

DE

L'INSTITUT FOURIER

Jean-Paul ALLOUCHE, Jean-Marc DESHOUILLERS, Teturo KAMAE & Tadahiro KOYANAGI

Automata, algebraicity and distribution of sequences of powers Tome 51, nº 3 (2001), p. 687-705.

<http://aif.cedram.org/item?id=AIF_2001__51_3_687_0>

© Association des Annales de l'institut Fourier, 2001, tous droits réservés.

L'accès aux articles de la revue « Annales de l'institut Fourier » (http://aif.cedram.org/), implique l'accord avec les conditions générales d'utilisation (http://aif.cedram.org/legal/). Toute reproduction en tout ou partie cet article sous quelque forme que ce soit pour tout usage autre que l'utilisation à fin strictement personnelle du copiste est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

cedram

Article mis en ligne dans le cadre du Centre de diffusion des revues académiques de mathématiques http://www.cedram.org/

AUTOMATA, ALGEBRAICITY AND DISTRIBUTION OF SEQUENCES OF POWERS

by J.-P. ALLOUCHE, J.-M. DESHOUILLERS, T. KAMAE, T. KOYANAGI

1. Introduction.

Let K be a finite field of characteristic p. Let K((x)) be the field of formal Laurent series in x. We call $f \in K((x))$ algebraic if it is algebraic over the rational function field K(x). We say that

$$f(x) = \sum_{n = -\infty}^{\infty} f_n x^n \in K((x)),$$

where $f_n = 0$ if *n* is sufficiently small, is *p*-automatic (see for example [4] and the references therein), if there exists a finite automaton $M = (\Sigma, \phi, \sigma_0, \tau)$ over the alphabet $[p] := \{0, 1, \dots, p-1\}$ such that

(1)
$$f_n = \tau(\phi(\cdots \phi(\phi(\sigma_0, n_0), n_1) \cdots, n_L))$$

for any nonnegative integers n and L with

(2)
$$n = \sum_{i=0}^{\infty} n_i p^i = \sum_{i=0}^{L} n_i p^i, \ n_i \in [p],$$

Keywords: Distribution of powers – Algebraic formal Laurent series – Automatic sequences. Math. classification: 11K41 – 11B85 – 68R15.

where Σ is a finite set, $\sigma_0 \in \Sigma$, $\phi : \Sigma \times [p] \to \Sigma$ and $\tau : \Sigma \to K$. In this case, we say that M recognizes f. The elements in Σ are called the **states** and σ_0 is called the **initial state** of M. We call τ the **output function** of M.

Remark 1. — The usual definition for that M recognizes f is different from ours, but is that (1) holds for any nonnegative integers n and L with (2) together with $n_L \neq 0$. If we have a finite automaton M like this, then we can modify it to have a finite automaton $M' = (\Sigma \times \Sigma, \phi', (\sigma_0, \sigma_0), \tau')$ which recognizes f in our sense. In fact, we define

$$\phi'((\sigma,\sigma'),k) = egin{cases} (\phi(\sigma,k),\sigma') & (k=0)\ (\phi(\sigma,k),\phi(\sigma,k)) & (k
eq 0) \end{cases}$$

and

 $\tau'(\sigma, \sigma') = \tau(\sigma').$

Thus, f is recognized by some automaton in our sense if and only if f is recognized by some automaton in the usual sense.

The notion of "(p-)automaticity" does not change if automata read the highest digit first, i.e., if we replace (1) by

$$f_n = \tau(\phi(\cdots \phi(\phi(\sigma_0, n_L), n_{L-1}) \cdots, n_0)).$$

In this case, we say that M dually recognizes f. If M recognizes f, then the dual automaton M^* dually recognizes f (Section 6).

It holds that

THEOREM 1 ([3], [4]). — The series $f \in K((x))$ is algebraic if and only if it is p-automatic.

This theorem was generalized to the multi-dimensional case by Salon:

THEOREM 2 ([12], [13]). — The formal power series $F(x, y) \in K[[x, y]]$ is algebraic if and only if it is p-automatic.

F. von Haeseler and A. Petersen [8] and F. von Haeseler [9] also discussed the multi-dimensional generalization. In fact, they proved the equivalence between finite kernel property and automaticity in a general setting which essentially implies our Theorem 6, which generalizes the "only if" part of Theorem 2 for

$$F(x,y) = \sum_{m=0}^{\infty} \sum_{n=-\infty}^{\infty} F_{n,m} x^n y^m \in K((x))[[y]].$$

Here, $F_{n,m} \in K$ for any $n, m \in \mathbb{Z}$ with $m \ge 0$ and it holds that for any $m \ge 0$, there exists $n_0(m)$ such that $F_{n,m} = 0$ for any $n < n_0(m)$. The meaning of "*p*-automatic" for such an F(x, y) is that there exists a finite automaton $M = (\Sigma, \phi, \sigma_0, \tau)$ over $[p] \times [p]$ such that

(3)
$$F_{n,m} = \tau(\phi(\cdots \phi(\phi(\sigma_0, n_0, m_0), n_1, m_1) \cdots, n_L, m_L))$$

for any nonnegative integers n, m and L with the following (4):

(4)
$$n = \sum_{i=0}^{\infty} n_i p^i = \sum_{i=0}^{L} n_i p^i, \quad m = \sum_{i=0}^{\infty} m_i p^i = \sum_{i=0}^{L} m_i p^i,$$
where $n_i \in [p]$ and $m_i \in [p]$.

The reader may compare the definition with [1] and [9]. Our definition of p-automaticity does not involve the part of $F_{n,m}$ with n < 0.

We apply this theorem to discuss the distribution of the sequence $({f^m})_{m \ge 0}$ for $f \in K((x))$, where $\{f\}$ is the **nonnegative part** of f, i.e.,

$$\{f\} = \sum_{n=0}^{\infty} f_n x^n \in K[[x]].$$

The following result was proved by Allouche and Deshouillers [2] (see Deshouillers [5], [6], [7] for more precise results if f is rational).

THEOREM 3 ([2]). — For any algebraic $f \in K((x))$, the logarithmic distribution of $(\{f^m\})_{m\geq 0}$ exists and its support has Hausdorff dimension zero.

