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ALGEBRAICALLY CONSTRUCTIBLE CHAINS

by Hélène PENNANEAC’H

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 939-994

1. Introduction.

In [KS], Kashiwara and Schapira define subanalytic chains on a real
analytic manifold. Now let X be a real algebraic variety. We can define
analogously semialgebraic chains on X: the group Cn(X) of n-chains is

generated by symbols ~S’~ where S’ C X is a n-dimensional oriented Nash
manifold with the relations

is ,S’ with the opposite orientation;

is dense in ,S’ with the induced orientation.

There is a boundary for these chains. This leads on one hand to
the notion of cycles which is useful for computing characteristic cycles of
constructible functions as we shall see later, and on the other hand to a

homology which is in fact the Borel-Moore homology of X.

Here is introduced a new definition of C* (X ) by considering
"constructible functions on the oriented real spectrum of the function
fields of n-dimensional subvarieties of X". This approach through real
spectrum is analogous to the one of Scheiderer in [Sch]. He shows that
the Borel-Moore homology with coefficients in of a real algebraic
variety X can be computed from the complex

Keywords : Algebraically constructible - Homology - Characteristic cycle.
Math. classification : 14P25 - 14F43.
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where X(n) is the set of n-dimensional points of X and Y, is the real

spectrum of the residue field K (y) of y (i. e., the space of its orderings). This
complex can be identified with C* (X ) ~ Z/2Z.

In order to deal with integral coefficients, we have to take into account
the orientation. We introduce the oriented real spectrum §r of the field r, (y)
If K(y) has transcendence degree n over the base field R, the points of §r
are orderings of K(y) equipped with an equivalence class w-’ of nonzero
Kahler differentials of degree n of K(y) over R where = if and only
if f is an element of K(y) positive for a. The oriented real spectrum §r is
a two-sheeted covering of the real spectrum yr . In the complex above, we

replace HO(Yr, Z/2Z) by the group of constructible functions on Yr, i. e. the
continuous functions cp : yr -~ Z such that 2013~~) == (this
corresponds to condition 1) in the previous definition of C,,(X)). We can
distinguish among those functions the "algebraically constructible" ones,
i. e. those for which a - a7c) is a sum of signs of elements of 
(or equivalently the signature of a quadratic form on The notion

of constructible functions on the oriented real spectrum is explained in
Section 2, as far as most technical points concerning it.

We thus have a complex C* (X ), whose boundary we can compute
using the specialization in the real spectrum as done in [Sch], Proposi-
tion 2.6. We take into account the orientation via a Poincaré residue for

Kahler differentials. Then half of the boundary of an algebraically construc-
tible chain is still an algebraically constructible chain, and so we get a new
complex AC* (X ), of algebraically constructible chains, whose boundary
is half of the previous one. This complex can be seen as the "signature"
of the Witt complex introduced by Schmid in his thesis ( cf. [S]): he

tensorizes the Witt ring of K(y) by the Kahler differentials.

In Section 3, we are mostly interested in the case where X is a variety
over a real closed field and we establish some relations between algebraically
constructible homology and Borel-Moore homology. In Section 4, we

generalize the complex to schemes essentially of finite type over a field
of characteristic 0. We establish the functorial properties of the complex
and compute the homologies of affine and projective spaces. These are
similar to the results of [S].

As the Witt ring is associated to the graded Witt ring, it is natural

to consider the filtration of the algebraically constructible functions of

K(y) by the functions divisible by 2~ with 0  .~  n. This leads to many

complexes c:-ac(x): the k-algebraically constructible n-chains are the



941

algebraically constructible functions which are divisible by 
considered modulo This construction is of the type of Rost’s cycle
modules (see [R]), and is explained in Section 5. If k &#x3E; 0 we recover

Scheiderer’s complex. We obtain in some cases a filtration between usual
algebraic homology (see [BCR]) and Borel-Moore homology with coefficients
modulo 2.

Another interest of algebraically constructible chains is the following:
if X is a smooth algebraic variety, the group of constructible functions on
X is isomorphic via the characteristic cycle to the group of Lagrangian
semialgebraic cycles of T*X. On the other hand, McCrory and Parusifiski
introduced algebraically constructible functions which are sums of Euler
characteristics of fibres of proper morphisms (cf. [MP]). We will prove
that, in this isomorphism, the Lagrangian algebraically constructible cycles
are exactly the images of algebraically constructible functions. This result
also enables us to get a nice characterization of Lagrangian algebraically
constructible cycles in terms of sums of pushforwards by proper morphisms
of characteristic cycles of characteristic functions of algebraic smooth
varieties. This is done in Section 6.

I would like to thank Michel Coste for his help during the realization
of this paper.

2. Constructible functions on the real spectrum
with coefficients.

In the following, R will denote a fixed field of characteristic 0.

For a field K define K* - K B {0}; the real spectrum of K (i. e. the
set of orderings on K, cf. [BCR]) will be denoted by ~K (or E if there is no
possible confusion). An ordering a is seen as a map K’ ~ ~ -1,1 ~ .
For f E K, is the image of f in the real closure of K for a. Then

f (a) &#x3E; 0 ~ = 1. The Harrison topology on ~K is the one such that
the basic open sets are the ~a C I f l (a) &#x3E; 0,...,/~(~) &#x3E; 01 where
fi E K. A constructible set of ~x is a finite union of basic sets.

The fields we consider are extensions of R.

2.1. Real spectrum with coefficients.

Let K be a field and H a 1-dimensional K-vector field. For each

ordering a on K, there are two equivalence classes in 7:f* = ~ B ~0~ for the



942

relation "h (via f h if f E K is positive for a". For a given nonzero h, those
classes are h a and - h a. We shall denote

There is a projection p : EH ----+ E and for each h E H a distinguished
section sh : £ - EH : (a, ha). We put a boolean topology on EH
such that the basic open sets are the images by the Sh of the basic open
sets of E where h ranges through H’ . Thus p and sh are continuous.

Note that there is a canonical homeomorphism EH*. Indeed
an isomorphism H ~ H’ induces an homeomorphism E~ -4 E~’; the
homeomorphism 

* 

induced by 77 2013~ H* : h - 
does not depend on the choice of £ E H*. The application dH preserves the

distinguished sections. For an extension K- L, there is also a base change

If K is of transcendence degree n over R, the K-vector space of
n-Kahler differentials = is 1-dimensional (cf. [Ku]). We
shall denote yA and for each 1-dimensional H, 

Let Cons(E, Z) be the set of continuous functions from E to Z, i. e.

the functions which can be written 2::iEI mils, with finite I, m2 E Z
and ,S’Z constructible subset of E (they can be chosen disjoint or basic). Let
Algcons(£ , Z) be the set of algebraically constructible functions, i. e. those

which can be written sign( fi) with f2 E K’ and sign( fi)((a) = a(fi).
There is a continuous involution

We shall denote by

For each h E He and each p : EH -4 Z, we define ph = p o sh. Then the

shrinking morphism cp H ph is an isomorphism from the group Z)
to Cons (E, ~).

Cons (EH, Z) is a Cons(E, Z)-module for the multiplication
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DEFINITION 1. - is the subgroup of

continuous functions cp such that cp o i = -cp and there exists h E He for

which cph E 

Remarks.

Fan criterion. - The representation theorem of Becker and Brocker

(cf. [BB]) implies that p E AlgCons(E, Z) if and only if for all F fan in E,
= 0 mod IFI. Thus cp E AlgCons(EH, Z) if and only if there

exists h such that for all F fan in E,

2.2. Restriction and corestriction.

Let K be a field of transcendence degree n over R. Let K - L
be an extension of transcendence degree r. Define a restriction morphism

Using the canonical isomorphism

we get for a 1-dimensional K-vector space H,

Using base change, we get a morphism
restriction morphism

and thus a

Clearly, rL~K induces a restriction morphism

If L ~ M is another extension,
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Now we define corestriction morphisms for extensions of finite degree.

PROPOSITION-DEFINITION 2. - Let K -4 L an algebraic extension of
finite degree. The formula

defines a morphism (called corestriction)

Proof. - It is sufficient to see that this is well defined for cp = 1 S
with ,S’ basic, i. e. 6’ = {/i &#x3E; 0, ... , fk &#x3E; 0}, f i C L. If a is a primitive
element of the extension, and P is its minimal polynomial, f2 = Fi (a) with
Fi a polynomial with coefficients in K; for a C ~K, each {3 extending a on
L corresponds to a root b of P in the real closure Ra of K for a, and then

&#x3E; 0 %# Fi (b) &#x3E; 0 ( cf. [BCR], Proposition 1.3.7); thus

there is a constructible set ,S’m such that

then is constructible.

PROPOSITION 3. The image is contained

in Thus yve define

Proof. If we assume that cp = sign( f ) for f = F(a) C L*,

Then is the signature of the Hermite quadratic form associated
to P and F (see for example [KnS]) and is algebraically constructible. 0

Now, as Q9K L, for a 1-dimensional K-vector space H
we can define
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and

in the following way:

Then

If L ~ M is another algebraic extension of finite degree,

LEMMA 4. - Let K be a field of transcendence degree n over R.
Let K -~ L be an algebraic extension of finite degree, K- M an
extension of transcendence degree r, H a 1-dimensional K-vector space,
N = M 0K L. Let ml , ... , mm be the maximal ideals of N, and Ni = N/mi.
Then the following diagram (and the corresponding one with AlgCons) is
commutative:

Proof. Choosing and using
the shrinking isomorphisms, it is enough to show the commutativity of
the diagram on the level of constructible functions on the real spectrum
without coefficients. Then it is enough to show that for each cx E ~M,

is the disjoint union for i = 1,..., m of the sets

Let a be a primitive element of the extension K ~ L, and P its minimal

polynomial. Let Q1, ... , Qm be the irreducible factors of P in M[T].
Then mi = (Qi ) and

Let Ma be the real closure of lVl for a and K~ the real closure of K for 

Ma is an extension of Ka and a root of P in Ka is exactly a root of one
and only one Qi in Ma . 0
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2.3. The boundary map.

