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LEVI-FLAT INVARIANT SETS OF HOLOMORPHIC

SYMPLECTIC MAPPINGS

by Xianghong GONG

1. Introduction.

Let p be a biholomorphic mapping defined near the origin of C2,
with p(0) = 0. Recall that p is symplectic if it preserves the holomorphic
symplectic 2-form A dqj. Assume that the linear part of cp is

diagonalizable. In suitable local holomorphic symplectic coordinates, p is
then given by

where Uj, vi are holomorphic functions starting with terms of order at least
two. One says that A = (~1, ... , an) is non-resonant, if

for all integers c~ 1, ... , c~n with 1 + - - - + an I &#x3E; 0. G.D. Birkhoff [4]
showed that under formal symplectic transformations, ~p is equivalent to
the formal symplectic mapping

Supported in part by NSF grants DMS-9704835 and DMS-0096047.
Keywords: Levi-flat set - Segre variety - Holomorphic symplectic map - Birkhoff normal
form.
Math. classification: 37G05 - 32V40 - 70H06.
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with H a formal power series in the products (1 == ~l ~71, ... , ~n - 
without constant term.

Analogous to work of C.L. Siegel [17] on Hamiltonian systems, a re-
sult of H. Rfssmann [12] says that as a rule the Birkhoff normal form (1.3)
of p is not realizable by convergent symplectic transformations. In fact,
one aspect of divergence for Birkhoff’s normalization for Hamiltonian sys-
tems was understood by Siegel [16] much earlier. Recall that holomorphic
functions invariant under a holomorphic symplectic mapping or the flow
of a holomorphic Hamiltonian system are called first-integrals. Siegel [16]
showed that there are Hamiltonian systems of degree of freedom larger than
one that admit no first-integrals other than functions of their Hamiltoni-
ans. On the other hand, when admitting a certain system of first-integrals,
a holomorphic symplectic mapping or Hamiltonian system can be trans-
formed into the Birkhoff normal form by convergent transformations. This
is the so-called integrability of Hamiltonian systems (or symplectic map-
pings) via first-integrals, which was already observed by Birkhoff [3] for

the case of one degree of freedom. In general cases, such integrability re-
sults were obtained by Rfssmann [13] for analytic Hamiltonian systems
with two degrees of freedom and by J. Vey [18] for analytic Hamiltonian
systems and symplectic mappings of any degrees of freedom, for which
the quadratic forms of the first-integrals satisfy a certain non-degeneracy
condition. Most recently H. Ito [10] studied the convergence of Birkhoff’s
normalization for analytic Hamiltonian systems and symplectic mappings
which admit certain first-integrals with degenerate quadratic forms. The
reader is also referred to results of L.H. Eliasson [9] on smooth real Hamil-
tonian systems. We should mention that the results in [13], [18], and [10],
based on the first-integral method, hold for both real and complex cases.

In case the holomorphic symplectic map is in its normal form (1.3),
it is clear that for each j the quantity is invariant under the map. In

particular the set defined by - 0 ( j - l, ... , n) is invariant. More
generally, if Hj are holomorphic functions of n variables, the set defined by

(ç7])} = 0 is invariant.

In Vey’s theorem and in Ito’s one has of course the existence of
a (singular) foliation of Cln by (n-codimensional) invariant sets. In the
present work, we show the convergence of (the reduction to) the normal
form under the sole hypothesis of just one appropriate invariant real

analytic set containing the origin. The invariant set that we assume to exist
is of co-dimension n in (C2’~, and Levi-flat, as above. A generic n-dimensional
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real analytic set in is said to be Levi-flat if its regular set (away
from singular points and CR singularities) is foliated by n-dimensional
complex manifolds. The main result of this paper is the convergence of the
normalization under the assumption of the existence of an invariant set in
two special cases (see below): (1.4) and (1.5).

We now state the following.

THEOREM 1.1. - Let cp be a holomorphic symplectic mapping of
C2, given by (1.1)-(1.2), and let M C C~ be the real analytic set

where rank(ajk) = n and 0(3) are real-valued analytic
functions. Assume that M is Levi-flat and p(M) = M. Then cp can be

transformed into the Birkhoff normal form (1.3) by convergent symplectic
transformations.

It turns out that the integrability of rp in terms of Levi-flat invariant
sets of the form (1.4) is well connected to its first-integrals; namely, we shall
prove that cp has n first-integrals if it has a Levi-flat invariant set (1.4).
Thus Theorem 1.1 follows eventually from the above-mentioned result of
Vey. Our next result is the following.

THEOREM 1.2. - Let cp, M be as in Theorem 1.1 except that M is

given by

where a is a permutation of l, ... , n and 0(3) are real-
valued analytic functions. Assume that ~p(M) = M. Then ~~~~ ) ~ ’ ~ = 1
for j - 1,..., n. Moreover, cp has n formal first-integrals such 

can be transformed into (1.3) by convergent symplectic transformations,
provided a 2 = Id and all 6j K - 1.

For the definition of = 1 if a = Id), see (4.37) below.

In contrary to case (1.4), the Levi-flat invariant set (1.5), however,
leads to meromorphic eigenfunctions of the holomorphic symplectic map-
pings. We shall show that such a mapping cp has n meromorphic functions

mj satisfying mj o cp = An example (end of Section 2) shows
that it is not enough to assume the existence of an invariant Levi-flat n
codimensional set in for n &#x3E; 2, but in case of (1.5) we have no coun-
terexample if one drops the restrictive hypotheses on the permutation
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and on 6jK. It also remains open if the Birkhoff normalization converges
for the holomorphic symplectic mappings of (~2 that have a Levi-flat real
hypersurface. Only for a special case shall we prove the following.

THEOREM 1.3. - Let p be a holomorphic symplectic mapping of
(C2 given by (l.l)-(1.2). Let M C C2 : r = 0 be a real analytic Levi-flat
hypersurface invariant under ~p. Assume that the quadratic form ofr defines
a real hypersurface in (C2. Then cp can be transformed into its Birkhoff
normal form by convergent symplectic transformations.

Note that Theorem 3 is meant for the case IÀI = 1, since Moser [11]
already showed that a holomorphic symplectic mapping of C 2 is always
normalizable by convergent transformations 1.

