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1. Presentation.

1.1. Separatrices of the H6non map.

The quadratic area-preserving map of C2 defined by

can be considered as a particular case of the celebrated H6non map. The

origin is a parabolic fixed point of H. We will be interested in two invariant
curves W+ and W - , which we call "stable and unstable separatrices" for
the discrete-time dynamical system defined by the iteration of H, because
the first one is attracted and the other one repelled by the origin.

We will see that the curves W+ and W - can be naturally parametrized
by a complex variable z, with well-defined asymptotics as Re z ~ +00
for W+ and Re z ~ -oo for W - . A single asymptotic series corresponds
to both separatrices but in different domains of the complex plane. The
intersection of these domains contains two connected components, where for

I Im z ( ~ oc the distance between the corresponding points is exponentially
small. Our aim is to study this phenomenon asymptotically. Our approach
is based on an application of Borel summation to the divergent asymptotic
series.

When an invariant curve is given by a parametrization (u(z), v(z)),
with z varying in some subset of C, we will say that it is additively-
parametrized ((u(z ~--1), v(z -~ 1)), which amounts to the
following system of first-order finite-difference equations:

The first equation, which reflects the identity u1 = u + v, in (1), enables us
to eliminate the v-component; the system then reduces to one second-order
difference equation for the u-component:

We will deal mostly with the solutions of Equation (3), and restore the
corresponding v-components by v(z) = u(z) - u(z - 1) when willing to come
back to additively-parametrized curves. Our main result on the separatrices
of H can be formulated in terms of two special solutions of Equation (3).
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THEOREM 1. - Equation (3) admits a unique solution u+ in such

that u+ (z) - - 6z -2 + O(z-4) as z --&#x3E; +oJ, and a unique solution u- in R-
such that u- (z) - -6z-2 + O(z-4) as z --4 -oc. These two functions are
real-analytic and extend to entire functions of the complex variable z. There
exists a complex constant O, Re 6 = 0 and Im 6  0, such that

Notice that in the unicity statements no assumption on smoothness
of solutions is necessary.

We eliminated the freedom in the choice of the parametrization by the
asymptotic condition. Indeed, whenever a function u(z) is a solution of (3)
the function u(z + a(z)) solves it too, provided a is a 1-periodic complex
valued function. The absence of terms in z-3 eliminates this freedom.

The prescribed domain of definition R+ (resp. can be replaced
by any real interval Izo, +oo[ (resp. ] - oc, -zo]), since the equation itself
allows to propagate the definition of any solution towards the left or the

right. Analyticity propagates as well. This can be used to obtain entire
functions.

More can be said about the asymptotic behaviour of these special
solutions: the expression -6z-2 is nothing but the first non-trivial term
of an infinite asymptotic expansion. This expansion is asymptotic for

both u+ and u- at infinity in large sectors containing R+ and 

respectively. The intersection of the sectors has two connected components,
one of which contains the negative part of the imaginary axis. The last
statement of the theorem yields an exponentially small but nonvanishing
asymptotic equivalent for the difference u+ - u- along iR~ . We will be able
to supplement the first term with an infinite asymptotic expansion - See

Proposition 1 below. The way we normalized the constant O, dividing by 84,
has no particular meaning at this stage. Later on 6 will be interpreted as a
"splitting constant" .

It is easy to check that the invariant curves associated to u+ and u-
are the separatrices of H. Let us set = u (z) - u (z - 1) : we obtain
two additively-parametrized invariant curves of H defined by

with the property
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For all z E C, the iterates = pl(z + n) converge to the
origin as n - ~ oo . This shows that the invariant curves we found are the
"stable and unstable manifolds" of the origin. Their real parts form a cusp
at the origin, with f v - 0, u  01 as tangent.

In fact we obtain much more information about the properties of
formal and analytic solutions of Equation (3) than it is stated in Theorem 1.
Our study leads to a beautiful analytical picture described in Section 1.3,
which is of independent interest.

But let us evoke some of our motivations first.

1.2. Exponentially small splitting of separatrices.

The first motivation for our study is the appearance of 0 and

other similar constants in the study of homoclinic phenomena in close-
to-integrable Hamiltonian systems.

Let us consider the one-parameter family of quadratic area-preserving
maps,

where E &#x3E; 0 is a positive parameter. Any non-trivial quadratic diffeomor-
phism of the plane which preserves area and orientation and has two fixed
points can be put, by a linear change of coordinates, into this one-parameter
family.

For small positive E the origin is a hyperbolic fixed point of Fe and the
corresponding stable and unstable manifolds are one-dimensional curves in
the plane (x, ~) (see Fig. 1). They look like the separatrix of the Hamiltonian
vector field

except that they may intersect transversally (the limit separatrix may
"split"), but this important phenomenon is exponentially small with respect
toe ( cf. ~FS90~ ) .

Any intersection of one of the separatrices with the horizontal axis
is necessarily a homoclinic point due to a symmetry of the map (there is
a linear reverser, which conjugates F~ with and exchanges stable and
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Figure l. The limit separatrix (top) and the splitting of sepa-
ratrices of the H6non map (bottom). The unstable separatrix is
drawn by the solid line, the stable one by the dashed line.

unstable curves). The angle of intersection a of the stable and unstable
manifolds at the "first" such homoclinic point can be considered as a
measure of the splitting. The asymptotic formula

(with the same 8 as in Theorem 1) was proposed by one of the authors
without a complete proof The non-vanishing of 6 (and thus the
transversality of the homoclinic intersection) was not proven there, but the
numerical evaluation 181 ~ 2.474 - 10~ was indicated.
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The appearance of O as a splitting constant here is related to the fact
that the map F, can be considered as a small perturbation of H. Indeed, in
the coordinates u = ~2x - 2 ~2, v = c3y, it takes the form

The detailed study of H is thus an important step in the derivation of
Formula (5). But a subtle extra work is needed to complete the proof,
which has not yet been written and which we will not address in the present
paper.

Providing the rigorous proof of (5) is indeed a difficult analytical
problem, comparable to the corresponding one for the Standard Map
for which the task was recently achieved [Gel99], putting an end to the
study initiated in [Laz84]. It is in the case of the Standard Map that the
first definition of a splitting constant 81 was proposed, by V.F. Lazutkin

[Laz84], [LST89]. The papers [GLT91], [GeI91] contain numerical values
of the splitting constants for quadratic, cubic and some other polynomial
area-preserving maps.

Let us point out some other works closely related to the topic of our
paper. V. Hakim and K. Mallick [HM93] proposed already to use the Borel
summation for the study of the exponentially small splitting of separatrices
of the Standard and Semistandard Maps. A more rigorous approach was
developed by Y.B. Suris [Sur94] (for the Semistandard Map and for cubic
maps). We mention also [Laz93], [Che98], [Tov94] and [TTJ98].

A formula similar to (5) describes the splitting of a small separatrix
loop, created after a saddle-center bifurcation in a general family of analytic
area-preserving maps [GelOO]. In this case each family of maps has its own
splitting constant 0. This number can be considered as a classification
modulus of an area-preserving map near the parabolic fixed point which
appears at the bifurcation.

1.3. Resurgence.

Another motivation for our study is the opportunity of illustrating
Resurgence theory and contributing to it. "Resurgent functions" and the
"alien calculus" which comes with them were discovered and studied by
J. Ecalle in the late 70s, particularly in relation with iteration of analytic
maps [Eca81], but they have a much wider field of applications. A nice
introduction to this theory can be found in the book [CNP93].
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The present article will not assume any familiarity with Resurgence
on the part of the reader. On the contrary, it may serve as initiation into
this beautiful theory inasmuch as, in the situation at hand, we prove things
with the tools of classical Complex Analysis and indicate their translation
in terms of resurgent concepts.