Let B be a valuation ring of .K with residue field kB. Denote by vB, AB
the valuation and place associated to B. If x E B, put T = ~B (x) . If Q is an
ordering of K, B is said to be compatible with 0 if the maximal ideal mB of
B is convex for {3 ( i. e. if for f E B and g E mB, 0  f (0)  g (,Q) # f E mB ) .
Then (3 induces on kB an ordering 13 such that: for u E B B mB, 13 (U) 13 (U)
If B is a discrete valuation ring and a is an ordering of kB, then there exists
two orderings {3 of K and only two such that 3 = a. The two orderings
differ by the sign they give to a uniformizing parameter of B (cf. [BCR],
Chapter 10).

PROPOSITION-DEFINITION 5. - Let B a discrete valuation ring of K,
with residue field kB; the formula

gi ves a morphism Cons 

Proof. Assume cp = Is with ,S’ _ ~ f 1 &#x3E; 0,..., fk &#x3E; 0}; multiplying
the fi’s by squares if necessary, we can assume their valuation to be 0 or 1.
We have

If every fi has valuation 0, then we put gi - f i. Then - 2 x 1 s,
with S’ = Ig, &#x3E; 0, ... , g &#x3E; 0}. If fi is of valuation 1 and the others

are of valuation 0, we put gi = f i for i &#x3E; 1, and then ~B (~) - with

,S’’ = ~g2 &#x3E; 0,..., gk &#x3E; 0}. At last, if fl, ... , If are of valuation 1 and the
others are of valuation 0, we put for i = 2,... ,~, II = which is of

valuation 0. Then

and this is the preceding case.

PROPOSITION 6. - If rp E then is even and

Proof. - If p = sign( f ) with f E Ke of valuation 0 or 1, then
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Let K be a field of transcendence degree n over R and B a valuation
ring of K. The ring B is said to be geometric if the restriction of the

valuation vB to R is trivial. All valuation rings are now assumed to be
geometric.

Let t be an uniformizing parameter of B and x 1, ... , B B mB
such that t, X 1, - - - , make a transcendence basis of K over R. Each

Lù E can be written

with u e B B mB ; is independent of the choices of t and x2, this is
the valuation of w. Let

Then following for example [Ku], Chap. 17, exercise 1, we can construct a
Poincaré-residue

putting Res3(o) - u dx 1 A ... A if cv is written as before. This is

independent of the choices.

This residue is surjective: given a transcendence basis ~yl, ... , 
of kB over R, let be the pullbacks of in

B B mB ; then It, X 1, - - - , Xn- 1 1 is a transcendence basis of K over R.

If T = y dyi A ... A with g E B B mB, then

is such that = T.

Example. If K is the function field of a real smooth variety V
and B is the local ring of a 1-codimensional subvariety W, then T gives in
almost every point of W a local orientation and the constructed o gives
on V a local orientation which induces on W the orientation given by T.
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Thus if {3 is an ordering of K compatible with B and a its specialization
in kB,

contained in an equivalence class of

DEFINITION 7. - Let H be a free B-module of rank 1. The formula

where = T defines a morphism (called boundary map)

We still have

LEMMA 8. - Let K be a field of transcendence degree n over R. Let
K- L an algebraic extension of finite degree, B a discrete valuation ring
of K, Bl, ... ,Bm the valuation rings of L such that BZ n K = B, H a free
B-module of rank 1. Then the following diagram (and the corresponding
one with AlgCons and a3 ) is commutative:

make a transcendence basis of kB over R, and t an uniformizing parameter
of B. Let

then

is such that and, for each i,
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1 E then eiWi where ei is the ramification

index of Bi over B: indeed there exists an uniformizing parameter ti of Bi
and a unit ui of Bi such that t = then dt/t = ei dti /ti + dui /ui and
T = A ... A 1 n dti + TZ with = 0. Using shrinking
isomorphisms it is equivalent to prove commutativity on the level of real
spectrum without coefficients.

We have to show that for each a E EkB and each E EL, -YIK is

compatible with B and = a if and only if there is a unique i in

~ l, ... , m} such that 7 is compatible with Bi and extends
on L a pullback ~3 of a in K, let B’ be the convex hull for ~ of the ring B;
B’ is one of the Bi since B’ n K is the convex hull of B for = (3 in K,
i. e. B ; it is the only one compatible with -y. Then the specialization y ? of q
in k B, extends a.

On the other hand, if 6 extends a to let t and ti be uniformizing
parameters of B and Bi such that t let ~-)-, ~- be the pullbacks of 6
whose sign on ti is respectively positive and negative, e the sign of (ui )
for 6, and {3+, 0- the pullbacks of a whose sign on t is respectively positive
and negative. For a unit u of B, we have

We have E1’+(t) = 1 thus 1’+ extends (3c; if ei is odd, s-y_ (t) == -1 thus 1’-
extends 0-,; if ei is even, c1’-(t) = 1 thus 1’- extends {3c’ 0

LEMMA 9. - Let K be a field of transcendence degree n over R. Let
K- L an extension of transcendence degree r, B a discrete valuation ring
of K, B’ a discrete valuation ring of L such that B’ n K = B and whose
ramification index over B is 1, H a free B-module of rank 1. Then the

following diagram (and the corresponding one with Alg Cons and is

commutative:

Proof. First, we have to prove that the composition is well-defined:
this means
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First r. As e = 1, mB, + mBB’ as they are both
generated by an uniformizing parameter t of B and the exact sequence of
[Ku], Corollary 6.5,

gives an isomorphism

We also have °1’/B 0B’ L ~ °l/K; free B’-module of rank r
as if we choose z1, ... , zr E B’ such that z 1, ... , z r make a transcendence
basis of kB, over kB, then d~//~~i,... is a B’-basis If we

put H’ = H 0 B Qz, ~ ~ , H’ is a free B’-module of rank 1 and by definition
~ : which gives exactly
what we want.

Choosing h E He, such that make a

transcendence basis of k B over R, we define coefficients in H 0 B 
and such that

using the shrinking isomorphisms, it is equivalent to show commutativity
on the level of real spectrum without coefficients. It is enough to see that
for each 0152 E if {3+ and {3- are the pullbacks of a in L, then ,~+ ~ K
and ~3- ~ K are the pullbacks of in K, which is true as on one hand for
u E E B’ ~ mB~ thus ,~~ ( K(u) = a(u) = and on the other

hand, ,Q~ ~ K(t) _ ~~ (t) _ ~. 0

3. Semialgebraic chains on an algebraic variety.

For a scheme X, the set of n-dimensional (respectively n-

codimensional) points of X will be denoted by X(n) (respectively X(") ).
The real spectrum of X obtained by glueing together the real spectra of its
affine open subschemes will be denoted by Xr. For x a point of X, Xr will
denote the real spectrum of its residual field x(z). is a line bundle

over X, £(r) = £x 0ox,x is a 1-dimensional space. For

another point y, we will write

.r ~ y if y is a specialization of x,

i. e. y e (r) ; if moreover y is 1-codimensional we will write 



951

3.1. Two complexes.

All the schemes we consider are essentially of finite type over the base
field R. This means that they are localizations of schemes of finite type
over R. Let X be such a scheme.

DEFINITION 10. - We put:

For £ a line bundle over X:

Now we will define a boundary for those complexes. We will show that
they are actually complexes in the next section.

For x and y points of X, let us define

Let Z = and let 7r : Z - Z be the normalization of Z: consider

a covering of Z by open affine subschemes Spec A. The normalization is
obtained by glueing together the open affine schemes Spec A where A is the
integral closure of A ; A is a finite A-algebra thus 7r is a finite morphism.
If y is a specialization of x of codimension 1,

Else ay = 0. If y is a specialization of x of codimension 1, let U = Spec A
be an affine open subset of Z containing y such that A is noetherian. If A
is the integral closure of A in ~(x), 7r- 1 (U) = Spec A. Let py be the prime
ideal of A corresponding to y, denote Bx (y) the set of discrete valuation
rings of x(z) containing A and such that the center of the associated place
in A is py. They are discrete valuation rings and in fact they are the ~4p
where the p are the prime ideals of A such that pD A = py, i. e. the

ideals corresponding to the ~ E ~r-1 (y) (indeed A is an integrally closed
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noetherian ring and thus a Krull ring, cf. [ZS], VI, §13). Thus we have

Define still

Sections 2.2 and 2.3 imply that this is well defined.

LEMMA 11. If cp E ,Z), then 8gp = 0 for almost every y
( this means: for all except a finite number of y).

Proof. It is sufficient to see that for Z normal, = 0 for

almost every y E Z ~ 1 ~ . It is sufficient to see this for

Fix cv in (where n = dim(x)). We can assume ’Pw = 1

fi E /~(~)*. Let vy be the valuation associated to There is a finite

number of y such that one of the vy ( fi) or vy(o) is nonzero ( cf. [Ha],
Lemma II 6.1 ) . Let y be such that they are all zero, t an uniformizing
parameter of = t1J, T = Res* 0 (~). We have

and then from Proposition 5,

where

Thus we can define a boundary map
putting

where px C Cons(x,,’-’(x), Z) is zero except for a finite number of x. The
same way we define a boundary 8’ : ACn+l(X) -4 ACn (X ) .