The present paper relies on some techniques used in very recent
joint work of D. Burns and the author [6], where singular Levi-flat real
analytic hypersurfaces of C’ are studied. These techniques will allow us
to construct holomorphic first-integrals or meromorphic eigenfunctions
for the holomorphic symplectic mappings. Motivated by applications to
holomorphic symplectic mappings, we shall also extend some results in [6]
to Levi-flat sets of higher codimensions. One of main ingredients used
in [6] is that of Segre varieties, which is a family of invariant complex
varieties associated to a real analytic hypersurface in complex space [15].
In dealing with singular Levi-flat structure one encounters with difficulties
of constructing formal normal forms. In [6] and in this work, the Segre
varieties serve as an essential tool to avoid the formal normal forms of

Levi-flat sets. As another application of Segre varieties we shall also use
Segre varieties to prove part of Theorem 1.3 directly (see Proposition 4.2).
The reader is also referred to work of E. Bedford [2] on the domain of
holomorphy of complements of singular Levi-flat hypersurfaces. For other
applications of Segre varieties, see work of S.M. Webster [19] on algebraic
real hypersurfaces with non-degenerate Levi-form and work of Diederich-
Fornaess [8] on complex varieties in real analytic sets.

The paper is organized as follows. Sections 2 and 3 consist in a pre-
liminary study of Levi-flat invariant sets of codimension n. In Section 2,
we study those Levi-flat sets defined by real quadratic forms. Their clas-
sification happens to be already non-trivial, and in fact we succeed only
in classifying Levi-flat sets of special types. In Section 3, the Levi-flat sets
that have been studied serve as models for more general Levi-flat sets. At
the expense of having the hypotheses looking more artificial, the reader can
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read Section 3 without having read Section 2. Also, the results but not the
proofs in Section 3 are to be used in Section 4.

In Section 4, the simplified equations that we found for the Levi-
flat invariant sets allow one to study the defining functions of those sets,
i.e., functions whose at least the common zero level set is invariant. From
this study one is able to get either enough first-integrals, or meromorphic
eigenfunctions.

In case enough first-integrals are obtained, the convergence of normal
forms follows from Vey’s theorem. This however does not establish Theo-
rem 1.2, which correspond to a case for which in Section 4 one obtains only
meromorphic eigenfunctions. This latter case is treated in Section 5, using
a KAM method.

In Section 6 we shall formulate analogous results for holomorphic
Hamiltonian systems, based on an observation regarding normal forms of
the time-one mappings of Hamiltonian systems. The paper is concluded
with an appendix about two equivalent Birkhoff normal forms of holomor-
phic symplectic mappings.

Acknowledgment. The author is indebted to Dan Burns for the

insights in Segre varieties through the collaboration [6]. The author would
also like to thank Jean-Pierre Rosay for helpful suggestions.

2. Invariant Levi-fl.at sets
defined by real quadratic forms.

In this section we shall study certain classes of Levi-flat sets of high
codimension in C2’ defined by real quadratic forms. Here the classification
is not complete. In fact, we shall only consider 4 families of Levi-flat sets of
high codimension under an additional condition that the sets are invariant
under an elliptic complex linear symplectic transformation. A complete
classification of Levi-flat quadratic hypersurfaces of C’ is in [6].

Recall that a germ M of real analytic set of dimension k at 0 E Cn
admits a decomposition M = M* U Ms, where M* consists of points x
near which M is a k-dimensional submanifold of C~. By a result of Bruhat
and Cartan [5], if M is irreducible, M* is the union of a finite number of
topological components MJ with the origin of (Cn in the closure of each
MJ. We define the CR dimension of M to be
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Let M,, be the set of points x E M* at which the complex dimension
of TcM n lTxM is larger than dimCR M. Then M,, is a real analytic
subset of M*. We say that M is Levi-flat, if Me == M* B Mes is foliated

by complex submanifolds of dimension dimCR M. Notice that we allow
M,, to contain some components of M*. In general, one has dimCR M &#x3E;
max~dim M - n, 0}. We say that M is generic, or of minimal CR dimension,
when dimCR M = max~dim M - n, 0}, i.e., when TxM, + C~

for all x E Me, or TxMe n HTxMe = 0 for all x E M,. In the latter case
Me is said to be totally real. We shall also use a standard fact that the
real analytic submanifold Me is Levi-flat, if and only if the Lie brackets

[Li, Lj] ] remain in the span of L 1, .. - , L 1, ... , L, for any local basis
- dimCR M) of (1,0) tangent vectors of Me, i.e., tangent

vectors of Me of the form aj(z, -Z) aZ3 a with aj being analytic.
We shall need some basic properties about the complexification of

real analytic varieties. Recall that a germ M of real analytic variety of R n
at 0 is contained in a unique germ M~ of complex variety at 0 E C’ such
that M = M n R , and such that germs of holomorphic function at 0 E Cn

vanishing on M~ are precisely the germs of complex-valued real analytic
function at 0 E Rn that vanish on M. We shall refer the germ Mc as the

Bruhat-Whitney-Cartan complexification of M. A result of H. Cartan [7]
says that M is irreducible if and only if Mc is irreducible; consequently, a

germ of real analytic function vanishing on an open subset of M*, of which
the closure contains the origin, vanishes entirely on the germ M.

The main purpose of this section is to study Levi-flat sets that are
defined by quadratic forms and invariant under the C-linear symplectic
mapping

where Ai,..., An satisfy the non-resonance condition (1.2). Throughout the
section, we assume that A is elliptic, that is that IÀj = 1, j = 1,..., n.

A complex-valued quadratic form on C2, is a quadratic homogeneous
polynomial in ~, 71, ~, -; the space of all complex-valued quadratic forms
will be denoted by E. Let Epsh be the set of complex-valued quadratic
forms containing no terms of the form with c~ + 101 ( - 1, and
Ehrm the set of quadratic forms containing only the terms with

]a] ( ~- 1/31 = 1. Sending f to f o A, the transformation A: E - E is C-linear.
Pllt
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Notice that (2.1) holds for j - ±1,..., ~n. The eigenvalues of the linear
transformation A: E - E are 1 and AzAj (i + j # 0), to which the

corresponding eigen-spaces are

with

Let Q be the vanishing set of finitely many real quadratic forms on C~,
and let T = IQ be the set of complex-valued quadratic forms vanishing
on Q. Assume that Q is invariant under A, so T is invariant under A also.
¿From the theory of linear algebra one knows that

We shall only classify the Levi-flat sets Q for which I is contained in one
of the subspaces

We start with the following.

PROPOSITION 2.1. - Let Q C be a generic real analytic set
defined by real quadratic forms. Assume that Q has codimension m - 2n
and Zc~ is contained in Epsh n El. Then there exists an m x n matrix 
of rank m such that

Conversely, (2.2) is a Levi-flat real analytic set in c2n of minimal CR
dimension 2n - m, provided the rank of is m.