In the above, a Borel probability measure μ on K[[x]] is called the **logarithmic distribution** of a sequence $(f^{(m)})_{m \ge 0}$ in K[[x]] if for any finite sequence $(c_i)_{0 \le i < b}$ (b > 0) of elements in K, it holds that

$$\lim_{M \to \infty} \frac{1}{\log M} \sum_{\substack{m=0 \\ f_i^{(m)} = c_i, \ \forall i \in [0,b)}}^{M-1} \frac{1}{m+1} = \mu\{\omega \in K[[x]]; \ \omega_i = c_i, \ \forall i \in [0,b)\}.$$

Here, we call μ simply the **distribution** of a sequence $(f^{(m)})_{m\geq 0}$ in K[[x]] if for any finite sequence $(c_i)_{0\leq i< b}$ of elements in K, it holds that

$$\lim_{M \to \infty} \frac{1}{M} \sum_{\substack{m=0 \\ f_i^{(m)} = c_i, \ \forall i \in [0,b)}}^{M-1} 1 = \mu\{\omega \in K[[x]]; \ \omega_i = c_i, \ \forall i \in [0,b)\}.$$

It is clear that, if a sequence has a distribution, then it has a logarithmic distribution and both distributions coincide.

In Section 2, we obtain the generic distribution of $({f^m})_{m\geq 0}$ for random $f \in K((x))$ such that $\min\{n; f_n \neq 0\} < 0$. The generic distribution is not the Haar measure on K[[x]] but is equivalent to it, which is proved in Theorem 4 in Section 2.

In Section 3, we consider $(\{f^m\})_{m\geq 0} = (f^m)_{m\geq 0}$ when $f \in K[[x]]$. In this case, there always exists a continuous distribution if $f_0 \neq 0$ and $f \neq f_0$. Moreover, the distributions of f^{-1} and $f_0^{-2}f$ coincide. In particular, if $f_0 = 1$, then f and f^{-1} have the same distribution.

In the further sections, we consider

(5)
$$F(x,y) := \sum_{m=0}^{\infty} f(x)^m y^m = \frac{1}{1 - f(x)y} \in K((x))[[y]]$$

for an algebraic $f(x) \in K((x))$. We give an alternative proof of Theorem 3 using the fact that F(x, y) is algebraic, and hence, *p*-automatic. In fact, we prove that the support of the logarithmic distribution is not only of Hausdorff dimension zero, but also of sublinear (block-)complexity. We construct a finite automaton which recognizes F(x, y) for a rational $f(x) \in K((x))$ to discuss the distribution of the sequence $(\{f^m\})_{m\geq 0}$. Using it, we obtain a sufficient condition for the distribution to be the Dirac measure at 0 in the case where either the denominator or the numerator is a monomial. This generalizes results by Houndonougbo [10] and by Deshouillers [6] as well as simplifies the proofs.

2. Generic distribution.

For any $n \in \mathbb{Z}$, denote $\mathbf{K}_n = \{f \in K((x)); f_i = 0 \text{ for any } i < n\}$, which is identified with the product space $K^{\{n,n+1,n+2,\cdots\}}$. Let λ_n be the uniform distribution on \mathbf{K}_n . That is, λ_n is the product measure $(\lambda_K)^{\{n,n+1,n+2,\cdots\}}$, where λ_K is the uniform probability measure on K. The following theorem is essentially due to De Mathan [11] (see Théorème 3 bis, p. 40).

THEOREM 4. — For any n < 0 and for almost all $f \in \mathbf{K}_n \setminus \mathbf{K}_{n+1}$ with respect to λ_n , the distribution of $(\{f^m\})_{m \ge 0}$ exists and is equal to

$$\mu = (p-1) \sum_{k=1}^{\infty} p^{-k} \lambda_0 \circ T^{1-k},$$

where $T : K[[x]] \to K[[x]]$ is defined by $T(f) = \sum_{i=0}^{\infty} f_i x^{p_i}$. Hence, μ is equivalent to λ_0 and the support is the whole space K[[x]].

COROLLARY 1. — The logarithmic distribution of $(\{f^m\})_{m\geq 0}$ for $f \in K[[x]]$ or algebraic $f \in K((x))$, for which we know that the support has Hausdorff dimension 0, is singular with respect to this generic distribution μ .

Remark 2.— The uniform distribution λ_0 cannot be a logarithmic distribution of the sequence $(\{f^m\})_{m\geq 0}$ for any $f \in K((x))$, since the relative frequency of m such that $(f^m)_1 = (f^m)_{p+1} = 0$ is at least 1/p as $(f^{jp})_1 = (f^{jp})_{p+1} = 0$ $(j = 1, 2, \cdots)$. On the other hand, the λ_0 -measure of the set of $g \in K[[x]]$ such that $g_1 = g_{p+1} = 0$ is at most $1/p^2$.

Proof of Theorem 4. — Let $f = \sum_{i \ge n} Z_i x^i$ be a random variable on $\mathbf{K}_n \setminus \mathbf{K}_{n+1}$, where $Z_{n+1}, Z_{n+2}, Z_{n+3}, \cdots$ are independent random variables uniformly distributed on K and Z_n is a uniformly distributed random variable on $K \setminus \{0\}$ which is independent of $Z_{n+1}, Z_{n+2}, Z_{n+3}, \cdots$. Take any $m \ge 0$ which is not a multiple of p. Then, for any $i \ge 0$, we have

$$(f^m)_i = A_{m,i} + mZ_n^{m-1}Z_{i-n(m-1)}$$

= $A_{m,i} + B_mZ_{i-n(m-1)}$,

where $A_{m,i} \in K$ and $B_m \in K \setminus \{0\}$ are random variables determined by $Z_n, Z_{n+1}, \dots, Z_{i-n(m-1)-1}$. Therefore, for any k and $(c_0, c_1, \dots, c_{k-1}) \in K^k$, we have

$$E\left[\prod_{0\leqslant i\leqslant k-1} 1_{(f^{m})_{i}=c_{i}}\right]$$

= $E\left[E\left[\prod_{0\leqslant i\leqslant k-1} 1_{(f^{m})_{i}=c_{i}} | Z_{n}, Z_{n+1}, \cdots, Z_{k-n(m-1)-2}\right]\right]$
= $E\left[\prod_{0\leqslant i\leqslant k-2} 1_{(f^{m})_{i}=c_{i}}\right]$
 $P[A_{m,k-1} + B_{m}Z_{k-n(m-1)-1} = c_{k}|Z_{n}, Z_{n+1}, \cdots, Z_{k-n(m-1)-2}]$
= $E\left[\prod_{0\leqslant i\leqslant k-2} 1_{(f^{m})_{i}=c_{i}}\right](\sharp K)^{-1} = \cdots = (\sharp K)^{-k},$