The boundary can be written directly on the real spectrum: for

where if Z = ~supp(~3) ~ , Spec A is an affine open subscheme of Z containing
supp(a) and Ba is the convex hull of Asupp(a) in Frac(A) for the ordering {3,
esBa (T) (¡J.
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3.2. Semialgebraic chains.

Until the end of Section 3, R is a real closed field, X will denote
an algebraic subset of RP and denotes the set of n-dimensional

irreducible algebraic subset of X. For such a V E X~n), will

denote the ring of regular functions on V, x(V) its function field, Yr
the real spectrum of ~(V). Then Cn(X) = Cons(Vr, Z) and
ACn(X) = AlgCons(Vr, Z) as the real spectrum of non real

points is empty. 
n&#x3E;

There is an injective map j : i Vr - Spec, and an isomorphism
S F-4 S‘ of Boolean algebra between the set of semialgebraic subsets of V
and the set of constructibles sets of Spec, R(V) (cf. [BCR], 37.2). We
denote by the constructible in Vr. If C is a constructible set
of Vr, denote by C the intersection of the closure of j (C) in Spec, R(V)
with V. Then = C. A wall of C is a (n - I)-dimensional irreducible
component of the Zariski boundary of C (this means the Zariski closure
of Adh(C) B Int(C) where the adherence and interior are taken for the
Euclidean topology). If p E Cons(Vr, Z), cp can be written as LiEZ "C’,
where Ci = (almost all the Ci are empty); a wall of cp is a wall of
one of the Ci and A4 (~o) is the set of walls of p.

In [KS], Chapter 9, the group of semialgebraic n-chains is the group
generated by symbols [S], where S ranges through oriented Nash n-
dimensional manifolds in X, with the relations:

is ,S’ with the opposite orientation;

if is dense in ,S’ with the induced orientation.

Using stratifications, it is easy to see that these two definitions are

equivalent: for a function cp E Cons(Vr, Z) , fix w E and a Nash

stratification compatible with the singular points of V, the set of zeroes
and poles of the walls of then the associated n-chain is 

where S’ are n-dimensional strata oriented by w and ms is the value of cpw
on S#; this is independent of the choices of w and the stratification. The
converse application is done exactly the same way. Also, the boundaries are
the same.

If we choose for the points the positive orientation (leaving the point
is counted negatively) we have the following
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PROPOSITION 12 (Reciprocity). - Let X a compact curve. Then for
each 1-chain C of X, the sum of the values of 8C is zero.

Proof. - If C = [S] where S C X is a 1-dimensional connected

Nash manifold, then either ,S’ is homeomorphic to a circle and in this case
= 0, or ,S’ is homeomorphic to a segment, and in this case consists

of two points (possibly coinciding), one with the value 1, the other one with
the value -1, thus summing the values we obtain 0. 0

PROPOSITION 13. a o o~ = 0.

Proof. - Let first ~,S’~ be a 2-chain of support Z, and z a point
of Z. It is sufficient to show that the component of 9 in z is zero.

Embed Z in an Rn and let S(z, ~) - ju E Rn z) _ El (d Euclidean
distance) be the sphere, and L = L(z, E) S(z, E) f1 Z the link of z. For E
sufficiently small, L(z, E) intersects S and the structure of L(z, E) does not
change taking smaller E. Let [S’] be the chain given by 5" = L n ,S’ and the
orientation T such that, if dr is the orientation to the exterior of the sphere
and o the orientation of S, we have dr A T = w. Then the value of a o 8[S]
on z is exactly the sum of the values of the boundaries of [S’], which is zero
using the property of reciprocity applied to L.

If now [S] is a chain of dimension greater than 2 of support Z,
we must see if a o is zero on each 2-codimensional subvariety of Z.
Let a o a ~s~ _ ~ mi ~,S’Z ~ , and let z be a point of Si. Let P be a 2-dimensional
subvariety of Z transverse to Si in z. Refining it if necessary, we may assume
that the stratification of Z compatible with the S and Si verifies Whitney-
condition (b) ; then using [G], there exists for each 1 a neighborhood Ui of Si
in Z such that Ui is isomorphic as stratified space to P n Ui x Si. Let [S’]
the 2-chain of P given by ,S’’ - ,S’ rl P and the orientation T of S’, such that,
if Ti is the orientation of Si and o the orientation of S, we have T A Ti = (j.
Then the value of 8 o 8[S] on Si is the same that the value of a o,9[S] on z,
and thus is zero. D

Thus we get a homology denoted by H* (X ) .

PROPOSITION 14. - H* (X ) is isomorphic to the Borel-Moore

homology of X (cf. [BCR], 11.7.13).

Proof. We use the algebraic Alexandrov compactification X’ of X,
and triangulations of subvarieties of X’ compatible with X’ B X. It is quite
easy this way to see that the computation is the same in both cases. 0
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As 808 = 0 then 8’ o 8’ = 0 and thus we get a homology H" (X).
Observe that Ho(X) = = where bc(X) is the number

of closed and bounded semialgebraically connected components of X.

Let us compare with H* (X ) .
There is a first morphism

given by = 2n~. Indeed if V a n-dimensional irreducible algebraic
subset of X, every constructible function on V becomes algebraically
constructible after multiplication by 2n. As

we obtain a morphism Hn(X) - The cokernel is of torsion 2m

with m  n. In every case ’Øn is injective at chain level. If n = dim(X)
then On is injective at homology level.

Now we define a second morphism: put Zn : Ker a, Zna’ : - 
Bn - Im 8 and ~ = Im o9’, we have Zn~ ~ Zn and 2Bn~ ~ Bn, thus
there is a morphism

where (Hn(X))2 is the 2-torsion of Hn. When is 0,, injective? This means:
if we have cp E such that 0p is even and 8cp/2 E ACn(X), when
does there exist p’ E ACn+1 (X ) such that == 8cp? It is enough to see it
on each irreducible component of X.

8o is always an isomorphism and Bdim (X) is always injective.
If X is a smooth d-dimensional compact connected irreducible

variety and cp E Cons(Xr, Z) is such that 8cp is even, then c~ equals an

algebraically constructible chain modulo 4. First cp is constant modulo 2:

choose w E Qd 0; if V is a wall of cpW, then ,t3X(Y) - IBI where B is
the local ring of V in X ; then if V is a wall of cpW mod 2, we have

We can assume p even and put o = 2 cp. Put
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,5’ is principal: indeed if Th , ... , V m are the walls of 0 mod 2, we have
= 0 in Hn-l(X,Z/2Z) as this is the boundary of 0 mod

2 E Hn(X,Z/2Z). From Proposition 12.4.6 of [BCR] there exists f E 
changing sign passing through the Y’s; we can assume &#x3E; 01, then
1/J == (1 + sign f ) / 2 mod 2 thus 1 + sign f mod 4. In particular if d = 2,
cp is algebraically constructible and 81 is injective in the case of a smooth
compact connected surface.

In either dimension following the proof of "generic criterion" of

I. Bonnard [B], if the walls of are non singular and normal crossing we
can show that this is algebraically constructible .

The assumptions on the walls can be removed if dimension of X is 2
or 3. Also, if X is non necessarily connected, but orientable, we can do the
same on each connected component and we can add Çw == 1{ p=l mod 2} to Pw
so that it is 0 mod 2 (this add no component to the boundary if we choose W
without zero nor pole). Finally we get:

PROPOSITION 15. - If X is a 2 or 3-dimensional smooth compact
algebraic variety then () d-l is injective.

Now we compare algebraically constructible homology with the usual
algebraic homology ( cf. [BCR], §11.3). Changing the coefficients of ACn (X )
to Z/2Z, we obtain an homology with coefficients in Z/2Z that is not the
algebraic homology ~/2~) .

Indeed, an algebraic 2-chain on can be seen as a generically
algebraically constructible function Sp on I~2 canonically oriented. The
boundary on an oriented affine curve C is then computed doing half the
difference between the value of cp on the side inducing the orientation of C
and the value on the other side; the boundary on the line at infinity is

computed doing half the sum of the values on both "sides".

If C is an affine curve, let 0cp be half the difference of ~p along C
(it has integral values). If we want the corresponding element of

to be zero, we need that mod 4 where
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If cp is a cycle, two values of cp differ by 0 or 4 modulo 8; let a be a
value of cp, f a polynomial positive where cp = a mod 8, and negative where
cp - a + 4 mod 8; then generically cp = a + 2(1 + sign f ) + integer
valued). Now the computation of the boundary of p along the line at infinity
gives a modulo 2; then a = 0 mod 2 and cp is zero in AC2 (X, Z/2Z).

4. Generalizations. Functoriality.

In this section, R is not necessarily a real closed field. Remember that
every scheme is essentially of finite type over R.

4.1. The complexes in the general case.

We prove that (C(X, ~), 9) and (AC(X, ,C), o9’) are actually complexes
for general X. They also verify a reciprocity property.

PROPOSITION 16. - One has o9 o 0 = 0. Hence uTe get two

chain complexes (C*(X,£),a) and (AC* (X ,,C),a’), giving two homologies
H*(X,£) and H:C(X,£).

