
AN

N
A
L
E
S
D
E

L’INSTI
T

U
T
F
O
U
R

IE
R

ANNALES
DE

L’INSTITUT FOURIER

Birgit RICHTER

Taylor towers for Γ-modules
Tome 51, no 4 (2001), p. 995-1023.

<http://aif.cedram.org/item?id=AIF_2001__51_4_995_0>

© Association des Annales de l’institut Fourier, 2001, tous droits
réservés.

L’accès aux articles de la revue « Annales de l’institut Fourier »
(http://aif.cedram.org/), implique l’accord avec les conditions
générales d’utilisation (http://aif.cedram.org/legal/). Toute re-
production en tout ou partie cet article sous quelque forme que ce
soit pour tout usage autre que l’utilisation à fin strictement per-
sonnelle du copiste est constitutive d’une infraction pénale. Toute
copie ou impression de ce fichier doit contenir la présente mention
de copyright.

cedram
Article mis en ligne dans le cadre du

Centre de diffusion des revues académiques de mathématiques
http://www.cedram.org/

http://aif.cedram.org/item?id=AIF_2001__51_4_995_0
http://aif.cedram.org/
http://aif.cedram.org/legal/
http://www.cedram.org/
http://www.cedram.org/


995

TAYLOR TOWERS FOR 0393-MODULES

by Birgit RICHTER

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 995-1023

1. Introduction.

Similarly to the Taylor series for smooth functions in differential

calculus T. Goodwillie [G] associates a Taylor tower

to endofunctors of topological spaces F which preserve weak homotopy
equivalences. This approximation converges to F and the PnF are n-
excisive functors, i.e., they can be thought of as degree n approximations
of the functor F.

Keywords: Taylor tower - Cubical construction - Dual of the Steenrod algebra.
Math. classification: 18A25 - 18G 10 - 55P65.
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In this paper we will consider endofunctors of simplicial sets, which
arise from F-modules, i.e., functors from the category of finite pointed sets
r to the category of R-modules, for some ring R. Any r-module can be
extended to an endofunctor of simplicial sets by extending it degreewise to
a functor from pointed simplicial sets to simplicial modules.

Working in the category of r -modules has the advantage that one can
use the tools of homological algebra in order to understand the homology
of the approximation steps HkPnF : r - R and the homology of the
homotopy fibre DnF :== hfib(PnF - and to describe these

homologies in terms of derived functors.

Fitting to the Taylor tower there exists a tower of model category
structures, which are localizations of the usual model structure for r-chain

complexes at the functors Pn (-) . Homologically degree n functors are then
the fibrant objects in the n-th model category structure.

The homology of the homotopy fibre can be determined in charac-
teristic zero for an important family of h-modules. This leads to an

explicit calculation of higher order Hochschild homology of the truncated
polynomial algebra 

As an important example we consider the functor St : h ~ F2 - Vect
from finite pointed sets to IF2-vector spaces given by St[n] := 
The homotopy of this functor when prolonged to pointed simplicial sets
gives the IF2-homology of Eilenberg-MacLane spaces. With the isomorphism

we see that is the dual of the Steenrod

algebra over IF2.

We prove that this functor splits as St = We calculate the

homology of the homotopy fibres in the approximation of these
functors for I small and for a certain range of approximation with the help
of a spectral sequence which we develop in Section 6.

Acknowledgements. - This work is part of my thesis and I would like
to thank C.-F. Bodigheimer, V. Franjou and T. Pirashvili for supporting
this project. It is a pleasure to thank the referee for his corrections and

suggestions.
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2. r-modules.

Let r be the category of finite pointed sets and pointed maps. We
assume that the objects of r are the pointed sets [n] = {O, 1, ... , n~ with 0
as a basepoint. If the cardinality of the set is not important we denote an
object of r by X+ where X is a finite set and + is an added basepoint. We
call functors F from r in a category of R-modules just r-modules. Here R
is a commutative ring with unit. For an arbitrary set ,5’ we denote by Rf Sl
the free R-module generated by S.

2.1. Examples.

1. The functors Fn : 1, --~ R-mod, n &#x3E; 0, which take [m] E r to the
free R-module generated by the morphisms from [n] to [m],

are projective generators of the category of all r-modules. The contravari-
ant representable functors rn are defined analogously

2. The cokernel of the transformation from r° to r 1,

sends a finite pointed set ~n~ to the free R-module generated by the elements
of fl,...,nI.