where $\sharp K$ denotes the number of elements in K. Now let us estimate the variance of $(1/M) \sum_{m \in a(M)} \prod_{0 \leq i \leq k-1} 1_{(f^m)_i = c_i}$, where we denote by a(M) the set of the least M positive integers not divisible by p. We denote $A = (\sharp K)^{-1}$ and $B = \frac{k}{-n}$. Then we have

$$\begin{split} & \left| E \Big[\Big(\sum_{m \in a(M)} \prod_{0 \leqslant i \leqslant k-1} 1_{(f^m)_i = c_i} - MA^k \Big)^2 \Big] \right| \\ &= \Big| \sum_{m,h \in a(M)} E \Big[\Big(\prod_{0 \leqslant i \leqslant k-1} 1_{(f^m)_i = c_i} - A^k \Big) \Big(\prod_{0 \leqslant i \leqslant k-1} (1_{(f^h)_i = c_i} - A^k \Big) \Big] \Big| \\ &\leqslant (2B+1)M + 2 \Big| \sum_{m,h \in a(M); \ m-h > B} \\ & E \Big[\Big(\prod_{0 \leqslant i \leqslant k-1} 1_{(f^m)_i = c_i} - A^k \Big) \Big(\prod_{0 \leqslant i \leqslant k-1} (1_{(f^h)_i = c_i} - A^k \Big) \Big] \Big| \\ &= (2B+1)M. \end{split}$$

The last equality in the above holds since for any $m, h \in a(M)$ with m-h > B, the term

$$\Big(\prod_{0\leqslant i\leqslant k-1} 1_{(f^m)_i=c_i} - A^k\Big)\Big(\prod_{0\leqslant i\leqslant k-1} (1_{(f^h)_i=c_i} - A^k\Big)$$

can be written as the sum of terms:

$$A^{2k-2-j-j'}(1_{(f^m)_j=c_j}-A)(1_{(f^h)_{j'}=c_{j'}}-A) \times \prod_{0 \le i \le j-1} 1_{(f^m)_i=c_i} \prod_{0 \le i \le j'-1} 1_{(f^h)_i=c_i},$$

which has 0 expectation since all the terms but $(1_{(f^m)_j=c_j} - A)$ are determined by $Z_n, Z_{n+1}, \dots, Z_{j-n(m-1)-1}$, while as above

$$E[1_{(f^m)_j=c_j} - A|Z_n, Z_{n+1}, \cdots, Z_{j-n(m-1)-1}]$$

= $P[A_{m,j} + B_m Z_{j-n(m-1)} = c_j | Z_n, Z_{n+1}, \cdots, Z_{j-n(m-1)-1}] - A$
= 0.

Thus the variance of $(1/M) \sum_{m \in a(M)} \prod_{0 \leq i \leq k-1} 1_{(f^m)_i = c_i}$ is at most (2B+1)/M and we have the law of large numbers. That is, with probability 1, $(1/M) \sum_{m \in a(M)} \prod_{0 \leq i \leq k-1} 1_{(f^m)_i = c_i}$ converges to A^k . Since this holds for any finite sequence $(c_0, c_1, \dots, c_{k-1}) \in K^k$, it holds with probability 1 that the distribution of $(\{f^m\})_{m \in a(\infty)}$ is λ_0 , where $a(\infty)$ is the set

of positive integers which are not multiples of p. Since

$$(f^{pm})_n = \begin{cases} (f^m)_{n/p} & \text{(if } p|n) \\ 0 & \text{(otherwise)}, \end{cases}$$

the distribution of $({f^m})_{m \in pa(\infty)}$ is $\lambda_0 \circ T^{-1}$ with probability 1. In the same way, the distribution of $({f^m})_{m \in p^2 a(\infty)}$ is $\lambda_0 \circ T^{-2}$ with probability 1. Hence, the distribution of $({f^m})_{m \ge 0}$ is

$$\frac{p-1}{p}\lambda_0 + \frac{p-1}{p^2}\lambda_0 \circ T^{-1} + \frac{p-1}{p^3}\lambda_0 \circ T^{-2} + \cdots,$$

which completes the poof.

3. Case K[[x]].

In this section, we consider the case where $f \in K[[x]]$. That is,

$$f = \sum_{n=0}^{\infty} f_n x^n.$$

For a positive integer N, let $f|_N := \sum_{n=0}^{N-1} f_n x^n$. Let G be a transformation on the finite set $K_{[0,N)} := \{g|_N; g \in K[[x]]\}$ defined by $G(g) := (gf)|_N$. Then, since we have $f^m|_N = G^m(1)$ for $m = 0, 1, 2, \cdots$, the sequence $f^m|_N \in K_{[0,N)}$ in m is ultimately periodic. We have 3 cases.

If $f_0 = 0$, then $f^m|_N = 0$ for any $m \ge N$.

If $f = f_0 \neq 0$, then since $G^{p-1}(1) = 1$, $f^m|_N$ is purely periodic in m with period p - 1.

Assume that $f \neq f_0 \neq 0$. Let $n \in \mathbb{N}$ satisfy that $p^{n-1} < N \leq p^n$. Then since $f^{(p-1)p^n}|_N = 1$, $f^m|_N$ is purely periodic in m with period $(p-1)p^n$. Let c_N be the least period of the sequence $f^m|_N$ in m. Then we have $c_N \leq (p-1)p^n < p(p-1)N$. It is clear that $f^m|_N \neq f^{m'}|_N$ if $|m-m'| < c_N$. Hence, f has a distribution, say μ_f , and μ_f is continuous if $c_N \to \infty$ as $N \to \infty$.

We prove that μ_f is continuous if $f \neq f_0 \neq 0$. Assume that $f \neq f_0 \neq 0$. Let n_0 be the least positive integer such that $f_{n_0} \neq 0$. Let $c_N = p^L c'$ with c' which is not a multiple of p. Since $(f^{c_N})_{p^L n_0} = (f^{c'})_{n_0} \neq 0$, and $f^{c_N}|_N = 1$, we have $p^L n_0 \geq N$. Hence, $c_N \geq p^L \geq N/n_0$ and $c_N \to \infty$ as $N \to \infty$. Thus, μ_f is continuous.