One of the basic features of the theory is the tendency to consider
formal solutions of a given problem and to try to extract as much

information as possible from them. Thus we denote the space of

all formal expansions in non-positive powers of z with complex coefficients

( i. e. power series in z-1 ) , and by (C ~z~ ~ ~z-1 ~ ~ the space of the sums of
polynomials in z and power series in We first give two lemmas
to introduce formal series associated to Equation (3) and then state a
theorem from which Theorem 1 follows.

LEMMA 1. - Any nonzero solution of Equation (3) in (C~z~ [[Z-l]] can
be written in the form u(z + a), where a E (C is arbitrary and u is the
unique nonzero even solution in (C[z][[z-111,

The coefficients ak are real and ( -1 ) ~ a~ &#x3E; 0 for all k &#x3E; 1.

Proof. The second-order finite-difference operator in the left-hand
side of (3) may be written

(az denotes differentiation with respect to z), so that the equation becomes
Pu = -u2. Expanding the equation in decreasing powers of z, one checks
easily that the leading term of any formal nonzero solution must be -6z-2,
since P(z’) - n(n - l)zn-2 + for all n E Z. It turns out that the

coefficient of z-3 is free whereas the following coefficients are determined
inductively. Thus there is a unique nonzero even solution u, and since

u(z + a) is a solution for any a E C, no other non-trivial solution may
exist. The resulting induction for the coefficients ak is written in Section 6

(Formula (34)).
Now let us check that the series ak is alternating. Consider the

auxiliary series I . It is the unique nonzero
even solution in of
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But

for all k &#x3E; 1 (these coefficients are proportional to the Bernoulli numbers).
Rewriting the equation for U as

it is then easy to check that all coefficients of U are positive, and hence
&#x3E; 0. 0

We obtained a unique "formal separatrix" for the H6non map H (up
to the freedom of shifting the parameter), which is positively and negatively
asymptotic to the parabolic fixed point:

We will see that u and v, as power series of z-l, have zero radius
of convergence. The resurgent method consists precisely in analyzing
this divergence with the help of the formal Borel transform ,t3. Also

known as formal inverse Laplace transform, B is the linear transformation
from to C[[(]] defined by z-n-1 ~ (’/n! for all n &#x3E; 0. For

instance the Borel transform û = Bu of our unique nonzero even solution is

Since turns multiplication of series into convolution, i. e.

and translation of z by a constant c into multiplication by e-’~, we obtain
that ic is the unique nonzero odd solution in C[[(]] of the transformed

equation

In fact we will always deal with formal series cp(z) whose Borel
transforms ép( () have nonzero radius of convergence, which means exactly
that the coefficients of p(z) admit Gevrey-I bounds. Observe that finite
radius convergence for ép(() implies divergence for p(z). This will be
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the case of u(z), and our task will be to study the singularities of the
analytic continuation of û((). In order to state the main result we have
to introduce formal solutions of a linear equation which will allow to
describe conveniently those singularities. This equation is nothing but the
linearization of Equation (3) around u:

LEMMA 2. - Equation (9) admits two particular formal solutions
with real coefficients which can be written

Any solution of Equation (9) in C[Z][[z-’]] is a linear combination of ’PI
and (P2-

Proof. The first solution is obtained by differentiation:

hence bk = -2kak for 1. The second solution can be found by
substitution of the series into the equation. The resulting induction formulas
for the are given in Section 6, Equation (36). We normalized p2 by
choosing d-2 = 1/84 in order to have

where the ,finite-difference Wronskian

In the theory of linear finite-difference equations its role is similar to the role
of the classical Wronskian for ordinary differential equations. In particular,
if cp(z) is a solution of (9), one checks easily that cl - (z) and
c2 - must be I-periodic in z and that ’P = cip2 . But in

the class of formal series periodicity holds for constants only. 0
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THEOREM 2. - The formal Borel transform ft is convergent at the

origin and defines a holomorphic germ, which extends analytically along
any path issuing from 0 and lying in C B 27riZ (except its origin), with
exponential decay of type -oo along any non-vertical ray.

There exist complex numbers 0 and p such that the analytical
continuation of ft along the segment ] 0, 27ri can be written

where hand r are holomorphic at the origin, extend analytically along any
path lying in C B 27riZ, and

where bk and dk are defined by Lemma 2.

In the next section we will use the information about the Borel

transform of u to recover by Laplace transform the solutions u+ and u-
of Theorem 1. These solutions will have the same asymptotic expansion
(namely u(z)), their difference will be related to the singularities of u. The
possibility of performing Laplace transform is guaranteed by the exponential
decay of ti. The exponential type -oo implies that both solutions are entire.

The statement about the convergence and the analytic continuation
of û can be considered as a definition of a resurgent function with 27riZ as
a lattice of singular points. This property looks quite natural in the general
context of Ecalle’s theory, but to our knowledge this example of resurgence
was not covered by the already existing results.

In particular, the holomorphic star of u is (C B we

must remove the singular half-lines 2Jri[1, +oJ[ and -2Jri[1, +oJ[ from
the complex plane, and we may identify the resulting cut plane to the
"first sheet" of the Riemann surface of û. The analyticity of the Borel
transform in the holomorphic star was proven by V. Chernov [Che98] by an
adaptation of Lazutkin’s method which gave the corresponding result for
the Semistandard Map [Laz93]. We will use a different method and obtain
the analytic continuation not only in the holomorphic star but also along
paths which may cross the imaginary axis between singular points, i. e. we
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explore the other sheets of the Riemann surface of the multivalued analytic
function ti.

We also provide the complete description of the singularity at 27ri,
which forms the second part of Theorem 2 and which amounts to a

"resurgence relation" in Ecalle’s terminology - see Sections 4.2 and 5 for
a translation in terms of alien calculus. (Of course the singularity at -27ri
can be deduced by real-analyticity of ti.) This singularity will appear to
be directly responsible for the asymptotic equivalent (4) as z ~ -ioo, in
which the exponential e" reflects the location of the singularity whereas
the term in z4 reflects its strength.

According to Theorem 2, the singularity is the sum of a polar part
and a logarithmic term which we may identify to its variation h. Observe
that the even part of h is simply the Borel transform of cpl, up to a
factor p, whereas the odd part of h takes into account only the negative
part of the expansion of p2, the polynomial part of cp2 being reflected in
the polar part of the singularity. This corresponds to the natural extension
of the definition of the Borel transform the power series

in z-1 were mapped to germs like h((), which we now identify to the
corresponding logarithmic singularities, and polynomials in z are mapped
to polar singularities. (The extension can be pursued to deal with much
more general formal objects and types of singularity [Ecalle93], [CNP93].)

In other words, the singularity of u at 27ri can be viewed as the Borel
transform of ppi - a special solution to the formal variational
equation (9). Here 0 and p are "transcendental" constants. On the other
hand cpl and p2 represent the "elementary part" of the singularity at 27ri:
they are explicitly computable and closely related to u (one is the derivative
of u and the other is its companion linear solution) thus to the Taylor series
of ti at 0.

This is a fundamental connection between the behaviour of u near its

singular points and near 0. This self-reproduction property is at the origin
of the name "resurgent".

1.4. Structure of the rest of the article.

In the next section we use Laplace transform to deduce Theorem 1
from Theorem 2. In fact a more refined asymptotic formula for the difference
of the two separatrices is obtained.

Sections 3-5 are devoted to the proof of Theorem 2. They are
somewhat technical, but it was part of our purpose to provide all the
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details of such a demonstration, which may hopefully help other searchers
to understand and apply resurgent tools in concrete situations. Only the
holomorphic star of u, i. e. the first sheet of its Riemann surface, and the
"nearby sheets" are discussed in Section 3. The singularity at 27ri is then

examined in Section 4. In fact this part of the work is sufficient to derive
Theorem 1, but we give more insight of the resurgent structure of the
problem and complete the proof of Theorem 2 in Section 5 where a stronger
theorem is formulated.

In Section 6 we discuss numerical methods for evaluating the splitting
constants 0 and p. In [HM93] and [Sur94], the relation between them and
the asymptotic behavior of the coefficients ak of u was established; a more
precise knowledge of u enables us to refine the estimates.