Proof. - Take 1~ quadratic forms == E7=1 so that

~ql, ..., Rqk form a basis for real quadratic forms vanishing on Q. Since Q
is generic and of codimension at most 2n, then Q is not contained in any
proper complex subvariety of c2n. This implies that ql, ..., qk are linearly
independent over C. For the proof, we assume for the sake of contradiction
that qk = cl ql + - ... + Then
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vanishes on Q. Hence, qj vanishes on Q. Since ?~1,..., Rqk are
linearly independent over R, then at least one of is nonzero. Therefore,
Q is contained in the complex variety 

"

which is a

contradiction.

To show that k = m, we need only to verify the last statement in the
proposition. Without loss of generality, one may assume that 
is nonsingular. Then Q B = 0 1 is parameterized by

with = and ti E R. This shows that QB = 01 is a
generic Levi-flat CR manifold of CR dimension 2n - m. Next, we want to
show that Q n = 01 has dimension less than 4n - m. It suffices to
verify that n {~1 - 0} has dimension less than 4n - m. Note that
the rank of is m - 1. Without loss of generality, we may
further assume that has rank m -1. Obviously, Q’ is contained
in C x C." for C" C 2-2 : m 2 0, I = 2,..., m. ApplyingIn x or C . Dj=2 aijj1]j - , ’l - ,..., m. pp YIng

induction on n and m, one can verify that Q n f 61 = qui = 01 is a real

analytic set of dimension at most 4(n-1) - (m-1); hence dim Q’  4n-m.

The proof of the proposition is complete. 0

PROPOSITION 2.2. - Let Q C be an irreducible generic real

analytic set defined by real quadratic forms and of dimension at least 2n.
Assume that A (Q) = Q, and that I is contained in Epsh n Eo. There is a C-
linear symplectic transformation which leaves A in the diagonal form (2.1)
and transforms Q into the set

and

Proof. - Since I is invariant under A, we have I = for

Assume that Zi’~ h ~ {0}. We first want to show that 1.

Without loss of generality, one may assume that i, j &#x3E; 0. Assume for

the sake of contradiction that &#x3E; 1. Since 2 then
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Epsh; hence, Q is contained in 0, which contradicts that Q
is generic and of dimension at least 2n. Next, we want to show that

for # and ii,if n 0. Let us focus on the case

i, j &#x3E; 0, and other cases can be checked similarly. Assume for the sake
of contradiction that on Q

for some a, b, c, d ~ 0. Eliminating ~i and jj yields

on 6B = 0 ~ U ~~~ ~ = 0 ~ ) . Since Q is irreducible and generic, then (2.6)
holds on Q also, which contradicts that 2T) = 

Next, we want to show that all Ipsh = 0. Otherwise, one may assume
that 0, so Q is defined by the vanishing of 1 and other
quadratic forms independent Denote by C~’ C C2n-2 the vanishing
set of the complex-valued quadratic forms in I that are independent of

Obviously, the decomposition

contradicts that Q is irreducible.

To achieve (2.3), let Z contain one of quadrics

with i # j 0. By substituting (77j, 2013~) for in the second

quadratic form and replacing the third quadratic form by its conjugate
divided by a, one may assume that the first quadratic form is in T. Next,
interchange (Çi, with and with (~2, ~2), respectively. Thus
Z contains

By the transformation (gi, qi) 2013~ ( ~~1 ~~1, ~11/ ~~1 ~), one gets IILll ] = 1.
Inductively, one finds the remaining coordinates (~3, 1]3, ... , ~n, so that

Q is given by (2.3)-(2.4). The proof of the proposition is complete. 0

Analogous to Proposition 2.2, we have the following.

PROPOSITION 2.3. - Let Q C be an irreducible generic real

analytic set defined by real quadratic forms and of dimension at least 2n.
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Assume that Q is invariant under A, and that I is contained in Ehrm rl Eo
and satisfies the non-degeneracy conditions

for all distinct i, j, k. Then there is a C-linear symplectic transformation
which leaves A in the diagonal form (2.1) and transforms Q into

with = I = 1, and c for

The proof is almost the same as that of Proposition 2.2, except (2.7),
replacing (2.5), is part of the assumptions of the proposition. One can show
that Q is equivalent to + = 0, j = 1, ... , 2L. However, the
latter is equivalent to (2.8) by a symplectic transformation. The details are
left to the reader.

We depart from the symplectic coordinates for a moment.

PROPOSITION 2.4. - c C~ be defined by the vanishing of
some linear combinations of zl-Zl, ..., zn zn . Assume that Q is generic, Levi-
flat, and of codimension m - n. Then m is less than n and rearranging
zl,...,zn gives

for som e cj &#x3E; 0 and &#x3E; m.

Proof. For the space of R-linear combinations of zn zn
that vanish on Q, choose a basis ql,..., qk so that for a possible rearrange-
ment of zl , ... , zn

Since Q is not contained in 0, then

is a nonempty open set in cn-k, of which the boundary contains the origin.
Obviously, (qi = . . . = qk = 0} B 0} is a smooth submanifold in
Cn of codimension k; in particular, k &#x3E; m. On the other hand, if k &#x3E; m,

then Q* is contained in = 0) , which contradicts that Q is generic.
Therefore, k = m.
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To determine a~a we consider (1, 0) tangent vectors of
01, spanned by

One has

Since Q is Levi-flat, the Lie bracket [La, L,], restricted to 0}, is
locally in the span of vector fields (2.11) and their conjugates. This implies
that [La, L,] vanishes on Qc B U~z~ = 0~, i.e.,

0} is not contained in = 0, then 0

for a ~ /3. On the other hand, from (2.10) one knows that at least one of
&#x3E; m) is positive. This shows that Q has the form (2.9). The proof

of the proposition is complete. D

Returning to symplectic coordinates, we now want to prove the
following.

PROPOSITION 2.5. - Let Q C C2’ be a Levi-flat real analytic
set defined by elements in n El. Assume that Q is generic and of
codimension m  2n, and that Q contains no C-linear coordinate subspaces
(i.e., vanishing sets of some of Çl, 171" .., Çn, 17n) of dimension greater than
2n - 2m. Then under a change of symplectic coordinates which leaves A in
the form (2.1), Q is given by

where 7: {1,..., m} -~ ~ 1, ... , n~ is injective, and J1j satisfy

with Tj being the smallest positive integer satisfying ( j ) = j (Tj = 0
when &#x3E; m for some k).