3. The pointwise tensor product of two r-modules F and G is defined
as

Important examples of F-modules are the n-fold tensor product L®n of L,
the n-th exterior product AnaL and the n-th symmetric product Symn o L.

2.2. Prolongation to simplicial sets.

Every r-module F gives rise to a functor from pointed simplicial sets
to simplicial R-modules: On an arbitrary pointed set X+ the functor F is
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defined via colimits

and for a pointed simplicial set X, the simplicial R-module F(X ), is defined
as F(X)n := F(Xn).

2.3. Cross-effects.

The n-th cross-effect CrnF of a r-module F is a functor

which is defined as

is a subset and the

are the projection maps on the components xzl I ..., X!:. An alternative
and useful definition is the following: Let ri : [n] - [n - 1] be the map
which is given by

Then the above definition of the n-th cross-effect evaluated on ( ~1~, ... , ~l~ )
is equivalent to = kerF(ri).

The functor crnF measures the failure of F to be of degree n -1. For
endofunctors of abelian groups cross-effects are defined in [EM2, §§8,9].

Examples. - Linear functors F from r to abelian groups give rise to

Eilenberg-MacLane spectra: The evaluation of such an F on a simplicial
model of the n-sphere S" is a K(F[I], n). Typical degree n functors are
Lfi9n, An o L and Symn o L.
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2.4. Dold-Kan correspondence.

Let Q denote the category of nonempty finite sets and surjections.
We denote the objects of SZ by n - There is a Dold-Kan

correspondence (see [P2]) between the category of functors from r to R-
mod and the category of functors from S2 to R-mod. For every r-module
F : r- R-mod there is a corresponding functor cr(F) : R-mod

defined by

A surjection f : n - m gives rise to a map of finite pointed sets f + and
such a map sends the intersection of the kernels of the T (ri ) again to an
intersection of such kernels and hence f induces a map cr( f +) : cr(F) (n) -
cr(F)(m). In [P2, 3.1] Pirashvili shows that this transformation

is an equivalence of categories.

3. Taylor approximation for r-modules.

Let Ch(R) denote the category of non-negative chain complexes of
R-modules. We will build an approximation tower for r-modules:

where the functors PnF : T -~ Ch(R) are homologically of degree n.

DEFINITION 3.1. - A functor F : r -4 Ch(R) is called homologically
of degree ~ n if crn+1 (F) is acyclic.

We will give an explicit construction of this tower for T-modules. The

properties of the approximation are straighforward to see with the help of
the cotriple approach of Johnson and McCarthy [JMcC2, 2.8]:

~ The n-th approximation is homologically of degree n.

~ The map PnF - PnPnF is a weak equivalence.

~ A r-chain complex is homologically of degree n iff F - Pn F is a
weak equivalence.

. The transformation Pn : R - modr -4 is exact.
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3.1. Construction of the approximation steps.

The construction we give here is similar to the one in [JMCC I] and for
the readers who are familiar with the work of B. Johnson and R. McCarthy
we cite the corresponding definitions and statements from [JMcCI] in the
appropriate places. Before we define the approximation steps PnF we will
give an unnormalized version The unnormalized approximation in

degree n is a functor PnF from r to chain complexes whose k-dimensional
component is given by

We define The boundary map

is induced by maps on set level

Let 7ri be the projection,

which maps all components X+ with labels (.ci,..., x~ + 1, ... , 
to the basepoint and let 7rj 2 be the map that projects everything labelled
by (x 1, ... , x j -1 , n j - 1, x~+1, ... , X k) to the basepoint. All other elements
are mapped identically. In addition we consider which overlaps the
components with labels nj and nj - 1 in the j-th place and is the identity
on all other elements (compare ~JMcC l, Def. 1.1, 1.2]). Now define the j-th
part of the boundary 6 as

The full boundary map
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is the alternating sum of n-fold iterations of 6j,

A proof that this defines in fact a boundary map for the unnormalized
approximation P,,F is an easy modification of the proof in Prop.
1.4] and can be found in [R, pp. 31,32].

Example. - For n = 2 the boundary map 8 : is

induced by the projections 7rI and 7ri 2 and the map which folds the

second and third component

and by the iteration of these maps.

We normalize the chain complexes P,,F(X+) and build the quotient
concerning "i-slabs" and "diagonal" elements. Let us denote the corre-

sponding subsets in with the same name. The family of subsets which
build i-slabs are

whereas the diagonals are the subsets of the form

DEFINITION 3.2. - The n-th Taylor approximation PnF of an r-
module F in dimension k is the cokernel

The maps for this cokernel are ind uced by the inclusions T C [n]’.