TOME 51 (2001), FASCICULE 3

The complexity $C_N(\Omega)$ of a closed subset Ω of K[[x]] is defined by

$$C_{N}(\Omega) = \sharp \left\{ \begin{array}{l} (H_{0}, H_{1}, \cdots, H_{N-1}) \in K^{N}; \text{ there exists } \omega \in \Omega \\ \text{ such that } \omega_{i} = H_{i}, \quad \forall i = 0, 1, \cdots, N-1 \end{array} \right\}$$

Let $\Omega(f)$ be the topological support of the measure μ_f on K[[x]]. Then it is clear that $C_N(\Omega(f)) = c_N$ for any $N = 1, 2, \cdots$.

When we discuss the Hausdorff dimension of subsets in K[[x]], it is with respect to the metric ρ defined by

$$\rho(\omega,\omega'):=p^{-\min\{n\ge 0;\ \omega_n\neq\omega'_n\}}$$

for any $\omega \neq \omega' \in K[[x]]$. For the α -Hausdorff measure Λ_{α} of $\Omega(f)$, we have

$$\Lambda_{\alpha}(\Omega(f)) \leq \lim_{n \to \infty} \sum_{\substack{(H_0, \dots, H_{n-1}) \in K^n \\ \exists \omega \in \Omega(f), \ \omega_i = H_i, \ i = 0, \dots, n-1}} p^{-n\alpha}$$
$$= \lim_{n \to \infty} C_n(\Omega(f)) p^{-n\alpha}$$
$$\leq \lim_{n \to \infty} p(p-1)n \cdot p^{-n\alpha}$$
$$= 0$$

for any $\alpha > 0$. Thus, dim $\Omega(f) = 0$.

THEOREM 5. — For $f \in K[[x]]$, the sequence $(\{f^m\})_{m=0,1,\cdots}$ has a distribution μ_f . If $f_0 = 0$, then μ_f is the Dirac measure at $0 \in K((x))$. If $f_0 \neq 0$ and $f \neq f_0$, then μ_f is a continuous distribution supported by $\Omega(f)$ while $\Omega(f)$ has a sublinear complexity and hence 0-Hausdorff dimension. In fact, $C_N(\Omega(f)) < p(p-1)N$ for any $N = 1, 2, \cdots$. Moreover, in this case, it holds that $\mu_{f^{-1}} = \mu_{f^{-2}_{\sigma}f}$.

Proof. — We only have to prove that $\mu_{f^{-1}} = \mu_{f_0^{-2}f}$. It suffices to prove this in the case $f_0 = 1$. Since $f^{p^k}|_{p^k} = 1$, $f^{p^k-m}|_{p^k} = f^{-m}|_{p^k}$ for any $k = 1, 2, \cdots$ and m with $0 \leq m < p^k$. This implies that $\mu_{f^{-1}} = \mu_f$. \Box

4. Construction of automata.

For $i \in [p]$, define the linear operators X_i and Y_i on K((x))[[y]] by

$$X_i\left(\sum_{n,m=-\infty}^{\infty} H_{n,m} \ x^n y^m\right) := \sum_{n,m=-\infty}^{\infty} H_{np+i,m} \ x^n y^m$$

and

$$Y_i\left(\sum_{n,m=-\infty}^{\infty}H_{n,m}\ x^ny^m\right):=\sum_{n,m=-\infty}^{\infty}H_{n,mp+i}\ x^ny^m.$$

LEMMA 1.

(i)
$$X_i Y_j(x^n y^m) = \begin{cases} x^{(n-i)/p} y^{(m-j)/p} & \text{if } n \equiv i \text{ and } m \equiv j \mod p, \\ 0 & \text{otherwise.} \end{cases}$$

(ii) For any $i, j \in [p]$, we have $X_i Y_j = Y_j X_i$.

(iii) For any $i, j \in [p]$ and for any $H, G \in K((x))[[y]]$, we have $X_i Y_j(HG^p) = X_i Y_j(H)G$.

Proof. — Assertions (i) and (ii) are clear from the definition. For the proof of (iii), it is sufficient to remark that $G(x, y)^p = G(x^p, y^p)$ holds for any $G \in K((x))[[y]]$.

We state now a theorem to be compared with [3], [4], [9], [12], [13]. The proof either follows from them or at least is essentially the same. But for the readers' convenience, we give the proof.

THEOREM 6. — If $F \in K((x))[[y]]$ is algebraic, then it is p-automatic.

Proof. — Assume that a nonzero element $F \in K((x))[[y]]$ is algebraic over K(x, y) with degree h_0 . Then, the elements $F, F^p, F^{p^2}, \dots, F^{p^{h_0}}$ are linearly dependent over K(x, y). Let h be the least integer such that $F, F^p, F^{p^2}, \dots, F^{p^h}$ are linearly dependent over K(x, y). Then, there exist $A_0, A_1, A_2, \dots, A_h \in K[x, y]$ with at least one of them nonzero such that

(7)
$$A_0F + A_1F^p + A_2F^{p^2} + \dots + A_hF^{p^h} = 0.$$

We may also assume that $A_0, A_1, A_2, \dots, A_h$ have no nontrivial common factor.

We prove that $A_0 \neq 0$. Suppose that $A_0 = 0$. Then we have

$$A_1F^p + A_2F^{p^2} + \dots + A_hF^{p^h} = 0.$$

Since at least one of A_1, A_2, \dots, A_h is nonzero, there exist $i, j \in [p]$ such that at least one of $X_i Y_j(A_1), X_i Y_j(A_2), \dots, X_i Y_j(A_h)$ is nonzero. Then, by Lemma 1,

$$0 = X_i Y_j (A_1 F^p + A_2 F^{p^2} + \dots + A_h F^{p^h})$$

= $X_i Y_j (A_1) F + X_i Y_j (A_2) F^{p^2} + \dots + X_i Y_j (A_h) F^{p^{h-1}},$

which contradicts the minimality of h.

696 J.-P. ALLOUCHE, J.-M. DESHOUILLERS, T. KAMAE, T. KOYANAGI

Thus, we have (7) with $A_0 \neq 0$. Let $G := F/A_0 \in K((x))[[y]]$. Then, it holds that

$$G = -A_0^{p-2}A_1G^p - A_0^{p^2-2}A_2G^{p^2} - \dots - A_0^{p^h-2}A_hG^{p^h}$$

=: $B_1G^p + B_2G^{p^2} + \dots + B_hG^{p^h}$

and $F = A_0 G$ with $A_0, B_1, B_2, \dots, B_h \in K[x, y]$.

