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STRUCTURE OF THREE INTERVAL

EXCHANGE TRANSFORMATIONS I:

AN ARITHMETIC STUDY

by S. FERENCZI, C. HOLTON &#x26; L.Q. ZAMBONI

Ann. Inst. Fourier, Grenoble
51, 4 (2001), 861-901

1. Introduction.

A fundamental problem in arithmetic concerns the extent to which
an irrational number 9 is approximated (in a suitable sense) by rational
numbers p/q. Such questions are intimately related to the underlying
algebraic nature of the parameter 0. The problem of minimizing the
quantity I qO - p leads naturally to the regular continued fraction expansion
of 9:

The expansion is obtained by iterating the Gauss map ,S’ : (o,1) -4 ~0,1)
given by

where 0   1 denotes the fractional part of x. The transformation S

may be iterated indefinitely (Sk (0) 7~ 0 for all k &#x3E; 1), if and only if

Keywords : Generalized continued fractions - Interval exchange transformations.
Math. classification : 11 J70 - 11 J 13 - 37A05.
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0 E (0, 1) is irrational. This leads to the continued fraction expression for 0
given above. The positive integers (nk) are called the partial quotients.
By truncating the expansion of 0 at the kth level one obtains a rational
number (called the k-th convergent of 0) which gives the best rational
approximation of 0 in the following sense:

and

where ||9|| ( denotes the difference (taken positively) between 9 and the
nearest integer. This best approximation property of the convergents,
coupled with the entirely arbitrary nature of the sequence of partial
quotients is what distinguishes the classical continued fraction algorithm
from all other known continued fraction type algorithms. The following
theorem, due to Lagrange [27], constitutes a fundamental result in the
theory of regular continued fractions:

THEOREM 1.1 (Lagrange, 1769). - The partial quotients in the

continued fraction expansion of an irrational number 0 are ultimately
periodic if and only if 0 is algebraic of degree 2.

The problem of simultaneously approximating an n-tuple of real
numbers ((}1,(}2,...,(}n) by rational numbers (pl/q, p2/q, ... , pn/q) (with
the same denominator) has been and continues to be an important area
of investigation with a wide range of applications to different areas of
mathematics. The question dates back to Hermite in [21] where he suggests
finding a generalization of the continued fraction algorithm which reflects
the algebraic nature of the parameter(s). As a response to this problem
Jacobi developed a special case of what is now called the Jacobi-Perron

algorithm (see [6], [32], [37]). Since then, a number of other multidimensional
division algorithms have been studied including [2], [5], [8], [10], [18], [19],
[24], [25], [26], [28], [29], [33], [43], [44] to name just a few. (See [9], [38], [39]
for nice surveys on multidimensional continued fractions). It is known that
for each n-tuple of irrationals (91 , 92 , ... , On) the system of inequalities

has infinitely many solutions ~HaWr~ . Moreover the exponent 1 + i- is

optimal in the sense that for any It &#x3E; 1 + 1 there exist (01, 82, ... , 9n) for
which the system of inequalities I  has only finitely many
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solutions. However, unlike the 1-dimensional case where the convergents of
the regular continued fraction yield the best rational approximations in the
sense mentioned above, in dimension greater than one most of the usual
continued fraction algorithms stop short of producing optimal simultaneous
approximations of (01, 02,..., 9n ) . Moreover it is not known whether many
of the higher dimensional division algorithms cited above (including Jacobi-
Perron) satisfy a full Lagrange type theorem: The algorithm is ultimately
periodic if and only if all the parameters lie in the same algebraic extension
of Q. Generally one can prove the "only if" part while the "if" part is only
conjectural. There are a few exceptions: One is a geometric construction
due to Korkina in [25] based on ideas originally due to Klein [24] and
later modified by Arnold [2]. Another is a 2-dimensional multiplicative
algorithm due to Hara-Mimachi and Ito in [19]; still another is a recent

n-dimensional algorithm due to Garrity in [18], where the author considers
purely periodic expansions of period length one. A fourth example concerns
a recent paper of Boshernitzan and Carroll [8] in which they show that a
certain family of vectorial division algorithms, when applied to quadratic
vector spaces, yields sequences of remainders which are ultimately periodic.
However, in this case the converse is false: periodicity does not imply
that the parameters are quadratic. The division algorithm of Boshernitzan-
Carroll is based on a renormalization process associated with interval

exchange transformations.

In this paper we describe a new 2-dimensional division algorithm
we call the negative slope algorithm which stems from the dynamics of
a three interval exchange transformation on [0, 1]. We consider a gen-
eralization of the Gauss map given by the following transformation

T : (o,1 ) x (o,1 ) - ~0,1 ) x ~0,1 ) defined by

where again 0   1 denotes the fractional part of x. The map T may
be iterated indefinitely (the algorithm does not stop) on a pair z = (a, ~3)
if and only if z lies off a special set of rational lines with negative slopes
(see Proposition 2.3). Thus if a and 0 are not both rational, then T may be
iterated indefinitely on either (a, (3) or (a, I - 0) or both. Iterating T on a
point (a, (3) leads to an expansion of the form nk, mk) where ::l::1

and are positive integers. The quantity 6~ records which of the two
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defining rules for T is used at stage k of the iteration, while nk and mk
record the integer parts in each coordinate. The sequence (Ek, nk, mk) is

analogous to the sequence of partial quotients in the regular continued
fraction algorithm.

Geometrically this iteration produces a sequence of nested quadrila-
terals Q~ in the plane converging to the point (Q, (3). At stage 1~ of the

iteration, the quadrilateral Q~ is partitioned according to a family of qua-
drilaterals whose main diagonal has slope -1, and whose boundary is made
up of lines of negative rational slope. This partition into quadrilaterals is
constructed via a two-dimensional Farey series derived from the coordi-
nates of the vertices of Qk . This geometric interpretation is analogous to
the partitioning of the unit interval according to m-Farey fractions.