2. Asymptotics of the separatrices
and of their difference.

Laplace transforms of û. - Let us consider the two Laplace integrals

Since u = they can be called Borel-Laplace transforms of u. It follows
from Theorem 2 that the integrals converge for all z and define two entire
functions. According to classical properties of Laplace transform (see for
instance [Ma]), they satisfy the original equation (3) and share the same
asymptotic expansion

where the sectors and defined as

The notation S
function cp defined in ,S’ and a formal series of

for any integer N &#x3E; -no the function
, means that

is bounded(’) in S.
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Let us now form the difference

For large I the function under the integral oscillates rapidly. Since u
extends analytically to the cut plane (C B ::i::27ri[l, +oo [, still with exponential
decay at infinity, it is easy to see that w (z) is exponentially small with
respect to ~ I Im z 1.

Let b, p &#x3E; 0 and pick z inS+ ,5,p with Im z  0 (the case of the
symmetric connected component of the intersection, where Im z &#x3E; 0, could
be treated similarly or by symmetry). We can push the path of integration
upwards and apply the Cauchy theorem as long as we do not reach 27ri:
choosing £ E]0, 27r [ and 9 E 2 7r - b, 2 r[, we have

- 

1,1

where r ç,B = Re _ (-- Im () cot 01 is formed by two symmetric half-
lines meeting at i~; this path comes from ei(7r-B)oo, goes straight to i~ and
then straight to 00. The inequality Re (zo &#x3E; Im A) Im z Im (,
with A = cot b cot 8 e ]0,1[, shows that I is bounded

in stp n (Im z  0) with T = Ag arbitrarily close to 27r.6,p 6,p

But we can deform farther the path of integration, crossing the

imaginary axis between 27ri and 47ri and decomposing w into the

contribution of the singularity at 27ri and an exponentially smaller term:

and a path -yo coming from

turning counterclockwise around 27ri and going back to 

By the same argument as above, the integral on r ç,B is bounded by
an expression Const.e-rl but this time T &#x3E; 27r can be made arbitrarily
close to 47r. By virtue of Theorem 2, the integral on -yo can be written as

i.e. the Borel-Laplace transform of up to a factor e-’’z . Thus
we obtain the following proposition.

(1) In fact this notation can be given a more precise meaning: these are Gevrey-I
asymptotic expansions, i. e. the function is bounded by CLN (N + rLo)! for

some C and L independent of N.
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PROPOSITION 1. - the following
asymptotic formula holds in i

Coming back to the additively-parametrized invariant curves p+ (z)
and p- (z), we can work similarly with the v-components v+ and v- which
are Borel-Laplace transforms of v( () = e~ û( (). Using the notations of
Equation (6), we obtain the

PROPOSITION 2. one has in,

and in i.

with

(We have used the fact that - 8zu, thus 1/;1 = Formula (16)
describes the splitting of the complex curves W+ and W - which are
exponentially close one to the other. One can say that the constant 0
describes the normal component of the splitting and p the tangent one

(notice that the symplectic 2-form du A dv yields 1 when evaluated

on (dp/dz(z), n(z))). °

Non-vanishing of 8. - We will now see that

in particular u+ and u- do not coincide. Notice that, since u is odd,

The non-vanishing of u+ - u- can thus be interpreted as a defect of
evenness, which turns out to be exponentially small for z tending to -ioo

(or to but the difference u+ - u- is not small along the real axis.

Since the function û is real-analytic and odd, it is purely imaginary on
the imaginary axis. In view of Theorem 2, since the coefficients bk and dk
are real, this implies that the constant 0 is purely imaginary whereas p
is real.

~2~ It is obvious on Equation (3) that u(-z) is solution whenever 2c(z) is solution.

This symmetry property for the equation corresponds at the level of the map H to the
existence of a "reverser"-an involutive transformation which conjugates H and H-1.
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Now suppose 6 = 0: We will reach a contradiction. Indeed in that case

it follows from Theorem 2 that ic would be bounded on the segment [0, 2Jri [.
Thus the function U(£) = iû(iç) would be bounded on the interval [0, 27r[.
But it satisfies the convolution equation

which can easily be derived from Equation (8). Therefore the left-hand
side of this equation would tend to zero when ~ - 27r. This is impossible,
because according to the last statement of Lemma 1, U is positive on ]0, 27r[,
so the right-hand side is positive too.

Moreover, since û(iç) = -iÛ(ç) with U positive, the coeffi-

cient 4! 0 d-2/27ri of the leading term must be negative, hence Im 0  0.

Observe that in that chain of reasoning quite a precise information
on the structure of the singularity at 27ri was needed: we had to use the
fact that the vanishing of the leading term would imply the vanishing of
the whole polar part and even the boundedness of u near 27ri.

Unicity. - To complete the proof of Theorem 1 there remains only to
check the unicity statement about u+ and u-. It is sufficient to treat the
case of u+ only.

Let zo &#x3E; 0. For n E N*, we define to be the space of all

functions u : [zo, C such that the quantity

is finite. It is sufficient to show that, for zo large enough, any two solutions
of Equation (3) such that u(z) + 6z-2 C X4(ZO) must coincide.

LEMMA 3. - For n E N*, the formulas

define two operators xn(zo) such that, for all

v C uo = Sov and ul = Siv are the unique solutions in xn (zo) of
the first-order finite-difference equations
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Moreover

Proof. Clearly the sums in (17) converge and define solutions
of (18). Moreover, for z &#x3E; zo,

The result follows for Si , and for So zÜ1).

Suppose now that u and u’ solve Equation (3) and satisfy

Consider the functions v

are solutions of (2). We have

and

Therefore, in view of Lemma 3,

infinity. We conclude that 116UI14 = 0 if zo is large enough.

3. First sheets of the Riemann surface of it.

We now begin the proof of Theorem 2. Let R be the Riemann

surface consisting of all homotopy classes(3) of paths issuing from 0

and lying in C B 27riZ (except their origin). The natural projection
..

( E 7z F--4 ( E (CB 27riZ) U {O} ( is the extremity of any path representing ()
is locally biholomorphic in a neighborhood of every point. One can also say
that R is obtained by adding the origin to the main sheet of the universal
covering of C B 27riZ.

(3) When speaking of homotopy of paths, we always refer to homotopy with fixed
extremities.
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In this section we prove that t6 converges and extends analytically
in the main sheet of 7Z and its first half-sheets, i. e. the half-sheets which

can be reached from the main sheet by crossing the imaginary axis exactly
once.

Let us introduce notations for these subsets of R. The main sheet R(’),
which is of course isomorphic to the cut plane C B ~2~ri ~1, can be

defined as the subset of homotopy classes of paths issuing from 0 and
lying in C B ±27ri[1, +oo[. The union of 7~ and the "nearby half-sheets"
will be denoted by TZ~1~ : it is the set of homotopy classes of paths issuing
from 0, lying in C B 27riZ and crossing the imaginary axis at most once.
We arrive to a nearby half-sheet when we follow a path which crosses the
imaginary axis between two singular points. We arrive to different sheets
of the Riemann surface when we pass between different singularities. Thus
there are infinitely many nearby half-sheets.

For a given analytic germ at the origin, saying that it extends to an
analytic function on TZ (resp. 7Z~°&#x3E;, resp. R~1&#x3E; ) amounts to saying that any
path which represents an element of R (resp. resp. n(l)) is a path
of analytic continuation for it.

Our first goal is thus to prove the

PROPOSITION 3. - The formal Borel transform ti is convergent at the

origin and defines a holomorphic germ which extends analytically to n(l)
with exponential decay at infinity on each half sheet of 7~~.

The series ti(() E C[[(]] is defined by Formula (7) as the formal Borel
transform of u. But in order to study it outside its disk of convergence,
the inductive computation of its coefficients ak does not help much. This is

why we will use an alternative representation of u, expressing it as the limit
of some iterative scheme at each step of which properties of analyticity can
be checked in 7Z~1~. The proof of Proposition 3 will follow from the uniform
convergence of the scheme (on a system of subsets, the union of which
covers R~l~ ).

