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SEMI-INFINITE COHOMOLOGY
AND SUPERCONFORMAL ALGEBRAS

by Elena POLETAEVA

1. Introduction.

B. Feigin and E. Frenkel have introduced a semi-infinite analogue of
the Weil complex based on the space

In their construction g - EBnEZgn is a graded Lie algebra, 5’~~*(g) and
A22~l+*(g) are some semi-infinite analogues of the symmetric and exterior
power modules, [FF]. As in the classical case, two differentials, d and h, are
defined on W ~ +* (g). They are analogous to the differential in Lie algebra
(co)homology and the Koszul differential, respectively. The semi-infinite
Weil complex

is acyclic similarly to the classical Weil complex. The cohomology of the
complex

Keywords: Weil complex - Semi-infinite cohomology - Superconformal algebra - Kahler
geometry.
Math. classification: 17B55 - 17B70 - 81R10 - 14F40.
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is called the semi-infinite cohomology of g with coefficients in its "adjoint
semi-infinite symmetric powers" 2 2 One can also define
the relative semi-infinite Weil complex (g) (relatively go), and the
relative semi-infinite cohomology [FF].

E. Getzler has shown that the semi-infinite Weil complex of the Vi-
rasoro algebra admits an action of the N = 2 superconformal algebra, [G].

Recall that a superconformal algebra (SCA) is a simple complex Lie
superalgebra 5, such that it contains the centerless Virasoro algebra (i.e.
the Witt algebra) Witt = EBnEzCLn as a subalgebra, and has growth 1. The
Z-graded superconformal algebras are ones for which adLo is diagonalizable
with finite-dimensional eigenspaces, [KL]:

In this work we consider the semi-infinite Weil complex constructed
for the next natural (after the Virasoro algebra) class of graded Lie algebras:
the loop algebras of the complex finite-dimensional Lie algebras. The action
of the Virasoro algebra on such complex is ensured by the fact that it has
a structure of a vertex operator superalgebra (see [Ak]).

Let g be a complex finite-dimensional Lie algebra, and g == gQ9C[t, ]
be the corresponding loop algebra. We obtain a representation of the N = 2
SCA in the semi-infinite Weil complex and in the semi-infinite

cohomology ~~~*(~)) with central charge 3dimg. We extend the
representation of the N = 2 SCA in to a representation of the

one-parameter family ~’(2, a) of deformations of the N - 4 SCA (see
[Ad] and [KL]). In the case, when g is endowed with a non-degenerate
invariant symmetric bilinear form, we obtain a representation of 6~(2,0)
in 2 2 Finally, there exists a representation of a central
extension of the Lie superalgebra of all derivations of S’ (2, 0) in the relative
semi-infinite cohomology go, ,S’ ~ +* (g) ) .

It was shown in [FGZ] that the cohomology of the relative semi-
infinite complex V), where is a complex graded Lie algebra, and V
is a graded Hermitian [-module, has (under certain conditions) a structure
analogous to that of the de Rham cohomology in Kahler geometry.

Recall that given a compact Kahler manifold M, there exists a number
of classical operators on the space of differential forms on M, such as
the differentials 8, a, d, dc, their corresponding adjoint operators and the
associated Laplacians (see [GH]). There also exists an action of st(2) on



747

H* (M) according to the Lefschetz theorem. All these operators satisfy a
series of identities known as Hodge identities, [GH]. Naturally, the classical
operators form a finite-dimensional Lie superalgebra.

We show that given a complex finite-dimensional Lie algebra 0
endowed with a non-degenerate invariant symmetric bilinear form, there
exist the analogues of the classical operators on the complex rel (g) . We
prove that the exterior derivations of ,S’’(2, 0) form an st(2), and observe that
they define an structure on which is

the analogue of the structure on the de Rham cohomology in
Kahler geometry.

The action of ~’(2,O) provides with eight
series of quadratic operators. In particular, they include the semi-infinite
Koszul differential h, and the semi-infinite analogue of the homotopy
operator (cf. [Fu]). We prove that the degree zero part of the Z-grading
of ,S’’ (2, 0) defined by the element Lo E Witt, is isomorphic to the Lie
superalgebra of classical operators in Kahler geometry.

It would be interesting to interpret the superconformal algebra
S’ (2, 0) as "affinization" of the classical operators in the case of an infinite-
dimensional manifold.

This work is partly based on [Pl]-[P3].