In this paper we study various diophantine properties of this algorithm
including its approximation qualities. It is convenient to make a change of
coordinates (Q, (3) ~ (cx + /~,/~ 2013 a). As in the regular continued fraction
algorithm, truncating the iteration of T at stage k gives rise to a pair
of rational numbers with the same denominator, and with

approximating a + Q and rk/qk approximating $ - cx. Geometrically
corresponds to the barycenter of the Farey quadrilateral Q~ .

We show that

for infinitely many k. In this privileged direction, we obtain a so-called semi-
regular continued fraction giving an approximation which is about as good
as the regular continued fraction. But it is shown that the approximation
of a + {3 depends on the values of both a and {3; and hence the negative
slope algorithm is not a skew product of the regular continued fraction, or
for that matter other higher-dimensional continued fractions found in the
literature. In contrast the approximation of 0 - cx is only linear in 1/q.

As a consequence of the approximation qualities mentioned above, we
show that the transformation T satisfies a full Lagrange type theorem: The
iteration Tk (ex, (3) (or equivalently the expansion nk)) is ultimately
periodic if and only if a and {3 belong to the same quadratic extension of Q.

The negative slope algorithm is intimately connected with the dyna-
mics of 3-interval exchange transformations; in fact, it may be indepen-
dently reformulated in terms of the dynamical and symbolic properties
of 3-interval exchange transformations. Though these connections are not

necessary to the understanding of the present paper, the last section is
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devoted to a short presentation of these ideas. In the sequels [16], [17]
we use the symbolic/combinatorial/arithmetic interaction to solve several
long standing problems on the symbolic, spectral and ergodic properties
of 3-interval exchanges. In particular, in [17] the diophantine properties
developed in the present paper are used to characterize possible eigenvalues
of a 3-interval exchange and to obtain necessary and sufficient conditions
for weak mixing, solving two questions posed by Veech in [42]. In a forthco-
ming fourth paper we apply our methods to study the joinings of 3-interval
exchanges.

Acknowledgements. - The authors were supported in part by a joint
NSF/CNRS Cooperative Research Grant between the U.S. and France. The
third author is also partially supported by a grant from the Texas Advanced
Research Program. We are very grateful to V. Berth6 and A. Fisher for
many fruitful conversations. We also wish to thank the referee for his many
useful comments and suggestions.

2. The negative slope algorithm.

Let I denote the interval ~0,1 ~. We assume that (a, ,~) E I x I. We
define by recursion a sequence (ak, with K finite or K = ~ oo,
with

and

For k = 1 set

If either a, {3, or 61 is equal to 0, then the algorithm stops. In this case we
take K = 1. Otherwise

. if 61  0, put a 1 = a and {3l = 0,

. while if 61 &#x3E; 0, put cxl = 1 - a and {3l = 1 - {3.

It is readily verified that and 61, if they are defined, satisfy the above
inequalities.

Having defined (ak , 6k) with the required properties, we write
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where nk, ?r~ are each positive integers. Set

If either a[, {3~, or bk+l is equal to 0, the algorithm stops and we
set K = k + 1. Otherwise

. if  0, put

. while if 6k+1 &#x3E; 0, put

It is readily verified that and 16k+l satisfy the required inequal-
ities.

The above arithmetic algorithm determines a sequence

we call the negative slope of (a, (3) where sgn(6k)- We
put E K = 0. It also defines the sequence (C" / 16k 1, ~~ / ~ b~ ~ ) o ~ ~ ~ K with values
in I x I where for k = 0 we take 60 = 1, cxo == {3 and 30 = a. As we shall see
in what follows, the sequence (c~~ / ~ b~ ~ , ~~ / ~ b~ ~ ) o  ~  K plays an important
role while is mainly an auxiliary sequence.

A geometric interpretation of this algorithm is given in the last

section of the paper in connection with interval exchange transformations.
The referee suggested the following alternative geometric description: at
stage k we consider the interval [0, ~b,~ I] and the two subintervals [0, {3~]

0152~, 18 k I], of respective lengths {3~ and cx~ . Except in the cases
in which 0152~ = 0 or {3~ == 0 or 0152~ + {3~ == I (in which case the process
stops), this naturally defines a partition of [0, into three subintervals.

The middle interval is of length If the first and third intervals do

not intersect, i. e., 6k+1 &#x3E; 0, then we replace their lengths by the lengths
of the complementary intervals, otherwise we keep the lengths and {3~.
This defines the auxiliary quantities (ak+l, Finally we subtract the
length of the middle interval as many times as possible from the lengths

(1) A geometric motivation for the name given to this algorithm is described in the

following section.
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of the first and last intervals (or their complementaries if 6k+l &#x3E; 0); by
construction we can always make the subtraction at least once. What is
left over from the first interval has length cx~+1, and what is left over from
the third interval has length {3~+ l’ After renormalization, we recover the
formula for the map T given in the introduction.

For each 0  k  K we define the quantities

The following inequalities are easily verified:

and hence

and hence

and hence

LEMMA 2.1. - For each 1  k  K we have

where T : I x I --~ I x I is defined by

where fal denotes the fractional part of a.

Proof. We will show that for each 0  k  K - I we have

By equation (2.2) we have
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whence

Thus

and similarly

as required.

On the other hand if 6k+l &#x3E; 0 then (2.1) and (2.4) yield

whence

and similarly

The lemma shows that the negative slope expansion E (c~/3)
in (2.5) may be obtained directly from the sequence (T (,C3, a ) ) 1 x -
(a bk, {3/18k l)k=O’ The quantity E codes which of the two defining rules
for T is used at stage k of the iteration, while nk and m~ record the integer
parts in each coordinate.
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LEMMA 2.2. - For each 0  k  K set

Then

Proof. We express the quantities
and 18k I. .

and 16k-11 ] in terms

whence

. -1 then (2.1) , (2.2) and (2.3) imply

and

The lemma now follows immediately from the above expressions. 0

We next look at the "improper" case when the algorithm stops (this
situation is called "Storungen" by Perron and others).

