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DIRAC STRUCTURES AND DYNAMICAL r-MATRICES

by Z.-J. LIU(*) &#x26; P. XU(~)

1. Introduction.

Recently, there has been a great deal of interest in the so called
Classical Dynamical Yang-Baxter Equation (here after CDYBE):

where r(A) : ~* meromorphic function, and g is a complex
simple Lie algebra with Cartan subalgebra 0. When r is a constant function,
Equation ( 1 ) reduces to the usual classical Yang-Baxter equation, and
therefore a classical r-matrix is a special solution. Assume that r is a

solution, and that r + r21 = where Q E (S’2g)g is the Casimir element
corresponding to the Killing form, and c is a constant usually called the
coupling constant. Then the skew-symmetric part of r satisfies the following
modified CDYBE:

where [.; ] on the left hand side is the Schouten bracket on A*g and
A a~i . Here ~hl, ~ ~ ~ , h~~ is a basis in ~, and (AB - - , A")

its induced coordinate system on ~*.

(*) Research partially supported by NSF of China and the Research Project of "Non-
linear Science".

(t) Research partially supported by NSF grant DMS97-04391.
Keywords: Dynamical r-matrix - Dirac structure - Lie bialgebroid - Courant algebroid
- Lagrangian subalgebra.
Math. classification: 53D17 - 17B62 - 58H05 - 70G45.
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In this paper, by a dynamical r-matrix, we mean a meomorphic
function r : j* -~ g A g satisfying:

1. [h,r(A)] =0,V/KE ~ and

2. r satisfies the modified CDYBE (2).
The first assumption is often referred to as the zero weight condition

[10]. Here we are mainly interested in dynamical r-matrices with nonzero
coupling constant. In this case, by multiplying by a constant, we may always
assume that e = 2. In the sequel, we will always make this assumption when
referring to a dynamical r-matrix unless otherwise specified.

Classical dynamical r-matrices have appeared in various contexts
in mathematical physics, for instance, in the Knizhnik-Zamolodchikov-

Bernard equation [11], and in the study of integrable systems such as
Caloger-Moser systems [2], [5], [6]. A classification of dynamical r-matrices
for simple Lie algebras was obtained by Etingof and Varchenko in [10]. An
example of such a dynamical r-matrix is

where 0+ is the set of positive roots of g with respect to C~, the E,
and are dual root vectors, and coth(x) = ’x+’-x is the hyperbolic
cotangent function. Moreover, it is proved by Etingof and Varchenko [10]
that dynamical r-matrices correspond to Poisson groupoids just as classical
r-matrices integrate to Poisson groups in Drinfel’d theory [21], [24]. The
corresponding Lie bialgebroids, as the infinitesimal invariants, were studied
by Bangoura and Kosmann-Schwarzbach [3].

It is well known that there are many ways of producing a classical
r-matrix. A natural method is via Lie bialgebras using Manin triples. For
instance, for the Lie bialgebra of the standard r-matrix ro = Ea n
E-a, the corresponding Manin triple is (o o 9, g2 ) , where 0i C g is the
diagonal while 02 is the subalgebra ~ (h + X+, - h + X-) I h C C~, X± E n± I -
Here n~ C g are maximal nilpotent subalgebras. It is thus natural to ask

PROBLEM 1. - Does there exist such an analogue for dynamical
r-matrices? In particular, what is the double of the Lie bialgebroid corre-

sponding to a dynamical r-matrix?

Recently, Lu has found an interesting connection between dynamical
r-matrices and Poisson homogeneous spaces [20]. More precisely, Lu showed
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that a dynamical r-matrix gives rise to a family of Poisson homogeneous G-
spaces G/H parametrized by A E ~*, where G is the Poisson group defined
by the standard classical r-matrix ro with the same coupling constant (i.e.,
constant solution of Equation (2)), and H is the Cartan subgroup of G.
Clearly, the Poisson homogeneous spaces corresponding to different A, must
be related in some way to reflect the dynamical property of the dynamical
r-matrix. This leads to our

PROBLEM 2. - Given a family of Poisson homogeneous G-spaces
G/H parametrized b y A E ~*, what criteria urill guarantee that i t arises

from a dynamical r-matrix?

The infinitesimal object of the Poisson group G is the Lie bialgebra
(g, g*, ro ) generated by the classical r-matrix ro. According to Drinfeld
[9], Poisson homogeneous G-spaces are in one-one correspondence with
Lagrangian subalgebras of the double Lie algebraa, which is isomorphic to
the direct sum Lie algebra So an equivalent formulation of Problem 2
is

PROBLEM 3. - Let W(A) C 1 be a family of Lagrangian subalge-
bras. When will this family of Lagrangian subalgebras be induced from a
dynamical r-matrix?