Let $d := \max\{\deg A_0, \deg B_1, \deg B_2, \cdots, \deg B_h\}$ and

$$\overline{\mathbf{S}}(f) := \{a_0 G + a_1 G^p + \dots + a_{h-1} G^{p^{h-1}} \in K((x))[[y]]; \\ a_i \in K[x, y] \text{ and } \deg a_i \leqslant d, \ i = 0, 1, \dots, h-1\}.$$

Note that $\overline{\mathbf{S}}(f)$ is a finite set containing F. For any $i, j \in [p]$ and $H \in \overline{\mathbf{S}}(f)$ with

$$H = a_0 G + a_1 G^p + a_2 G^{p^2} + \dots + a_{h-1} G^{p^{h-1}},$$

it holds by Lemma 1 that

$$\begin{aligned} X_i Y_j(H) &= X_i Y_j(a_0 G + a_1 G^p + a_2 G^{p^2} + \dots + a_{h-1} G^{p^{h-1}}) \\ &= X_i Y_j(a_0 (B_1 G^p + \dots + B_h G^{p^h}) + \\ &a_1 G^p + a_2 G^{p^2} + \dots + a_{h-1} G^{p^{h-1}}) \\ &= X_i Y_j(a_0 B_1 + a_1) G + X_i Y_j(a_0 B_2 + a_2) G^p + \dots + \\ &X_i Y_j(a_0 B_h) G^{p^{h-1}} \\ &\in \overline{\mathbf{S}}(f), \end{aligned}$$

since, for any $k = 0, 1, \dots, h - 1$,

$$\deg X_i Y_j(a_0 B_k) \leqslant rac{1}{p} (\deg a_0 + \deg B_k) \leqslant rac{2d}{p} \leqslant d.$$

Let

(8)
$$\overline{\mathbf{M}}(f) := (\overline{\mathbf{S}}(f), \phi, F, \eta)$$

be the finite automaton over $[p] \times [p]$ such that

$$\phi(H, i, j) := X_i Y_j(H)$$
 and $\eta(H) = H_{0,0}$

for any $H = \sum H_{n,m} x^n y^m \in \overline{\mathbf{S}}(f)$ and $i, j \in [p]$. Let $\mathbf{S}(f)$ be the set of states in $\overline{\mathbf{S}}(f)$ which are **attainable** from the initial state F in $\overline{\mathbf{M}}(f)$, i.e.,

the set of states $S \in \overline{\mathbf{S}}(f)$ such that there exists a finite sequence of inputs in $[p] \times [p]$ which sends the state F to S. Let $\mathbf{M}(f) := (\mathbf{S}(f), \phi, F, \eta)$ be the automaton obtained from $\overline{\mathbf{M}}(f)$ by restricting the set of states to be $\mathbf{S}(f)$.

We prove that $\mathbf{M}(f)$ recognizes F. Take any nonnegative integers n, m and L with (4). It holds that

$$F_{n,m} = (X_{n_L} Y_{m_L} \cdots X_{n_1} Y_{m_1} X_{n_0} Y_{m_0}(F))_{0,0}$$

= $\eta(\phi(\cdots \phi(\phi(F, n_0, m_0), n_1, m_1) \cdots, n_L, m_L)),$

which completes the proof.

5. Rational functions.

Let

(9)
$$f(x) = \frac{P(x)}{Q(x)}$$
, where $P, Q \in K[x]$, are coprime

be a rational function in K((x)). Then, F(x, y) defined in (5) satisfies

$$F(x,y) = \frac{1}{1 - f(x)y} = \frac{Q(x)}{Q(x) - P(x)y}$$

Let

$$G(x,y) = \frac{1}{Q(x) - P(x)y}.$$

Let $\overline{S}(f)$ be the set of all $H \in K[x]$ with deg $H \leq \max\{\deg P, \deg Q\}$. Define $\phi : \Sigma \times [p] \times [p] \to \Sigma$ by

(10)
$$\phi(H, i, j) = X_i (HQ^{p-1-j}P^j).$$

Let $\tau : \Sigma \to K$ be $\tau(H) = (\frac{H}{Q})_0$, i.e., the coefficient of $\frac{H}{Q} \in K((x))$ of degree 0. Thus, we define a finite automaton $(\overline{S}(f), \phi, Q, \tau)$ over $[p] \times [p]$. Let S(f) be the set of states in $\overline{S}(f)$ which are attainable from the initial state Q in this automaton. Let $M(f) := (S(f), \phi, Q, \tau)$ be the automaton obtained from $(\overline{S}(f), \phi, Q, \tau)$ by restricting the set of states to be S(f).

THEOREM 7. — The finite automaton M(f) recognizes F(x, y).

TOME 51 (2001), FASCICULE 3

Proof.— For $H \in S(f)$ and $i, j \in [p]$, it holds by Lemma 1 that

$$\begin{aligned} X_i Y_j (HG) &= X_i Y_j (H(Q - Py)^{p-1} G^p) \\ &= X_i Y_j (H(Q - Py)^{p-1}) G \\ &= X_i (H \begin{pmatrix} p-1 \\ j \end{pmatrix} Q^{p-1-j} (-P)^j) G \\ &= X_i (HQ^{p-1-j} P^j) G = \phi(H,i,j) G \end{aligned}$$

Take any nonnegative integers n, m and L with (4). Then it holds that

$$F_{n,m} = X_{n_L} Y_{m_L} \cdots X_{n_1} Y_{m_1} X_{n_0} Y_{m_0}(F)_{0,0}$$

$$= X_{n_L} Y_{m_L} \cdots X_{n_1} Y_{m_1} X_{n_0} Y_{m_0}(QG)_{0,0}$$

$$= X_{n_L} Y_{m_L} \cdots X_{n_1} Y_{m_1} (\phi(Q, n_0, m_0)G)_{0,0}$$

$$= \cdots$$

$$= (\phi(\cdots \phi(\phi(Q, n_0, m_0), n_1, m_1) \cdots, n_L, m_L)G)_{0,0}$$

$$= \tau(\phi(\cdots \phi(\phi(Q, n_0, m_0), n_1, m_1) \cdots, n_L, m_L)),$$

which completes the proof.