Proof. We have to show that for R non necessarily real closed (this
is true for real closed fields from Proposition 13), for X integral local of
dimension 2, and x the generic point of X and z C X(o~ , we have

Let the function

extending a and let o be a
nonzero element in One has

a’ signifies ry &#x3E;-1 $ "1 a’ and T E is such that

Res3, (Res3, T) (for the meaning of notation Ba, see the end of
Subsection 3.1 ) .

Put be the points of

is integral of dimension 2 We have
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on the other hand

and if thus we can define

Let za be the inverse image of z in Then

then and

Let i be such that Then

Applying the property for each X’ over x(a) shows it for X. 0

LEMMA 17. - Let f : X - X’ proper; if x E X and x’ = f (x) are such
that dim(x) = dim(x’), let z’ be a specialization of x’ of codimension 1. Let
for B’ E (z’),

,~38~ _ ~ B real valuation = 

Then

Proof. Let Z = (z) and Z’ = (z’) , V’ an affine open subset of
Z’ containing z’, A’ - = we shall denote by py
or p~ the points of Spec A or Spec A’ corresponding to y E X or X’.

Let Then let we have

if we then have , and thus

Conversely, for B’ E 13x~ (z’), let B we have a morphism
Spec -~ Z; the inclusion ~(x’) C is such that B dominates A~7~

thus gives a morphism
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Spec B -* Z’ ( cf. [Ha], Lemma II, 4.4) such that the diagram

commutes. The valuative criterion for properness (see [Ha], Theorem 11.4.7)
gives a unique morphism SpecB - Z such that the whole diagram
commutes and then a unique point y, specialization of x, such that f (y) = z’
and that 0

PROPOSITION 18 (Reciprocity). - Let X an integral proper curve
over R. Let x be the generic point of X, we have

Proof. If R is real closed, this is Proposition 12. If R is not

real closed, let a E ER and w E R ~~ x(a). For cp E 

where /3 ~ a means /3 &#x3E;- 1 with -y of dimension 0 extending cx in the

extension R --~ and T is such that Res 3 (T) = W.

the points of

is an integral proper curve on

Corollary 4.8).
Define p) as in proof of Proposition 16.
We have

where ‘pt’ is the unique point of I~(c~). The property comes then from
reciprocity for each X’ 0
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4.2. Pushforward.

Let f : ~ 2013~ Y be a morphism of finite type and ,C a line bundle
over Y. For every x E X, f induces 2013~ x(r) which is an algebraic
extension of finite degree if dim( f (x) ) = dim(x) . For a point y C Y, let us
define

We obtain for each n,

It is functorial:

PROPOSITION 19. - If f is proper, f * commutes with the boun-

dary a. Thus f induces morphisms Hn(Y,£) and

Proof. First assume that x c X is such that f (x) is of the same

dimension, and let z be a specialization of of codimension 1 and

~1, ... , Ym the specializations of x of codimension 1 such that z.

We have to compare

Using Lemma 17, we have to show for each B’ E (z) the equality:

But for we have

and
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Then it is enough to show

This comes from Lemma 8.

Second case: we assume now that dim( f (x)) - dim(x) - 1; then

( f*) f(~) = 0. Let z = f (x). We have to show that 0 (*)
where ,S’ is the set of specializations of x of codimension 1 whose image
is z. Restricting f to we obtain a proper morphism still denoted by
f : 2013~ {~} and the computation of (*) is exactly the same. Now each

belongs to the fibre

and (0y)§ = and y e ~7(o). Thus we have to show

LYEU(ü) o~=0. This is exactly reciprocity for the proper

integral curve U on 

In the third case, i. e. if dim( f (x) )  dim(x) -1 , we have ( f * ) f(~) = 0
and for each specialization y of x of codimension 1, dim( f (y))  dim(y) -1;

D

4.3. Pullback.

Let X, Y be schemes of finite type over R. Let 9 : X -4 Y be a
smooth regular morphism of relative dimension p. Let £ be a line bundle
over Y. Then ( c f. [S], (4. 2 .1 ) ) for each x of dimension n + p, we have a

canonical isomorphism

But we have a restriction for such points ( cf. §2.2)

where . Thus we can define a morphism

by the formula

We have then

is another smooth regular morphism, then
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LEMMA 20. - Consider a Cartesian square:

where g is smooth of relative dimension p. Then we have g* f* == f*g’ -

Proof. - Let we have

(g*)E(Z) = 0, and on the other hand for each u E g’-l(Z), we have j’(u) =1= y
thus ( f*)y = 0 and then = ( f§g’*)j = 0. Now if f (z) = g(y) - x,
then x is n-dimensional as dim(x)  dim(z) and dim(y)  dim(x) + p (g
is smooth of relative dimension p) ; x(z) is then an algebraic extension of
finite degree of ~(x). As the constructions of pullback and pushforward
are local, we can replace respectively X, Z, Y, Y x x Z by Spec K( x),
Spec K(Z), Spec r~(y), Spec K(y) 0,(X) K(z) and the property comes directly
from Lemma 4. D

PROPOSITION 21. - If g:X - Y is etale, g* commutes with the

boundary 0. Thus g induces pullbacks g* : Hn (Y,,C) --~ Hn (X ,g*,C) and

Proof. Let y E Y(n), x E X(,,-,), z - g(x). Let S be the set of
points of of codimension 0 specializing to x. Then we have

If z is not a specialization of y, (g*)~ = 0 and S is empty thus everything is
zero. Then assume z &#x3E;- y; this is actually a specialization of codimension 1
as dim(x) - dim(z) (g is 6tale). We still can replace Y with ~_y~ and X
with X x y ~y~ . We also can assume Y normal; indeed let 7r : Y - Y the
normalization; in the Cartesian square
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we have from Lemma 20, Thus

(using the commutation of boundary with pushforward). As for y E 7r - 1 (y)
.. - -

and and are isomorphisms,
it is enough to show that

So assume we are in the case where g : X 2013~ Y = ~y~ is 6tale with Y
normal. Let B = Oy,z and B’ = The scheme Y = Spec B with
the structure inherited from Y is integral of dimension 1. It contains the
points z and y, and we have clearly = (0z )§ , thus we can replace Y
with Y ; we can also replace X with X =SpecB’. The ring B is a discrete
valuation ring, and B’ a local ring of dimension  1. Let - : X - y
be the morphism induced by g; it is flat and non ramified, thus B’ is also
a discrete valuation ring; X = and (g* o 0 O’B and

(aX o 9*)y = r,,(xl)/,(y) and the equality comes from Lemma 9. 0

COROLLARY 22 (Long exact sequence). - Let F a closed Zariski
subset in X, U = X ~ F. Assume that 9 o 9 = 0 for a = aU and 0F. Then
we have exact sequences:

Proof. Let i : F - X and j : U ~ X; we have exact sequences:

and the commutation of boundary with i and j gives the long exact

sequences. 0

PROPOSITION 23. If g: X ---~ Y is smooth of relative dimension p,
g* commutes with the boundary 0.

Thus 9 induces morphisms
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Proof. - There exists an open covering {Ui} of X such that glu,
factorizes under the form

where the gi are 6tale and q is the projection. As gi commutes with
the boundary and the pull-back is functorial, it is enough to show that
q o a = 9 o q. But q factorizes also in

and as A~ == 1 and the pull-back is functorial, we can assume that
y

Let now y E Y(n) , x E = q(x) such that y &#x3E; z (else everything
is zero as in the proof of Proposition 21). If z = y, we have also

and

as O = 0 if dim(E)  dim(q). Assume then that z 54 y. Then z E 1.
As in the proof of Proposition 21 we can consider Y = normal, thus
B = Oy,z is a discrete valuation ring. If we consider the commutative

diagram

we have f’(A1) and for u E A1 we have a canonical
isomorphism f, (u) ~ this enables us to identify

with

and with this identification, we have for each u such that q(u) = y, (0Ay ) §§ =
and then ° q* )~ _ (BAl B ° q’* )~ and (q* o aY)~ _ l

now we just have to consider q : A1 = Spec B~t~ -4 Spec B, with y the
generic point of Spec B and z a closed point. is the generic point of

= is a discrete valuation ring and B -4 is

non ramified, and we finish the proof as the one of Proposition 21. D

Remark. The proofs of Lemma 20, Proposition 21 and Proposi-
tion 23 come directly from Schmidt’s [S] analogous proofs.
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4.4. Homology of pro jective and affine spaces.

PROPOSITION 24 (Homotopy property). - Let £ be a fibre bundle
over a scheme X. Let 7r:Âx --~ X. Then

are isomorphisms.

Proof. As 7r can be decomposed into

and as with an induction it is sufficient to show the property
for n = 1.

For each and we have for each p,

where ~., is the generic point of j .4

we have

we can write

where 8 Al = 81 + 0° in restriction to
x
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We have from the definition of the boundary.

On the other hand as 7r is smooth of relative dimension 1, from

Proposition 23 we get 7r* 0 ax = 8Ai o vr*. We have

and also For each x, we have the

following lemma:

LEMMA 25. - The sequences

are exact and split.

In particular 8 Al x o 7r* = al o,7r* and 7r* is injective, thus

We have a canonical morphism

where

and From the preceding, and as
the property holds ifi is an isomorphism.

It is surjective: take C a cycle in decomposed in Co + Cl
in (1). From Lemma 25, 8° is surjective, thus there is D E 

such that (D) - El + Co ; put Fl - C - = Cl - El, then

8A1 x (Fi) = 0 as C is a cycle, thus from the exact sequence of the lemma,
Fl E o 7r *)), and we have i(F1) = C.