Remark 3.3. - It is straightforward to check that the boundary map
6 is well-defined on the quotient (see Lemma 1.11]).
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Remark 3.4. - This normalization is necessary for the properties
the PnF should have: The unnormalized approximation Pn is given by
evaluating F on a sum. From the definition of the cross-effect it follows

that such a term is isomorphic to a sum of cross-effects. If we consider the
normalized term P~ F then in the I-th chain degree this is isomorphic to

where S runs over all non-degenerate subsets, i.e., subsets which are

neither slabs nor diagonals, of [n]~ (see Prop. 3.8]). As a subset
,S’ with n is always degenerate, this ensures among other things that
F - PnF is a weak equivalence iff F is of homological degree n.

3.2. The cubical construction.

Let A be an abelian group. We consider the functor F = ZfAf -11,
which maps a finite pointed set ~n~ to the free abelian group generated
by the elements of An. The Eilenberg-MacLane cubical construction Q (A)
which was defined in [EMI , §12, p. 321] is the first Taylor approximation
of evaluated on [1] E r:

Hence Q* (A) is a chain complex of abelian groups which is a quotient
of in degree m.

In degree zero the nontrivial generators are of the form (a) with
a E A ; in degree one the generators are (a, b) with 0. In degrees

zero, one and two the boundary map looks as follows:

We abbreviate the n-th Taylor approximation of F = ZfAf -11 evaluated
at [1] with

and call this chain complex the n-th cubical construction on A.
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3.3. The connections inside the tower.

As in the additive case there are natural transformations F 2013~ P,,F
and PnF - for every n (compare ~JMcC l, Lemma 1.15]). From
now on we assume that our functors F are reduced i.e., F[0] = 0. This
is no actual restriction because the part F[0] always splits as a direct
summand and we can consider the reduced part F’ defined by 
F’(X+) E9 F[O]. The Taylor approximation of F is then essentially the one
of F’ because Pn F ^--’ F[0] E9 PnF’.

PROPOSITION 3.5. - The maps F([f]) - induce natural

transformations

The different layers of the Taylor tower can be connected by the
following maps:

PROPOSITION 3.6. - There are natural transformations

such that the triangles

commute.

Proof. In degree zero the map qn is just the identity because
the modules (PnF(X+))o and (Pn-iF(X+))o are the same. For degree
1~ greater than 0 we define the map

as the following composition:

It is easy to see, that these maps are in fact chain maps. A proof can be
found in [R]. It works similar to the proof of Lemma 1.7]. 0
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3.4. Model category structures.

The aim of this part is to give model category structures on h-chain

complexes, which fit to the Taylor tower, i.e., the n-th approximation step
should be fibrant in the right setting.

For r-chain complexes there is a standard model category structure,
because the category of r-chain complexes is the same as the category of
chain complexes of f-modules and this category has the usual structure
such that

~ weak equivalences are isomorphisms in homology,

~ cofibrations are degreewise splitting monomorphisms with projective
cokernel and

~ fibrations are morphisms which are surjective in positive degrees.

So typically the cokernel of a cofibration is a direct sum of standard

projective generators 

Remark 3.7. - It is straightforward to see that this model category
structure is proper.

3.5. Model category structures fitting to the Taylor tower.

We want to define a fitting model category structure for each approx-
imation step in the Taylor tower. "Fitting" means that the weak equiva-
lences should be the H* Pn-isomorphisms. To this end we have to localize
the standard model category on F-chain complexes. O. Renaudin gained in

[Re] similar structures via constructing localizing subcategories.
The model category of r-chain complexes is proper. We change the

model structure and call a map f a Pn (-)-equivalence if Pn(f) is a weak
equivalence in the standard structure. A map f is a Pn-fibration if it has
the right lifting property concerning all ordinary cofibrations which are

Pn (-)-equivalences. We denote this structure by Tn. The functors Pn (-)
have three especially good properties:

1. The functors Pn(-) preserve weak equivalences.
2. The maps (Pn)Pn(F) : PnF - PnPnF are weak equivalences.
3. The class of the Pn (-)-equivalences is closed concerning pullbacks

along Pn ( - )-fibrations and pushouts along cofibrations.
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The third property is a consequence of the exactness of the functors

Pn (-); hence H* Pn (-) is a homology theory. In this situation Tn is again
a proper model category. Bousfield and Friedlander [BF] proved this for
simplicial model categories; Goerss and Jardine give a more general proof
in [GoJ].