PROPOSITION 2.3. - The algorithm stops (K  +00) if and only if
(a, 0) lies in the intersection of I x I and one of the following rational lines:

for any integers 0  p  2q.



870

Proof. The algorithm stops if and only if 0 or = 0

or {3k-l - 0, hence if and only if the triple DK-1, ~ satisfies

one of the relations

Suppose = with e == ::l::1; then, by applying the matrix
formula in Lemma 2.2, we get that for each 0  1~  K - 1 there exist

integers Bk and Ck such that

where e~ _ ~ 1. We note that since a~ and 0’ k are nonnegative, Bk and Ck
can each be assumed to be nonnegative. By writing each of Sk, Dk, and I
in terms of D~ _ 1, I (using Lemma 2.2), we find that

and = ::l::ek.

Looking at the possible parities of m~ and nk, we see by induction
on 1~ that Bk is an odd positive integer while Ck is a nonnegative even

integer. Moreover since

we obtain

where the last two inequalities follow from (2.8) and (2.6) respectively.
Hence Ck - 1  2(Bk - 1) + 1 and thus

Equation (2.12) when I~ = 0 gives a linear relation of the form

In fact,
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Conversely, if a and (3 satisfy such a relation, we can write it in the
form Bo So + eoDo = Co1801, where Bo is an odd positive integer, Co is a
nonnegative even integer, and eo = ~ 1. Suppose for k &#x3E; 1 we have

where is an odd positive integer, is a nonnegative even
integer, and == ::l::1. If - 0, then we must have = 1

as ]  and hence the algorithm stops. On the other hand
if &#x3E; 0, then we apply the matrix formula in Lemma 2.2 as above
to get

with the same parity properties, and with Bk = Since

Ck-I  by (2.13), we obtain that Bk  Bk-1. Hence by this process
we obtain a K for which either CK-1 = 0 or Bx _ 1 = 1. If CK-1 - 0 we saw
that the algorithm stops. While = 1 either 0152~ -1 = Cx-1 ~ bx-1 ~ or

== CK-118K-ll, and in either case this implies = 0 since 

is even and a~ -1 and {3k -1 are each less than 18 K I. Thus in all cases the
algorithm stops.

A similar reasoning takes care of the case SK-1 = which

corresponds to the rational values of a + {3 and relations

LEMMA 2.4. - If the algorithm does not stop (K = +00), then
(nk, (1, -f-1) for infinitely many k and +1) for infinitely
many k.

Proof. Suppose the algorithm does not stop and (nk, _ ( 1, + 1 )
for k &#x3E; ko ; then it follows from (2.10) that = 0152~ = C for some constant
C &#x3E; 0 and for all k &#x3E; ko ; but (2.11) implies that b~ _ 1 ~ &#x3E; ~ b,~ ~ + cx~ ~-,Q~ &#x3E; C.
Since ~b~ ~ I -4 0, it follows that C = 0, a contradiction. 0

In terms of 3-interval exchange transformations, Proposition 2.3 gives
necessary and sufficient conditions for the corresponding 3-interval exchange
to have periodic orbits, while Lemma 2.4 implies that in the absence of

periodic orbits the exchange is minimal (each point has a dense orbit) .
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3. Farey quadrilaterals.

We begin by recalling a well-known fact about regular continued
fractions. For an arbitrary sequence of positive integers the set Ik
of numbers in [0, 1) whose first k partial quotients are n1, n2, ... , nk is a
half-open interval having endpoints  a~ /b~ with akb’ = 1.
Indeed, the Ik are given by ao = 0, bo = ao = b’o -- 1, and inductively,

if k is odd,

if k is even.

The endpoints of each interval are successive Farey approximations of the
numbers in that interval.

For a sequence with 1 and E~ E {::l::I} we
shall formulate a similar description for the set Qk of points (0152, (3) E I x I
having as their first k "negative
slope coefficients". It is useful to regard ak, b~, a~ and 0’ k as functions of
the variables (0152, (3), defined inductively by setting = {3, ,C3o = a, 6o = 1
and Eo = 1, and, for all 1~ &#x3E; 0,

We record a few simple facts, the proofs of which are elementary.

LEMMA 3.1. begins with then the

values at (0152, (3) of the functions 0152~, {3~, {3k+l, 8k+l for 0  I~  N are
exactly those of their constant namesakes in the negative slope algorithm
of Section 2.
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LEMMA 3.2. - The functions a~, {3~, 6k+1 are of the form

and are nonnegative

integers such &#x3E; and q(8) &#x3E; 

LEMMA 3.3. - The lines Q~ - 0 and 0152~ - have negative
slope &#x3E; -1 while the - 0 = have slope  -1 and

the line b~+1 - 0 has slope -1. The intersection of the lines 0152~ == 0
- Ek8k lies on the line b~+1 - 0, as does the intersection of the
= 0 and Q~ 

COROLLARY 3.4. - The four lines

and 0’ - bound a quadrilateral.

3.1. Geometric formulation.

We claim that Qk is the semi-open(2) quadrilateral of Corollary 3.4,
excluding the lines 0152~ == Ek6k = and that the positions of
the bounding lines are as shown in Figure 1. This holds trivially in the
case k = 0. Assume the assertion holds for some k.

It follows from Lemma 3.1 that Qk+l is the subset of Qk on which

We first consider the case +1. Equations (3.2) give
ak+1 = 6k+1 + a’ and = 6k+1 + {3~, whence inequalities (3.3) may be
rewritten as

~2~ If nk or ?n~ is 1 then we must also exclude the lines ak = 0 and /3~ = 0 from Qk, in
which case Q~ is actually an open quadrilateral. This is (partly) due to our convention
of stopping the negative slope algorithm when a~ = 0 or /3~ == 0.
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Figure 1. The quadrilateral Qk. The two configurations
correspond to the possible values of Ck = E1 E2 ~ ~ ~ Ek.