3.1. Iterative scheme.

One can guess that the lattice of singular points 27riZ stems from the
division by eC - 2 + e-( = 4 sinh 2 1 ( in Equation (8). To exploit that idea,
we first define a new unknown series v by
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It follows from Lemma 1 that v is the unique series in ~3~~~~~~ such that
-6( + v( () solves (8), i. e. such that v solves the convolution equation

Let us introduce some auxiliary meromorphic functions:
1

We will denote by In f the formal series or the function (
whenever f is a formal series ( f E C [[(]]) or a holomorphic function

LEMMA 4 (The operator E). - The operator

is invertible and its inverse E can be expressed as

and if the germ defined by W extends analytically
and the germ defined by E - W extends

Proof. Let W E ~5(C~~~~~. In order to find V, we use the change of
unknown function Y = OF and we differentiate twice the operator that we
want to invert: V E (3C[[(]] is solution of

if and only if

One checks easily that 
are independent solutions of the corresponding homogeneous
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Hence a unique solution for (20):

(the last identity stems from a double integration by part). Multiplying
by 0, we obtain the desired formula for V.

The property of decreasing the valuation by 2 at most is easily
checked.

If W is a convergent power-series, so is V. The analyticity in R~1~
or 7Z is preserved because Y and Z are meromorphic with poles in 27riZ
only. 0

LEMMA 5 (Algorithm for the Tlle formulas

define inductively two sequences of formal series satisfying

and such that the unique nonzero odd solution of (8) is

Proof. The properties of the operator E ensure that the series tin
and vn are well defined by induction, with valuations bounded from below
as indicated in Lemma 5. Thus the series of formal series

are convergent in C[[(]]. We have

by construction, hence the result follows.
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It is a well-known result of Resurgence theory that, if two germs
extend analytically to R, their convolution product has the same property.
(We will recall the reason why this is so in Section 3.3.) This fact and the
last part of Lemma 4 show that each power-series vn or wn has nonzero
radius of convergence and defines a germ which extends analytically to R,
since we start with wo which converges to an entire function. We won’t try
to prove the convergence of the series in the whole Riemann surface R

now, but we retain that each term extends analytically to 7Z().

In order to prove Proposition 3, it is thus sufficient to study the
convergence of as a series of holomorphic functions in 

3.2. Analytic continuation in the main sheet.

For p E ~ ]0, ~7r[, we define Dp to be a closed subset of C obtained by
removing the open disks of center and radius p and all the points
which are "hidden" by those disks from an observer based at the origin:

The main sheet of R obviously coincides with the union of all these sets.

LEMMA 6 (Initial bounds). - For any p E ]0, ~7r[, there exist positive
numbers c,co such that

and

We observe that Re ( for all

( C Dp. Let us first consider the functions j3, Y and Z: they are analytic
in Dp, except at the origin for j3 and Y which have poles of order 2 and 5
there, whereas Z has a zero of order 2 at the origin. On the other hand these
functions decay exponentially when 1(1 tends to infinity (with ( remaining
in Dp), because

and exponential decay with respect to in Dp means exponential
decay with respect to 1(1, hence the result follows.
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where wo is an entire
-L..:J v v

function of order 1 satisfying

near the origin. From that we deduce inequalities

which show that ~bo (()  Const. 1(13 for ( &#x3E; p. And the proof is complete
since vo(~) = 0((3). 0

LEMMA 7 (Bounds in the main sheet).

(a) If F and G are holomorphic functions in DP which satisfy

where 0 and 9 are continuous functions on R+, their convolution

product F ~ 6 is holomorphic in Dp and satisfies

(b) If W is holomorphic in Dip and satisfies

for some real C &#x3E; 0 and 5, the function E - W is holomorphic
in DP and satisfies

with c as in Lemma 6.

Proof. Part (a) is quite obvious since

Let p G ]0, -7r[ and W, C, v as in Part (b~. For ( E Dp, we can write
(E - W) (() as the sum of three terms:

By virtue of the previous lemma, the first term is bounded by
the second one by and the third one

hence the result follows.
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LEMMA 8 (Convergence in the main sheet). - Let p E ]0-7r[ and
c, co &#x3E; 0 as in Lemma 6. The formulas

define inductively two sequences of positive numbers satisfying

The series of functions ~ vn converges uniformly in DP to a holomorphic
function v andh = -6~ ~ v has exponential decay at infinity in Dp.

Proof. Taking into account the bound for vo which is provided
by Lemma 6, we proceed by induction and suppose that vo, ..., are

bounded as indicated in Lemma 8 for some n &#x3E; 1. The desired bound

for wn is obtained by Part (a) of Lemma 7, since

Then we derive the bound for vn by Part (b) of Lemma 7, since

(2n + 4) (2n + 5) &#x3E; 42.

Let A == 4c2/21. The generating series c(X) = easily
computed: I , thus

It defines a holomorphic function on the open disk of center 0 and

radius (coA)-’, which is bounded on the closure of that disk, therefore
cn  Const. (coA)n for all n &#x3E; 0. From that we deduce the uniform

convergence of the series of analytic functions ££n in Dp and an

exponential bound for the sum:

For we can choose and write

~u(~) I  Const.I(1 eTI(1 I in Dp (since ti(() = O( ()). But we can improve
this bound by considering the equation we started with:
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We know indeed that,
Let us introduce a number C &#x3E; 0 such

We now see that any exponential bound

with Co &#x3E; 0 and T E implies ~ I and thus

This allows to decrease the exponential type T indefinitely, and we conclude
that for all T E R, the function 1(1- le-7-1~l is bounded in Dp. 0

3.3. Analytic continuation in the nearby sheets.

We now explore farther the Riemann surface ~Z, but still progressively.
With respect to Section 3.2, some more geometrical facts are involved, but
the analysis is quite similar.

We define the disks

and the opposite disks

We define Dp, M to be the closed set obtained by removing from C all these
disks:

We define to be the subset of R(l) consisting of all the points ( which
can be represented by a path contained in DP,M and such that the shortest
such path 1e is either

1) a straight segment;

2) or the union of a straight segment issuing from the origin and
tangent to some disk Dm (-M  m  M, 0) and of an arc of the

.

circle 8Dm ending at (, and we require in that situation that the half-
.

line L(() tangent to 1e at ( and going backwards be contained in Dp, M ;
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3) or the union of a straight segment issuing from the origin and
tangent to some disk Dm (-M  m  M, m =,4 0), of an arc of the

.

circle 8Dm, and of a straight segment S(() tangent to ending at (
.

and such that the half-line L(() which extends ,S(C) backwards from ( be
contained in Dp,M .

In the first case ( lies in the main sheet 7~B but in the last case
it lies in the half-sheet contiguous to corresponding to one crossing
of ]27fim, 27ri(m + 1)[ if m &#x3E; 1 (of ]27ri(m - 1), 27rim[ if m  -1). In
fact only a sector of this half-sheet is accessible because of the restriction

L(() (see Fig. 2).

Figure 2. The paths -y~

We have by construction

We now fix for the rest of this section M E I~I‘ * and J
Our goal is to prove the uniform convergence of the series ¿ vn in 

We need to recall how one follows the analytic continuation of the
convolution product of two holomorphic functions of R, and to exhibit
bounds which generalize Part (a) of Lemma 7. To that end we define,
for each ( e a particular path r ( which is homotopic to ry( and

represents thus the same point (.
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The path IF( is obtained by a deformation of r( which makes it

symmetrically contractile. One can visualize its construction by letting
a point (1 move along -y( from the origin to (, the point (1 remaining
connected to the origin by an extensible thread, and imagining fixed nails
pointing upwards at the points of 27riZ, with diameter for the nail

at 2mz7r, and moving nails pointing downwards at the points of (1 + 27riZ

(with diameter 21mlp for the nail at (1 - 2nziJr) between which the thread is
stretched progressively when (1 moves along r(: at the end of the process (1
has reached ( and F( is the thread under its final form. (One can think that
the fixed nails remain on a fixed rule, and the moving nails are fastened
to another rule which is parallel to the first one with reverse orientation
and which is trailed by (1 in its motion.) Notice that at each moment of
the process the thread between the origin and (1 remains symmetric with

respect to its midpoint, thus IF( is symmetric and symmetrically contractile.