THEOREM 3.8 [GoJ, X, Theorem 4.1] Given a closed and proper
model category C and given an endofunctor Q : C 2013~ C with a natural

transformation 71 : Id - Q and with the properties 1,2 and 3 above, there
is a proper and closed model category structure on C, so that the weak
equivalences are the Q(-)-equivalences, the cofibrations stay as they were
in the former structure and the fibration are determined by the right lifting
property.

The fibrant objects in the model category for Q - Pn are exactly
the functors F, for which the transformation (pn)F : F - PnF is a

weak equivalence of r-chain complexes (see [GoJ], X, Corollary 4.12),
hence the functors of homological degree n are fibrant. In particular the
approximation steps Pn F are fibrant in ~~ .

4. Homology of the approximation steps.

4.1. Higher cubical constructions in the set context.

For the interpretation of the homology of the usual Eilenberg-
MacLane cubical construction Q* it was helpful to introduce an auxiliary
complex T. Pirashvili related in [PI] this complex to the homology
of Q* (A) - which is the homology of the first approximation Pl applied to
the functor and to the stable homology of Eilenberg-MacLane
spaces. The generalized version of ,S’Q* which we introduce in this section
will help us to gain a description of the homology of the higher cubical
constructions.

Let X+ C r. Define SQk (X+) to be the free module generated by
[n]k-tuples of pairwise disjoint subsets of X, i.e., 5’Qo (X+) is generated0 ( )

-(n)
by (S), SeX and SQl (X+) has elements like x - (So,..., ,S’n with
Si 0, i S, C X as a basis. We denote elements of (X+)
as functions X from the set to the power set of X whose images of the

points (El,"’, ck) E are pairwise disjoint.
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The functor -§Q(n) is contravariant: For a morphism f : X+ - Y+
the induced map from (Y+) to (X+) takes the preimage of the
subsets. The case n = 1 has already been defined in [PI].

The boundary map 8 : is defined analo-k +)
gously to the one for Pn F and we use similar projection maps: The map

7r1 removes all subsets in (X+) with label n in the i-th coordinate
whereas 7ri 2 removes the ones labelled by n - 1 in the i-th place. The map
7r’ takes the union of the subsets labelled by n and n -1 in the coordinate
Ei. Again let 6i denote Jr) - 7r1 - 7r’. The boundary 6 is the alternating sum
of the n-fold iterations of the 8i:

For k = 1 and n = 2, 6 maps a generator (S, T, U) to

The final complex SQkn)(X+) is the quotient of SQkn) (X+) ) by all
elements, which have the empty set as a value in one hyperplane, i.e.,
generators X with X(61, ... o for a j E [n] and
by diagonal elements, i.e., x with - ~ if 

[n] k, and Ei+,.

4.2. The homological degree of SQ~n~ .

The higher cubical constructions in the set context 6’Q" are crucial
for the calculation of the homology of the higher cubical constructions for
functors. Recall from 3.1 that a functor is homologically of degree  n if
its (n + 1 )-st cross-effect is acyclic.

PROPOSITION 4.1. - The functor Ch(R) is homologi-
cally of degree n.

Proof. - There is an explicit chain homotopy which proves the claim.
For a generator
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we define a map H to via

This gives a homotopy between the zero map and the map whose image is
the (n + 1 )-st cross-effect. 0

4.3. The homology of the higher Q-constructions.

DEFINITION 4.2. - The n-th Q-construction of a functor F : r -4 R-
mod is defined as

Here (-) (gr (-) denotes the tensor product of r-modules: For a contravari-
ant r-module T and a covariant r-module F this tensor product is given
as the coend of the bifunctor T (o F : r°P x r -~ R-mod, i.e., it is the

coequalizer of where

is a pointed map. It is easy to see that

because ®r F ~ F(~n~~) and the submodules generated
by the relations map isomorphically.

The homology of the n-th Q-construction Q~n~ (F) has an interpreta-
tion as a Tor-functor, because 5’Q" is a projective resolution of a functor,
which we define now:

Let Bn : r- R-mod be the functor which maps a finite pointed
set X+ to the free module generated by all nonempty subsets of X with
cardinality less or equal to n. On morphisms f : X+ - Y+ in r a generator
S C X in is taken to its image f (,S’) if this image does not contain
zero; if 0 E f (S) then the induced map is zero. Now define tn : rop -4 R-
mod as the dual functor of Bn, i.e., tn(S+) = R).

LEMMA 4.3. - The functor tn is of degree n.