2. Semi-infinite Weil complex.

The semi-infinite Weil complex of a graded Lie algebra was introduced
by B. Feigin and E. Frenkel in [FF]. Recall the necessary definitions. More
generally, let V = EBnEZ Vn be a graded vector space over C, such that
dimVn  oo. Let V’ = the restricted dual of V. The linear

space V(DV’ carries non-degenerate skew-symmetric and symmetric bilinear
forms: (~, ~) and {’,’}. Let H(V) and C(V) be the quotients of the tensor
algebra T* (V EB V’ ) by the ideals generated by the elements of the form
xy - yx - (x, y) and xy + yx - ~x, respectively, where x, y E V EB V’.
We fix K E Z. Let V = V+ EB V- be the corresponding polarization of V:
~+ = 

The symmetric algebra V’ ) is a subalgebra of H(V) and
the exterior algebra A* (V+ ~ V’ ) is a subalgebra of C(V). Let ST+*(V),
A T+*(V) be the representations of H(V ) and C(V ) induced from the triv-
ial representations  is &#x3E; and  1A &#x3E; of ,S’* (V+ ® V’ ) and of A* (V+ ® V~),
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respectively. Thus we obtain some semi-infinite analogues of symmetric and
exterior power modules. Denote the actions of H(V) and C(V) on these
modules by j3(x), ~y(x’) and T(x), e(x’), respectively, for x E V, x’ E V’. No-
tice that each element of S22~ + * (V) and of A T +* (V) is a finite linear combi-
nation of the monomials of the type -y(xi) ... ~y(x~)~3(yl) ... and of

the type E(X’l) - respectively, where xi, ... , x~ E
V+’, V-. Let Deg7(x) = 1, and DegT(x) -

-1. Correspondingly, we obtain Z-gradings on the spaces of
semi-infinite power modules: 

2
Let be a homogeneous basis of V so that if i E Z, then ei E Vn

for some n e Z, and if ei E Vn, then ei+l E Vn or E Vn+,. Let 
be the dual basis. Let io E Z be such that eio E VK and E 

Notice that one can think of as the vector space spanned
by the elements w - eil A ei2 A ... such that there exists N(w) E Z
such that in - I for n &#x3E; N(w). Then iA = eZO A A ... is

a vacuum vector in this space. The actions of e( x’), T(x) are, respectively,
the exterior multiplication and contraction in the space of semi-infinite
exterior products.

Let g = EDnEZOn be a graded Lie algebra over C, such that dimgn 
oo. Let § be a representation of g in V so that

One can define the projective representations p and 7r of g in l1 2 t* (V)
and 6~~*(V), respectively

where x E g, and where the double colons : : denote a normal ordering
operation:
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Thus

and

/n f’B

where x, y E g and CA, cs are 2-cocycles. Notice that -cs. Let

Since the cocycles corresponding to the projective representations cancel,
the representation = p(x) -f- ~r(x) of g in is well-defined. We

define a Z-grading on setting

Let V = g = and 0 be the adjoint representation of g. We
define two differentials on the space 

We obtain the semi-infinite Weil complex

(2.10) IW25~~+*(g), d+hl-
The differential d is the analogue of the classical differential for the Lie
algebra (co)homology, and h is the analogue of the Koszul differential.
Notice that

Notice also that if g is a finite-dimensional Lie algebra, then applying the
definitions given above to the polarization g - g+ 0 g _ , where g+ - g,
g _ = 0, we obtain the classical Weil complex.

As in the case of the classical Weil complex, one can construct two
filtrations, Fi and on 
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For filtration Fi the complex is acyclic, the second term of the spectral
sequence associated to filtration F2 is the semi-infinite cohomology of Lie
algebra g with coefficients in its "adjoint semi-infinite symmetric powers"

The differential d preserves the space (g) since

and

2a+*
for any x e g. The is called the relative semi-

infinite Weil complex. Its cohomology is called the relative semi-infinite

We fix K = 0 from this point on. Correspondingly, V = V+ 0 V-,
where V+ = 

3. The N = 2 superconformal algebra.

Recall that the N = 2 SCA is spanned by the Virasoro generators
£n, the Heisenberg generators Hn, two fermionic fields Gr , and a central
element C, where n e Z,r E Z + 1/2, and where the non-vanishing
commutation relations are as follows, [FST]:

-

Let Witt = G)iczCLi be the Witt algebra:
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Let A, &#x3E; e C. Let ~’~,~ - EBmEZCUm be a module over Witt defined as
follows:

Remark 3.1. - The module 7x,p = is isomorphic to the
module ~ ~,,~+1 - over the Witt algebra defined in [Fu]. The
isomorphism is given by the correspondence um - ·

THEOREM 3.1. - The space W ~ +* (~’~,~) is a module over the N = 2
SCA with central charge 3 - 6A.