Figure 3. The paths h~

The previous construction applies to paths which are more general
than the paths 1( and which lead to points lying in R but not necessarily
in R(1)M . In our case, for a given point ( e the resulting path TC isP,M P,M
easily described according to the three possible shapes of 1( (see Figure 3):

. in case 1 above, h~ coincides with 1(;

. in case 3, if m &#x3E; 1, the path r ( starts from the origin by a

straight segment, meanders between the disks Dm, Di,...,(2013 
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D,~+1, ... , ~ - D1, I (in that order) and ends by a straight segment
leading to (; moreover it is the shortest such path (if m  -1, must

be replaced by ( 1  I~  m - 1 ) in the previous sentence) ; it is thus
a succession of straight segments and arcs of circle;

. in case 2, the description is the same as in the previous case except
that there is no straight segment from Dk to ( - for k = 0,..., m
because of tangencies (with the convention Do = {0})’

The paths -y( and r~ can be viewed as subsets of rather than

subsets of DP, M ( i. e. we identify them with their lifts in 7?.). Since T~ is

symmetrically contractile, one can follow the analytic continuation at ( of
the convolution product F * G of two germs F, G which extend analytically
to and write it as

where (2 is determined as the symmetric point of (I on r~ . Let us

denote by s( the curvilinear abscissa on r~, by M( the corresponding
parameterization of T~ and by f (() the length of T~ : we have .~(~) = s~ (~)
and the maps

are mutually reciprocal. The formula for the analytic continuation of the
convolution product may be written

LEMMA 9 (New bounds for the convolution). - If F and G are
holomorphic functions in which satisfy

where T and 9 are continuous increasing functions on R+, their product of
convolution F * G, which is holomorphic in satisfies
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Proof. The description of r given above allows one to check that

and

The conclusion then comes easily: since 0 and G are increasing, for 
we have

Note that in this approach the inequality (21) is essential, but we
know how to check such an inequality only for points in One may
then wonder whether it is possible to explore farther the Riemann surface R
by a similar method or whether we are confined to the nearby sheets; we
show in Section 5 how to bypass the difficulty in order to explore every
sheet of 7Z.

LEMMA 10 (New bounds for the operator E). - There exist c, co &#x3E; 0

such that

(b) if W is holomorphic in and satisfies

for some real C &#x3E; 0 and integer v 2: 5, the function E . W is holomorphic
in and satisfies
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Proof. - One checks the existence of a number K &#x3E; 0 such that

On the other hand, for ( and

Thus Part (a) of Lemma 10 follows from Lemma 6.

Let W, C, v as in Part (b). The formula for the analytic continuation
of E - W at a point ( of may be written

Let us treat separately these three terms, using the inequalities of Part (a) :
. the first term is bounded by 

. we observe that

because of the inequality (21) and the hypothesis v &#x3E; 5, thus the second
term is bounded by c~C/(12(~ - 4)) ~(()~;

. analogously

thus the third term is bounded by

Hence the desired bound for ~(E’ - W) (()I follows. D

LEMMA 11 (Convergence in the nearby sheets). - Let c, co &#x3E; 0 as in

the previous lemma. The formulas
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define inductively two sequences of positive numbers satisfying

The series of functions ¿ vn converges uniformly to a holomorphic
function v and ft = -6( -f- v has exponential decay at infinity in R(1)

Proof. The desired inequalities are obtained exactly in the same
way as those of Lemma 8. This proves the convergence of the series of

functions ¿ vn, and û is thus holomorphic in with an exponential
bound 

where T = (4co c2/21) 1/2 . As in the end of the proof of Lemma 8, we can
improve this bound and decrease the exponential type T, but this time the
implication

is ensured by Lemma 9 only for T &#x3E; 0; introducing numbers 6, C &#x3E; 0 such

that

we thus can reach with T &#x3E; 0 and T - 6  0,
but we must then stop. (In fact, it is a consequence of the resurgent
properties of û explained in Section 5 that it has exponential type -oo
in too.) 0

This ends the proof of Proposition 3.

4. First singularity of it.

The aim of this section is to prove the statement concerning the

singularity at 27ri of u in Theorem 2 (Formulas (11) and (12)).
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4.1. Shape of the singularity.

PROPOSITION 4. - There exist E C and ~(~),r(~) E Cf~l
such that h(0) = 0 and

for ( = 27ri + ~ close to 27ri on the main sheet.

For the proof of this proposition, we will use the same notations as in
the previous section: and obtain by
induction the shape of the singularity at 27ri for each vn . The property of
convergence established in the previous section will then yield the result.
Let us introduce a definition designed for our purpose:

. We say that a germ F E C{(} is of type ( -1 ) if it is odd and

of valuation 5 at least, and if it extends analytically to and can be

written

in a neighborhood of 27ri on the main sheet, where B E C, and Îi and R are
holomorphic at the origin with H (~) = C~ + D~3 + 0 (~5) for some C, D (E C.

. We say that a germ F E C(() is of type (-5) if it is odd and

of valuation 3 at least, and if it extends analytically to and can be

written

in a neighborhood of 27ri on the main sheet, where B, C, D E C, and H
and Rare holomorphic at the origin with H (~) = 0(~).

Remark. - One can rephrase the above definition using the alien
derivation A2,i of Resurgence theory. More details will be given in Section 5,
but we can already mention that this operator measures the singularity
at 27ri of the Borel transform of a given series (using the Borel transform,
with the extended conventions indicated at the end of Section 1.3, to
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encode the singularity): an odd germ F E CI(I corresponds to an even
formal series F ( z ) via formal Borel-Laplace transform, and the
requirements on the shape of the singularity at 27ri amount respectively to
the conditions

and

LEMMA 12 (Transformation of singularities). - The convolution
product of two germs of type (-5) is of type (-1), and the image by
the operator E of a germ of type (- 1) is of type (- 5).

Proof. Let us consider two germs #i and F2 of type (-5): their
convolution product G is odd and of valuation 7 at least, and it extends
analytically to TZ~1~ . One checks that its singularity at 27ri has the desired
form by a direct analysis of the convolution integral, writing it as

oJ I oJ I

like in the proof of Proposition 5 below. 
’

Alternatively one can use the framework of Resurgence and the

important fact that the operator A2,i satisfies the Leibniz rule: the formal
series G(z) associated with G(() is the product of the formal series jB
and F2 associated with our germs,

and for 1 1,2 we have Fj(z) = 0(~ ~), even, whereas 
+ + Dj + C~ (z-2 ) for some complex numbers Bj, Cj, Dj, hence

the result follows.

Let us now consider a germ F of type ( -1 ) . We have already noticed
that 6 = E - F is of valuation 3 at least and extends analytically to 
it is easily seen to be odd. Let us study its singularity at 27ri. We use the
expression
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which can be checked from the proof of Lemma 4. For ~ small and such
that 27ri + ~ lies in the main sheet 7~~, we can write

where the stars * stand for some complex numbers and reg(~) denotes some
regular germ. But y(2Jri + ç) == * -3(1 + O(ç2)) is odd, thus

and

and sine is even, we conclude that

as required. 0

Since wo extends to an entire function, it follows easily by induction
that each vn is of type (-5) and that each wn is of type ( -1 ) . Thus there
exist sequences of numbers (A5n~ ), (~3 ) (Ain») and sequences of functions
(h(n»), (r(n)) holomorphic near the origin such that, for all n &#x3E; 0,

for ( = 27ri + ~ close to 27ri on the main sheet, with hen) (0) = 0.