Proof. We will prove this claim by an inductive argument. For
n = 1 it is obvious that t = t’ is additive. Consider the canonical exact

sequence
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The dual of this sequence is again exact. Hence the functors fit in the
following exact sequence of functors from r°p to R-mod:

where 0’ is the dual of the quotient i.e., is dual to the

free module generated by subsets of ,5’ of cardinality exactly n. Clearly the
functor on is of degree n. With the exactness of the cross-effect it follows
that = 0. El

LEMMA 4.4. - The r-chain complex SQ~n~ is a projective resolution
of a degree n functor which is isomorphic to tn.

Proof - The projectivity of the is clear because they are
quotients of the projective generators Fs with S = where 

and there is a section from SQ(n) to (compare the
argument in [JP], 2.3). We have to prove that the homology of 
vanishes in positive dimensions and that its zeroth homology is a functor
isomorphic to tn.

It follows from the definition of 6’Q’ that

In general 6’Q’ has only homology in degree 0 because its homology
is polynomial of degree n and for ~1~, ... , ~n~ there is no homology in higher
degrees.

We now prove that

With the Dold-Kan correspondence of 2.4 we have to show that this
zeroth homology and tn have the same cross effects. On an object X+ E r
the module is generated by subsets S C X with cardinality

n. If f : X+ --~ Y+ is a morphism in r, then the induced map
f * : --&#x3E; takes the equivalence class of
the preimages: If the cardinality of is less or equal to n, then

f * (,S’) = otherwise E is equivalent to some

alternating sum of subsets with cardinality  n. The degree of is

n. Its i-th cross effect ..., X) ) is given by the cokernel
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of

It is easy to see that the cross effects ... , are

one-dimensional for i x n. They vanish for i &#x3E; n because is of

degree n. The identification of {1,..., z} in i ~ *
in induces a natural isomorphism. 0

As we have this projective resolution the homology of the higher
Q-constructions is given by

THEOREM 4.5.

For a chain complex C* we denote by shl C* the shifted chain complex,
i.e., (shlC*)k = Ck-i .

DEFINITION 4.6. - The n-th homotopy fibre of the Taylor tower is
defined as DnF* = cone*+i (qn : PnF -4 

PROPOSITION 4.7. The homology of the n-th homotopy fibre DnF*
is given as a derived functor of a r-module of degree n, namely

Proof. We will prove that the functor F - H*(DnF[I]) fulfills the
universal properties of the Tor-functor, i.e., we have to show

1) H. (D. (-) [I]) maps short exact sequences of functors to long exact
sequences.

2) The functors H*(Dn(-)~1~) and Tor* (Bn, -) coincide on projective
objects.

1) Let 0 ~ F’ - F 2013~ F" - 0 be a short exact sequence of
functors. We have to show that H* (Dn (-) ~1~) maps this sequence to a long
exact sequence



1010

The functor F H PnF[I] is exact, hence for every short exact

sequence as above we have the following array of commutative diagrams:

As the composition -4 vanishes, we can apply the 3 x 3-
lemma and obtain that 0 --&#x3E; DnF[I] - - 0 is a short

exact sequence of chain complexes and the claim is proved.

2) To make the two functors coincide we have to show that they have
the same value on projectives. The short exact sequence

leads to the usual long exact sequence in homology

Thus it is clear that vanishes for k &#x3E; 0 if F is projective.
For k = 0 we obtain that (tn 0r 0r F) and this can
be identified with 9n 0r F. 0

5. Calculation of Tor* in characteristic zero.

In this section the ground field K is of characteristic zero. We will

give a complete calculation of the homology of the homotopy fibres Dn of
the functors wm = These F-vector spaces possess a Koszul-like

resolution (see [P3]). For odd degrees (m = 2k + 1) one has
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whereas for even degrees (m = 2k) the resolution looks as follows:

The maps L in the sequences are

and

PROPOSITION 5.1. - Let i + j be m. The tensor products which are
needed for the calculation of Tor" (9n, are

Proof. - If m  n then the degree of Fi,j :== Ai o L 0 Sym3 o L with
i + j = m is m and hence smaller than n. This gives us

Now let m be greater than n. There is a sequence of surjections

As we assumed that the characteristic of K is zero Fi,j is a direct summand
of L0m and we obtain a surjection

For a contravariant functor T the cross-effect is crm(T) = coker (
1] - T[m]). Taking the exact sequence

and tensoring it with T gives
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Thus ’_ Therefore

because tQ9n is of degree n. Hence the tensor products on 0r Fi,j vanish if
i + j = m ~ n. The case which is left to consider is m = n. In this case