Each of the lines 0152~ n &#x3E; 0, contains the intersection of the lines

b,~+1 - 0 and = 0, and their slopes strictly decrease to -1 as n - oo.
Similarly, each of the lines {3~ = contains the intersection of the lines

6k+1 = 0 and 0’ k = 0, and their slopes (strictly) increase to -1 as m 2013~ oo.
Figure 2 shows how the four lines bound Qk+l in the desired manner.

Now let us assume that = -1. Using (3.2) we may rewrite the
inequalities (3.3) as

Each of the lines 0152~ = n6k+l + Ek8k, n &#x3E; 0 contains the intersection of the
lines 6k+1 = 0 and 0152~ and their slopes (strictly) decrease to -1 as
n ---~ oo. (To see this last part, use (3.2) to write the equation of the line as
{3~ + (n + 1)b~+1 = 0.) Similarly the slopes of the lines (3~ + Ek6k
(strictly) increase to -1 and each line contains the intersection of the lines
6k+1 = 0 and {3~ = Figure 3 shows that these lines bound Qk+l
as claimed. This completes the induction.

Remark 3.5. - The line b~+1 - 0 divides the quadrilateral into

two triangular regions, corresponding to the possible values of If

Ek+l == -1 then Qk+l is contained in the triangle bounded by 0,
= and {3~ while if = -~1 then Qk+l is contained in

the triangle bounded by 6k+1 = 0, = 0 and {3~ == 0.
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Figure 2. The position of Qk+l in Qk when +1 and +1’
The horizontal aspect is exaggerated to exhibit greater detail. The lines

are the lines

respectively, which bound the quadrilateral 

3.2. Arithmetic formulation.

We shall give a formula similar in flavor to (3.1) for the vertices of Q k -
First we need a specialized result.

LEMMA 3.6. - Let be nonnegative (or
nonpositive) integers such that ai and bi 71 are not both zero, i = 1, 2, 3.

Suppose that the lines

are mutually nonparallel, that the slope of .~3 lies between the slopes 
and .~2, and that each intersection .~i i :~ j, lies in the closure of the
first quadrant. Let n, m &#x3E; 0 and set
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Figure 3. Location of Qk+l in Qk in the case -1 and ek = +1.
The horizontal direction is exaggerated; the slopes of all the lines are
typically quite close to -1. The lines

are the lines

respectively, which bound the quadrilateral Qk+l.

Then

and

whence

Note that formula (3.4) for the intersection £4 n £5 gives the same
numerators and denominator as the last line of the lemma.
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3.2.1. Equations for bounding lines. - We must be careful how we
write our lines if we wish to apply Lemma 3.6. We write the bounding
lines of Qk as Q~ == 0, Q~ - 0, {3~ - 0 and 0’ k - 0, while
the diagonal is written -b~+1 - 0. The coefficients of a, ,~3 and 1 in each
expression are given by Lemma 3.2. For example, the line 
becomes

and the coefficient of a is

3.2.2. Labeling vertices. - The vertices of Qk are the intersections of
one of the lines Q~ == 0 and o~ 2013 ek6k = 0 with one of the lines {3~ = 0
and 0’ - Ck6k = 0. Let P~ be the point of intersection of the lines 0152~ = 0
and 0’ - 0, and label the remaining vertices Pk 2, and in

a clockwise manner. Let

be the vertices of Qk as obtained from (3.4) using the coefficients of 3.2.1 and
without reducing the fractions. We see from Figure 1 that if Ek = +1 then

P# and Pf are the lower right and upper left vertices of Qk, respectively,
and if ~~ _ -1 then these roles are reversed.

Remark 3.7. - Two of the vertices could be obtained using
formula (3.4) in other ways, as the intersection of -b~+1 - 0 with any
one of the four lines bounding Qk is either P1 or However, it follows
from the first equation of (3.2) that formula (3.4) gives the same expression
for the vertices in each case.

3.2.3. Application of Lemma 3.6. - We are finally ready to show how
the lemma may be used to find the vertices of from those of Qk . The
details depend on 

. +1. Let .~1, .~2 and .~3 be the lines Q~ == 0, {3~ = 0 and
-b~+1 - 0, respectively. These (with the coefficients of 3.2.1) satisfy the
hypotheses of Lemma 3.6. The vertices of Qk+l are the intersections of the
bounding lines o~ 2013 n6k+l = 0 and {3~ - m8k+l = 0, n E 1, 
m E given by Lemma 3.6 as

See Figure 4.
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Figure 4. Formula for a vertex of Qk+l in the case Ek - -f-1, Ck+l - + 1.
The other cases are similar.

. = -1. Let £1, £2 and R3 be the lines a’ - = 0, ,C3~ - E~b~ = 0
and -6k+1 = 0, respectively. As before, these satisfy the hypotheses
of Lemma 3.6. The vertices of are the intersections of the lines

n6k+l = 0 and {3~ - 0, n E 1, 
m E 1, given by Lemma 3.6 as

Note that the expressions for the bounding lines are the same as those
of 3.2.1 in the first case, while in the second case they differ from 3.2.1
by sign. In either case, the expressions obtained for the vertices of 
are identical to those given by 3.2.2. This is important because it means we
can iterate the process.