In fact Lu showed that these Poisson homogeneous G-spaces exhaust
all the Poisson homogeneous G-spaces of the form G/H. This fact suggests
that dynamical r-matrices and Lagrangian subalgebras of g E9 g should be
somehow intrinsically related. On the other hand, a general classification of
Lagrangian subalgebras of V has been obtained by Karolinsky [14], which
seems, on the face of it, little to do with the work of Etingof and Varchenko

[10]. Therefore it is natural to ask

PROBLEM 4. - What is the precise relation between dynamical r-
matrices and Lagrangian subalgebras 

The purpose of this paper is to understand the intrinsic connection

between various objects such as dynamical r-matrices, Lagrangian subal-
gebras, and Lie bialgebroids (see [26]). In particular, our work is motivated
by the above questions. The main idea is to use Dirac structure theory
developed in [17], [18]. The starting point is a simple Courant algebroid
(see Section 3): TU E9 T*U E9 U x (g E9 g), which can be considered as an
analogue of the direct sum Lie algebra g E9 g in the Lie algebroid context,
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where U C C~ * is an open subset. We analyze a class of Dirac structures
of this Courant algebroid which are induced from dynamical r-matrices.
We are then lead to a new classification method for dynamical r-matrices
of simple Lie algebras. An advantage of our approach is that the Cayley
transformation, which turns out to be important in classification theory
[25], arises quite naturally. We hope that our method may shed new light
on the classification scheme of more general dynamical r-matrices [2], and
that of dynamical r-matrices for compact Lie algebras. This topic occupies
Section 4. In Section 5, we show that Lagrangian subalgebras of g ® g whose
intersection with the diagonal is equal to 4, are in one-one correspondence
with dynamical r-matrices with zero gauge term. This relates the results of
Karolinsky and Lu with that of Etingof and Varchenko in an explicit way.
Moreover, we prove that given a point p E 4*, any such Lagrangian subal-
gebra Wo admits a unique extension to a family of Lagrangian subalgebras
W(A) with W(ti) = Wo, governed by a dynamical r-matrix. In a certain
sense, this is similar to an initial value problem of a first order o.d.e. Sec-
tion 2 contains some basic facts concerning Lie bialgebroids and Courant
algebroids. And Section 3 is devoted to the discussion on the connection
between dynamical r-matrices and Lie bialgebroids.

Acknowledgments. In addition to the funding sources mentioned in
the first footnote, we would like to thank several institutions for their

hospitality while work on this project was being done: IHES, and Peking
University (Xu); Penn. State University (Liu). Thanks go also to Eugene
Karolinsky, Yvette Kosmann-Schwarzbach and Jiang-hua Lu for their

helpful comments. Especially, we are grateful to Lu for allowing us to have
access to her manuscript [20] before its publication.

2. Preliminaries.

In this section, we recall some basic facts concerning Lie bialgebroids
and Dirac structures.

A Lie bialgebroid is a pair of Lie algebroids (A, A*) satisfying the
following compatibility condition (see [22] and [15]):

where the differential d* on comes from the Lie algebroid structure
on A*.
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Given a Lie algebroid A over P with anchor a and a section A E

r(/B2 A), denote by ~1~ the bundle map A* --7 A defined by A~)(~) =
TI), r E r (A* ) . Introduce a bracket on r (A*) by

By a* we denote the composition a o A# : A* --~ TP.

THEOREM 2.1. - A* with the bracket and anchor a* above becomes
a Lie algebroid if and only if

Proof. In [19], we proved this result with one more condition:
a o [A, A]# = 0, which is equivalent to [f, [A, A]] = 0, Vf E C°° (P). But
in fact this last condition is a consequence of Equation (5). To see this,
by replacing X with fX in Equation (5), one obtains f X, [A, A]] = 0.
It thus follows that X A [f, [A, A]] = 0, VX E which implies that

0. o

In this case, the induced differential d* : --7 is simply
given by d* X - [A, X], VX E r (A) . Thus the compatibility condition:
Equation (3), is satisfied automatically. So (A, A*) is a Lie bialgebroid,
called a coboundary Lie bialgebroid. By abuse of notation, A is also called
an r-matrix. When P reduces to a point, i.e., A is a Lie algebra, Equation
(5) is equivalent to that [A, A] is ad-invariant, i.e., A is a classical r-matrix
in the ordinary sense. On the other hand, when A is the tangent bundle
TP with the standard Lie algebroid structure, Equation (5) is equivalent
to that [A, A] = 0, i.e., A is a Poisson tensor.