Proof. Set

We define a representation of Witt in WO+* (7x,p) as follows:
(3.5)

Let us extend 0 to a representation of the N = 2 SCA in W2~~ + * (-’FA, ,):

We calculate the central charge by checking the commutation relations on
the vacuum vector Let n &#x3E; 0. Then
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Thus the central charge is 3 - 6A. The other commutation relations on the
vacuum vector i are calculated in the same way.

0

Remark 3.2. - In the case = 1, the module is

the adjoint representation of Witt. Thus we obtain a representation of the
N = 2 SCA in the semi-infinite Weil complex of the Witt algebra (cf. [G]).

THEOREM 3.2. - Let V be a complex finite-dimensional vector space,
V = V 0 There exists a representation of the N = 2 SCA in

with central charge 3dimV.

Proof. There is the natural Z-grading V - where

Vn = V(g)fB Let u run through a fixed basis of V, un stand for u 0 tn, and
let ~u~~ be the dual basis of V’. Define the following quadratic expansions
by analogy with (3.5) and (3.6), where A = 0, &#x3E; = 0:

Set
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Then ,en, Hn, h.~, and p~ span the centerless N = 2 SCA.

Let n &#x3E; 0. Then = 0. Hence

since - Notice that

Hence

Thus the central charge is 3dimV. D

COROLLARY 3.1. - Let g be a complex finite-dimensional Lie algebra,
let g = g There exists a representation of the N = 2 SCA in

H ~ +* (g, ,S’ ~ +* (g)) with central charge 3dimg.

Proof. - We will show that the expansions (3.9) commute with the
differential d. Recall that

where

u, v run through a fixed basis of g, and i, j E Z. Then
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and

Clearly,

and

Next,

Hence

Finally,
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Hence

4. The superconformal algebras S’(2, a).

Recall the necessary definitions, [KL]. Let W(N) be the superalgebra
of all derivations of Crt, 0A(N), where is the Grassmann algebra
in N variables 81, ... , BN, and p(t) = 0, p(Oi) - 1 for i = 1,..., N. Let a2
stand for and stand for a/ at . Let

Recall that

where f, fi E C[t, 0 A (N), and

where f is an even function. Let S’(N, a) = [S(N, a), S(N, a)] be the
derived superalgebra. Assume that then S(N, a) is simple,
and if a E Z, then S’(N, a) is a simple ideal of S(N, a ) of codimension 1:

Notice that

The superalgebra S’(N, cx) has, up to equivalence, only one non-trivial 2-
cocycle if and only if N = 2, which is important for our task. Let
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be the basis of S’(2, a) defined as follows:

The non-vanishing commutation relations between these elements are

A non-trivial 2-cocycle on S’(2, a) is
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see [KL]. Let ,S’’ (2, a) be the corresponding central extension of S’ (2, a). In
particular, ,S’’ (2, 0) is isomorphic to the N = 4 SCA (see [Ad]).

Remark 4.1 - Notice that

(4.10) S’(2,Q)ö == where

and

is a direct sum of two standard (odd) st(2)-modules.

Remark 4.2 - For any a E C one can consider the subalgebra
of 5~(2,0;), spanned by and C. Thus we obtain a one-

parameter family of superalgebras, which are isomorphic to the N - 2
SCA. The isomorphism

is given as follows:

Notice that formulae (4.13) correspond to the spectral flow transformation
for the N = 2 SCA (cf. [FST]).

Let Der,S’’ (2, a) be the Lie superalgebra of all derivations of ,S’’ (2, a),
and be the exterior derivations of ,S’’ (2, a) (see [Fu]).
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THEOREM 4.1.

I) If a E Z, then SC(2) = (~,7~,.F), where

The action of SZ(2) is given as follows:

2) If cx E CBZ, then (1i).

Proof. Recall that the exterior derivations of a Lie (super) algebra
can be identified with its first cohomology with coefficients in the adjoint
representation (see [Fu]). Thus

The superalgebra S’(2, cx) has the following Z + a-grading deg:

Let

Then

for a homogeneous 8 E S’(2, a). Accordingly,

for a homogeneous D E a). On the other hand, since the action
of a Lie superalgebra on its cohomology is trivial (see [Fu]), then one must
have
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Hence the non-zero elements of have deg == 0, and they
preserve the superalgebra S’(2, a)d,g=O. Let a E Z. Then one can check
that the exterior derivations of form an sl(2), and extend
them to the exterior derivations of S’(2, a) as in (4.15). One should also
note that if the restriction of a derivation of ,S’’ (2, a) to S’ (2, a)deg=o is

zero, then this derivation is inner.