Let f be as in (9), F be as in (5) for this f, and the finite automaton M := M(f) be as above. For each $i \in [p]$, let $M_i := (S(f), \phi_i, Q, \tau)$ be the finite automaton over [p] such that $\phi_i(H, j) = \phi(H, i, j)$ for any $j \in [p]$ and $H \in S(f)$. Then, the sequence $(F_{n,m})_{m \ge 0}$ in K for a fixed nonnegative integer n with (2) is "recognizable" by the sequence of automata related to n:

$$M_{n_0}, M_{n_1}, \cdots, M_{n_L}, M_0, M_0, \cdots$$

in the sense that

$$F_{n,m} = \tau(\phi_{n_N}(\cdots\phi_{n_1}(\phi_{n_0}(Q,m_0),m_1)\cdots,m_N))$$

for any nonnegative integers m and $N \ge L$ with

$$m = \sum_{i=0}^{\infty} m_i p^i = \sum_{i=0}^{N} m_i p^i, \ m_i \in [p].$$

Theorem 8.

(i) The distribution of the sequence $(\{f^m\})_{m\geq 0}$ is equal to δ_0 , the Dirac measure at $0 \in K((x))$ if in the finite automaton M_0 as above, 0 is attainable from any state in S(f).

(ii) If P = 1 and $Q \neq 0$ satisfies Q(0) = 0, then the distribution of the sequence $(\{f^m\})_{m \ge 0}$ is equal to δ_0 .

(iii) If $Q = x^u$ with $u \ge 1$, $P(0) \ne 0$ and for some $k = 1, 2, \dots, P^k$ lacks the term x^{ku} , i.e., $(P^k)_{ku} = 0$, then the distribution of the sequence $(\{f^m\})_{m\ge 0}$ is equal to δ_0 .

Proof. — (i) Assume that 0 is attainable from any state in S(f) in M_0 . By the above consideration, 0 is the only "sink" of the sequence of automata related to any $n \ge 0$. Since $\tau(0) = 0$, this implies that for any $n \ge 0$ the frequency of 0 in the sequence $(F_{n,m})_{m\ge 0}$ is equal to 1. Thus, the distribution of the sequence $(\{f^m\})_{m\ge 0}$ is equal to δ_0 .

(ii) Since
$$\phi_0(x^c, p-1)$$
 is $x^{c/p}$ if $p \mid c$ and 0 otherwise,

$$\underbrace{\phi_0(\cdots \phi_0(\phi_0(x^c, p-1), p-1) \cdots, p-1) \neq 0}_{k \text{ times}}$$

only if $p^k \mid c$. Therefore, for any $H \in S(f)$ and for any sufficiently large integer k, it holds that

$$\underbrace{\phi_0(\cdots\phi_0(\phi_0}_k(H,p-1),p-1)\cdots,p-1)=H(0).$$

k times

Assume that H = C (constant). Then, since

$$\phi_0(H, p-2) = CX_0(Q) =: J,$$

the relation J(0) = 0 follows from the assumption Q(0) = 0.

Thus, 0 is attainable from any element H in S(f) in M_0 by reading (p-1) sufficiently many times followed by reading (p-2) once and again (p-1) sufficiently many times.

(iii) Assume that $(P^k)_{ku} = 0$ for some $k = 1, 2, \cdots$. Since $\phi_0(x^c, 0)$ is $x^{u+(c-u)/p}$ if $p \mid c-u$ and 0 otherwise,

$$\underbrace{\phi_0(\cdots\phi_0(\phi_0}_{j \text{ times}}(x^c,0),0)\cdots,0)\neq 0$$

only if $p^j | c-u$. Therefore, for any $H \in S(f)$ and for any sufficiently large integer j, it holds that

$$\underbrace{\phi_0(\cdots\phi_0(\phi_0}_{j \text{ times}}(H,0),0)\cdots,0) = H_u x^u.$$

Therefore, for any state in S(f), there exists $C \in K$ such that Cx^u is attainable from it. Hence, it suffices to prove that 0 is attainable from x^u .

Let
$$k = \sum_{i=0}^{j-1} k_i p^i$$
 with $k_i \in [p]$. Then we have

$$H := \underbrace{\phi_0(\cdots \phi_0(\phi_0(x^u, k_0), k_1) \cdots, k_{j-1})}_{j \text{ times}}$$

$$= X_0(\cdots X_0(X_0(x^{(p-k_0)u}P^{k_0})x^{(p-k_1-1)u}P^{k_1}) \cdots x^{(p-k_{j-1}-1)u}P^{k_{j-1}})$$

$$= X_0(\cdots X_0(X_0(x^{(p-k_0)u}P^{k_0}(x^{(p-k_1-1)u}P^{k_1})^p) \cdots x^{(p-k_{j-1}-1)u}P^{k_{j-1}})$$

$$= X_0(\cdots X_0(X_0(x^{(p^2-k_0-k_1p)u}P^{k_0+k_1p})) \cdots x^{(p-k_{j-1}-1)u}P^{k_{j-1}})$$

$$= X_0(\cdots X_0(X_0(x^{(p^2-k_0-k_1p-\dots-k_{j-1}p^{j-1})u}P^{k_0+k_1p+\dots+k_{j-1}p^{j-1}})) \cdots)$$

$$= x^u X_0^j(x^{-ku}P^k).$$

Therefore, $H_u = 0$ follows from the assumption $(P^k)_{ku} = 0$. Thus, 0 is attainable by applying the preceding procedure again, which completes the proof.

Remark 3. — To cover the case where one of P or Q is a monomial, we have to consider the following subcases in addition to (ii) and (iii) in Theorem 8:

- (iv) P = 1 and $Q(0) \neq 0$,
- (v) $P = x^u$ with $u \ge 1$ and $Q(0) \ne 0$,
- (vi) Q = 1 and $P(0) \neq 0$,
- (vii) Q = 1 and P(0) = 0, and

(viii) $Q = x^u$ with $u \ge 1$ and $(P^k)_{ku} \ne 0$ for any $k = 1, 2, \cdots$.

The distribution is δ_0 in the cases (v) and (vii), since $(f^m)_n = 0$ if m > n. In the cases (iv) and (vi), the distributions are continuous by Theorem 5 if f is nonconstant. In the case (viii), the distribution is always continuous by [6]

The case (iii) in Theorem 8 is due to Deshouillers [6]. Here we gave an alternative and simpler proof.