Proof. In view of Proposition 2.4, such a set takes the form (2.9)
with Zl,..., z2n being a permutation of 1]1, ... , Since Q does
not contain any C-linear coordinate subspace of dimension greater than
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2n - 2rrL, all ~1,....~ in (2.9) are distinct; consequently, is

given by m equations

in which are positive, and indices il, i2, i3 run over subsets
h, I2, I3 of f 1, .., n~, respectively. Moreover, 7i, ~2 and a(Ii ) are mutually
disjoint, and so are I3,,~(I2), and ~y(I3). We shall first permute the sym-
plectic coordinates to eliminate the first and last groups of equations in

(2.14). For each j E 0(11), we change the coordinates to 

and for each k E n $(12) ) , we change the coordinates to

( -’f/k, and replace c% with 1/ c%. Thus, equations in the first group are
eliminated. Next, we apply the coordinate change to for

each j E 13 and j E ,C~-1 (I3 n /3(72)). After the above coordinate changes,
only the second group of equations in (2.14) remains. By a permutation of
symplectic coordinates, we achieve (2.12) for an injective ~.

To obtain the normalization (2.13), we apply induction on the number
of equations in (2.12). If m = 1, one readily obtains (2.13) by applying the
transformation

For induction, we assume that (2.13) can be achieved if the number
of equations in (2.12) is less than m. We first consider the case there

exists the smallest integer T1 with = 1. Note that such Ti always
exists if m for all integer k. In this case, the equations in (2.12)
break into two groups: the equations involving only for

k = l, ... , T1 and the ones not involving any of those variables. If both

groups are non-empty, (2.12) follows from the induction assumption. Thus,
one may assume, without loss of generality, that Tl = m, aj (1) = j + 1 for
j = 1,...,m- 1.

Consider a symplectic transformation

The transformation (2.15) sends (2.12) to = 0 with

tlj - Put cl = 1 and cj = for j = 2,..., m.

Then Aj = 1 normalize tlm, consider first the case
that m is even. In this case

is invariant under (2.15). Therefore, (2.12) are equivalent to lçj 12 -
= 0 . - l, ... , m (6, »/"’ i T/j+l - , J - , ... , m or u1 - u, J.L an a - i Since

8lJ.L’ == Consider now the case that m is odd. In this case we apply
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another transformation (2.15) with cl - (J-l~)-1/4 and for

j = 1, ... , m - l, which gives us (2.12) with uj = 1 for j = 1, ... , m.

We now consider the case that ~~ ( 1 ) - m’ &#x3E; m for some k. In

this case 1  m. Let T be the largest integer such that

~-T (m’) is well-defined. The equations in (2.12) are divided into two

groups: the ones involving qm,, Ça-1 (m’)’ 1 (m,) ... , Ça-T ~~.,.~~ ~ only and the
ones not involving ~~-~ (~.,.L~), for 1~ = 0, ..., T. Thus by the induction
assumption, one may assume that T = m - 1. Put jo = and

ik - 1,..., m - 1. Thus, (2.12) becomes

with being distinct and m = m’ &#x3E; m. Take 1,
and for k - m - 2,..., 0. Then applying the
transformation (2.15) one gets /-lkJ = 1 for 1 = 0, ... , m - 1. The proposition
is proved by induction. 0

To conclude this section we remark that, for holomorphic symplectic
mappings, having a Levi-flat invariant set of minimal CR dimension is not
a sufficient condition for the convergence of their normalizations. In fact,
the sets M2,..., M5 below are combinations of 4 types of Levi-flat sets

(2.2), (2.3), (2.8) and (2.12).

Examples. - The following are Levi-flat sets of minimal CR dimen-
sion :

Note that all these sets contain the Let qb be an elliptic
holomorphic symplectic transformation of (~2 which is not normalizable by
any convergent symplectic transformation. For each Mj, one can find a map
cp which is the product of 0 with a suitable elliptic C-linear symplectic
transformation of (~2n-2 (rt = 2, 3, or 4) such that Mj is invariant

under cp. However, p is not normalizable by any convergent symplectic
transformation.
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3. Normalization of Levi-flat invariant sets.

Throughout the paper we denote by [P] k the sum of homogeneous
terms of order k, whenever p is a multivariable power series.

In Section 2, four special Levi-flat classes of quadrics were introduced:
the sets defined by (2.2), (2.3), (2.8) and (2.12), respectively. We now study
Levi-flat sets defined by equations whose lowest order terms correspond to
these quadratic polynomials, and we try to simplify their equations by
changing holomorphic coordinates. For this purpose, we shall combine two
singularities (2.2) and (2.3) since such combination results in no extra diffi-
culties. One can also treat two singularities (2.8) and (2.12) simultaneously.
Notice that quantities /1j in Section 2 are symplectic invariants, but are not
the holomorphic ones. Since holomorphic coordinates, not the symplectic
ones, are used throughout this section, we can restrict ourselves to the case
all /1j = 1. We shall also use a simpler permutation to simplify notations.

To combine two types of singularities (2.2) and (2.3), we let a be a
permutation of 1, ... , m (m ~ n) satisfying

In particular, ~2 = Id. Put

with

Define the set

Note that we allow K = 0 or m, so that sets (2.2) and (2.3) (all /-lj = 1)
are indeed special cases of (3.4). In Proposition 3.5 below, we shall prove
that (3.4) is generic, irreducible and Levi-flat.

One of main results of this section is the following.

THEOREM 3.1. - Let M C C2’ be a real analytic variety defined
by
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where (j, qj, and ai~ are given by (3.1)-(3.3) and Ri are real analytic and
satisfy the reality condition

Assume that M is Levi-flat. Then there are m holomorphic functions

7~(~,7~) == O(3) such that M, as a germ of real analytic set at the origin,
is given by

To combine two singularities (2.8) and (2.12), let a be still given by
( 3 .1 ) , and put

We now state the following rigidity result.

THEOREM 3.2. - Let M C be a Levi-flat real analytic variety
defined by

where a, qj are given (3.1 ) and (3.8), and = 0(3) are real
analytic and satisfy the reality condition (3.6). Then near the origin, M is
holomorphically equivalent to the set

Note that (3.10) becomes (2.12) (all /-lj = 1 and = Id) when K = 0,
or (2.8) (all /-lj = 1) when K = m. As a consequence of Proposition 3.7 we
shall see that the set (3.10) is generic, irreducible, and Levi-flat.

The main purpose of this section is to prove Theorem 3.1 and

Theorem 3.2. We start with the following.

LEMMA 3.3. - Let V C x C’ be a complex variety defined by

where qj is a quadratic polynomial in Xj+l, ..., ym, z for j -
1...... m, holomorphic functions of order at least 3. Let f be
a holomorphic function vanishing on V. Then, as a germ of holomorphic
function at the origin, f admits a decomposition
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for some holomorphic functions a3 with minj{ordaj} = ord f - 2.

Proof. Without loss of generality one may assume that fj is a

quadratic Weierstrass polynomial in zj . Put f = go. Using the Weierstrass
division theorem, one gets

with min{ordaj = ord f . Hence

Assuming that f 0 0, we would like to show that ord &#x3E; ord f and

ord f - 2.