Hence this cross-effect gives the coinvariants of the Em-module cr(11i o
L 0 Symi o L) (m) . As is a quotient of L®m and as taking cross effects
is exact, we get

LEMMA 5.2. - As a £m-module is isomorphic to 

Proof. - By definition L®"2 ( ~n~ ) is the free vector space generated
by all m-tuples of elements in {1,..., n~ . The kernel of the map 
L~~([?~]) 2013~ L~~([7~ 2013 1]) consists of all m-tuples which contain i, because
L®’~’2 (ri ) ( (x 1, ... , x,,.,-L ) ) = Hence the intersection of all

of these kernels are the m-tuples which contain each i E ~ l, ... , exactly
once. D

Thus the sequence (*) reduces to crm(Fi,j). Taking coin-
variants shows that the coinvariants of crm(Fi,j) are isomorphic to K or
to 0, because K -~ K This statement can be made more

precise:

LEMMA 5.3.

Proof. - Let 7rl : LO’ - A’ o L and 7r2 : L°3 2013&#x3E; Symj o L be the
canonical maps. The natural transformation L®m 7r~2 Fi,j gives a map
on the corresponding cross effects by restriction. But for i &#x3E; 1 the we get
TTi 0 ~2(~1,..., = x 1 A ... A ~+1 - - - Taking coinvariants this
term is equivalent to its negative and hence it vanishes. 0

This finishes the proof of our proposition and leads to the calculation
of the Koszul resolutions: Applying our results there are only two nontrivial

sequences, namely 0 ~ on (g]r SyMn+ 1oL --+
which gives and
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with the K arising from 0’ 0r Symn o L. The
corresponding Tor-groups are

5.1. Application to higher order Hochschild homology.

In this section the ground ring K is a field of characteristic zero.
For a commutative K-algebra A and an A-module M let £(A, M) be the
r-module which sends a finite pointed set [n] to M (2) A morphism
f : [n] ~ [m] in r maps an element in M(2)AQ9n to bo ® ~ ~ ~ ® bm
with bi Hochschild homology of order d is defined via the
evaluation on the simplicial d-sphere

As a concrete example we will calculate (II~~x~ /x2, K) for d even. For d
odd the calculation of is done in [P3], 5.4. As it is
shown in 1.8 of [P3] there is a splitting

which leads to a decomposition

for d even. Hence the calculation reduces to the determination of the Tor-

groups which we have just calculated. Thus we proved the following

THEOREM 5.4. - For d even the Hochschild homology of order d of

K[X]/X2 with coefficients in K is
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6. A spectral sequence for H*DnF[I] .

We saw that the homology of the homotopy fibre =

P,,- IF) [1] is determined by Tor; (0’, F). In [P2] Pirashvili
developed a hyperhomology spectral sequence with abutment F). A
generalization of this approach leads to a spectral sequence which converges
to Tor" (9n, F). In the following part let k be a field.

6.1. Iterated partitions.

For the definition of the spectral sequence we need the notion of
iterated partitions. The term p-partition is defined inductively. A 1-

partition (or simply partition) of some natural number m is a sequence
~ _ (A,, - - ., A~) with £ &#x3E; 1 and ...  Af where the Ai add up
to m - A, + .- . + Here is called the length of the partition A and is
denoted by £(A). For n &#x3E; 2 an n-partition is a partition A = (~1, ... , Aj)
together with (n - 1 )-partitions À i of Ai for 1 ~ i ~ j. The length of an
n-partition is an n-tuple of natural numbers

The set of p-partitions of no with length (nl,’" nP_ 1, n) is denoted by
II(no, ... , np-i , n). For instance a A in II(7, 5, 3, 2) can be the following:

The partition (3, 4) of 7 is refined taking the partition of 3 into ( 1, 2)
and the partition of 4 into (1,1, 2).

We associate to any n-partition a group of permutations: A 1-partition
A = (Ai , ... , yields the group EÀ == EÀl 1 x ~ ~ ~ and to an n-partition
J-l = (p~ , ... , we associate iteratively the group x - - - x 

In the example above we obtain x £2 x E1 X E1 x £2 .

6.2. The spectral sequence.

In the following we will outline the construction of the hyperhomology
spectral sequence. All functors F will have values in k-vector spaces.
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THEOREM 6.1. - There is a spectral sequence.
of the following form:

Remark 6.2. - If we work over 1~ _ ~ then this spectral sequence
just consists of the zeroth row.