Given a Lie bialgebroid (A, A* ) over the base P, with anchors a and
a* respectively, let E denote their vector bundle direct sum: E = A E9 A*.
On E, there exists a natural non-degenerate symmetric bilinear form

1
6 X1 + £1 ’ x2 2 - 2  ) ( l£1 ’ x2) + 2 X 1 °(6) ( X2 + Ç2) == 2( (Çl, X2) + (Ç2, Xl))

In [17], we introduced a bracket on r(E), called Courant bracket
1

where ei = X l + ~l and e2 = X2 + ~2 . Let p : E - T P be the bundle
map p = a + a*. That is,
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For a Lie bialgebra (g, g*), the bracket (7) reduces to the well known
Lie bracket on the double g ® g*. On the other hand, if A is the tangent
bundle Lie algebroid TM and A* = T*M with zero bracket, then Equation
(7) takes the form
(9) 

- I -

This is the bracket first introduced by Courant [7]. In general, E together
with this bracket and the bundle map p satisfies certain properties as
outlined in the following:

THEOREM 2.2 [17]. - Given a Lie bialgebroid (A, A*), let E ==

A EB A*. Then E, together with the non-degenerate symmetric bilinear
form (-, .), the skew-symmetric bracket [.,.] on r(E) and the bundle map
p : E -~ T P as introduced above, satisfies the following properties:

and 0:

- - . 
-

is the map 0 = d* + d.

E is called the double of the Lie bialgebroid (A, A*). In general, a
vector bundle E equipped with the above structures is called a Courant

algebroids [17].
In this paper, we are mainly interested in a special gauge Lie algebroid

A = T M x g, where g is a Lie algebra. Clearly A is a Lie algebroid over M
with anchor being the projection p : A --~ TM. As for the bracket, note
that any section of A can always be written as the sum of a vector field
and a g-valued function on M. The bracket of such two sections is given by

where the bracket of two vector fields is the usual bracket and the bracket

[Ç,17] is the pointwise bracket.
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Let r E /B2g, which can be considered as a constant section of /B2 A.
Then

PROPOSITION 2.3. - (A, A*, r) is a coboundary Lie bialgebroid if
and only if [r, r] is ad-invariant, i.e., if and only if (g, g*, r) is a coboundary
Li e bialgebra.

In this case, the bracket for sections of A*(~ T* M x g*) is given by

(12) [a + ~, 0 + 71] = [~, 77], 
where the right hand side bracket is pointwise bracket on g*. The corre-

sponding double is the vector bundle

- - - 

where the Courant bracket can be described quite simply. On the subbundle
TM (B T*M, the bracket is just Courant’s original bracket: Equation (9),
while for two elements of the double Lie algebra g EB g* considered as
constant sections of E, the bracket is pointwise bracket. One should however
note that the subbundle M x (g®g* ) is not closed under the Courant bracket
(7), since the third property in Theorem 2.2 implies that

where fdg - gdf E f~(M). On the other hand, for E r(T M EBT* M),
f EC°°(M) and e E g EB g*, we have

These formulas will be needed later on in Section 4.

Given a Courant algebroid E, a Dirac structure is a subbundle L C E
which is maximally isotropic with respect to the symmetric bilinear form

(~, ~) and is integrable in the sense that r(L) is closed under the bracket ~~, ~~.
There are two important classes of Dirac structures studied in [17]. One
is the Dirac structures induced by Hamiltonian operators, and the other
is the so called null Dirac structures. Let us briefly recall their definitions
below.

Let H E r(/B2 A) and denote ~f~ : A* -~ A the induced bundle map.
Then the graph of H#,

defines a maximal isotropic subbundle of A EB A*. rH is a Dirac subbundle
if and only if H satisfies the Maurer-Cartan type equation
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In this case H is called a Hamiltonian operator. Another interesting class
of Dirac structures is the so called null Dirac structures, which can be
characterized as follows. Let D C A be a subbundle, and C A* its

conormal subbundle. Consider L = D (B D~ C A 0 A*. Then L is a Dirac
structure if and only if D and are Lie subalgebroids of A and A*,
respectively. In this case L is called a null Dirac structure.

A more general construction of Dirac structures is via the so called
characteristic pairs [16]. Let D C A be a subbundle and H E 
Define

(16) L = ~ X -f- H~~ -f- ~ ~ VX E DEB graph 
where D C A* is the conormal subbundle of D. Clearly, L is a maximal
isotropic subbundle of A EB A*. The pair (D, H) is called a characteristic
pair of L.