Consider the dilation (x, y, z) - (Ex, Ey, Ez). Let V’ be defined by

and let Or be the products of k copies of Ar. We shall also drop the
superscript in Or whenever the dimension k is clear from context. Let vr be
the projection (x, y, z) -~ (y, z). Choose 6, 6’ so small that the restriction
7r: V E - V E n x 6’ 6’ is a branched covering, for
which the branch locus is denoted by BE. Obviously,

is a proper subvariety of V°; hence, BE is also a proper subvariety of YE for
small e. Off the branch locus BE, V~ is locally given by x = dJ(y, z, E), J E

{0,1}~ with d J ( ~, e) - d J ( ~, 0) as E -~ 0. Note that for E = 0 the k-th
coordinate of dJ is obtained by choosing a square root of z),
starting with This implies that for J = ( jl , ... , Z2 and J k =

(~~, - .. , ~~.,.z), &#x3E; one has °

Moreover,

for (y, z) g Bo and m.

Assume for the sake of contradiction that ord = ord f =- k. Note
that



167

vanishes on YE, and that ord 9m &#x3E; I~. Since qj is independent of xl, ... , xj,
one gets from that

Now (3.12) yields

for (y, z) ~ 1r(BE). Letting e - 0, one gets

for (y, z) ~ 7f(BO). The above are 2m linear equations in 2m unknowns
ca (y, z), for which the coefficients z), oz, J E Z2 form a block matrix

where D’ is the matrix formed by d(0:0,) with a’, J’ E ZT- 1, and Xo, X 1(0 1 ) 2

are diagonal x matrices of which the J’-th diagonal entry
is and respectively. From (3.11) it follows that

det (Xo-X 1 ) ~ 0. Applying induction on m, one gets det D =det(Xo-Xi )
det D’ # 0. Therefore, ca - 0. This shows that &#x3E; ord f and
ord f = 2.

However, gm still vanishes on V, so one can find another decomposi-
tion for gm. Inductively, one can at least achieve

for some formal power series By a theorem of M. Artin [1], there are
convergent power series + satisfying (3.13).
This completes the proof of the lemma. 0

LEMMA 3.4. - Let V, ql, ... , q~.,.t be as in Lemma 3.3, and let

Assume that the rank of (ajk) is m. Then V

is irreducible.

Proof. As in the proof of Lemma 3.3, let 7r be the projection
. Choose 6, 6’ &#x3E; 0 such that the restriction 7r: V _

is a 2"2-to-1 branched covering, for which the
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set of points of branch order 2m, i.e., the points p E V with 7-17r(p) = ~p~,
contains a subset B satisfying additional equations

For a possible smaller 6’, the above equations define a one-to-one covering
over Solving for x from (3.14) and inserting x into yields
new functions

on B. Since (ajk) is of rank m, one may assume that is

nonsingular. Fix (yO, zO) on ? + 0, j - 1, ... , m, so that
- - 0 = 0, while none of 0 0 .... 0 z°.L is zero. Consider theM+l 1 - ... - n W I e none 0 1 1 ... , m m IS zero. consider er e

dilation gj (y, z,,E) = fj (Ey, Ez) /E2. Then ..., zm) is nonsingular for
(y, z) = (yO, zo) and E = 0. By the implicit function theorem, one can verify
that for small E, there exist x(E), z(E) such that x( E), EYO, z(E) satisfy (3.14)-
(3.15) and lx(,E)1, cE for some constant c = 0 for j &#x3E; m).

On the other hand, the singular locus V, of Tl is contained in
-.............,. --./....’ -

which obviously does not contain (x(E), z(E)) E B for small E 1= O. This
shows that V contains a smooth point of branch order 2’~’2. Hence, V* is

connected, i.e., V is irreducible. This completes the proof of the lemma. 0

Note that the above proof is based on branched coverings and the
existence of smooth branch points of maximal branch order. Applying the
same argument to the family of complex varieties

yields that any neighborhood of the origin contains another neighborhood
D, independent of E, such that each YE n D is connected for small C.

We now apply the above lemmas to the real analytic variety given by
(3.5) and (3.6).

PROPOSITION 3.5. - Let M C be a real analytic set given by
(3.5)-(3.6). Then M is a generic and irreducible real analytic variety of
codimension m. Also, a germ of any real analytic function f vanishing on
an open subset of M*, of which the closure contains the origin, can be
decomposed into alrl +... + for germs of some complex-valued real
analytic functions aj with minj (ord aj ) = ord f - 2. Moreover, the set Q,
defined by (3.4), is Levi-flat.
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Proof - Put

Note that Q is defined by

This shows that dim Q ~ 4n - m, and that Q is generic if 

4n - m. Now the implicit function theorem implies that M enjoys the
same property.

To show that dim M = 4n - m, we consider the complex variety /

where ç, are now independent complex variables. By the reality
conditions (3.6), is actually defined by = 0 for j = 1, ... , m;
more explicitly, M is given by

where is nonsingular. Choose complex linear coordinates x, y, z
so that

Substitute the rest of z-variables for ~, that do not appear in (3.16).
Obviously, in the new coordinates, J~l has defining functions satisfying all
the assumptions in Lemma 3.4; hence, M is irreducible and of codimension
m. Since (~, r~) E M~ C is of real dimension at least

4n - m, then M is the Bruhat-Whitney-Cartan complexification of M. A
result of H. Cartan [7] implies that the complexification of f vanishes on
.A4. In view of Lemma 3.3, the complexification of f, and hence f, admits
a decomposition alrl -~ ~ ~ ~ + 

The above argument shows especially that Q is irreducible, generic,
and of codimension m. Finally, we want to show that Q is Levi-flat.

Note that - 0} is the disjoint union of graphs over the

(~+1,..., Çn, which are given implicitly by



170

with tj E R. = 0) is smooth and Levi-flat. Since Qc is
generic, it is contained in the closure of Q B = 0}. Therefore, Qc is
Levi-flat. This completes the proof of the proposition. 0

Before we prove the first main result of this section, we should recall
the Segre varieties associated to a real variety [15]. Let M be a germ of real
analytic variety at 0 E C’ defined by ri (z, -f) = - - - - = 0, where

rj are real power series convergent on a polydisc An x L1~ C C x C . Then
the Segre varieties are the family of complex varieties

For a fixed w E A§l, the Segre variety Qw could be an empty set, or the
whole polydisc A§l, or a proper subvariety of dimension between 0 and
n - l. For our applications of Segre varieties, we shall only deal with real
analytic sets M that admit defining functions r1, ... , r~ such that germs of
real analytic function vanishing on M are always generated by rl, ... , 
This implies that the Segre varieties Qw are independent of the choice of
such defining functions rj , except that a possible smaller polydisc An x An
has to be chosen for a given set of such defining functions. Also, note that,
given two real analytic varieties M, M’ admitting such defining functions
and a biholomorphic mapping 0 sending M onto M’, 0 must send Segre
varieties of M into Segre varieties of (by shrinking the polydiscs on
which M, M’ are defined if necessary). Finally, we should mention that if a
germ of complex variety V at w is contained in M, then V is also contained
in the Segre variety Qw of M.