Example 1 (Pascal triangle). — Let p = 2, $K = \{0, 1\}$ and f = 1 + x, (P = 1 + x, Q = 1). Then, the table $(F_{n,m})_{n,m \ge 0}$ is the Pascal triangle modulo 2. In the automaton M = M(f), the initial state is 1, $S(f) = \{0, 1\}$, and it holds that

$$\phi(0,i,j)=0, \ \phi(1,i,j)= egin{cases} 1 & ext{if } i\leqslant j \ 0 & ext{otherwise} \end{cases}$$

Figure 1. – Automaton in Example 1.

for any $i, j \in [2]$. Therefore, M_0 has two sinks 0 and 1. Furthermore we have $\tau(0) = 0$ and $\tau(1) = 1$.

The distribution μ for this f is determined using the automaton. In fact, we have

(11)
$$F_{n,m} = \begin{cases} 1 & \text{if } n_i \leq m_i \quad \forall i \geq 0 \\ 0 & \text{otherwise.} \end{cases}$$

Define a partial order \leq on the nonnegative integers by

 $n \leq m$ if and only if $n_i \leq m_i$ for all i,

where we use the notation in (4). Then, for any fixed $m \ge 0$, the function F_m defined by $F_m(n) = F_{n,m}$ is monotone decreasing with respect to the partial order \preceq on the set of nonnegative integers. It is not difficult to see that $\Omega(f)$ consists of all $\sum_{n\ge 0} g_n x^n$ such that the function $n \mapsto g_n$ is monotone decreasing in this sense. The distribution μ is the uniform distribution on $\Omega(f)$ in some sense.

By the arguments in Section 3, the function $m \mapsto F_m|_{2^k}$ is purely periodic with least period at most 2^k for $k = 1, 2, \cdots$. In our case, it is exactly 2^k since otherwise, there exists m with $0 < m < 2^k$ such that $F_m|_{2^k} = F_0|_{2^k} = \delta_0$. But this is impossible since $F_m(m) = F_{m,m} = 1$ by (11). The μ -measure of the cylinder determined by $F_m|_{2^k}$ is 2^{-k} for $m = 0, 1, \cdots, 2^k - 1$ using the periodicity.

Figure 2. – Automaton in Example 2.

Example 2. — Let p = 2, $K = \{0, 1\}$ and $f = (1+x^2)/x$, $(P = 1+x^2, Q = x)$. Then, we have

$$\begin{split} \phi(x,i,0) &= X_i(x^2) = \begin{cases} x & \text{if } i = 0, \\ 0 & \text{if } i = 1, \end{cases} \\ \phi(x,i,1) &= X_i(x+x^3) = \begin{cases} 0 & \text{if } i = 0, \\ 1+x & \text{if } i = 1, \end{cases} \\ \phi(0,i,j) &= 0 & \forall i, j \in [2] \\ \phi(1+x,i,0) &= X_i(x+x^2) = \begin{cases} x & \text{if } i = 0, \\ 1 & \text{if } i = 1, \end{cases} \\ \phi(1+x,i,1) &= X_i(1+x+x^2+x^3) = 1+x & \forall i \in [2] \\ \phi(1,i,0) &= X_i(x) = \begin{cases} 0 & \text{if } i = 0, \\ 1 & \text{if } i = 1, \end{cases} \\ \phi(1,i,1) &= X_i(1+x^2) = \begin{cases} 1+x & \text{if } i = 0, \\ 0 & \text{if } i = 1. \end{cases} \end{split}$$

In this case, f has a distribution equal to δ_0 .

ANNALES DE L'INSTITUT FOURIER

6. Dual automata and complexity.

Let $\mathbf{M}(f) := (\mathbf{S}(f), \phi, F, \eta)$ be the automaton constructed in Section 4 which recognizes F in (5) for an algebraic $f \in K((x))$. We construct the dual automaton $\mathbf{M}(f)^* := (\mathbf{S}(f)^*, \phi^*, \eta, F^*)$ over $[p] \times [p]$ which dually recognizes F.

Let

$$\overline{\mathbf{S}(f)}^{*} := \{ \xi : \mathbf{S}(f) \to K \}$$

$$\phi^{*}(\xi, i, j) := \xi \circ \phi_{i,j} \ (\forall i, j \in [p], \ \xi \in \overline{\mathbf{S}(f)}^{*})$$

$$F^{*}(\xi) := \xi(F) \ (\forall \xi \in \overline{\mathbf{S}(f)}^{*}),$$

where $\phi_{i,j} : \mathbf{S}(f) \to \mathbf{S}(f)$ is defined by $\phi_{i,j}(H) = \phi(H, i, j), \forall H \in \mathbf{S}(f)$. Let $\mathbf{S}(f)^*$ be the set of all states which are attainable from the initial state η in the automaton $(\overline{\mathbf{S}(f)}^*, \phi^*, \eta, F^*)$ over $[p] \times [p]$. Let $\mathbf{M}(f)^* := (\mathbf{S}(f)^*, \phi^*, \eta, F^*)$ be the restriction of this automaton.

Then for any nonnegative integers n, m and L with (4), we have

$$F^{*}(\phi^{*}(\cdots\phi^{*}(\phi^{*}(\eta, n_{L}, m_{L}), n_{L-1}, m_{L-1}) \cdots, n_{0}, m_{0}))$$

$$= F^{*}(\phi^{*}(\cdots\phi^{*}(\eta \circ \phi_{n_{L}, m_{L}}, n_{L-1}, m_{L-1}) \cdots, n_{0}, m_{0}))$$

$$= \cdots$$

$$= F^{*}(\eta \circ \phi_{n_{L}, m_{L}} \circ \phi_{n_{L-1}, m_{L-1}} \circ \cdots \circ \phi_{n_{0}, m_{0}})$$

$$= \eta \circ \phi_{n_{L}, m_{L}} \circ \phi_{n_{L-1}, m_{L-1}} \circ \cdots \circ \phi_{n_{0}, m_{0}}(F)$$

$$= \eta(\phi(\cdots\phi(\phi(F, n_{0}, m_{0}), n_{1}, m_{1}) \cdots, n_{L}, m_{L})))$$

$$= F_{n, m}.$$

Thus, $\mathbf{M}(f)^*$ dually recognizes F.