3.3. Algorithm.

Assembling our observations thus far leads to the following recursive
formula for the vertices of the Qk . Put
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These are the numerators and denominators from 3.2.2 in the case
1~ = 0. We see from Subsection 3.2.3 that

. if Ek+l = ~-1 then

. while if Ek+ 1 == -1 then

One easily verifies

LEMMA 3.8. - For each k

In summary we have proved

PROPOSITION 3.9. - The set of points whose negative slope expansion
begins with a given finite sequence (El, ml) ... nk, mk) is a nonempty
semi-open (or open, if 1 E quadrilateral Qk as shown in Figure 1.
The vertices ofQk are given by Algorithm 3. 3 .
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Now we can prove a converse of Lemma 2.4:

COROLLARY 3.10. If nk, is such that (nk, (1, -+1)
for infinitely many and (1,+1) for infinitely many k then
there is a unique point (a, (3) E I x I with negative slope expansion
(Ek, nk, 

Proof. - For 1~ = 1, 2,... let Qk be the quadrilateral determined by
(61, nl, ml) ... (Ek, nk, Obviously, Qk+l C Qk holds for all k. We just
need to show thank Q,~ consists of a single point. The geometry of Qk
and Lemma 3.8 together imply diam(Qk) = It is evident from

our algorithm 3.3 that increases as k increases, whence the intersection

nk Qk contains at most one point.
An easy geometric proof shows that if we have two indices 1~0  ki such

that (1, + 1) for two distinct k E (ko, ki) and (mk, (1, + 1)
for two distinct 1~ E then Q k1 C It follows from this

that n~ 0. 0

Allowing the coefficients to vary yields
a collection Qk of disjoint quadrilaterals. The union of Qk is the

set of initial points for which the negative slope algorithm does not
terminate within the first k - 1 steps. It follows from Lemma 2.1 that if

E-(a,o) = then E-(T(a"~)) - 
This, together with Corollary 3.10 gives

COROLLARY 3.11. - For k &#x3E; 2 and Q E Qk, the map T of Lemma 2.1
restricts to a homeomorphism Q -~ Qk- 1 -

Remark 3.12. - A similar statement holds for k = 1. Let Q E Q1.
If Q is open then Tj Q is a homeomorphism Q - (o,1 ) x (0,1 ) , and if Q
is semi-open then is a homeomorphism Q - I x I.

We thus have an alternate characterization for the quadrilaterals:

COROLLARY 3.13. - The interior of each quadrilateral of Qk is a

maximal domain of continui ty for 

Figure 5 illustrates the quadrilaterals which constitute the natural
Markov partition into the sets of continuity of the map T; each of them is
in one-to-one correspondence with the entire set Qo. As was pointed out
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Figure 5. The unit square Qo is divided into quadrilaterals by the
lines ao = n6i and ~30 = m8l, n, m E Z. The figure shows these lines
for  8. Also shown are the first few lines subdividing the
louTer-leftmost quadrilateral (Ql when nl = ml = 1, E = +1).

by the referee, this explains why there is no restriction of finite type on
the possible negative slope expansions, which is not the case, for example,
for the Jacobi-Perron algorithm. The figure also shows that (0, 0) is an

indifferent fixed point (the map T can be extended there by continuity),
which explains why the sequence (+1, 1, 1) 00 plays such a special role. There
are other fixed points on the boundary, corresponding to forbidden infinite
sequences (+ 1, 1, m)OO or (+ 1, n, 1) ’, but they are not indifferent.

4. Simultaneous rational approximations.

For the regular continued fraction approximation of an irrational a,
there are general bounds on the distance between a and its convergents,
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and precise estimates of the quality of approximation in terms of the partial
quotients. We explore analogous results for the negative slope algorithm; it
is convenient to make the change of coordinates (a, (3) H (a + {3, (3 - 0152).

PROPOSITION 4.1. - For Then

where pk, qk and rk are integers defined recursively by the relations

starting from Moreover

and

Proof. We start from 60 = 1, cxo = {3, ~30 - ~x, so the matrix
formula is a straightforward consequence of Lemma 2.2. The recursive
relations for pk, qk and rk follow from Ml = Al and MkAk+l -
Since det = 1 for all k, it follows that det Mk = 1 which in turn implies

Finally the last inequality follows from the
recursive relation for qk and the fact that 1 and nk &#x3E; 1 for each k. 0

The matrix formula (4.1) above allows us to approximate the

quantities cx + {3 and {3 - a (and hence cx and (3) by two rationals with the
same denominator. Namely one approximates Sk and dk by integers, which
may be 0, 1 or 2 in the case of Sk, and - 1, 0 or 1 in the case of dk . If we use
the central 1, 0, we obtain the rationals and rk/ qk;
other values would involve the integers Pk rk 

and E’ == ::l:: 1. The next proposition and corollary concern the
rational approximation of a + Q.
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PROPOSITION 4.2. - Let the negative slope
expansion of (Q, (3). Then we have the following "semi-regular continued
fraction expansion" of a + {3 (see [1], [26], [32]) :

In case K  oo, this formula stops with MK-1, nx-1 and Ex - 0;
otherwise it is infinite. Moreover for k  K - 1 we have

where

Proof. The matrix equation (2.9) of Lemma 2.2 implies

which in turn yields (4.4) and (4.2) since a + (3 = so.

Using the matrix relation (4.1) of Proposition 4.1 we obtain

hence
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From Proposition 4.1 we deduce that

where the last equality is a consequence of the recursive relation for qk. 0

COROLLARY 4.3. - If k  K and (1,1, +1), then

If every string of consecutive k for which (mk, nk, Ek+l) - (1, 1, ~-1) has
length at most M, then for all k  K,

Suppose the negative slope expansion of (a, 0) does not stop. If the

lengths of strings of consecutive k for which nk, Ek+ 1) == (1,1, +1) are
unbounded, then there exists a sequence J of integers such that for k E J,

( but then we shall see later that (p~ - provides a better

approximation) .