Conversely, any maximal isotropic subbundle L C A such that L n A
is of constant rank can always be described by such a characteristic pair.
Note that two characteristic pairs and (D2, H2 ) define the same
subbundle L by Equation (16) if and only if

DI = D2, and pr(Hl) = pr(H2), i.e., HI - H2 - 0(mod D),
where pr denotes the projection A 2013~ A/D and its induced map

F(A*A) -~ In the above equation as well as in the se-

quel, a section Q E r(n*A) is said equal to zero module D, denoted as
Q - 0(mod D), if its projection under pr vanishes in r(A* (A/D)). Even
though L is related only to pr(H) E instead of H itself, it

is still more convenient to characterize the integrability conditions of L in
terms of H, since sections of n*A admit nice operations such as the exterior
derivative and the Schouten bracket.

THEOREM 2.4 [16]. - Let (A, A*) be a Lie bialgebroid, L C AEBA*
a maximal isotropic subbundle defined by a characteristic pair (D, H) as
in Equation (16). Then L is a Dirac structure if and only if the following
three conditions hold:

1. D C A is a Lie subalgebroid.

2. H satisfies the Maurer-Cartan type equation (mod D) :

3. is closed under the bracket [’, -1 + ~-, -~H, where [’, -~H is

given by Equation (4). I.e.,
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Dirac structures are important in the construction of Lie bialgebroids
and Poisson homogeneous spaces. For details, readers may consult the
references [17] and [18].

Finally, note that we may also work over C when M is a complex
manifold. In this case, we just need to replace smooth functions by
holomorphic functions, and smooth sections by holomorphic sections etc.,
and all the results above will also hold. In the sequel, we will mainly work
with complex Lie algebroids. Even though one normally works with sheaf
of local sections when dealing with complex Lie algebroids since there may
not exist many global sections. However, in the case below, we can still
avoid using sheaf since we are working on an open subset U of en.

3. Twists of the standard r-matrix.

Dynamical r-matrices have appeared in various contexts [2], [10],
[11], [20]. In this section, we will show how a dynamical r-matrix arises
naturally as a twist of the standard classical r-matrix in the category of
Lie bialgebroids.

Let g be a simple Lie algebra over C with a fixed Cartan subalgbra #
and a root space decomposition

where n± = Let ~ ~ , ~ ~ denote the Killing form on g and Ea E ga
such that (Ea, = 1. Then the standard classical r-matrix ro takes the

form

Let h, - E f) for 0152 C A+ and hi - hat for simple roots 0152i,

i = 1,..-n. Then forms a basis of ~. Let fh*,.. -,h*l be its
dual basis, which in turn induces a coordinate system (Ai,’ -’, An) 

Now let U C C~* be a connected open subset. Consider the gauge Lie

algebroid

Set
n -
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Clearly 9 can be considered as a section of /B2 A. Equip A* ~ T* U x g*
with the product Lie algebroid, where T * U is the trivial Lie algebroid and
g* is the dual Lie algebra induced by ro. Then (A, A* , ro ) is a coboundary
Lie bialgebroid according to Proposition 2.3.

THEOREM 3.1. - Let T : U -~ A 2g be a holomorphic function
considered as a section of Then 0 + T is a Hamiltonian operator of
the Lie bialgebroid (A, A*, ro) if and only if r = ro + T, the twist of ro by
T, is a dynamical r-matrix.

Proof. 2013 ~ + r is a Hamiltonian operator if and only if it satisfies
the Maurer-Cartan type equation (see Equation (15))

By definition, d,, (0 +,r) = [ro, 8 ~-T~ . Since ro is ~-invariant and independent
of A, we have fro, 01 = 0. It is also easv to see that = 0, and

). Thus Equation (23) implies that

..

Now the left hand side of Equation (24) belongs to r(g A g A TU),
whereas the right hand side is a section of the subbundle x g).
Thus both sides have to vanish identically. This implies that [hi,T] = 0,
Vi, i.e., T is ~-invariant, and r satisfies the modified CDYBE (2) since

~~12, ~23~. El

Now assume that r = ro + T is a dynamical r-matrix. Therefore 0 + T
is a Hamiltonian operator so that its graph he+T is a Dirac structure of

the double of (A, A* , ro ) . Clearly, he+T is transversal to A, so (A, re+T ) is
a Lie bialgebroid according to Theorem 2.6 in [17]. In fact, it is simple to
see that the Lie algebroid he+T is isomorphic to A* with a twisted bracket
defined by the new r-matrix A := ~ + r -}- ro = ~ + r, so (A, A*, A) is also a
coboundary Lie bialgebroid. Thus, we have proved the following result of
Bangoura and Kosmann-Schwarzbach [3]:

COROLLARY 3.2 [3]. - Let r(A) : U -~ /B2g be a holomorphic
function. Then A = 8-~r(~) E defines a coboundary Lie bialgebroid
if and only if r(A) is a dynamical r-matrix.
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It is not difficult to see that this Lie bialgebroid is the Lie bialgebroid
corresponding to the dynamical Poisson groupoid constructed by Etingof
and Varchenko [10]. The following conclusion follows immediately from the
construction.