6.3. A chain complex of right Q-modules.

Using the Dold-Kan correspondence between F-modules and

Q-modules, we can work in the category of Q-modules to calculate

Toru (0’, F). The following result relates these derived functors with Tor-
groups for Q-modules.

PROPOSITION 6.3. - For F-modules there is an isomorphism

We will only indicate how the proof works. One uses that the

equivalence cr maps the family of reduced projective generators (LQ9m)m
to the family of representable functors in the category of Q-modules. The
Yoneda lemma implies that the assumption holds for these generators. A
full proof is given in [R, Prop. 2.5.1].

An EI-category is a small category with all endomorphisms being
automorphisms; SZ is an EI-category with the permutation groups £n as
endomorphisms of n. In such a situation there is a standard resolution

K* (U) of every U : k - Vect (as in [P2, 4.3] or [L]). With SZ(n, rrL)
we denote the morphisms in Q from n to m. This set has a canonical right
En and a left Y-m action. In degree £ the chain complex of right Q-modules
J(* (U) looks as follows:

where the sum runs over all no &#x3E; ... &#x3E; nf.
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The boundary map d on an element (a ; f£, ... , fo) with a E U(ng) is
defined as

A proof that this complex is a resolution of U can be found in [P2, Lemma
4.4], hence for every Q-module F we obtain a hyperhomology spectral
sequence

6.4. Simplification of the spectral sequence for U = 8n.

For 0’ : and F : r -4 the above spectral
sequence gives

But we know that 0 if i 7~ n. Hence the above chain complex
reduces to

Here the sum is taken over all no &#x3E; ... &#x3E; &#x3E; n. According to Lemma
4.6 in [P2] we obtain

for all £n-modules M and all Q-modules T. We gain an even stronger
simplification by applying Lemma 4.8 in [P2]: The ~n-module

is isomorphic to

After all these reductions our spectral sequence looks as follows:
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Using the Shapiro lemma in group homology we obtain

Therefore the final version of our spectral sequence for the homology of the
n-th homotopy fibre Tor" (on, F) is

Remark 6.4. Note that the Eo,q-term for consists of

Otherwise this term is trivial.

7. The dual of the Steenrod algebra.

7.1. Decomposition as a F-vector space.

As an example for an explicit calculation we will consider the functor

from finite pointed sets to IF 2-vector spaces, which takes a finite pointed
set to the reduced vector space on the elements and takes then the free

F2-vector space of this. Prolonging this functor to simplicial pointed sets
and evaluating it on an arbitrary simplicial model for a sphere leads to the

homology of Eilenberg-MacLane spaces. As S’t) (see [P3,
Prop 2.2~ ), we gain that the homology of the first approximation evaluated
at [1] is nothing but the dual of the Steenrod algebra.

Recall that we denote : r -4 F2-Vect the functor that maps
a finite pointed set ,5’+ to the free F2-vector space which is generated by
all nonempty subsets of ,S’ with cardinality less or equal to .~ and that we
abbreviate the functor by qbg.

For our calculations the whole functor S’t would be too complicated
to deal with, but we can show that this functor splits into homogenous
pieces, namely S’t is a sum of the functors ’l/J£ which are easier to handle.
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THEOREM 7.1. - As a r-module St splits into

where V)o is the constant functor with value F2 on every object.

We will prove that cr(St) is a split functor in the category of Q-
modules. Let ,S’tn abbreviate ..., [1]).

PROPOSITION 7.2. - Every map f : n - n - 1 in Q induces the
tri vial map f * : Stun - 

LEMMA 7.3. - All vector spaces Stn are of dimension one

Proof. We will prove

inductively. In degree one we have that

hence F2 and

so F2" - 1. Assume the two claims are true for all i  n. From

the definition of the cross-effect of and the assumption we gain

The last isomorphism comes from the fact that the map from
is surjective. The second claim is also straightforward to see:

and hence the proof is completed.
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Proof of the proposition. - As Stn is one dimensional we have only
to prove that the basis element is mapped trivially to Let el, ... , en
denote the canonical basis of Then we claim that the element

is a basis of ,S’tn. Here the inner sums are taken in whereas the sums

outside of the parenthesis are taken in IF2 ~IF2 ~ - ~ ~ . We have to prove that
En is in the intersections of the kernels of the Since En is symmetric
with respect to the action of the symmetric group, it is enough to show that

,S’t (rn ) (En ) = 0. Let (E,, -I + en) denote the sum over all summands in En
which contain en and some term from It is obvious that we can

decompose En in

But then it is easy to see that St(rn)(En) = E.-i + = 0.