For any n &#x3E; 0, the function hen) is nothing but the "variation" (or
monodromy) of the singularity of vn around 27ri:

for ( == 27ri + ~ close to 27ri on the main sheet, if we denote by 27ri + ~ - e’"
the point of TZ with the same projection onto C but lying in the
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sheet immediately "below" the main one (i. e. ( is represented by the
.

segment [0, (], but 27ri + ç . e-2"i is represented by the path which

begins by the straight segment and continues by a clockwise-oriented
circle around 27ri). But then Lemma 11 implies the uniform convergence of
the series ~ in a disk D(0, po) centered at the origin and of sufficiently
small radius po :

is holomorphic at the origin and satisfies h(O) = 0.

Now consider the functions

for n &#x3E; 0: they are holomorphic in the pointed disk 10  ~~~  po~ and the
series is uniformly convergent in the annulus D(0, po ) B p) for all
p E ~ ]0,po[; its sum

is holomorphic in the pointed disk D(0,po) B {0}. Writing the coefficients
A5’2~ , A3n~ , Al’2) as Cauchy integrals involving vn, we thus deduce that the
series

are convergent. Observing that the function

A 1 ~-1 is regular at the origin, we conclude that v itself is a germ of

type (-5). This ends the proof of Proposition 4.

4.2. First resurgent relations.

where As,A3,A1 E C and h(~) E C(£ ) are defined by Proposition 4. There
exist complex numbers 8 and p such that cp = i. e. p is a linear

combination of the formal series defined in Lemma 2.
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This statement amounts exactly to Formulas (11) and (12) of

Theorem 2: the singularity of û at 27ri is the Borel transform of 8CP2 + 
In the framework of Resurgence theory, this statement can be proved
very quickly: according to the remark following Proposition 4, the formal
series E (C ~z~ ~ ~z-1 ~ ~ is nothing but A2,iu; as already mentioned

the operator A2,i obeys the Leibniz rule, moreover it commutes with

translations of step 1; applying A2,i to both sides of Equation (3), we get

whence the result follows by virtue of Lemma 2. The formula

which links cp = A2,iU with ’PI = 8zu and its companion linear solution p2 ,
is called a resurgent relation.

To give to the reader an idea of the analysis which is involved in the

resurgent formalism, we now provide an elementary proof of Proposition 5
which makes use of the classical Complex Analysis only. Let ( C close

to 27ri. We note that

where the integral is taken over a rectilinear segment. In this way we

separate the singular and the regular factors: when ( is close to 27ri the
argument of the first function, ti(( - (’), remains far from the singularity.
The convolution equation (8) takes the form,

Now we use the first two terms of expansions (7) and (11) to evaluate
û( ( - (’) and u(~’) respectively. We have

where £ = ( - 27ri. On the other hand,
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Comparing the last two equations we conclude that (22) implies

We obtain the third polar coefficients A1 and the function h from the
analysis of the variation (monodromy) of ti.

Figure 4. Paths of integration

Let two points (I and (2 converge to the imaginary axis just above 27ri,
from the right-hand side and from the left-hand side respectively. Let

( = 27ri + ~ denote the limit point (see Fig. 4). Then the prelogarithmic
factor of (11) is given by

In order to evaluate the limit we take the difference of the two copies of the
convolution equation,

and pass to the limit:
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Now we substitute the convergent expansion (11) instead of û(27ri + ~):
11 ~ 1 - - ¡-I

, 

In this way we obtain the following equation for the singularity of ti:

where

This is a linear nonhomogeneous equation for h. Since h(0) = 0

the corresponding terms of the equation are cubic at zero. Consequently
f (0) = f ’(0) = f" (0) = 0. The equality f’ (0) = 0 implies

This implies

To finish the proof of Proposition 5, it is sufficient to check that

Equation (23) generates exactly the same recurrence rule for hk as the
formal homogeneous variational equation (9), which is not too difficult.

5. Description of the whole resurgent structure.

Gathering the results of Propositions 3, 4 and 5, we see that in order to
complete the proof of Theorem 2 there remains only to check that u extends
analytically to the whole of ~Z. Notice that the derivation of Theorem 1
in Section 2 does not require this fact: the three propositions are sufficient
for it.

We will now show a theorem (Theorem 3 below) which contains
Theorem 2 and gives an overview of the resurgent structure of all the
formal series which have been introduced in this article. But its proof will

rely on Resurgence theory, and we will try to acquaint the reader with the
tools to be used.
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5.1. A (more) general formal solution.

We first extend the notion of formal solution for the equation (3).

PROPOSITION 6 (Normalized general solution). - There is a unique
sequence of nonzero even series C~~z~ ~~z-1~~ such that

. the series

satisfies formally (3) when expanding both sides of the equation in powers
of b and then in powers of z ;

. 

. for all n &#x3E; 2, the coefficient of z4 in fn is zero.

Remark. - A more general formal solution is obtained by considering

where a(z) and b(z) are I-periodic objects, e.g. formal expansions in powers
of (or of e-27riz, but not both at the same time).

Proof. Let us introduce notations for difference operators:

When a formal Laurent series f E ~ ~z~ ~ ~z-1 ~ ~ is given, it admits a primitive
if and only if its residuum (the coefficient of z  in f ) vanishes;

in that case we denote by the unique primitive of f without constant
term. The invertibility of ,5’ is easily studied:

LEMMA 13. - A formal Laurent series f E (C~z~ ~~z-1~~ admits a

preimage by S if and only if its residuum vanishes. In that
case the unique preimage of f without constant term can be obtained as

where

(The proof is straightforward.)
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When substituting b) inside (3) and expanding with respect to b
both sides of equation, we find

We already know that the first of these equations admits a unique
nonzero even solution ico, which is nothing but the series called u in the
rest of the paper:

The second equation coincides with the variational equation (9) whose
fundamental system of solutions ~p2) was introduced in Lemma 2,
according to which there is only one possibility for ul:

We recall that

IS; / 1

whereas cp2 = A-&#x3E;-2 could be found directly. But one could also
use a method which is the finite-difference analogue of the classical method
of variation of parameters for second-order ordinary differential equations
(see e.g. [Gel99] for detailed explanations); this leads to

(it can be checked that X has no residuum since cp1 is odd).
The next equations can be considered as linear non-homogeneous

finite-difference equations: for n &#x3E; 2, the series - is required to satisfy

with a right-hand side

determined by the previous terms ~o?.. - ? 
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LEMMA 14. - If a Laurent series V) E (C~z2~ ~~z-2~~ is given such that
has no residuum, the linear non-homogeneous equation

admits a unique solution 4 ] whose coefficient of z4 vanishes.
This solution can be written

where c is some complex number and

Proof of the lemma. - Since the "Wronskian" of is equal
to 1, one can check that 4$ = + OW2 is solution of the non-homogeneous
equation as soon as Sa = -W2V) and By hypothesis the
series has no residuum, and the same is true for W20 because p2 and 0
are even; we can thus choose a = 2013~"~(~2~) and 0 = 5’"~(~i~), and we
obtain a first solution But since fo and 0 are even, -4~(-z) is also solution
of the non-homogeneous equation, therefore the odd series 4D(z) - 
satisfies the homogeneous equation and can be written c2p2 (z)
with cl , c2 E C. Now C2 = 0 because of oddness and

The unique even solution p without coefficient in front of z4 is obtained by
removing .1 Ci Oi (z) and adding the appropriate multiple of cp2 (z) . D

We now proceed by induction in order to solve the equations (27).
Let us suppose that, for some n &#x3E; 2, the series ico, ... , have been

determined in C[~][[~"~]]. The series vn = - UkUn-k belongs to that
space too, and we only have to check that C¡?1 vn = has no residuum.

This results from the identity (4)

(4) A compact way of deriving this identity consists in introducing the generating series
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since the derivative of a Laurent series has no residuum and, for any two
Laurent series f and g,

has no residuum due to

Remark. In fact with a family of
formal series E Q[[X]]. For instance Uo(X) is the generating series
for the leading terms:

Its coefficients can be computed inductively since it is the unique nonzero
formal solution of the equation

It can be checked that all the series Um have positive radius of convergence.

