist liftings T, a in W such
’

DEFINITION 5.2. - Let w be as in Definition Let ~ E Wiw,
a E WjW be such that (o-, ~) E ~ (w) and let a = where

r = .~(o-) - ~). Define EK,K := QK 0 e Vz(Wj) 0 VZ(Wi) and define
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Note that is an extremal weight vector since k is the image of
K (the minimal representative in W ) in Wj. It is also clear that E,,, is a
weight vector of 

PROPOSITION 5.3. - Let w E W be as in Definition 1.1. Then

E,,, does not depend on the choice of reduced expression and the set
is a Z-basis for the Demazure module

Proof. Let Denote by 0 --
Sjl ’ae. Then we have a = Now if ir = jr, then we proceed by in-

duction on the length of a. Otherwise, let k be the largest integer such that
... cp. Then and we have § V a,

cp n s2, = By Lemma 1.6, we have that jr = ik and
sJr commute with sil for l ? 1~. Thus

By induction, EØ,K = X-aJl Ek,,. Therefore the right-hand side
is X-aJr Ep,, and we have proved that the definition of E,,, does not
depend on the choice of the reduced expression.

We are left to show that these elements form a basis for 

We claim that E,,, E Ez,,, (wi + Wj). It is clear that Eae,K E

+ Now, since w satisfies the condition of Definition 1.1, we
have w - (if K is [aI, ,1] ... ai, i, then is 

1] ...[bj, Z*] where a = (bi, b,)), thus

We have therefore our claim.

Now by the definition of E~,,~, we have

where I c Wj x Wi and for each (u, v) E I, we have u --. a in Wj , v &#x3E; K in
WZ and + It is now clear that the E~,,~’s are
independent.

Further, one deduces from the expression for E,,, above that the
Z-submodule generated by the is a direct summand of the tensor

product 0 Finally, by standard monomial theory, the car-
dinal is the rank of -f- So the result follows. n
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We can now prove that a = 1.

COROLLARY 5.4. - Let the notations be as in Lemma 1.5, then in
the straightening relation the term occurs on

the right hand side uTitll coefficient 1.

Proof. Recall from the proof of Proposition 5.3 that

where I C Wj x Wi and for each (u, v) E I, we have u « a in Wj, v &#x3E; K in

Wi = + 

Let us apply to E,,,. Then from the explicite expression of Ea,K
above, this is either 0 or 1 depending if Qo appears in the right hand
side or not.

On the other hand, if we replace by the right hand side of
the straightening relation, then it is clear from Theorem 3.1 that the

same evaluation yields a,,, where aa,K is the coefficient of in the

straightening relation. But this is non zero from Proposition 5.1. So it

must be 1. D

6. Consequence.

As an immediate consequence, we have:

THEOREM 6.1. - Let w be as in Definition 1. 1. Then there exists

a flat deformation whose special fiber is a toric variety and whose general
fiber is ,S’(w).

Proof. By Theorem 2.4, there exists a flat deformation whose

general fiber is ,S’(w) and whose special fiber is a variety defined by a
binomial ideal associated to a distributive lattice. This latter is toric as

shown in [4]. D

Remark 6.2. - If we look closely at the proofs, then we realize that
Theorem 2.4 can be replaced by the following.

Suppose that admits a structure of distributive lattice such that
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(1) the partial order corresponds to standardness, cf. Theorem 1.3;

(2) weights are preserved, cf. Lemma 1.5;

(3) Lemma 1.6 is satisfied.

Then there exists a flat deformation whose special fiber is a toric

variety and whose general fiber is S(w).

In particular, consider the bijection 8 of W defined by si H 
induced by the non trivial Dynkin diagram automorphism. This induces
a bijection between Wi and which preverses the induced Bruhat

order. Now let w be as in Definition 1.1, then 8 induces a structure of
distributive lattice on W8(w). It is easy to check that the same proof works.
Thus we have,

THEOREM 6.3. - Let w or O(w) be as in Definition 1. 1. Then there
exists a flat deformation whose special fiber is a toric variety and whose
general fiber is ,S’(w).

Remark 6.4. - As noticed in [3], we can extend our results to the
following elements. Let 0  1~1  k2 ...  n + 1, and for I  i ~ r,
let Siu be the subgroup of W generated by the reflections s~2+l, ~ ~ ~ 

Now suppose that w = w1 ~ ~ ~ wr where wi E So. Then it is clear that

wi and wj commute if i ~ j and it follows easily that if each wi 71 satisfies

the condition of Theorem 6.3, i. e. either wi or is as in Definition 1.1,
then the conclusion of the same theorem holds for w.

For example, the element s1 s2 s5 s4 satisfies the above conditions.

Our results apply to all the elements of W in the case of SL3 thus
giving a more general proof to [2]. However, in the case of SL4, there
are precisely 4 elements for which the condition of the theorem is not

satisfied. Namely, they are sls3s2, s2sls3, s2sis3s2 and SIS2S3S2SI. The
main problem in these cases is that standardness is not transitive in all the
obvious "orderings".
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