It is injective: take such that

thus
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and from surjectivity of 80, (E) = Fi + Do with E e Then
D - = Di - Fi, and åAl x (D - = C = Ci, which implies
D - E Ker 80, which also belongs to Im 1f* from the exact sequence;
this means C belongs to o 1f*), and C = 0.

The proof is the same for the algebraically constructible homology. 0

Proof of Lemma 25. - Put F = /~(.r). Fix a transcendence basis
v1,...,vm of F over R, and put o = dv1 A ... A dvm e let

T = dvi A ... A dvm A du e A point y of is the ideal

generated by a monic irreducible polynomial Py of F~u~; let ty be the image
of Py in By - F ~u~ ( p) - this is a uniformizing parameter of By ;
then dty - ey du with ey a unit of By. On the other hand for each y,
vl, ... , Vm is a transcendence basis of over R; we still denote the

image in 

Using shrinking isomorphisms with these coefficients, it is sufficient

to show the exact sequences

The application d is defined by

Clearly rF(,,)IF is injective in both cases.

Then p E Ker d (or Ker d’ in the second case) if and only if cp is

constant on the fibres of F.) -&#x3E; F; indeed let a E assume cp is not

constant on the fibre of a (which is isomorphic to implies that
there exists a E such that cp take two different values in the orderings
a+ and a- of x(a)(u) (i. e. the pullbacks of the ordering of x(a) by the
valuation ring positive and negative for u - a). Let P be the
minimal polynomial of a in the extension F - K(0152), and y = (P). Let (3
be the ordering of F(a) induced by the inclusion F(a) ~ K(a). Then a+
and a- are the pullbacks in F(u) of (3 by the valuation ring By, positive
and negative for ty. Thus is non zero. In the same way is

non zero.
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On the other hand we have retractions p and

Clearly cp is constant on the fibres if and

Thus Ker d = ImrF(u)/F and Ker d’ = ImrF(u)/F’
Let us show that d is surjective: by linearity, it is sufficient to show

that for a fixed y and cp = with fi E ~(y), there exists
E such that ~p. As x(y) = F[u]/(Py), we can

choose pullbacks of the f i’s in F[~], still denoted by fi.
Consider the formula

This formula is equivalent in the theory of real closed fields to a formula
with parameter in F[u], thus this defines a constructible set Cf of 2:F(u)’ If
deg P = n, then Co,..., Cn form a constructible partition of 2:F(u)’ Put

Let us compute let 0152 E ~,~(y~ such that &#x3E; 0 for i = 1, ... ,1~;
let x 1, ... , xr be the roots of Py in x(a). The ordering a corresponds to a
root xi of Py (cf. [BCR], Proposition 1.3.7). The pullbacks ~3+ and ~3_ of a
in F(u) for By are in fact the pullbacks of the ordering of x(a) in Ii( a) (u)
by the valuation ring ~(cx) ~u~ (~_x2 ) , positive and negative for u - xi . Thus
if ~3_ is in Cl, then {3+ will be in (the root xi passes under u). Thus

If a is not in {f1 &#x3E; 0, ... , fk &#x3E; 0}? then {3+ and {3- are in the same Cl thus
dy (9) (a) = 0. Thus dy(9) = cp.

At last, d’ is also surjective: take cp = sign( f ) E Z),
with f E F[u]. There exists a quadratic form on F(u) whose signature
counts

I (g real root of Py &#x3E; real root of Py  01
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(see for example [KnS]). Let 0 be the signature of this form. Then

d’ y (0) - cp. Indeed if a is such that f (a) &#x3E; 0, passing from 0- to {3+,
the root xi passes from the set (g ) Py (g) = 0, 1 (Ç-) (u - E)  0 1 to the set

and

thus = 1; if f (a)  0, it is the contrary and

Finally = sign( f) .

PROPOSITION 26 (Homology of projective and affine spaces). - For
0  p  n we have:

When R is real closed,

and uTe recover Borel-Moore homology of Rn and P~.

Proof. For affine spaces, this follows with an induction from

homotopy property.

For n = 0, = and = 

Next we use an induction on n: consider in IfD’R an hyperplane at infinity
identified with pn- 1 and apply the long exact sequence and the results
for AR - IfD’R B we obtain on one hand = and
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and on the other hand the exact

sequences

If n - 1, clearly and

Algcons(£R, Z) and the exact sequences give

If n is odd and strictly greater than 1, from the induction hypothesis

If the homogeneous coordinates on P’ are (Xo : Xl : ... : Xn), put
xi = Xi/Xo; if is the function field of the variety then the image
of the function 1/; : the isomorphisms 
and Alg cons(£ R , Z) -2L+ is p such that = 

If n is even, take ~ e Cons(£ R, Z) and the associated cycle ~ of AR,
i.e. To compute its boundary as a chain
in pn, put xi = Xi/Xl and take the (n - I)-form dx2 A ... A dxn on 
(the homogeneous coordinates of are (Xi : ... : Xn)); this is the

Poincaré residue of

As n is even, this is always equivalent to dx1 A ... A dxn . Then computing
the boundary of E we obtain 2E’ where d2..d - 2 

... 

n R

Thus a : is the multiplication by 2 and

/3 : AlgCons(ER, Z) - AlgCons(ER, Z) is the identity. 0

5 . k-algebraically constructible homology.

Once again, R is not necessarily a real closed field.

5.1. The cycle module AC(K).
If K is an extension of R, denote for each integer k &#x3E; 0,
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where

We also have

Still an other way to see is the following: let

Then the Ek (Kl ’s make a filtration of AlgCons(
is the graded ring associated to it.

In this way we can see EÐk ACk(K) as the "signature" of the

graded Witt ring of K. Indeed let I(K) be the fundamental ideal of
the Witt ring of K, i. e. the ideal of even forms. The graded Witt ring
is A conjecture of Lam, proved by Dickmann and
Miraglia from Voevodsky’s results (see [DM]), says that the elements of
Ek(K) are signatures of elements of Thus we have a "signature"
morphism between the graded Witt ring and (Dk 

PROPOSITION 27. - Let cp E Then cp E ACk(K) if
and only if ~p is a sum of characteristic functions of k-basic constructible
subsets of ~K (a constructible set in ~K is k-basic if it can be written
{0152 E ~K ~ &#x3E; 0,...,fk(a) &#x3E; 0} where fi E K). Consequently:

1) ACk (K) - Cons (EK, Z/2Z) for k &#x3E; s where s is the stability index
of K (the stability index of K is the least integer s such that every basic
set of ~K is s-constructi ble) ;

Proof. It comes from the fact that is generated by the
k-Pfister forms ~(al, ... , ak)) whose signature is 0
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PROPOSITION 28. - Let Then AC, together
with the following data, is a cycle module (see [R]):

(D 1 ) vve have

of degree 0 given in the following way : for i* where

(D2) algebraic extension of finite degree, we have

of degree 0 given by: for

(D3) For each field L, we have a structure of K*L-module (Milnor K-
theory) defined for al , ... , an in E AC(L) by

The product respects the graduation, this means that

(D4) If v is a discrete valuation on K, with residue field ~(v), we have

of d egree -1 gi ven by: for put

where ,~+ and (3- are the two pullbacks of a E E,(,) through v.

In this case we also put, if t is a uniformizing parameter of v,

Proof. The structure of K* L-module is well defined as

(corresponding to {a} + ~b~),

(corresponding to f al f 1 - a~ = 0) and

which is algebraically constructible .
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To prove that this is a cycle premodule, we have to verify the assertions
(R1)-(R3) of [R]. Assertions (Rla,b) and (R2a,b,c) are straightforward. The
proofs of (Rlc) and (R3b) are analogous to the ones of Lemmas 4 and 8.
Moreover

(R3a) Let i : K -4 L, v a discrete valuation on L, w the restriction of v to
K,7£ : x(w) --~ induced by i, e the ramification index; let 0152 E ~,~(v),
cp E ACk (K) . If e is even, the two orderings pullbacks of 0152 in L extend the
same ordering on K, thus (av o (a) = 0. If e is odd, the two orderings
restrictions of the pullbacks of a in L, are the same as the two pullbacks of
the restriction of a to r, (w), thus (0_ o i*cp)(a) = 7£* o ~~,cp(a). In both cases
we have o9v o i* = o8w.

(R3c) i : K -4 L, v valuation on L which is trivial on K. Then for each

ordering a on ~(v), the restrictions to K of the two pullbacks of a in L, are
equal and then 8v o i * = 0.

(R3d) With the same conditions, if t is a uniformizing parameter of v, then
sv (cp) (cx) = cp(~3+) where ~3~ is the pullback of a in L such that t(a) &#x3E; 0,
thus we have sv o i* = i*

(R3e) If v is a valuation on K, u a unit of Ov, then for p E ACk(K),
av ( ~u~ ~ p) = as the sign of u for a pullback of an ordering
on x(v) is the sign of u for this ordering.

To prove that this is a cycle module, we have still to show that AC
verifies (FD) and (C) : let X be an excellent scheme, x and y points of X,
we define 8g : let Z = fxl and 7r : Z --~ Z the
normalization of Z; if y is not a specialization of x of codimension = 0;
else 8~ G,~(y)~,~(y) o ay (if vy is the valuation associated to 
and 8y : == 8vy). The proofs of (FD) and (C) are analogous to the ones of
Lemma 11 and Proposition 16. 0

5.2. Consequences.

The following properties come directly from [R]. We obtain as in [R],
complexes (C*~ (X ), 8) and 8k) given by

The pushforward for morphism of finite type f : X ~ Y is defined by
f* : Cn~(X) --~ is such that ( f*)y = c,~(~)~,~(y) if y = f (x) and 
is a finite extension of ~(y), 0 else.