Proof. If (mk, nk, (1, 1, +1), then either -1, or

equivalently Sk - 1 &#x3E; 0, or mk + nk &#x3E; 3, in which case by Proposition 4.1
we have that qk &#x3E; which in turn implies 1

and  2. In either case, (4.6) and (4.7) are readily verified
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using equation (4.3) of Proposition 4.2. The estimate (4.8) stems from the
intermediate equality

in the proof of Proposition 4.2.

If (1, l, -f-1) for every 

but (1,1, +1), then the recursive relation for qk in

Proposition 4.1 yields

with &#x3E; 2qkl’ by taking either I~1 = k’ or 1~1 = k’- 1. The fourth claim
now follows from (4.3) of Proposition 4.2.

Suppose now (1,1,+1) for every I~o  p 
ko + M + N + 1. Let k = ko + N, P = Q = Then the recursion

formulas give qk = NQ - (N - I)P, (N + 1)Q - NP, while the
semi-regular continued fraction expansion of 1 begins in

hence = where Om denotes the M-th iterate of the
function §(z) = + 1); hence

By Proposition 4.2

which is large whenever N is large and N/M is small, independently of P
and Q. The last claim now follows. 0
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Remark. - The semi-regular expansion of a + {3 is in general not
unique, but in our case it is completely determined by the negative slope
algorithm; in fact the expansion depends on both a and Q and not only on
the value of a + {3. In particular, the negative slope expansion may stop
because qa + (q + 1){3 = p, while a + {3 admits an infinite semi-regular
expansion. If for each k we have ?r~ + nk - 2, that is if Mk - 1,

1, and ek+i = -f-1 never occurs, then the semi-regular expansion
of a + 13 is the "nearest integer continued fraction expansion" defined by
Hurwitz in [22]. In this case the are a subsequence of the convergents
of a + {3 (see [32], Part I, Chap. 5, § 40).

We next look at the induced rational approximation of {3 - a.

PROPOSITION 4.4. - Suppose k  K. Then

where

and

Proof. By Proposition 4.1 we have

Define

We establish (4.10) by induction on k. For k = 1 we have

Next suppose that
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By Proposition 4.1

hence, if nk+ 1 = mk+ 1, then

if rnk+l, then

as required.

Finally the last claim is a straightforward consequence of the matrix
equation in Lemma 2.2. 0

COROLLARY 4.5. - For every k,

Suppose the negative slope expansion of (a, /3) does not stop. If,
on a sequence J of integers, we llave + nk+i - +00 and

There exist a and 0 with an infinite expansion, and a constant C &#x3E; 0, such
that for every k,

Proof. We use (4.9) of Proposition 4.4; it implies

with

by the inequality (2.8). It is readily verified that this function of two
variables has no extremum (except (o, 0) ) inside the domain I x ~- ~ y ~ I  1,
hence its maximum on this domain is reached on lxl + ~ Iyl = 1.
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where the last inequality is a consequence of (4.10) in Proposition 4.4.

with 0  z  1. Again using (4.10) one verifies that the maximum of this
quantity is reached either for z = 0 or z = 1, and so is either 1/ qk or

hence at most llqk as required.
The second claim follows immediately from Proposition 4.4, the

matrix equation in Lemma 2.2, and the equality

We can build an infinite sequence nk, such that the 77~ and

are bounded, 2 for every n &#x3E; 1, and and 6/c

have opposite signs for every n &#x3E; 1. In view of Proposition 4.4 this sequence
defines a and /3 satisfying the third claim. D

5. More diophantine properties.

In this section we express in terms of the negative slope algorithm
some diophantine properties of cx + {3, and some properties of simultaneous
approximation of a + 0 and cx (or 3). The following proposition was proved
by del Junco [15] for some particular semi-regular expansions; the last part
of our proof is similar to the one in del Junco’s paper.

PROPOSITION 5.1. - Suppose the negative slope expansion of (a, (3)
does not stop. Then the two following properties are equivalent:

. in the negative slope expansion of (a, 0), the nk are unbounded

or the lengths of the strings of (1,1, -~1) are unbounded;
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. for every E &#x3E; 0, there exist integers p and q such that

Proof. If the nk + m~ are unbounded, the second assertion follows
from

by putting p = pk, q = qk for suitable k.

If (mp, np, Ep+ 1) == (1,1,+1) for every and

Ck+l = +1; then, as in the proof of Corollary 4.3, we have 0  1/M.
The relation a + {3 == + qk - qk-l) coming
from Proposition 4.1 implies that

The second assertion now follows, if M is large enough, by taking
P = Pk-1, q = qk - for suitable k.

If (1,1,+1) for every l~ -~ 1  p  I~ ~- M and
= -1 ; then we get 2 -1/M  Sk  2, and the second assertion follows,

if M is large enough, by taking p = Pk + Pk- 1, q = qk + for suitable k.

Suppose now that a and /3 satisfy the second assertion. For

-1  x  1, let II x II denote the distance of x to the nearest integer.
For a given E, we put

and apply the hypothesis on a and 0 to get

for a positive integer ao, an integer bo with -ao  bo  ao, and

some -vo  to  vo.

Suppose that ai is a positive integer, bi is an integer with

-ai  bi  ai, ti satisfies -1  ti  1 and
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Then either bi = +az 1"  Iti I, or

Hence, because of the formula (4.4), which says that
up to the addition of an integer, we get

with and we

can continue. 
"

So this process will give some 1~ such ±ak or ak -- ±1, and

But this is possible only if 1 is close to 0, which means m/c + n~ is big,
or close tao ±1, which means there is a long string of ( 1,1, ~-1 ) . 0

The following proposition is expressed in terms of a + {3 and a - ~3,
but, because of the good approximation of a + /3, the good (or bad)
approximation of a - {3 is equivalent to the good (or bad) approximation
of a, or {3. Of course, it is not irrelevant that this kind of properties is used
in the theory of three-interval exchanges [23].