Finally, notice that the exterior derivations £ and 7 interchange {h~}
with If a ft Z, then deg h~ - deg Xn ft Z for any k, n E 7~. Hence E and
7 cannot have deg = 0. By this reason, cx) = (U) for a G C ) Z.

0

Remark 4.3. If a E Z, then one can identify :F with -t-o.(}I(}28t
(see (4.4)).

5. An action of ~’(2, a) on the semi-infinite Weil complex
of a loop algebra.

We will consider a more general case, i.e. when V is a complex finite-
dimensional vector space, and V - Let be a

non-trivial central extension of DerS’(2, a).

THEOREM 5.1.

1) The space W ~ +* (V ), where a E C, is a module over ~’(2, a) with
central charge 3dimV;

2) if a E C B Z, then is a module over Der5"(2, a).

Proof. Let u run through a fixed basis of V, un stand for u 0 tn,
and be the dual basis of V’. One can define a representation of Witt
in by analogy with (3.5), where A = 0, ft = a /2:

then extend it to a representation of the N = 2 SCA, and apply (4.13). We
obtain the following representation of S’’ (2, a) :
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One can check that the central charge is 3dimV in the same way as in
Theorem 3.2. 0

THEOREM 5.2. Let g be a complex finite-dimensional Lie algebra
endowed with a non-degenerate invariant symmetric bilinear form. Then

is a module over S’(2, 0) with central charge 3dimg.

Proof. - Let (vi ) be a basis of g so that with respect to the given
form 61,j . Let u run through this basis. Then by Theorem 5.1,
there is a representation of ~(2,0) in W 22 +* (b). Notice that we can identify
the elements of *S’(2,0) with the quadratic expansions obtained by putting
a = 0 in the equations (5.2). One can check that the commutation relations
(4.8) (where a = 0) are fulfilled. One can notice that

In fact, since (.,.) is an invariant symmetric bilinear form on g, then the
elements En, Hn, and Fn commute with 7r(g) for any g E g. Hence they
commute with d. According to Corollary 3.1,

Recall that
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Since

then

(5.7)

Since

then (5.3) follows. 0

To define an action of DerS’’(2, 0), one should consider a relative semi-
infinite Weil complex.

Let g be a complex finite-dimensional Lie algebra, 0 be a represen-
tation of g in V, ( ~, ~ ) be a non-degenerate g-invariant symmetric bilinear
form on V. One can naturally extend 0 to a representation of b in V:

_ . A

THEOREM 5.3. The space module over DerS’(2, 0)
with central charge 3dimV.

Proof. Let be a basis of V so that = Let u

run through this basis. Then by Theorem 5.1, there is a representation
of 6"(2,0) in W ~ +* ( V ) . We can identify the elements of S’(2,0) with the
expansions (5.2) where 0152 = 0.

Since the form , is g-invariant, then there is an action of S’(2,0) on
, . A 

,To extend this representation to Der,S’’ (2, 0) , we have to define
it on §~(2) _ (F, 1t, £). Let

Notice that 8~(2) acts The commutation relations between

£, U, 7 and the elements of S’(2, 0) coincide with the relations (4.15),
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where a = 0, up to some terms which contain elements T(uo). Since the
action of T(uo) on r +* (f) is trivial, then a representation of Ijers’ (2, 0)

2a+* -
in W2 rel (V) is well-defined. 0

COROLLARY 5.1. a module over S’(2, 0)
with central charge 3dimg.

Proof. - Follows from Theorem 5.2. D

6. Relative semi-infinite cohomology
and Kahler geometry.

Let M be a compact Kahler manifold with associated ( 1,1 )-form c~,
let dimcM = n. There exists a number of operators on the space A* (M)
of differential forms on M such as o~, o~, d, d~, their corresponding adjoint
operators and the associated Laplacians (see [GH]). Recall that

The Hodge *-operator maps

so that *2 - (-1)p+q on Correspondingly, the Hodge inner
product is defined on each of AP,q(M):

In addition, A* (M) admits an sl(2)-module structure. Namely, s[(2) -
(L, H, A), where

The operator
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is defined by

Let A = L* be its adjoint operator:

and

According to the Lefschetz theorem, there exists the corresponding action
of s ((2) on H* (M). These operators satisfy a series of identities, known as
the Hodge identities (see [GH]). Consider the Lie superalgebra spanned by
the classical operators:

The non-vanishing commutation relations in 8 are as follows:

THEOREM 6.1. - Let g be a complex finite-dimensional Lie algebra
with a non-degenerate invariant symmetric bilinear form. Then there exist
operators on Wr 1 +* (,g), which are analogous to the classical operators in
Kahler geometry.