THEOREM 3.3. - Let r(A) be a dynamical r-matrix, and A =
9 + r(A) the twisted r-matrix. Then, as a Courant algebroid, the double of
the coboundary Lie bialgebroid (A, A*, A) is isomorphic to the double of
the untwisted Lie bialgebroid (A, A*, ro).

It is simple to see that a function T : U ~ /B2£1 is ~-invariant if and
only if it can be splitted into two parts: T = w + To , where

PROPOSITION 3.4. - Let T be given as above. Then 8 + T is a

Hamiltonian operator if and only if

l. To is a Hamiltonian operator; and

2. ~ is a closed 2-form on U.

Proof. The Maurer-Cartan equation for 0 + To + w takes the form

Note that, on the right hand side of the equation, the only term in

/B 3 ~ is 
-

Thus the equation holds if and only if

Thus the proposition is proved. D

According to Etingof and Varchenko, T and To are called gauge

equivalent, and w is a gauge term. In fact, for most purposes, we may
assume that w = 0.
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Finally, note that for any fixed A E U, T(A) E A 2g is generally not a
Hamiltonian operator for the Lie bialgebra (g, g*, ro). In fact, it is easy to
see that r = ro + T is a dynamical r- matrix if and only if

Thus,
1 1

So T(A) is a Hamiltonian operator if and only if A is a critical point
of T (we will see in Section 4 that this is equivalent to T - 0 on U).
Hence - Alt (dT) (A) measures the failure of the graph of T(~)~ : g* - g
being a Lagrangian subalgebra. In terms of Drinfel’d [8], T(A) is a family
of twists, which defines a family of quasi-Lie bialgebras (~,5(A),~(A)).
Here 6 (A) g - n2g is given by 6(A)(z) = [ro + r (A), x], V~ E g,
and E This family of quasi-Lie bialgebras is

the classical limit of the quasi-Hopf algebras studied by Fronsdal [12],
Arnaudon et al. [I] and Jimbo et al. [13] connected with quantum dynamical
R-matrices (see also [27], [28]).

4. Construction of Dirac structures.

In the previous section, we have already established a simple connec-
tion between dynamical r-matrices and Dirac structures. The purpose of
this section is to give an explicit construction of these Dirac structures.

As in Section 3, assume that 9 is a simple Lie algebra with Killing form

( ~ , ~ ) , and the standard r-matrix. By identifying
g* with g using the Killing form, the bracket on g* is given by

where R = ~r+ - ~r_, and 7r:i: : g ~ n~ are the natural projections with

respect to the Gauss decomposition g = as in Equation ( 19) . It
is well-known that the double of the Lie bialgebra (g, g*) can be identified
with the direct sum Lie algebra l = while the corresponding invariant
non-degenerate bilinear form is
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Here g is identified with the diagonal, while g* is identified with the

subalgebra

Thus the corresponding Courant algebroid, as the double of the Lie

bialgebroid (A, A*, ro), is a trivial vector bundle, which can be expressed
as

Consequently, a section of E can be considered as a vector-valued function
on U with value in which is denoted by (g (A) , q (A) ; X(A), Y (A) ) .

are #-valued functions on U, and X(A) , Y(A) are g-valued
functions on U. The inner-product (.,.) on E is given by

Then as subbundles of E, A and A* are given by

As for the bracket of r(E), it admits a simple form for constant sections

For general sections, the formula is much involved. The following are two
special cases corresponding to Equations (13) and (14), which are needed
in the future:

and

Next we need to describe the graph of 6# + T# : A* - A. For
simplicity we assume that T is given by Equation (25) with cv = 0. Set

And for each A E U, define
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where r(A) = ro + as in Theorem 3.1.

LEMMA 4.1. - As a subbundle of E, the graph of 8# +T~ : A* ----+
A is L = where

Proof. Using the identification as in Equation (28) and (29), we
need to compute the image (0# + T~ ) (o, h; X- + k, X+ - k) at each A E U.
Now

Therefore,

It is easy to see that

And

where we have used the fact that T:* ± l. This concludes the proof
of the lemma. 0

For any A E U, consider the decomposition

where

and
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Then we can rewrite B(A) as follows:

where

, /

is the Cayley transformation of the linear operator r#(A) o . Conse-
quently, L can be written as

LEMMA 4.2. - Assume that L C E is a Dirac structure, then

1. both ~~ (~) and n’(A) are independent (for simplicity,
in the sequel we denote them by t± and n~ respectively);

2. n ~ are subalgebras of n±;

3. t± are ideals of n±.