THEOREM 9. — If f is algebraic, then it holds that

$$C_n(\Omega(f)) \leq pn \sharp \mathbf{S}(f)^*$$

for any $n = 1, 2, 3, \dots$, where the notation is as in (6). In particular, the logarithmic distribution of the sequence $(\{f^m\})_{m \ge 0}$ is supported by $\Omega(f)$ which has Hausdorff dimension zero.

Proof. — Since the table $(F_{u,v})_{0 \leq u < p^k, mp^k \leq v < (m+1)p^k}$ for $m \geq 0$ with

$$m = \sum_{i=0}^{\infty} m_i p^i = \sum_{i=0}^{L} m_i p^i \ m_i \in [p], \ m_L \neq 0$$

is determined by

$$\phi^*(\cdots \phi^*(\phi^*(\eta, 0, m_L), 0, m_{L-1}) \cdots, 0, m_0) \in \mathbf{S}(f)^*,$$

there exist at most $\sharp \mathbf{S}(f)^*$ different tables as above. Hence, there exist at most $p^k \sharp \mathbf{S}(f)^*$ different sequences among $(F_{u,v})_{0 \leq u < p^k}$ $(v = 0, 1, 2, \cdots)$. Take any positive integer n. Then, there are at most $pn \sharp \mathbf{S}(f)^*$ different sequences among $(F_{u,v})_{0 \leq u \leq n-1}$ $(v = 0, 1, 2, \cdots)$, since there exists a positive integer k such that $p^{k-1} \leq n < p^k \leq pn$. Thus, we have

$$C_n(\Omega(f)) \leqslant pn \sharp \mathbf{S}(f)^*$$

for any $n = 1, 2, 3, \dots$. For the α -Hausdorff measure Λ_{α} of $\Omega(f)$, we have

$$\Lambda_{\alpha}(\Omega(f)) \leq \lim_{n \to \infty} \sum_{\substack{(H_0, \cdots, H_{n-1}) \in K^n \\ \exists \omega \in \Omega(f), \ \omega_i = H_i, i = 0, \cdots, n-1}} p^{-n\alpha}$$
$$= \lim_{n \to \infty} C_n(\Omega(f)) p^{-n\alpha}$$
$$\leq \lim_{n \to \infty} pn \sharp \mathbf{S}(f)^* p^{-n\alpha}$$
$$= 0$$

for any $\alpha > 0$. Thus, dim $\Omega(f) = 0$.

Problem. — It seems to be true that if $f \in K((x))$ is algebraic, then the sequence $(\{f^m\})_{m \ge 0}$ has a distribution which is either δ_0 or continuous. We do not have a proof of this assertion.

Acknowledgments. — The authors would like to thank Prof. Bernard de Mathan for interesting discussions about the generic distribution of the powers of a formal power series on a finite field. The authors would like to thank also the anonymous referee for useful suggestions.

BIBLIOGRAPHY

- J.-P. ALLOUCHE, E. CATELAND, W. J. GILBERT, H.-O. PEITGEN, J. SHALLIT, and G. SKORDEV, Automatic maps on semiring with digits, Theory Comput. Syst. (Math. Systems Theory), 30 (1997), 285–331.
- [2] J.-P. ALLOUCHE and J.-M. DESHOUILLERS, Répartition de la suite des puissances d'une série formelle algébrique, in: Colloque de Théorie Analytique des Nombres Jean Coquet, Journées SMF-CNRS, CIRM Luminy 1985, Publications Mathématiques d'Orsay, 88–02 (1988), 37–47.

ANNALES DE L'INSTITUT FOURIER

- [3] G. CHRISTOL, Ensembles presque périodiques k-reconnaissables, Theoret. Comput. Sci., 9 (1979), 141–145.
- [4] G. CHRISTOL, T. KAMAE, M. MENDÈS FRANCE and G. RAUZY, Suites algébriques, automates et substitutions, Bull. Soc. Math. France, 108 (1980), 401–419.
- [5] J.-M. DESHOUILLERS, Sur la répartition modulo 1 des puissances d'un élément de $F_q((X))$, in: Proc. Queen's Number Theory Conf. 1979, Queen's Pap. Pure Appl. Math., 54 (1980), 437–439.
- [6] J.-M. DESHOUILLERS, La répartition modulo 1 des puissances de rationnels dans l'anneau des séries formelles sur un corps fini, Sém. de Théorie des Nombres de Bordeaux (1979-1980) Exposé n° 5, 5-01–5-22.
- [7] J.-M. DESHOUILLERS, La répartition modulo 1 des puissances d'un élément dans $F_q((X))$, in: Recent progress in analytic number theory, Vol. 2 (Durham, 1979), Academic Press, London-New York, 1981, p. 69–72.
- [8] F. VON HAESELER and A. PETERSEN, Automaticity of rational functions, Beiträge zur Algebra und Geometrie, 39 (1998), 219–229.
- [9] F. VON HAESELER, On algebraic properties of sequences generated by substitutions over a group (preprint of Bremen University, 1996).
- [10] V. HOUNDONOUGBO, Mesure de répartition d'une suite $(\theta^n)_{n \in \mathbb{N}^*}$ dans un corps de séries formelles sur un corps fini, C. R. Acad. Sci. Paris, Série A, 288 (1979), 997–999.
- [11] B. de MATHAN, Approximations diophantiennes dans un corps local, Bull. Soc. Math. France, Suppl., Mém., 21 (1970), 93 p.
- [12] O. SALON, Suites automatiques à multi-indices et algébricité, C. R. Acad. Sci. Paris, Série I, 305 (1987), 501–504.
- [13] O. SALON, Propriétés arithmétiques des automates multidimensionnels, Thèse, Université Bordeaux I, 1989.

Manuscrit reçu le 15 décembre 1999, révisé le 27 septembre 2000, accepté le 16 novembre 2000.

Jean-Paul ALLOUCHE, CNRS & Université Paris-Sud LRI, Bâtiment 490 91405 Orsay Cedex (France). allouche@lri.fr

Jean-Marc DESHOUILLERS, Université Bordeaux 1 Laboratoire de Mathématiques 351 cours de la Libération 33405 Talence Cedex (France). dezou@math.u-bordeaux.fr

Teturo KAMAE & Tadahiro KOYANAGI Osaka City University Department of Mathematics Osaka 558-8585 (Japan). kamae@sci.osaka-cu.ac.jp