Now let f : n - n - 1 be a map in Q. Without loss of generality we
can assume that f (n) = f (n - 1) = n - 1. But then f*(En) = = 0.

As cr(St) and EÐ crClfi) have the same values on objects and as
they have only trivial transformations, they coincide. Using the Dold-Kan
correspondence between F-modules and Q-modules we obtain a splitting
for St. D

As a concrete example we will calculate the homology of the homotopy
fibre of the quadratic approximation of the functors qbg, for £ = 2,3,4 over
some field l~ .

a) From remark 6.4 we see that

The hyperhomology spectral sequence for
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But 0 unless n = 3. Having Remark 6.4 in mind we see that
the spectral sequence consists only of a nontrivial Eiq part, namely

There is only one partition A E II(3, 2) namely A = (1, 2) and for this
partition we obtain £ x = El x ~2 ~ ~2. All differentials are trivial in this

case, hence for all n

From now on all coefficients are taken in k without mentioning them

anymore. In a similar manner as in the above case we obtain that the

E’-term for Tor; (02, reduces to

The resulting El is

The differentials arise from the differentials in the chain complex J(* (cr (82 ) ) .
Therefore one copy of H,, (E2) which corresponds to the 2-partition (1, 3),
(1, l, 2) is mapped horizontally to the summand H,, (E3). The boundary of
the other summand which corresponds to the 2-partition (2, 2), (1,1, 2) is

mapped to H* (£2 x E2). The E2-term that comes out is

Thus the next differential d2 ends up in a zero column and hence
and
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Remark 7.4. - In a similar manner one can use the spectral sequence
to compute qbm) for m = n, n + 1, n + 2.

7.2. Homology of posets of partitions.

We saw in Section 5 how to compute Tor(8n, at least over

the rational numbers. These Tor-groups have an interpretation as the
homology of a poset of certain unordered partitions, namely those partitions
arising as layers of p-partitions. Let E be a p-partition of n, i.e., 3 is

a partition A = (~1, ... , Ak) with 1 ~ ...  Ak and E Ai = n
together with (p - I)-partitions of the Ai: (Al~, ... , A n, The collection
((A~,.... ~ i 1 ) ~ ~ ~ ~ ~ ( ~~ ~ ~ ~ ~ ~ ~~’~ ) ) is no actual partition in general because
it might happen that ~~’ &#x3E; 

DEFINITION 7.5. - An f-tuple a - (~i,..., of natural numbers is

an unordered partition of n if 1 ~ ai and L ai = n. is called the

length of a.

In a p-partition, (~1, ... , Ak) is called the first layer of the p-partition
E, the second layer is ((~i, ... , ~i 1 ), ... , (À1, ... , a~~ )) and so on. Hence a
p-partition E consists of p layers of unordered partitions.

DEFINITION 7.6. - An unordered partition A of n is called grown if
A is a layer of some p-partition E.

Example. - The unordered partition (1, 2,1,1, 2) is grown because it
is a third layer of the 3-partition (3, 4), (1, 2, 4) and (1, 2,1,1, 2). A typical
example for an unordered partition which is not grown is something of the
form (n, 1) with n &#x3E; 1.

DEFINITION 7.7. - Let p and v be two grown partitions. Then v is
a refinement of p if there is a p-partition E and v is a higher layer of 3
than p.

Let II(m, n) be the set of all grown partitions of m which arise from
an actual partition of length n. We say that A  p for A, p E II(m, n), if A
is a refinement of p. The homology of the poset II(m, n) can be described
as follows:



1022

THEOREM 7.8.

Here Q is the constant functor, which assigns the field Q to every unordered
partition.

Proof. - The spectral sequences which converges to 
degenerates at the E2-level over the rational numbers. The El-term reduces
to

because the zeroth group homology of any symmetric group Q)) is
Q. The first differential comes from the differential in K* (cr(8~)), hence it
just forgets some layers. But this is exactly what the differential does in the
complex which computes the homology of the poset II(m, n). A p-partition
E n2,..., np , n) is nothing but a p-string of composable morphisms

in TI(m, n). 0

Remark 7.9. - From the proof of the theorem it it clear that for an

arbitrary field k it is still true that the E2-term for Tor; (on, consists of

the homology of the partition poset with coefficients in the functor which
takes a partition to the homology of its corresponding symmetric group
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