PROPOSITION 5.2. - Suppose the negative slope expansion of (a, (3)
does not stop. Then the two following properties are equivalent:

. In the negative slope expansion of (a, ,~), the lengths of the strings
of (1, 1, ~-1) are unbounded or for every E &#x3E; 0, there exists k such that
either

. For every c &#x3E; 0, there exist integers p, q, r such that

And the two following properties are equivalent:
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. In the negative slope expansion of (a, ~3), there exist C &#x3E; 0 such
that for every M &#x3E; 0 there exists k such that mk + nk &#x3E; M and

. There exist C’ &#x3E; 0 such that for every c &#x3E; 0, there exists integers
p, q such that

and for any integer r

Proof. We prove first that the first assertion implies the second
one, then that the third one implies the fourth one, then the two converses
simultaneously.

If 0  nk+l)/(mk+l +  E or Mk+l - nk+l &#x3E; I/E,
by Corollary 4.5 and rk/ qk provide the simultaneous approximation
of the second assertion.

If + &#x3E; 1 - E, the computations in

Corollary 4.5 show that and either (rk + or (rk - 1)/qk provide
the simultaneous approximation of the second assertion.

If (1, 1, -~-1) for every l~ -f- 1  p  1~ -~ M, and
= -~-1; then 0  1/M; but also Idkl ]  Sk  1/M. Then if M is

large enough (k - and (rk - qk-l) provide
the simultaneous approximation of the second assertion.

If (1,1,+1) for every 1~ -+- 1  p  1~ + M, and
-1; then 2 - 1/M  2, and I  1/M. Then if M is large

enough and provide the
simultaneous approximation of the second assertion.

If + nk+l is large and C  + 

1- C, then gives a good approximation of a+ {3; but the computations
in Corollary 4.5 show that neither rk/qk, nor (rk + nor (rk - 
provide an approximation of a - /3 better than in C /2qk; hence, because
of the first assertion of Corollary 4.5, our third assertion implies our
fourth one.
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Suppose now a and {3 satisfy our second or our fourth assertion. We
can then make the construction of the proof of last proposition, to get
al, ... ak, and Ilsk - 1||  E, hence Sk is close to 1, 0 or 2.

Suppose that 1/  E; then, by construction, is the

value that formula (4.4) gives to sk-i if we replace Sk by 0, and bo/ao is
the value that k iterations of formula (4.4) give to so if we replace Sk by 1;
hence, with the notations of Section 4, bo/ao = where

hence

But then must be large, and, because of the above discussion,
if the first assertion is not satisfied there is no good approximation of a - {3
with denominator qk, while if the third assertion is not satisfied there is a

good approximation of 0152 - (3 with denominator q~ .

Suppose that  E; then, by construction, bo/ao is the value that
k iterations of formula (4.4) gives to so if we replace Sk by 0; and we get

But then we must have = -+-1 and there must be a long string of

(mP, np, Ep+ 1) == (l, 1, -~1) starting at p = k + 1; hence our first assertion is
satisfied, by the discussion above there is a good approximation of a - (3
with denominator qk - and we must have started from our second

assertion.

Suppose that in fact 18k - 2 ~  E; then, by construction, bo /ao is the
value that k iterations of formula (4.4) gives to so if we replace Sk by 2;
and we get

But then we must have = -1 and there must be a long string of

(mp, np, Ep+ 1) - (1, 1, ~1) starting at p = k + 1; hence our first assertion is
satisfied, by the discussion above there is a good approximation of 
with denominator qk + and we must have started from our second

assertion. D
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6. Periodic negative slope expansions.

We show that the negative slope algorithm satisfies the following
Lagrange type theorem:

THEOREM 6.1. - Suppose (a, 0) does not lie on one of the rational
lines of Proposition 2.3. Then the sequence is ultimately
periodic (or equivalently the sequence is ultimately periodic),
if and only if a and 0 are in the same quadratic extension ofQ.

Proof. If the sequence nk, is ultimately periodic, it

follows from the definition of the algorithm that for some k &#x3E; .~ &#x3E; 0 we

have (3) = T~ (a, (3), and hence Sk = sg, dk = df. But we have

and the same relation with .~, hence

with 6 = b~ ~ / ~ b~ ~ . As det M~ = 1, we check that

Hence the matrix has integer coefficients, and the entries in its
second column are 0, ~ 1 or -1, and 0. We deduce 6 from the third line of
the above relation; the first line gives then a non-trivial algebraic relation
of degree 2 satisfied by cx + 0, from which we deduce

for an integer d; then the second line implies

hence a and j3 are 
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We suppose now that a and ~3 

Then a + /3 E Q(J2 ) , and there exist integers a, b, c such that

We write this relation

where

From Proposition 4.1 we deduce that

where

These two relations imply

and hence

where

tk are integers as B and Ck have integer coefficients and C,~ has
determinant 1 or -1; let us show these coefficients are universally bounded
on those k for which (mk, nk, (1,1, +1).

For a matrix M, we denote by the maximum of the absolute

value of its entries. Let
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We check that

hence

where 12 is the identity matrix. Hence

for universal constants cl and c2. We check that

while

Hence, by Corollary 4.3, for those n for which

and the coefficients of Ck ’BCk, which are ~~, Zk, tk, are bounded

by ci + 8C2-

Now, a and /3 being in and a + {3 being irrational, there exist

integers a’, b’ c’ such that

By the same reasoning as above, the relation

translates into
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where

Using the expression of M~ ~ given above, an explicit computation of the
second line of the previous equality gives

with

hence

and similarly with k replaced by k - 1; it follows then from Proposition 4.2
and Corollary 4.3 that the integers and y[ are universally bounded.