974

For 9 : y 2013~ Y a morphism of relative dimension p, we have a pullback
g* : Cn~ (X ) -~ putting (g* ) y = ~ . if g(y) = x, 0 else,
where 6~ is the ramification index of 9 in x.

Cartesian square

( cf. Lemma 20).
If f is proper then f * commutes to the boundary. If g is flat then g*

commutes to the boundary.

Homotopy property: if 7r, : V ---~ X is a n-dimensional affine bundle,
is a bijection.

PROPOSITION 29 (Long exact sequence). - For any closed subscheme
F of X, for each integer k we have an exact sequence

PROPOSITION 30 (Homology of affine and projective spaces). - For
0  p  n, we have:

In particular if R is real closed, we get:

Proof. For affine spaces this is a consequence of homotopy property.
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For n = 0, if d &#x3E; 0, 0 else. Next we use an

induction on n: consider in P’ an hyperplane at infinity identified with
and apply the long exact sequence and the results for An = 

we obtain on one hand = for p  n - 2 and on

the other hand the exact sequences

This gives:

e if n &#x3E; -d, the exact sequence is

As a = 0, we obtain finally

5.3. Case of varieties.

As in Section 3.2 we will consider R real closed and X as an algebraic
subset of RP. Then

If d = dim(X), we have 0 for k  -d.

We have an injection Cn (X, 7~/27~); Property 1 implies
= C,, (X, Z/22) for l~ &#x3E; 0. The boundary

is calculated in the following way: for V E X(n) and W E such that

W C V, for p E and a E Vr, we have

It is easy to show that the homology of the complex C* (X, Z/2Z) (and thus
the one of all the complexes for k &#x3E; 0) is Borel-Moore

homology with coefficients in Z/2Z. The complex C~(X,Z/2Z) is the

complex of Corollary 3.2 of [Sch].
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On the other hand we have for each n and k, an inclusion

commuting to the boundary ak and if

denotes the homology, we have for each non negative integer k,
a sequence of morphisms:

Let V be an algebraic subset of dimension k in RP. The fundamental
class of V in HfM (V, Z/2Z) is the class of the cycle given by the sum of the
k-simplexes of a semialgebraic triangulation of the Alexandrov algebraic
compactification of V compatible with "the point at infinity". If V C X,
we have a morphism

The algebraic homology 7~(X,Z/2Z) of X is the subgroup of

H!(M(X,71/271) of the classes of the i*~V~ for V e (cf. [BCR], §11.3).

PROPOSITION 31. Let X be a d-dimensional algebraic subset of RP.
We get a surjective map ~~(X,Z/2Z); this is injective
if k = d or 0, or if X is defined over R, non singular and compact and

Proof. We have

All the elements of are cycles and we have a surjection

If 1~ = d, there is no boundary and this map is injective. If k  d,
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The map is injective if for each irreducible (1~ + I)-dimensional
algebraic subset V of X, and for each k-dimensional irreducible algebraic
subset Wl, ... , Wm of V verifying 0, there exists f E ~(V)*
such that a( 1 + sign f ) = defined over R, compact, non

singular, this is true from Proposition 12.4.6 of [BCR]. In particular, if X is
defined over R compact non singular and k = d - 1, the map is injective. 0

Remark. - If X is singular, the map may be non injective. For
example consider the algebraic subset A of x R 2 given by the

equation

(where (uo : Ul) are the coordinates on Pl (R) and (x, y) the coordinates
on :rae2), then Z/2Z) is not injective. Indeed consider
the following subsets of A:

The set A can be seen as a fibration over a circle whose fibres are two

orthogonal lines, the situation turning of a quarter following the circle; we
add the plan containing the two lines over a point of the circle ( "oo point" ) .
We can visualize for example A++ on the following drawing:

Then the class of P~(R) is a boundary for Borel-Moore homology:
for example this is the boundary of the 2-chain [A++] + ~A~+~ . But this is
not a boundary in ( -1 )-algebraically constructible homology: assume P is
a polynomial of A changing sign passing through P (R) (and only there);
if P changes sign between A++ and A--, then it also changes sign between
A+- and A-+. Then = 2[P (R)] is zero.
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Example: complement of an hypersurface in Rn .

Let H be an algebraic hypersurface in Rn and X = Rn B H. The long
exact sequences give for -n  k  0:

We obtain:

In particular we recover:

. H 1 BM(X, ~/27~) _ where d is the number of closed bounded

semialgebraically connected components of H;

. ~~(X,Z/2Z) = (Z/2Z)" where c is the number of semialgebrai-
cally connected components of X.

Moreover, we obtain:

where e is the number of irreducible

components of H;

This gives entirely the homology of X in the case where X is the
complement of a curve in R2. For example if H is the curve of equation
y2 = x3 - x, we obtain:

If we replace H with the union of a line and a circle, we obtain a
set semialgebraically homeomorphic to the preceding one, with the same
algebraic homology, but H(- l)-ac X) = (Z/2Z)3.
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6. Lagrangian semialgebraic chains.

Let X be a n-dimensional real algebraic smooth manifold and
7r : T * X -~ X the cotangent bundle. If (x 1, ... , xn ) is a local coordinate

system of X and (xl, ... , xn, ~i,..., çn) is the associated coordinate system
on T*X, the canonical 1-form on T*X is

Then T * X is oriented by the (2n)-form

6.1. Chains with coefficients in 

If f : X -4 Y is a morphism of smooth manifolds, we denote by o x /y
the sheaf (where d = codim(Y, X)). A Lagrangian semialgebraic
chain is an element in whose support is generically a

Lagrangian submanifold of T*X ( cf. [KS], Chapter 9 and Appendix A2).
is the set of Lagrangian semialgebraic cycles.

We have canonically and WT* X ^_~ 
so we get a canonical isomorphism Choosing a form
gives an isomorphism 

Remark on the use of coefficients. - If Z is a smooth m-dimensional

irreducible algebraic variety, and z is the generic point of Z, we have
= If Z is a subvariety of a smooth algebraic variety Y, and

if D is a line bundle over Y, then = Let s be a section of

the sheaf Wz 0 on a Zariski open subset U of Z. Then s determines an

element of oz 0 Vlz(z). Zr - Z is a constructible function, then 0

and s determine an element C of Z). We shall say that C is
given by the function 0 and the coefficient s E oz 0 VIZ(U) (and even to
simplify s E wz 0 D). If the function 0 is associated to the function 1 s for
a semialgebraic subset ,S’ of Z, we shall say that C is the chain of support S
and of coefhcient s E wz ® D.

If Z is not smooth, take Zo a Zariski open subset of Z such that Zo
is smooth, and zo the generic point of Zo. Then (zo) = and we

use sections of Dj Zo .
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Geometrically a Lagrangian semialgebraic chain may be seen in the
following way: we have a partition of the support in semialgebraic subsets
such that the n-dimensional strata A and the Jrx (A) are orientable; then
to a couple (0 A, where OA is an orientation of A and is

an orientation of 7rx (A), we associate an integer; the sign of this integer
changes if we change one of the orientations, it does not change if we change
both orientations.

If there exists an isomorphism Ox (this means if X is

orientable), can be seen as a subgroup of this means that

a Lagrangian semialgebraic chain consists of oriented Nash Lagrangian
submanifolds of T* X with integers.

Example (cf. [KS], Remark 9.5.8). - Let Y be a Nash submanifold
of X, given by the equations x, = ... = 0 where xi, ... , xn are local

coordinates on X. Let (x 1, ... , ~1, ... , çn) the associated coordinates on
T~X. Then is the chain whose support is

and whose coefficient is

or

6.2. Characteristic cycle.

Let be the set of constructible functions on X, i. e. functions

X -4 Z constant on each element of a semialgebraic partition of X. Then
we have an isomorphism C : .~’(X ) -~ ( cf. [KS]). If F is a complex
of constructible sheaves and cp = x ( F) , we have = CC(F). We would
like to describe C(cp) without using the constructible sheaves. Assume ~p
is constructible relatively to a Whitney stratification S of X; we use the
notations of [SV]: write UaEI (disjoint
union of the connected components); then Aa C for a ,S’a of S.

[A~] is the chain defined by Aa with the same coefficients as 

denotes the set of constructible functions relative to the

partition S, and ,C(X, S) the Lagrangian cycles relative to the partition S,
i. e. the linear combinations (with integral coefficients) of the [A~] which
are cycles.
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From [SV], we can write

where ma is computed in the following way: take (p, ~) in and f a Nash
function defined in the neighborhood of p in X verifying

. d f is transverse to A~ in (p, ~) (i. e. p is a non degenerate critical
point 

. the Hessian of fj s, is positive definite in p.
Then for a "sufficiently small" ball B centered in p ( cf. [SV]) and E

small to the radius of B, we have

Indeed from [SV] we get

We have then

But from Lemma 8.4.7 of [KS], we have

and in the same way

In fact fx p from the local conic structure theorem

(see [BCR], Theorem 9.3.5), there exists a semialgebraic homeomorphism
h : B - B such that h(p * S n f -1(0)) = B n ¡-1(0) (p * A is the cone of
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vertex p and of base A and ,S’ is the boundary of B) and for all x E 
and all t with 0  t  1,

Using triangulation, we can find contractible compact semialgebraic
subsets Yi of ,S’ f1 (o) such that pj == L then

Example. - Let t, T be the coordinates on T*R. Orient R by dt. Let
a  b be in R. The cycle [T* RI is T~aR oriented by -dT. Then

If T* R is represented by R2, we get the following drawings (arrows are both
t &#x3E; 0 and T &#x3E; 0 and the orientation):

Example. - Take the example of the "cone" of
with coordinates

U, the interior of Z, for E = 0, +, -, I

Let S be the stratification ~Uo, U+, U_, ~0~, ,S’+, ,S’_ ~. Let (t,x,r,ç) be the
associated coordinates on T * X. Then ,C(X, S) is generated by the following
Lagrangian chains:
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If now ’P is a constructible function relatively to the stratification S,
then i

If

the isomorphism C is given in restriction to these Z-modules by

(To compute the coefficients we use for example the function f (y) =
d2 (y, p) + ç . (y - p), considering ç = gradp f as a vector in X ; see [KS] for
the results.)