Proof of Theorem 3.1. - Following [6], we start with the dilation
ME defined by

. 

- - .. n

Write

Parameterize
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Then aj should satisfy

The implicit function theorem implies that the above equations have a
unique solution

with aj 0.

The Segre variety of M~ is defined by

for Rj = r~, ryE(t), E). By applying the fixed-point theorem, one can
solve (3.17) to get

where hj are holomorphic functions of ~, TJ, c. It is easy to see that

This implies that for small E, all are well-defined on the domain

where s &#x3E; 0 is small and independent of E. Clearly, ~y~ (t) is contained in

Ds when E, t are small. As mentioned after the proof of Lemma 3.4, D,
contains a neighborhood D’ of the origin such that for each small E the
smooth locus of A4’ n D’ is connected.

Note that 8( rí , ... , / 8( ç 1, ... , is nonsingular near -y’. Hence,
M’ is smooth and of C R-dimension 2n - m near This implies that M’
is Levi-flat near in particular, the branch Q’, (t) of (t) , which passes

through ~yE (t), is contained in M~.

Next, we would like to show that Q~(~ C M’ sweep out an open
subset of (M,)* n D’. To this end we take a polydisc C D’. Rewrite

(3.17) as
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Applying the fixed-point theorem to the above equations, one can get a
unique solution çj == defined on Em X Qsn-2m for t) I  s",
where s"  s’ is a positive constant depending only on s’ and

This shows that when E, t are sufficiently small, the branch contains

the graph

Obviously, G~ n is nonempty if E, t are small, and (8p~ /8t) (q, g", t) is
nonsingular on Em x for 6=0. This shows that GE = UG~ C ME
is an immersed real manifold of dimension 2n-m. Thus, is

nonempty. On the other hand, G~ is contained in the Segre variety on

which the holomorphic functions are pure imaginary. Therefore,
all vanish on a nonempty open subset of (ME ) * n 
The latter is, however, a totally real subspace of (Jl~l ~ ) * n D of maximal
dimension. Therefore, the complexification of each vanishes

on ME f1 D. In return, 1], c)} vanishes on ME.

We now fix a small E. In view of Proposition 3.5, we have

In particular, h~ (~, r~, E) - h j (0 , 0 , e) = 0(!(~,~)p). ¿From (3.18), we know
that (d~ ~ ) (o) is invertible. Let be the inverse of the constant matrix

(djk)(0). Put

Then qj is the quadratic form of /~. Notice that the right-hand side
of (3.19) is real; in particular, its quadratic form is real also. Hence,
djk (0) = dju(k) (0). From a~2 = Id, it follows that djk On ME, we

have - -h~ (~, r~, E). Now a straightforward computation shows
that h) (g, 1], E) = -h~(~~ (~, 1], E) on ME. This shows that ME, and hence M,
is of the form (3.7). The proof of the theorem is complete. D

We now turn to the proof of Theorem 3.2. The rest of the section is
to show that the Levi-flat analytic set defined by (3.9) is holomorphically
equivalent to the set (3.10).
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We shall use general holomorphic coordinates for the rest of section.
For convenience, we set

where (x, y) = (x 1, ... , Xn, yl, ... , Yn) are coordinates of C~~. In particular,
the last m - K equations in (3.9) are equivalent to the last m - K ones of

The first K equations in (3.9) are transformed into the first I~ ones of
(3.20) by the transformation

Thus, M is given by (3.20) with o, of the form (3.1), and the reality condition
(3.6) now reads

Thus, Theorem 3.2 is reduced to the following.

THEOREM 3.6. - Let M C be a Levi-flat analytic set given by
(3.20)-(3.21). Then M is holomorphically equivalent to the set

We need the following.

PROPOSITION 3.7. - Let M c C~ be a real analytic set defined by
(3.20)-(3.21) with a of the form (3.1). Then M is generic, irreducible and
of codimension m. Also, a germ of any real analytic function f vanishing
on a topological component of M, of which the closure contains the origin,
admits a decomposition alrl + ... + for some complex-valued real
analytic functions aj with min{ ord = ord f - 2. Moreover, the set Q,
defined by (3.22), is Levi-flat.

Proof. The proof is almost the same as that of Proposition 3.5.
Take a point z0 = (xo, yo) on Q such that x° 0 # y§ for j = 1,..., m.
Then 9(~i,...,~)/9(.ri,...,~~) ~ 0 at zo. This shows that Q has
codimension at most m, and that Q is generic if codim Q = m. By the
implicit function theorem, one then knows that M has codimension at
most m, and it is generic if the codimension is m. Using Lemma 3.4, one
shows that the complexification of M is the irreducible complex variety of
codimension m given by = 0, j = 1, ... , m. Since M* is a totally
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real subspace in (.J1~I ) * of maximal dimension, the complexification of f
vanishes on M. Lemma 3.3 says that the complexification, and hence f,
can be decomposed into air, -~ - - - + amrm for some real analytic functions
aj.

Finally, Q B 0} is the disjoint union of complex manifolds

with parameters tj E C satisfying = Therefore, Q is Levi-flat. The
proof of Proposition 3.7 is complete. 0

LEMMA 3.8. - Let a be a permutation of 1,..., m, and let

ll , ... , be C-linear functions on satisfying

(3.23) = 0.(3.23) y) + y) = 0.

Then y) = and

If c, d E cm satisfy (3.24) with c - d E (c*)m, equations

define a nonsingular linear transformation with

Proof. By (3.23) it is clear that l(x, y) == (ClXl,..., cmxm) with
cj satisfying (3.24). Now, c - d E ((C* )’~’2 implies that the transformation
(3.25) is nonsingular. In view of (3.24), the computation for (3.26) is

straightforward. The details are left to the reader. 0

PROPOSITION 3.9. - Let M C C2’ be a Levi-flat real analytic set
defined by (3.20)-(3.21). Then in suitable holomorphic coordinates, M is
given by

with
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Proof - Put ; for E &#x3E; 0. Let ME be the

dilation of M defined by ri =... = rm = 0. Set

Obviously, mo n EO contains an m-dimensional totally real submanifold
parameterized by

for tj E R. By the implicit function theorem, ME n EE also contains an
m-dimensional totally real submanifold -y’(t) parameterized by (3.31) and

where aj (t) are real analytic functions in t and E, satisfying -

(i j (t, E). The Segre variety Q IE (t) is defined by

Note that Rj = 0 when E = 0. By the fixed-point theorem,
is a graph of the form

for small E and t. In particular, is contained in ME .