Proof. According to Theorem 3.1, ro +T is a dynamical r-matrix.
By Equation (26), we have

1

Since for any a E A+, the coefficient of
the term Ea A A hi in the above equation is a - + 2)Ta .Z i

This implies that Ta satisfies the following system of first-order differential

equations:

Thus if Tc,(Ao) = 0 for some Ao E U, then Ta = 0 on U. This is equivalent
to that t+ (A) = ker T(A) n n± are independent of A E U, which implies the
first statement.
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For the second statement, note that since r(A) is 0-invariants, p(A)
commutes with ad# . Thus cpEa == CPaEa for some function cpa : U - C,
Va E n+ . For any E n+ , since (o, 0; E,~ , ~p,~ E;~ ) E
r(L), their commutator belongs to r(L) as well.

On the other hand, it is clear that

Here, in the last equality, we used the fact that (Ea, E(3) == 0 whenever
According to Equation (37), we conclude that Ea+,~ E n+

whenever 0 (i.e, a + {3 E A+). This means that n+ is a Lie

subalgebra of n+ and

(39) = V Ea, E,3 E n~ such that a + {3 E 0+.
Similarly we can prove that n° is a Lie subalgebra of n-.

For the third statement, let X+, Y+ E t+, and E~ E n+. As constant
sections of r(L),

which implies that [X+, Y+] E t+. Moreover,

This implies that Y+] E t+. Thus t+ is an ideal of n+ since n+ =

n+. Similarly, t- is an ideal of n_ . 0

Below we will see that any decomposition n+ = t+ 0 n~ satisfying
Properties (2)-(3) in Lemma 4.2 corresponds to a subset S’ of simple roots.
More precisely, given a decomposition n+ = t+ EB n~, let S be the subset of
those simple roots ai such that E n+. Define a subset of positive roots
as follows:

Since any positive (negative) root can be expressed as positive (negative)
linear combination of simple roots, we have

PROPOSITION 4.3. - Assume that n± = t:f: E9nâ: is a decomposition
satisfying Properties (2)-(3) in Lemma 4.2. Then,
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i.e., jai E is a set of Lie algebraic generators of n~. Consequently,

Conversely, given any subset S of simple roots, the corresponding t:f: and

n~ defined by Equations (41) and (42) above satisfy Properties (2)-(3) in
Lemma 4.2.

Now we are ready to prove the main theorem of this section.

THEOREM 4.4. - Let S be a subset of simple roots whose corre-

sponding t± and n are defined as in Proposition 4.3, and L a subbundle
of E defined by Equation (38), where cp(~), VA E U, is a linear operator on
n’. Then L is a Dirac structure if and only if there exists some Ao such

that = 
·

Proof. We shall divide the proof into four steps.

Step 1. It follows from Equations (30), (31) and (32) that for any
h E f) and X E no±,

The right hand side is still in L if and only if

[h, X],
which is equivalent to that cp commutes with adh. Therefore, SpEa = 
Vo; ~ i=[’S’] (i.e., Ea E where CPa is a complex valued function on U.

Step 2. Suppose that cp commutes with ad~ . Then for any i = 1, - - -, n
and Ea E no, both and (0, 0 ; Ea, CPaEa) are sections of L.
By Equations (30), (31) and (32)

, , - . .. - . - . , 

, ,

It is still in F(L) if and only if

where Ca are certain constants and ;

Step 3. Suppose that ~pa (a) - Cae2(a,À). Next we show that Ca
satisfies the following relations:

, whenever a + {3 E A.
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When ~3 # -a the conclusion follows from Equation (39), where only a
special case: both a and 0 being positive roots, is discussed. However, the
general situation can also be easily verified using the fact that (Ea, = 0.

Now assume that f3 = -a. Then, by Equation (31), we have

where we used the following identities:

Obviously the commutator is still in F(L) if and only if CaC-a = 1. Thus,
Equation (43) is proved.

Finally, it is not difficult to see that Equation (43) implies that
there exists some Ao such that C, = . In fact, we can take

Consequently, we have

Conversely, if cp(~) - Adg2(A+Ao), L is maximal isotropic since p
preserves the Killing form (’,’). Moreover, r ( L ) is closed, so L is indeed a
Dirac structure. This concludes the proof. D

COROLLARY 4.5. - A meromorphic function r : U -~ n2g is a
dynamical r-matrix if and only if r is of the form

where cv is a closed 2-form on U, and [S] is defined by Equation (40) for a
subset S of the simple roots.
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where w is a closed two-form on U.