A constructible function X -4 Z is said to be algebraically
constructible if it is the sum of signs of polynomials on X, cf. [MP].
They can be characterized by the fans (for every fan F of Spec, P(X),
¿:xEF cp(x) == 0 mod or by a criterion on the walls, cf. [B].

Call Fac (X, S) the elements of (resp.
,C(X, S)) which are algebraically constructible.

In our example, we can find the following characterization of

algebraically constructible functions: cp is algebraically constructible if

and only if

Indeed if 7r : Y -4 X is the blowing up at the origin then p is

algebraically constructible if and only if is algebraically constructible

(where The walls of are the strict transform of
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the cone (a cylinder) and the exceptional divisor; they are smooth and
normal crossing, so using the criterion of [B] we obtain: is algebraically
constructible if is constant modulo 2 ( i. e. c+ c- = co mod 2), if 
restricted to the cylinder is constant modulo 2 (i. e. b+ _ b- mod 2) and
if the "average" function on the cylinder (whose value is 2 (c+ + co) above

under) is algebraically constructible , i. e. 2 (c+ + co) -
2 (c- + co) mod 2.

In the same way, considering C + E + E as

a generically constructible function and applying the generic criterion after
blowings up, we obtain that C is algebraically constructible if and only if

Then (i) ,~ 1), (ii) O 2) and (iii) 4); moreover (i) + (ii) ~ 3),
(i) + (ii) + (iii) ~ 5) and (i) + (iii) ~ 6). The conditions are actually
equivalent, we have an isomorphism between Fa, (X, S) and La, (X, S). We
shall see in the following that this is always the case.

6.3. Limits of semialgebraic chains.

Let Y be a algebraic smooth manifold, p : Y x R - R and

a : Y x R -~ Y the projections. Let D a line bundle over Y, and C a
chain in C,,,+ I (Y x R, a*D) whose support S is such that for each (n + 1)-
dimensional irreducible component W of S, is dominant.

Let E E R. The limit C~+ (resp. C~- ) is by definition the chain of

C,,(Y,’D) given by ~x ¿xé (resp. - ~~ 
where x ranges through the set of (n + 1 )-dimensional points of S,
1Px E Z) is the component of C on and Xt: ranges through
the set of n-dimensional points of S n (Y x This set is finite

as W~ is n-dimensional from the domination condition.

In particular, if C is algebraically constructible, then 

(2 x is algebraically constructible, thus C~+ is algebraically
constructible, and also C~- .
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Geometric meaning: let £ be a section of D. For each (n + 1)-
dimensional irreducible component of S, fix a (n+ 1 )-form dYl A ... A dyn A dt
on S. Let cp be the generically constructible function obtained on S with C
and the coefficients on a (n+1)-dimensional irreducible
component of S, cp is (generically) the function associated to if h

is the element associated to (cf. 93.2).
Take a Whitney stratification of S compatible with the semialgebraic
subsets where cp is constant, with the irreducible components of S, with
the semialgebraic subsets where the forms A ... A dyn A dt define

an orientation, with Ss and Then C,+ is given on
a n-dimensional stratum of Se by the sum of the values of cp on the

(n + 1)-dimensional strata E of S n (Y x El) whose boundary is
this stratum, and the orientation induced by the one of the E (i. e., the
coefficients dy1 On the other side, C~- is given on this stratum
by the opposite of the sum of the values of p on the (n + 1 )-dimensional
strata ~’ of S n (Y x ~t ~ t  El) whose boundary is this stratum, and the
orientation induced by the one of the E’ (which give here the opposite of
the orientation sign(dyl A ... A dyn ) ) ; finally, C,- is also given by the sum
of the values of p on the strata ~’ and the coefficient dyl A ... A dYn 0 f-

For generic E, C~+ = C,- =: C~ . In the general case, we have

in the sense of [SV] for example. If C is a cycle, we always have Ce+ = C,-
else the component of the boundary on Se would be nonzero.

6.4. Pushforycrard of Lagrangian cycles.

Let f : Z ----+ X be a regular morphism of smooth manifolds. We
recall the description of the morphism f* : -~ given in [SV].
The map f induces the diagram:

Let d and n the dimensions of Z and X. If C is a Lagrangian cycle
on T* Z, and Cs is a deformation of C such that C is the limit of C,
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when s - 0+ and that for each s, ICsl ] (the support of is transverse

to d f * , then is a n-dimensional submanifold of Z x x T* X. The
coefficients are given by the following isomorphisms: let A be a component
of I C, and Ao C A a smooth Zariski open subset; the coefficient of Cs on A
can be seen as a global section of WAo 0 the normal

sheaf of Ao (cf. [Ha], p. 182), then we have

(see [Ha], Proposition 8.20); corresponds to the coorientation
sheaf on Ao. As Oz, we get

Using the transversality of d f * with we have

this is also isomorphic to

Using once again [Ha], Proposition 8.20, for and as

we get

So (Cs) is defined as a cycle with values in T*WT* x/x’ Then from [SV],
f * C is the limit cycle of T* when s --~ 0+ (T* is the usual push-
forward).

Example. - Let f : Z - be the blowing up at the origin. Let (x, y)
be coordinates on IR 2 and (x, y, ç, 1]) the associated coordinates on 
Describe Z with two maps with coordinates (x, t) and (u, y) (with u = 1/t);
the associated coordinates on T*Z are (X,tl(,7’) and (with
u = = ~/t, v = ~ - t2T). Finally the coordinates on Z 
are (x, t, ~, 1]) and (u, y, ~, 1]) .
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The map f is given by (x, t) H (x, tx) and (u, y) H (uy, y). The map
d f * is given by

and

Let C = [T£Z] where E is the exceptional divisor. Deform [T~Z] into
C, where ICE is given by (0~, (,~/(1 + t4)) or (u, 0, -Eu/(l + u’), 0) and
the coefficient is

or

in wlcEI This is a good deformation, and l11 U A2
where = 0, x = 0} and A2 - ~ u = 0, y = 0}. To compute the
coefficient, we need to pass through the normal sheaf. For example let
us do it in the first map for Ai. First, the corresponding coefficient in

A2NICEljT* is dx IBdT0dx A dt as (-d( A dt) A (dx A dT) gives the
canonical orientation of T* Z. Next step, apply d f * : as in Ai , dT = -E dt,
we obtain E dx 1B dt 0 dx 1B dt in 

Now fix W = dx 1B dt 1B dg 1B dq in this fix an isomorphism
and allows us to get on one hand A dq

in as A dq) A A dt) = w and on the other hand d~ A dil
in as (dx A dt) A (d~ A d7l) = w. Thus we have obtained the
coefficient -(I/E)dç A dq 0 (dE A in ·

The last step is to apply T: it is easy to see that the component
obtained with Ai is T* R 2 with the coefficient A dq 0 d~ A d7y
in 0 Doing the same with A2 and the coefficients

described in the second map, we would have obtained with the

opposite coefficient. Thus = 0 and the limit is 0. This means

that f * ~TE Z~ = 0.

6.5. Characteristic cycle of algebraically constructible functions.

Let cp : : ~ 2013~ Z be a constructible function. It is algebraically
constructible if and only if it can be written cp = ~ f* lz where the sum is
finite, the Z’s are algebraic varieties and the f : Z -4 X are proper. ( f * is

defined by A) for x E X). In fact the Z’s can be
chosen non singular, cf. [MP], Lemma 6.4.

If 1jJ : Z -4 Z is a constructible function and F is a complex
of constructible sheaves such that X(F), then we have from [KS],
Proposition 9.4.2,
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Example. - If f : Z ~ R 2 is the blowing up at the origin, and
IP = 1 E, then = 0, which corresponds to f * ~TE Z~ = 0.

If p = ~ with Z non singular, then

Thus to show that C(~p) is algebraically constructible it is sufficient

to show the following

PROPOSITION 32. - The cycle is algebraically constructible.

First two lemmas:

LEMMA 33. - Let A, B and X be smooth algebraic varieties, M C X
an algebraic subvariety and S a finite Nash stratification of M. Let

f : A x B --~ X be a regular map, and assume f is transverse to S.

Call X the map given by = f (a, b) . Then there exists a
semialgebraic subset 0 of A of positive codimension such that for a E A B 0,
fa is transverse to S.