5.2. Resurgent properties of the general formal solution.

Now comes the essential result of this section, which contains in
fact Theorem 2. The following theorem is formulated in the language of
Resurgence theory; we will provide explanations on its meaning after its
statement.

THEOREM 3 (Resurgence of the general solution). - For each integer
n &#x3E; 0, the formal series fn is a simply ramified resurgent function whose
minor extends analytically to R, with a growth of exponential type -oo
along the non-vertical rays of each half-sheet ofR.

There exist two families of formal series
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such that the Bridge equation holds:

This equation must be understood as a compact writing of the resurgence
relations

which allow one to compute all the alien derivatives of the resurgent
functions Un.

5.3. Explanation of resurgent terminology and remarks.

a) Simply ramified resurgent functions

If a formal Laurent series E (C~z~ ~~z-1~~ is given, we can isolate
the polynomial and compute the formal Borel transform of the
remainder according to the usual rule B : z-n-1 H 

Let us suppose that @ is a convergent power-series which defines a germ
of analytic function which extends analytically to R. In that situation, p
is said to be a resurgent function and cp is called its minor. Thus the first
assertion in Theorem 3 constitutes a generalization of Proposition 3.

If moreover, when following the analytic continuation of the minor @,
the only encountered singularities are of the form

{polar part} + {logarithmic singularity},

the resurgent function P is said to be simply ramified (we mean that,
if épr denotes the determination of p obtained by following some path F
of analytic continuation which leads close to some point w of 27riZ, we can
write

with pol(X) E C[X] and var(~), reg(~) E Cf ~1). The situation described in
Proposition 4 was a particular case of this kind of singularity.

Simply ramified resurgent functions whose minors extends analytically
to R form a subalgebra RES 
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b) Alien derivations

Let u E 21riZ*. The alien derivation of index c,v is a particular linear
operator A, of RES which satisfies the Leibniz rule:

For definiteness, let us first consider the case where w - 27rir with r &#x3E; 1: if
~p is given in RES, we may consider the 2’~~ ~ determinations of the minor cp
in the segment ] 27ri (r - 1), 27rir[ which are obtained by following its analytic
continuation along the half-line iR+ and circumventing the intermediary
singular points 27ri,..., 1) to the left or to the right; we denote
them

each Et being a plus sign or a minus sign indicating whether 27rif was
circumvented to the left or to the right. For ( E ] - 27ri, 0[, we set

where the integers p(~) and q(£) = r - 1 - p(c) denote the numbers of plus
signs and of minus signs in the sequence (~ 1, ... , cr-1). According to our
hypothesis on the shape of the singularities of the minor 0, the function x
must take the form

where ~4i,..., AN are some complex numbers and ;
define

It can be checked that wP is a well-defined element of RES; observe
that its minor i can be computed in the segment ]0, 27ri according to the
formula
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If w - -27rir with r &#x3E; 1, the operator A, is defined in a similar

fashion. If a simply ramified resurgent function cp has only real coefficients,
one checks that

On the other hand, if lJ3 is even with respect to z,

The fact that the operators A, are derivations is essential in

Resurgence theory. They are called alien derivations by contrast with
the natural derivation 8z. There is a relation

but no relation between the A~’s themselves: they generate a free Lie
algebra.

These operators encode in fact the whole singular behavior of

the minors. Given a sequence WI,..., wn in 27riZ*, the composed
operator OWn o ... o ~Wl gives information on the singularities over the
point ui + ... + Wn.

The point of view on Resurgence theory that we have indicated is
rather restrictive and we refer the interested reader to [Eca81], [Eca93],
[CNP93], [BSSV98] for further properties and more general definitions.

c) Bridge equation
The so-called Bridge equation (28) is an example of a general

phenomenon which is at the origin of the name Resurgent function,: the
definition of a general resurgent function ’P a priori does not force any
relationship between lJ3 and its alien derivatives, but for the resurgent
functions of natural origin (i. e. solutions of some analytic problem) it is

observed that the alien derivatives obey particular relations depending on
the problem under consideration.

The equation (28) can be viewed as a bridge between alien calculus
and ordinary differential calculus in the case of the formal solution ic,
hence its name. The families of complex numbers and Bwlln which
determine the differential operator in the right-hand side represent all the
"transcendental" part of the information that is needed to describe the

singular structure in the Borel plane (whereas the series fn themselves
represent the "elementary" part).
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In our case, the realness of the coefficients of the series icn implies that

and since b) is even with respect to z, we have also

Therefore we conclude that

The Bridge equation (28) provides the decomposition of

as sum of its even part and its odd part (even
and odd with respect to z). Note that all the successive alien derivatives
may be computed by iteration of the Bridge equation:

(beware of the inversion of indices), etc. Therefore, in principle, the

singularities of each determination of the minors tin can be expressed
in terms of the numbers Aw and Bw and of the coefficients of the series fn .

d) First singularity of the first minor

Here are the resurgence relations for the first series:

On the other hand, in the case of w - 27ri, we can rephrase Proposition 4:

(using (24) and (25)). Therefore,
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5.4. Idea of the proof of Theorem 3.

a) We already know, from Section 3, that the minor tio of the first
formal series fo converges at the origin and extends analytically to 

The same is true for the minors of cp 1 and cp2 . Indeed, in the

case of cpl, the relation (25) can be translated into a relation between
the minors: ~i(() == 2013(t6o((), which shows that @i extends analytically
to 7B~B In the case of ’P2, consider the relation (26): the series cpl (z + 1)
admits a minor which extends analytically to R~1~, and it can be
checked that the series X which involves the multiplicative inverses of 
and ’P1(Z + 1) has also a minor x which is holomorphic in 7Z~1~ ; then the
operator S’-l, which simply amounts to division by e- ( - 1 for the minors,
and the multiplication of series preserve the property of having a minor
which extends analytically to 

We then obtain by induction that, for each n &#x3E; 0 the minor tin of inn
converges at the origin and extends analytically to 7~B Indeed we recall
that

the same arguments as above apply.

b) In order to prove the analyticity of the icn’s in every sheet of
the Riemann surface R, we will use the alien derivations as a tool to

"propagate" analyticity from one sheet to some nearby sheets. We first
define an infinite decreasing sequence ... of subalgebras
of CC ~z~ ~ ~z-1 ~ ~ , whose intersection is nothing but the algebra RES of simply
ramified resurgent functions. Then we will explain how one can check that
the un’s belong to each algebra RES (N) and therefore to RES.

Let RES (1) be the subspace of (~ ~z~ ~ ~z-1 ~ ~ consisting of all the Laurent
series lJ3 whose minor cp satisfy the following properties:

* ~ converges at the origin and extends analytically to R(o) (the main
sheet of R) ;

. @ extends analytically also along the paths which issue from the
origin and end on 27iZ without crossing the imaginary axis (this
allows to define "lateral" continuations of rp between the singular points) ;

has at worst ramified singularities at 27ri and -27ri, i. e.

singularities of the form pol( (-1) + 2~i var(() log ~ with pol(X) E C[X]
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One can check that is a subalgebra which

contains RES, and on which operators may be defined as

previously and still satisfy the Leibniz rule; but these operators take their
values in a space of formal series which will be larger than c~[z] [[z-1]j (these
formal series may involve log z).

Now consider the subspace RES (2) consisting of all the elements
of such that A27ri and belong to and the lateral

continuations of @ have ramified singularities at +4Jri. It is stable by
multiplication too, and not only A±2,i o are defined on it, but also

operators A4~r; , A-4,i which extend the alien derivations A~4~i of RES
and still satisfy the Leibniz rule.