According to Theorem 3.1, r is a dynamical r-matrix if and only if

Fo+, c A E9 A* is a Dirac structure of the Lie bialgebroid (~4.,~4*,ro).
Without loss of generality, assume that w = 0. According to Theorem 4.4,
the latter amounts to that there exists a subset of simple roots ,S’ with

corresponding n~ and £::1:: such that the Cayley transformation of 

~p(~) - §1) ))~§ has expression (45), for some fixed Ao G This immedi-
ately implies that

The conclusion thus follows. 0

5. Lagrangian subalgebras and dynamical r-matrices.

In [14], Karolinsky classified all Lagrangian subalgebras Wo of the
double of the Lie bialgebra (g, g*, ro ) (by abuse of notation, in the sequel,
we will simply say Lagrangian subalgebras of the Lie bialgebra (g, g* , ro ) ) in
terms of the triples (u-, u+, ’P), where u~ are two parabolic subalgebras of
g, and p is an automorphism between their corresponding Levi subalgebras.
The following theorem shows that such a classification can be reduced to
a simpler form in the special case that Wo n g = C~ .

PROPOSITION 5.1. - There is a one-one correspondence between
Lagrangian subalgebras Wo C g EB g with Wo and pairs (S, Ao),
where S is a subset of simple roots and Ao E ~*.

Proof. Given a pair (S, Ao ) , define n~ and t± as in Proposition 4.3
by

where 
r ,Ir - I

Let Wo C 9 EB g be the subspace
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One can check directly that Wo is a Lagrangian subalgebra and Wo n g = 0 -
Here, as before, the double is identified with -0 = g®g, whereas g is identified
with the diagonal of ð.

Conversely, as we know in Section 2, any Lagrangian subalgebra of the
double of a Lie bialgebra arises from a characteristic pair. More precisely,
given a Lagrangian subalgebra Wo C g EB 9 such that Wo n g - ~, there
exists some J C g Ag such that

i.e., (~, J) is a characteristic pair of Wo. Note however that J is not unique.
What we need here is to choose an 0-invariante J. For this purpose, we notice
thatVX c -- 0 and~ E ~1-, ,

Here we used the fact that ad~ X == 0, which can be easily verified. It

is easy to see that ad~ç E ~J.., so J#(ad~ç) + E Wo. Thus,
[X, + ~] E Wo if and only if

Equivalently,

i.e., ~J is ad~-invariant (mod~). Notice that, as an element of g A g, J can
always be written as

where J1 - 0 (mod #). In fact, one may always take Ji = 0, which will
not affect the Lagrangian subalgebra Wo. Moreover, it follows from the

equation

that Ja,f3 = 0 whenever a + j3 ~ 0. Denoting Ja,-a simply byla, we can
write

which is in fact ad~-invariant. Thus, under the standard identification
0 EB o* L- 1(= g % g), Wo is of the form (comparing with Equation (37)
in the last section)
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where t± = I J0152 == E no = I
Ja =1= 0, cx E in analogue to Equations (35) and (36), and p is the
Cayley transformation of . Using a similar

argument as in the proof of Lemma 4.2, we can show that n~ are indeed
subalgebras of n~ and t± are ideals of n~ . Consequently, they correspond
to a subset S of the set of simple roots according to Proposition 4.3.

Finally, using the fact that the commutator of the elements

is still in Wo, one derives the following relations:

which implies that cp = Adeao for some Ao E C~. This concludes the proof. D

In the sequel, by 1 (S, Ao) we denote the Lagrangian subalgebra Wo
corresponding to the pair (S, Ao) - Combining the above proposition and
Corollary 4.5 we are lead to:

THEOREM 5.2. - There is a one-one correspondence among the
following objects:

1. dynamical r-matrices with zero gauge term,

2. pairs (S, Ao)? where S is a subset of the simple roots and Ao E ~*,
and

3. Lagrangian subalgebras Wo C g EB g such that Wo f1 9 == ~.

This theorem establishes a correspondence between Lagrangian sub-
algebras of g EB g and dynamical r-matrices in a rather indirect manner,
namely through the pair (S, AO). Next we will illuminate a direct connec-
tion geometrically.