Hence for the k for which (1,1, +1), the quantity
1 satisfies only a finite number of equations of degree two with

integer coefficients, and the pair (s k, dk) satisfies only a finite number of
relations c’dk = X’Sk + y’ with integer coefficients; as these k are infinitely
many because a + Q is irrational, there exists k’ &#x3E; 1~ such that Sk’ = Sk
and dk, = dk. But because of the definition of the algorithm, this implies

for every £ &#x3E; 1. 0

Remark 6.2. - In [11] Burger gives necessary and sufficient conditions
on the partial quotients of two quadratic irrationals to insure that they
are elements of the same quadratic number field. It would be interesting to
understand these conditions in the context of the negative slope algorithm.
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7. Connection with interval exchange transformations.

The regular continued fraction algorithm provides a link between the
arithmetic properties of an irrational number a, the ergodic and spectral
properties of a circle rotation by angle a, and the combinatorial properties
of a class of binary sequences called the Sturmian infinite words (see [5],
[14], [30], [31], [33]). A fundamental problem is to generalize and extend
this rich interaction to dimension two or greater, starting either from a

dynamical system or a specified class of sequences. A primary motivation is
that such a generalization could yield a satisfying algorithm of simultaneous
rational approximation in R~.

In case n = 2 there are a number of different dynamical systems all
of which are natural candidates to play the role of a rotation in dimension
one. One such system is a rotation on the 2-torus [3], [5], [33], [34],
[35]. In this case, the corresponding symbolic counterpart is a class of

sequences of complexity 2n + 1 introduced by Arnoux and Rauzy in [5]
which are a natural generalization of the Sturmian sequences; the arithmetic
component is given by a 2-dimensional division algorithm originally defined
by Arnoux and Rauzy in [5] and later studied in greater generality in
[13], [43], [44]. Though the resulting arithmetic/ergodic/combinatorial
interaction is very satisfying in the special case of the so-called Tribonacci
system, as pioneered by work of Arnoux and Rauzy [3], [5], [35], a more
general canonical equivalence (through what is called a natural coding)
between two-dimensional rotations and Arnoux-Rauzy sequences is not

always verified (see ~12~ ) .
Berth6 and Vuillon [7] studied the dynamics resulting from two

rotations on the circle (see also work of Arnoux, Berth6 and Ito in [4]).
They found in this case the symbolic counterpart is given by a family of Z2-
shifts, and that the Jacobi-Perron algorithm provides a suitable arithmetic
tool for studying this class of dynamical systems.

Since a circle rotation is equivalent to an exchange of two intervals
on [0, 1], another possible generalization is the dynamical system arising
from an exchange on three intervals. Associated to each 0  a  1 and

0  {3  1 with a + ,~  1, is a dynamical system on the interval [0, 1 given
by
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That is, the unit interval is partitioned according to three subintervals,
[0, 1] = [0, a] U [a, a + {3] U [a + (3, 1] which are then rearranged according to
the permutation (3, 2,1 ) . In [16] we show that the negative slope algorithm
is intimately connected with the dynamics of 3-interval exchanges, and in
fact bears the same connection with this class of dynamical systems as
regular continued fraction with circle rotations.

The negative slope algorithms may be reformulated combinatorially
in terms of the structure of the so-called bispecial words of the symbolic
subshift obtained by symbolically coding the trajectories of points under
a 3-interval exchange transformation according to the above partition
into three subintervals. This connection relies on a generalization of a
combinatorial construction originally developped in [RisZam] to study the
evolution of bispecial factors in Arnoux-Rauzy sequences. More precisely,
let

so that p, q are the points of discontinuity of f and p’, q’ the points of
discontinuity of f -1. We call a subinterval I bispecial if I is an interval
of continuity of In for some n &#x3E; 1, and I contains either p’ or q’, and
its image I’ = contains either p or q. Among the bispecial intervals,
we denote (respectively {J k} k?l) those bispecial intervals for
which p’ Elk, p E I~, respectively q’ E Jk, q C Jk, ordered so that
11 D 12 D ..., respectively Ji D J2 D - " Then in [16] we show that there
are infinitely many Ik and Jk and that (under some initial conditions on
the initial lengths 0152,(3), - Ilk _ ~ IJkl for each k &#x3E; 1. The sign of 
determines on which side (left or right) the intervals Ik and J~ are "cut"
to produce the next bispecial intervals Uk, Vk ; that is Uk, respectively Vk,
is the largest bispecial interval properly contained in Ik, respectively Jk.
It can be shown that Uk contains p’ and its image U~ contains q, while
Vk contains q’ and its image V,~ ’ contains p; in particular Uk is not 

and Vk is not The quantities nk+l and count the number

of bispecial intervals between Ik and and Jk and respectively.
If Ik D Ei D E2 D ... D En, D Ik+l are the nk+l bispecial intervals
between Ik and Ik+l (so E1 - Uk), then I = (i - 1)18k+ll.
For each fixed k, is obtained from Ei by cutting I on the same
side, while is obtained by cutting by 0152~+l on the opposite side.

From this point of view, the negative slope algorithm corresponds to
a double renormalization process: unlike Rauzy induction (see [34], [41])
or the Boshernitzan-Carroll induction process [8], we induce according to
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the first return map simultaneously on two subintervals. In some stages
the two inductions proceed independent of one another and generate the
quantities (of the expansion of Tk (a, (3)), while in other instances
the induction process depends on an inequality involving both intervals,
and gives rise to the quantity Ek-

This combinatorial construction gives a recursive method of genera-
ting three sequences of nested Rokhlin stacks which describe the system
from a measure-theoretic point of view and which in turn gives an expli-
cit characterization of the eigenvalues of the associated unitary operator.
In [17] we obtain necessary and sufficient conditions for weak mixing which,
in addition to unifying all previously known examples, allow us to exhibit
new interesting examples of weakly mixing three-interval exchanges. Finally
our methods provide affirmative answers to two long standing questions
posed by W.A. Veech in [42] on the existence of three-interval exchanges
having irrational eigenvalues and discrete spectrum.
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