Let us try to indicate the idea behind the definition of RES (2) . The
condition ép E implies that the minor cp extends to and even

until ]27ri, 47ri[ if 27ri is circumvented to the left or to the right: let us denote
by rp+ (() and ~p- (~) the two corresponding determinations at a point (
of ]27ri, 47ri [. The minor of ép is nothing but

Now the condition implies that x extends to R(o), and
thus cp+ extends to the whole half-sheet contiguous to R(°) defined by paths
which cross 2ri, 47ri[ from right to left, since we can write for the points (
in that half-sheet

This is the key-point: the determination of @ in that half-sheet may be
expressed in terms of the functions cp and i in the main sheet. Similarly,
rp- extends to the symmetric half-sheet, according to the formula

Therefore, our requirement on which deals with analyticity in the
main sheet for its minor, can be interpreted as a property of analyticity
for @ in other sheets of R.

One can go on and define inductively RES(3), ... , by requiring
at each level that all the "computable" alien derivatives of the previous
level lie in and adding a condition about the shape of the singularity
of the minor one step farther. In fact the algebra RES (N) at a level N &#x3E; 1

is characterized by the possibility of defining on it all the operators
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By definition and .

c) We have already seen that

The main part of the work was done in the case of uo, and in fact

the arguments of Section 3 would allow one to check that the lateral
continuations of uo have only ramified singularities.

Taking the alien derivatives at ±27ri of the equations that the series fun
satisfy and using the fact that A±2,i o P = P o we obtain a system
of linear equations for the series which can be written as a single
equation for = bnA±2,,i ftn:

We have at our disposal independent solutions of this linear equation: 8bf
and 8zf, and this allows us to prove the existence of resurgence relations

With this, and with the help of a verification on the shape of the singularities
of the minors tin at +4Jri , we deduce that

We can then proceed by induction and prove that

by iterating the previous arguments: at each level N, applying the alien
derivations (which commute with P) to the equations that the
series Un satisfy, we obtain that the series (which could

involve log z) satisfy linear equations from which we deduce that they
are linear combinations of the un’s and 8zun’s:

(thus they are Laurent series and do not involve log z), therefore all the series
lie in and we obtain that the series iin belong

to RES~N+1~ by checking the shape of the singularities at :l::21fi(N + 1) of
the lateral continuations of the minors.



560

5.5. Further remarks.

a) Analytic classification of a class of symplectic mappings
All the previous results can be generalized to the case of the equation

associated to an analytic function F(X) = -X 2 + O(X) .
Any such function F determines a symplectic mapping of the plane:

A particular solution u(z) of (30) yields an invariant curve

for .~’, in the sense that 0 maps

The general normalized solution u(z, b) that one can construct in this
case provides a formal conjugation

between Y and the "normal form at infinity"

The coefficients Awlln and which appear in the Bridge equation can
now be interpreted as analytic invariants, i. e. they allow one to describe
the analytic classification of the mappings T.

b) Connection formulas

We can use the Laplace transform to define two families of entire
functions u1 , ... and Uü , u1 , ... in the following way:

where Pn is the polynomial part of fn :

Due to the general properties of Borel and Laplace transforms, ~~ admits fn
as Gevrey-I asymptotic expansion in any sectorial neighborhood of of

aperture strictly less than 2~r.
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The formal sums

satisfy the equation (3), and we conjecture their convergence with respect
to b.

The operators in the right-hand side of the Bridge equation give rise
to two formal automorphisms

which should allow one to describe the passage from u+ to u-. We conjecture
that they are convergent (at least with respect to z) and mutually inverse,
and that

When expanded with respect to b, these relations provide exact connection
formulas between the uj’s and the u;;’ ’s. At first order, for large
negative Im z, we find

which ties up with Formula (15) in Proposition 1.

6. Numerical evaluation of splitting constants.

The complete knowledge on the singularities structure of û leads to
the construction of a very efficient numerical method for the evaluation of

the splitting constants 0 and p. The algorithm is extremely simple, and
it is suitable for some similar problems. But we first need some analytic
preliminaries.
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Asymptotic behavior of Taylor coefficients

The information about the first singularities of u can be extracted
from the asymptotic behavior of its Taylor coefficients at the origin. This
function has singularities on the boundary of ~2~ ={(eC:~27r}
at ::f:27ri. Let g be the corresponding polar part:

where we used the symmetries of the singularities due to the fact that u is
real-analytic and odd. According to Theorem 2,

Since

we obtain

All the derivatives of even order vanish at zero.

The difference f (() = ft(() - g(~) is analytic in D27r and continuous
in its closure. Applying the Cauchy estimates

and taking into account that , we see that
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If we keep only the first term in the expression for 9~ ~(0) and solve the
equation with respect to A5, we obtain

In particular,

It is not too difficult to compute several hundreds of ak, but the convergence
in the above formula is rather slow (the relative error - 1~-2 ) . We can
substantially improve the method using more detailed knowledge of the
singularity structure. As a first improvement we note that A3 = 17A5 / 120.
Then we substitute the first two terms of (31) into (32) and solve the
equation with respect to A5:

In this way we constructed a sequence which converges to A5 much faster.

We can repeat the same reasoning adding to g the first N terms of
the logarithmic part of the singularities at for some N &#x3E; 1. Let us

denote by the Taylor series at 0 of the function h in (12). The
odd coefficients are proportional to Q, the even ones to p, and if instead

of g we consider

where

we obtain an approximation for ak with relative error C~(1~-N-7).
Of course, the constant in the 0 estimates depends on N. In the next

section we numerically observe that choosing N = 2 l~ leads to exponential
convergence (relative error is From the theoretical point of view
this is quite natural and can be rigorously proved by applying the techniques
of the present paper. This is due to the fact that ’PI and cp2 are resurgent
functions too, which provides Gevrey-1 estimates on the growth of the
sequences bk, dk and the constants in the 
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Formula (33) was established by semi-empirical reasoning and used by
several authors [Che98], [TTJ98] for numerical evaluation of the splitting
constant 0. The computation of V. Chernov [Che98] (14 correct decimals)
are in excellent agreement with the present paper as well as with [Gel91],
[GLT91], where an independent method was used. On the other hand we
are not able to explain the discrepancy with the numerical experiments of
Tovbis et al. [TTJ98], where for the constant K = [e[/1687r it was obtained
K x5 7374, which is some 36 % larger than we expect.

Numerical algorithm

We first compute the coefficients of u and of the first formal

solution of the variational equation. We use the following recurrent formulas:
al = -6, a2 = 15/2 and

Then we compute the coefficients of p2, the second solution of the

variational equation. We let d-2 = 1/84, d_1 = 17/84, do = -17/2240, and
for m &#x3E; 1,

Then we evaluate two auxiliary sums:

Finally, we evaluate the splitting constants 0 and p by comparing ak with

the derivative of gN (~) at origin (provided k &#x3E; 2N). According to
the previous section G In our experiments we used
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N - -1 k, which seems to minimize the error due to the replacement of ~
by ak. In fact our numerical method is not sensitive to this choice. The
method of the present paper can be used to analyze this error analytically.

Figure 5. The plot of log ~~ 

In the numerical experiments we computed n = 50 terms for each of
the sequences (ak, bk, 82 k,N) . Then we found the constants,

by replacing a~ by ak and solving (37) by the method of least squares using
the last six values of k = 45, ... , 50.

In order to estimate the error due to the replacement of c~ by ak we

computed the relative errors

where is the "experimental" value of Some

particular values are
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Figure 5 gives a numerical evidence of 8k rv e-’k. From the analytical
viewpoint this error is due to a contribution from the other singularities
of ft -

Finally, we repeated the computations for larger values of n. We used
the coefficients 90,..., 100 to determine the values of 6 and p.
This test confirmed that the previously computed decimals are all correct.

We also compared this method with [GLS94], where it was shown

that the splitting constants can be found as the following limits:

where W denotes finite-difference Wronskian like in (10) and ’P2 are
the Borel-Laplace transforms along of ~02. The limit is reached

exponentially fast. The computations, based on this definition, afford to
compute only between 6 and 8 correct decimals of 0 using the double
precision complex arithmetic.
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