We would like to show that 0 E Q.~E ~t) . From (3.32), it follows that

for small E and generic t, intersects a fixed (to ) transversely along
,S’ = n Fix a generic t. ,S’ contains points which can be

arbitrarily close to the origin as E tends to 0, and near the origin ,S is a
closed complex submanifold of dimension 2n - 2m. To show that 0 E 
it suffices to verify that S’ contains the origin. Since and 

are complex submanifolds of codimension m ~ n, the span of their tangent
spaces at each point in ,S’ is the whole space C2, . Therefore, the differentials

drj vanish on S. On the other hand, we have

Near the origin the above equations define a (connected) smooth real
submanifold S’ of dimension 2n - 2m. Obviously, S’’ contains the origin.
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Since ,S’(C ,S’’) and S’ have the same real dimension and both are closed
sets, they must coincide near the origin. This shows that S, and hence

Q,f:(t), contains 0. Notice that the union of contains an open subset

U of (ME ) * with -yE C U and that 0 E Q~, for w E U. We conclude that Qo
contains the open subset U of (ME ) * ; consequently, the complex variety Qo
is the whole space tC2’~, since ME is generic. Therefore, 7], 0, 0) = 0 for
j = 1,...,m.

Our next step is to find new coordinates for a fixed ME so that it has
two Segre varieties forming part of coordinate subspaces. To this end, we
fix a small E so that ME contains two Segre varieties and 

intersecting transversely at the origin. As shown above, Q,yE (t~ ) , 
are given by y’ - g(x, y") and y’ - h(x, y"), respectively. Moreover,
g(0) = h(o) = 0. Since Q-,(t,) is contained in M, then

for j = 1, ... , m. Hence,

This means that ~g1 ~ 1, . - . , satisfy (3.23), so ~g~ ~ 1 (x, y) - cj xj - Simi-
larly, Define the new coordinates

for which the linear terms are of the form (3.25). Now M - ME contains two
Segre varieties xi = ~ ~ ~ - = 0 = 0. For brevity, we
replace z* by z. In view = 0 and the reality condition
(3.21), one sees that M is given by (3.27) with

where (z, z) is independent of xl, ... , yl, - - . , and a’JkZ (z, z) is
independent of x 1, ... , y1, ... , Obviously independent
of zi , ... , zk- i , yi , ... , yi- 1 , are unique and b§ j y (z, z" ) = b§ *i (z, z" ) byof 1 · · are unique, and ) = ) by
the reality condition Rj = Put (ajkz (7)/)/* Then the
reality condition Rj = implies that Rj are given by (3.27)-(3.29).
Note that remains independent of x1, .. - , z k - 1 , §~ , ... , 

To achieve (3.30), we need to change coordinates one more time. We
shall leave the Segre varieties x1 - ... - 0 and Yl = ... = 0
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unchanged. Thus, we consider a holomorphic transformation

with

Put in the form of (3.27)-(3.29) with in place of Thus,
from r* = ri o 0 one obtains

Comparing the coefficients and in (3.35), respectively,
one gets

Now, the implicit function theorem implies that there exist unique u, v =

O(2) satisfying

Obviously, the unique solution (u, v) satisfies (3.34) also. Note that in

the decompositions (3.28), 0) is independent of Xl,..., and

is independent of y1, ... , Now identities (3.36) yield (3.30).
This completes the proof of the proposition. 0

Proof of Theorem 3.6. - Following [6], we want to show that the
Levi-flat set M, defined by (3.27)-(3.30), is the one given by (3.22).

Consider a real manifold in M parameterized by z’ = ( 1, ... ,1 ) ,



178

with t E aj (0) = 0 and c~a(~) (t) = By the implicit function
theorem, such aj exist.

The Segre variety is defined by

By rescaling the coordinates, one may assume that Rj are small functions.
Hence, Q~,~t~, intersecting with a fixed neighborhood of the origin, is a

smooth complex submanifold given by

for j = 1,..., where the last identity comes from 0 E 

Since Q~(~) is contained in M, we have

for z = (x, h(x, y"), y"). Expanding the right-hand side of (3.37) as power
series in x, y", ~, y" and collecting quadratic terms yields

Now looking at (3.37), we see that the homogeneous terms for

lal + ~,C~~ = 2 give us

ZFrom (3.30) it follows that [hj]2 = 0. Assuming for the sake of induction
that [hj]2 = ... = [hj N = 0 for 1 ~ j ~ m, one gets from (3.30) and (3.37)
that

for y’ = ~h~ i (x, y", t) . This shows that y", t) are linear in x, and that
is given by

Therefore, M contains a portion of Q; consequently, M and Q coincide as
they are irreducible. The proof of the theorem is complete. D
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4. Invariants of Levi-flat sets
and symplectic transformations.

Results in the preceding section allow one to choose much simpler
defining functions of Levi-flat sets in suitable holomorphic coordinates.
In this section we shall use (more restrictive) symplectic coordinates to
study the defining functions for the Levi-flat sets that are invariant under
a holomorphic symplectic mapping.

This section is divided into two parts: We shall first complete the
proofs of Theorem 1.1 and Theorem 1.3 after we obtain the first-integrals
from Levi-flat invariant sets. We then turn to a meromorphic eigenfunction
problem, arising from Levi-flat sets, and formulate Theorem 4.9, from which
Theorem 1.2 follows. The proof of Theorem 4.9 is given in Section 5.

¿From now on, Levi-flat sets in are of codimension n. We shall

also take into account that in section 3 we ignored the symplectic invariants

J-lj and used a simpler permutation defined by (3.1). Therefore, we need
to return to the 4 types of singularities, which involve J-lj (and a more
general in case of (4.21) below).

Let a be a permutation of 1,..., n satisfying

We first consider Q C C~ defined by

with

with of rank K. Note again that we allow K = 0, or n as
special cases.

With the above notations, consider a Levi-flat real analytic set of the
form

with
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Let Then equations (4.4)-(4.5),
after multiplied by ylTij’ are of the form

with

Now Theorem 3.1 says that the set is actually given by

Returning to the original coordinates and putting

one sees that the set is of the form

for j - 1, ... , n, where and /1j are given by (4.1 ) and (4.3), and
Hj (~, q) = 0 (3) are holomorphic.