Consider a subbundle U x 0 of A, where U C T U is identified with the
zero section and C g. Given a function T : U - /B2g, being considered
as a section in F(A2A), the characteristic pair (U x ~, T) defines a maximal
isotropic subbundle W of A 0 A* :

as given by Equation (16). Then we have

PROPOSITION 5.3. - If r(A) = T(h) + ro is a dynamical r-matrix,
the subbundle W corresponding to the characteristic pair (U x C~, T) is a
Dirac structure of the Lie bialgebroid (A, A*, ro).
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It suffices to check the three conditions in Theorem 2.4.

First, it is obvious that U x # c A is a Lie subalgebroid. Second, we have
1 1

according to Equation (26).

where in the second equality we used the fact that T is ~-invariant . It thus
follows that

([ç, ~7~T~ h~ _ (LT#~~l - LT#~~ - d(T#~~ ~1)~ h~ = 0, Vh E C~.

That is, r(U is closed under [., ~~ T . On the other hand, it is well

known that 01 is an ideal of the dual Lie algebra g * , since h C g is a
Cartan subalgebra. This means that ( U x fJ)1.. is a Lie subalgebroid of A*.
Thus, x is closed under the bracket [ç,1]] + [ç,1]],. Consequently,
the conclusion follows. 0

It is well known that a Lie bialgebra integrates to a Poisson group.
Similarly, the global object corresponding to a Lie bialgebroid is a Poisson
groupoid [22], [23]. For the Lie bialgebroid (A, A* , ro ), its Poisson groupoid
is rather simple to describe. As a groupoid, it is simply the product of the
pair groupoid U x U with the Lie group G, where G is a Lie group with Lie
algebra g. The Poisson structure is the product of the zero Poisson structure
on U x U with the Poisson group structure on G defined by the r-matrix
ro. According to Theorem 8.6 in [18], the Dirac structure W corresponds
to a Poisson homogeneous space Q of this Poisson groupoid. As a manifold,

where H C G is a Cartan subgroup with Lie algebra ~ . It is not difficult
to see that for every fixed A E U, ~~~ x G/H is a Poisson submanifold,
whereas the Poisson tensor is

Here p : G - G/H is the projection, r’(A) refers to the bivector field
on G obtained by the left translation of r(A) E /B2g, and ro refers to the
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bivector field on G obtained by the right translation of ro E n2g. It is simple
to see that is a Poisson homogeneous G-space. Thus in this
way we obtain a family of Poisson homogeneous G-spaces parametrized by
A E U. It is not surprising that this is the family of Poisson homogeneous
spaces studied by Lu [20].

The corresponding family of Lagrangian subalgebras (or Dirac struc-
tures) of the Lie bialgebra (g, g*, ro) is just the fibers of W:

In other words, W(A) corresponds to the characteristic pair (~, -r(A)). In
fact, it is easy to see that

where (S, Ao) is the pair corresponding to the dynamical r-matrix r(A) as
in Theorem 5.2. We now summarize the above discussion in the following
two corollaries.

COROLLARY 5.4. - The following two statements are equivalent:

1. The subbundle W defined by the characteristic pair (U x 0, T) is
a Dirac structure of the Lie bialgebroid (A, A* , ro ) .

2. For any fixed A E U, W(A) defined by the characteristic pair
(C~, T(~)) is a Dirac structure for the Lie bialgebra (g, g*, ro).

COROLLARY 5.5 [20]. -- A dynamical r-matrixr (A) defines a family
of Dirac structures W(A) of the Lie bialgebra (g, g*, ro), which in turn
corresponds to a family of Poisson homogeneous G-spaces (G / H, 7rQ(À)).

Such a family of Lagrangian subalgebras is said to be governed by
a dynamical r-matrix. ifrom Corollary 5.4, we see that the inverse of

Proposition 5.3 is not necessary true, because W being a Dirac structure
is only a fiberwise property without involving any dynamical relation. In
fact, given a family of Lagrangian subalgebras W(A), VA E U, we may write
W(A) = for E 0*. ¿From Equation (58), it follows that

W(A) is governed by a dynamical r-matrix if and only if 6B is independent
of A and 0 : 0 - C~ is a linear translation: + Ao for some Ao E ~.
Consequently, we have

COROLLARY 5.6. - Let p E U be any fixed point, Wo a Lagrangian
subalgebra such that Wo n g = C~. Then Wo extends uniquely to
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a family of Lagrangian subalgebras W(A) such that W(p) = Wo, which is
governed by a dynamical r-matrix.

Proof. Assume that Wo = l ( S, Ao). Consider the pair (S, Ao - p).
This corresponds to a dynamical r- matrix r(A) according to Theorem 5.2.
Let W(A) be its corresponding family of Lagrangian subalgebras. Then
W(A) = 1 (S, A - p + Ao). Thus W (p) = Ao) = Wo. Moreover, it is clear
that such an extension is unique. 0
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