Proof. Let ,S’ an element of the stratification S. As f is transverse
to S, the inverse image is a Nash subvariety of A x B x X.
Consider the projection 7r : f -1 (,S‘) -4 A. If a is a regular value of 7r, then
~r-1 (a) - {a} x (Im fa n ,5’) is a submanifold of X and fa is transverse

to S. From Sard theorem (cf. [BCR], Theorem 9.5.2), the set SZS of non
regular values of 7r is a semialgebraic subset of A of positive codimension.

0

LEMMA 34. - Let Y be a real algebraic smooth variety, p: E --~ Y
an algebraic smooth bundle, s : Y - E a regular section, M an algebraic
subvariety of E and S a finite Nash stratification of M. Then there exist a
regular family of regular sections S = and a Zariski open subset U

of R such that So = s and for e E U, is transverse to S.

Proof (communicated by J. Bochnak). - As E is an algebraic bundle,
we can find regular sections s1, ... , 8k of E generating the fibre of E in
each point of Y (cf. [BCR], Proposition 12.1.7). aisi for

a = (0152l,...,ak) E R k , and q : Y x R~ -~ E : (y, a) - q~ (y) . Then q is
transverse to S as it is a submersion: as E is locally isomorphic to Y x Ey,
the tangent space Tq(y,a)E is locally isomorphic to TyY x Ey. The image of
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TyY x 101 by is TyY x 101 as qa is a section. On the other hand the
image of {0} x R~ by d(y,a)q is generated by the this is Ey. Thus

Apply Lemma 33 to q: there exists a semialgebraic subset Q of R~ of
positive codimension such that a tt Q if and only if qa is transverse to S,
and qo = s. There is a fibration 7r : R~ B {O} -4 pk-l (R) with fibre R B f 0 1.
As S2 is of dimension strictly less than k, the set V of points of (R) for
which the fibre of Q is 1-dimensional, is of dimension strictly less than k-1.
Choose v V V and let D be the line generated by v in R~ . We identify R
to D and we take the family S’ = 9)yxR and 0

Proof of Proposition 32. - Let d and n be the dimensions of Z and
X, (Zl"’" Zd) and (xl, ... , xn) the coordinates on Z and X, (Zl"’" zd,
81, ... , 8d ) and (~i,..., xn, ~1, ... , çn) the associated coordinates on T* Z
and T*X, and at last (zl , ... , zd, ~i? - - ? çn) the coordinates on Z x x T*X.
Complete the diagram of §6.4 in the commutative diagram:

where the ai are the projections. Consider E of

support (the zero section of T* Z) and of coefficient dzl A ... A 
dzl A ... A dZd.

First show that there exists a deformation of [T~Z] which is an

algebraically constructible cycle of support transverse to d f * . As T* Z is
an algebraic bundle (cf. [BCR], Proposition 12.1.9), Lemma 34 applied
to the zero section of T*Z gives a regular family of regular section

H (z, sE(z) ) and a Zariski open subset U of R such that jE: is transverse
to d f * for each E E U (here M = Im d f * and S = f MI). 
is an algebraic subvariety of T* Z I (z, 8) E is a

smooth algebraic subvariety of T* Z x R. Fix a coordinate t on R, and let C
the (d + I )-chain of T* Z x R with coefficients in of support J and
of coefficient dzl A ... A dzd A dt 0 dzl A... A dzd C o j 0 The cycle
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C, is the one of support JE’ and of coefficient dzd Q9 
Then [T*zZ] is the limit of Ce when e --&#x3E; 0+.

Then J’ = rl (T* Z x U)) is a (n + 1 )-dimensional smooth
algebraic subvariety of Z x x T* X x U. The chain (d f * ) * (C) is the

chain of support J’ and of coefficient in úJ.:r’ Q9 given by
the isomorphism Q9 Q9 a2T*wT*xlx as in the
~ 6.4, which gives if yl, ... , yn, t are coordinates of J’ (where the yi are
regulars in ~, z), A(z, ~, t) dyi A ... A dyn A dt Q9 A dçn where A is a
regular function. Thus (d/*)*(C) is an algebraically constructible cycle and
((df *)* (C))~ _ (d.f *)* (C~).

We also have (T*((df*)*)(C))E = and T*((df *)*)(C) is

algebraically constructible as pushforward of algebraically constructible
cycle. Thus the limit of when E ~ 0+ is algebraically
constructible, this means is algebraically constructible. 0

Let Lac (X) = (the set of Lagrangian alge-
braically constructible cycles) and denote the set of algebraically
constructible functions on X.

COROLLARY 35. - The characteristic cycle of an algebraically
constructible function is a Lagrangian algebraically constructible cycle

6.6. Inverse image of a Lagrangian algebraically
constructible cycle.

Let Eu = C-’ : ,C (X ) ~ ~(X). Let C E L(X) be an algebraically
constructible cycle. Is Eu(C) an algebraically constructible function? The
computation of Eu(C) is done in the following way (cf. [KS], p.406):
for x E X, let ~p~ : X --~ R a Nash function such that 0,

0, and the Hessian H(x) of px in x is positive definite. Let

A, = lyE X} C T*X, and e Cn(T* X, 7rxwx) the
chain of support A, and of coefficient o 0 o E with

by the projection.

Eu(C) (x) is the intersection multiplicity of and C in (x, 0) (that
will be Let E C T* X be the support of C. We will

prove that Eu(C) is actually algebraically constructible, first generically
and then everywhere. We will need the following proposition.

PROPOSITION 36. - Assume X is of dimension n. Let Y a smooth
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m-dimensional irreducible algebraic variety, -y: Y - X a regular morphism,
cp : Y x X - R a regular function; for a E Y, r.p a : X - R denote the function
x H assume that Wa(^~(a))) = 0 and 0. Let

Then there exists a proper algebraic subvariety Z of Y such that

a - 0 algebraically constructible outside Z.

Proof. Let 0 be a n-form on X. E k be the n-dimensional
irreducible components of E, c,~ 1, ... , n-forms E/c. The cycle C
is algebraically constructible thus there exists regular functions gij 
such that C is given on Ei par Oi by sign(gij).

Let S be a Whitney stratification of E compatible with the singular
points of E, the points where the gij vanish, the intersections of irreducible
components of E, the zeroes and the poles of oi. Call sY the Whitney
stratification of Y x E whose strata are the products of Y with the strata
of S.

As Y x T*X - Y x X is an algebraic bundle, Lemma 34 applied to
the section Y x X -~ Y x T * X : (a, x) ~ gives a regular
family of regular sections (a, x) ~ (a, x, s~ (a, x)) which are transverse
to SY for E E U, U Zariski open subset of R.

From Lemma 33, for each E E U, there exists a semialgebraic subset SZ~
of Y of positive codimension such that a E Y B ne: if and only if the map
: x H (~,~,5~(~,.r)) is transverse to S ; if denote the section

x H (x, s~ (a, x)) of T* X, then (D’ a is transverse to S for each a E Y B S2~ as
= (id, -D"). Put SZ = This is a semialgebraic subset of U x Y.

Denote by Z the Zariski closure of ({0} x Y) Identifying (~0~ x Y)
to Y we have Z c Y.

We can choose Wi as a restriction of a n-form W i on T*X, which

gives by pullback by the projection, a n-form Wi on R x Y x T*X.
On the other hand the n-form 0 gives by pullback an-form 0 on

Then there exist regular functions
fi on R x Y x T*X such that wilT* X == The

computation of the intersection number of ] and C take count of the
sign of fi (cf. [KS], p. 389).

Let Fi - Ej sign(gy) and F = Ei Fi.
It is an algebraically constructible function on R x Y x 
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The number n C)(,(a),O) equals, for a sufficiently small E and
a 0 Z, the sum of F (E, a, x) for the x near (-~(a), 0) (xl (a), ... , denote

these x and mi = a, xi (a) ) ) .
Let p : R x Y x T*X - R be the projection. For u/ a constructible

function on R x Y x T*X, McCrory and Parusinski [MP] define a

constructible function on Y x T*X by

where . with

We have with Then

for a 0 Z. Indeed in restriction
where the Ai are

described by the xi ; they are homeomorphic to a closed ball of Y, thus

Let g : y 2013~ Y x T * X : a H (a, q(a), 0). The inverse image by g
of a constructible function 0 on Y x T*X is defined by 
( cf. [MP]). Then

outside Z. From [MP], Theorem 2.6, is an algebraically constructible
function. 0

COROLLARY 37. - The inverse image by C of an algebraically
constructible Lagrangian cycle is an algebraically constructible function,
i. e. C ( thus is an isomorphism from 
onto Fac(x)).

Proof. Embed X in R~ and put (Euclidean norm).
From the preceding proof Eu(C) is algebraically constructible on XBY where
Y is an algebraic subvariety of X of strictly smaller dimension. For each
irreducible component Y of Y, let 6 : x - x a desingularization of Yi.
Then a - Eu(C)(6(a)) is generically algebraically constructible on Yi. Let
Zi C x such that it is algebraically constructible on Yi B Zi and that 6 in
restriction to Yi B Zi is a biregular isomorphism onto its image. Then Eu(C)
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is algebraically constructible on Yi B 6(Zi). The dimensions go down and in
dimension 0 every integral function is algebraically constructible. 0

From this corollary we get easily the following characterization of
Lagrangian algebraically constructible cycles:

COROLLARY 38. - Each chain can be written as £ f* 
mith Z non singular algebraic variety and f : Z - X proper.

From this characterization follows the property:

COROLLARY 39. - If f:X - Y is a regular proper morphism,
then f * : ,Ca~ (X ) -~ (the pushforward of a Lagrangian algebraically
constructible cycle is an algebraically constructible cycle).
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