Proof. It was shown in [FGZ] that a relative semi-infinite complex
C~(C, lo, V), where I = is a complex Z-graded Lie algebra, and V
is a graded Hermitian [-module, has a structure, which is similar to that of
the de Rham complex in Kahler geometry. It is assumed that there exists
a 2-cocycle ~y on such that is non-degenerate if n E ZB0 and it
is zero otherwise. Then there exist operators on V ) analogous to
the classical ones.
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We will define analogues of the classical operators on W 2 (b). Using
the form (., -) on g we obtain the 2-cocycle q on g:

Notice that is non-degenerate if n E ZB0 and zero otherwise. Let

For a homogeneous element in /BA~(n~), a is the number of added
elements, and b is the number of missing elements with respect to the
vacuum vector Irel- Let

We obtain a bigrading on the relative semi-infinite Weil complex, such that

Let d be the restriction of the differential to the relative subcomplex. Notice
that

Define dl and d2 such that

Let

To define the adjoint operators, we have to introduce a Hermitian form on

Wr 1 +* (~l) .
It was shown in [FGZ] that if a Z-graded Lie algebra admits an

antilinear automorphism a of order 2 such - then there

exists a Hermitian form on 11 ~ +* ( C) such that

where x E 1, x’ E I’.
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To define a Hermitian form {’,’} on A~+* (g), we set = 1.

We fix a basis of g so that (vi, V j) = b2,~ . Let u run through this basis.
We define an antilinear automorphism a~ of g as follows:

Correspondingly,

We introduce a Hermitian form on A~~*(0) so that the relations (6.18),
where

hold. In the similar way we introduce a Hermitian form on ,5’ ~ +* (g), such
that

Then we obtain a Hermitian on Wr 1 +* (g) by tensoring these
two forms. It gives a pairing: Ca’b(g) ---~ Cb,a (g). To define a Hermitian
form on ca,b(g), we use the linear map

defined as follows:

where v E S22~l+*(b), &#x3E; 0 and  0. Finally, the Hermitian
form on is defined by (wi, w2) = Wl,W21 (cf. [FGZ]).
We introduce the adjoint operators d*, d~ and the Laplace operator A =
dd* + d*d.

It was pointed out in [FGZ] that as in the classical theory (see ~GH~),
there exists an action of s [(2) on to, V). One can identify Cn with
1-n by means of the cocycle ~y. If (ei) is a homogeneous basis in t, then

.~C(2) = (L, H, A) is defined as follows:
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We identify gn with g _ n by means of the cocycle -y (see (6.11 ) ) , and set

Then we obtain the ~,~(2) _ (E, ?nC, lc) defined in (5.10). The operators

are the analogues of the classical operators (6.9). D

THEOREM 6.2. - Let 9 be a complex finite-dimensional Lie al-

gebra vvith a non-degenerate invariant symmetric bilinear form. Then

is a module over with central charge
3dimg.

Proof. By Theorem 5.3, is a module over Der6"(2,0)
with central charge 3dimg. By Corollary 5.1, there is an action of 5~(2,0)
on We have proved that

see (5.10). Notice that as in the classical case, the element ~’ and the
differential d do not commute. Nevertheless, there exists an action of ~,~(2)
on the relative semi-infinite cohomology according to [FGZ]. D

THEOREM 6.3. - The degree zero part of the Z-grading deg of ,S’’ (2, 0)
is isomorphic to the Lie superalgebra of classical operators in Kähler
geometry.

Proof. Recall that the Z-grading deg of S’(2, 0) is defined by the
element Lo E Witt, see (4.17)-(4.19). One can easily check that

i"B i"B

The isomorphism of Lie superalgebras
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is given as follows:

COROLLARY 6.1. - The action of S’(2, O)d,g.0 defines a set of qua-
dratic operators on ’el (g) (correspondingly, on (g, go, (g) )),
which are analogues of the classical ones, and include the semi-infinite
Koszul differential h = ttg and the semi-infinite homotopy operator po.

Remark 6.1. - In this work we have realized superconformal algebras
by means of quadratic expansions on the generators of the Heisenberg
and Clifford algebras related to g. Note that the differentials on a semi-
infinite Weil complex are represented by cubic expansions. One can possibly
define an additional (to the already known) action of the N = 2 SCA on

considering Fourier components of the differentials d and d*,
[Fe] .
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