THEOREM 4.1. - Let M, Hj, qj be as in (4.6). Let p be a holo-
morphic symplectic mapping defined by (1.1)-(1.2) with = M, and
~ a formal symplectic transformation such that is in the Birkhoff

normal form (1. 3). Then IÀa(j)1 I = and

with

Anticipating the proof of Theorem 4.1, we first prove Theorem 1.1
and Theorem 1.3.

Proof of Theorem 1. 1. - Let M be the Levi-flat real analytic set
defined by

where the matrix (ajk) is of rank n and Rj (g, 7],~, il) = O(3) are real-valued
convergent power series. In Section 3 (Theorem 3.1) we have simplified the
equation of M, (from now on) given by

with = O(3) holomorphic, and
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Theorem 4.1 establishes that if a symplectic mapping cp, given by
( 1.1 )-( 1. 2) leaves the set M invariant, and if ~ is a formal symplectic
transformation that puts cp into its Birkhoff normal form, then (qj + Hj) o
(D-1 are power series which depend only on the products (Indeed
under our present hypotheses qj depend only and a is just the
identity.) These power series are thus invariant under the action of the
formally normalized mapping. Hence the functions qj + Hj are invariant,
under the action of cp. Since is nonsingular, a theorem of Vey
[18] says that cp is normalizable by convergent transformations. The proof
of Theorem 1.1 is complete. 0

Proof of Theorem 1.3. - Let r be the defining function of M, and q
the quadratic form of r. Note that the order of r might be one, which can
however be ruled out by applying the argument below to r~.

Since M is Levi-flat and ~: q - 0 is a hypersurface in C2 , then Q
is also Levi-flat [6]. Next, we want to show that Q is invariant under A.
Consider first the case that M is the union of two distinct smooth real

hypersurfaces. In this case, r = rlr2 with rl (o) - r2 (o) = 0. Since r o cp
vanishes on r1 - 0 and on r2 - 0, then rl, r2 divide r o ~p. In particular,

= ur. Thus, q o A = u (0) q, i.e., A(Q) = Q. Next, we assume that M is
irreducible. Then either r is irreducible, or r = uri with ri(0) = 0. When
r is irreducible, is also irreducible as a germ of holomorphic
function in because M is of codimension 1 (e.g., see [6]). Since
r o cp vanishes on M’, then r divides r o p, which implies that A(Q) = Q.
When r = uri , it is clear that rl divides rl Denote by the linear

part of rl. Then = + Since u(o) is real, the above
identity contradicts that not all a, b are zero. (Note that the contradiction
also implies that r starts with quadratic terms, as claimed at the beginning
of the proof.) Therefore, Q is invariant under A.

Applying the above argument to Q, one sees that all germs of real
analytic functions vanishing on Q are divisible by q, i.e., that T = LQ
is spanned by the real quadratic form q. Hence, I is contained in one of

Eij and Ei. Since the former contain no A-invariant C-linear subspace
of dimension one, then I is contained in El. Hence, we get q(~, 777 ~) 77

If b = c = 0, Theorem 1.1 says that cp is normalizable
by holomorphic symplectic transformations.

If b or c is not zero, a result in [6] says that a = 0. Thus, we see that
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M is given by

with O(3) real-valued. By a change of symplectic coordi-
nates, one may assume b - -c. Of course the proof of the theorem is

complete, by applying Theorem 1.2. 0

Alternatively, one can prove the theorem without using Theorem 1.2
when M is given by (4.7), for which we shall prove the next result. 0

PROPOSITION 4.2. - Let cp be a holomorphic symplectic mapping
of (C2 of the form

Let M C C~ be a Levi-flat real analytic hypersurface given by (4. 7). Assume
that as germs of real analytic sets, cp(M) - M. Then IÀI - 1, and there
exists a single change of holomorphic symplectic coordinates that puts M
into the complex cone 1Ç-12 - lql2 = 0 and linearizes p simultaneously.

Proof. - Notice that for this proposition, we allow A to be a root
of unity. Also, it is obvious that I A = 1, since = blçl2 + cl’TJ12 +

is irreducible and r o p = dr for some analytic real function d.

Since M is Levi-flat, a theorem in [6] says that there is a holomorphic
transformation 1Pl such that 1Pl (M) is the complex cone lçl2 - 1’TJ12 = 0.
(See also Theorem 3.6 in Section 3.) Next, we want to find a holomorphic
mapping

,

such that the Jacobian determinant of ~2 satisfies

~2 o ~1 is symplectic, and ~ (M) is still the cone tÇ"12 - 11}12 = 0.
Write the right-hand side of (4.8) as ao ( 1-~- u(~, r~) ) with 0 a constant,
and u( 0) = 0. We seek a solution of the form p(~, 1}) = 1})). Thus,
(4.8) becomes

Comparing coefficient, one sees that there exists a unique formal power
series solution with = 0. Let be the coefficients of u, v,

respectively. Put
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Obviously, çVç, gvg + v, + v are majorized by w, for which we write
w, etc. Thus, (4.9) implies that

By the Cauchy majorant argument, w, and hence v, is convergent.

Now p* = is a holomorphic mapping sending the complex
= 0 into itself. In particular, cp* sends a Segre variety of the

cone into another Segre variety, i.e., cp* sends a complex line (inside the
cone) through the origin to another complex line. Hence, one first sees that
cp* leaves the eigenspaces of its linear part invariant. implies
that

with f (o) - g(0) = 1. Furthermore, g/ f is holomorphic near the origin,
and remains constant on each complex line in the cone. Therefore, f =- g
on the cone, and hence near the origin in c2. This shows that p* is of the
form (~, TI) - with f (o) - 1. Since /ö(ç, = 1,
we obtain f q) - 1. In particular, 0 o cp o = cp* is a linear transfor-
mation. 0

We now turn to the proof Theorem 4.1. Let us first prove the following.

LEMMA 4.3. - Let Q C C~ be defined by (4.2)-(4.3), and let h
be a holomorphic homogeneous polynomial in ç, TJ. Assume that h is real-
valued on Q. Then h is a polynomial in qx, ... , qn.

Proof. By changing linear coordinates, we may assume 
- l, and that (

with

Assume first that h depends only on ,. Expand h(x,y , z, w)=
E habcdxaybzcwd. On Q, one has wj = for j = K -f- 1, ... , K -f- L.
Since h is real on Q, then

Fix a, b, c, d with O. Comparing two sides of the above identity, one
sees that there exist a’, b’, c’, d’ such that
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Hence, a = d and b = c. This shows that f,

For the general case, we shall prove by induction on l that there exist
decompositions

for 1 = 0, 1,.... Fix ~", satisfying equations (4.2) for j &#x3E; K, and let ~’, 7/
satisfy 

-

for tj E R. Solving for 7/1,..., TJK yields

where t ~ b(t) = (bl (t), ..., bK (t)) is a nonsingular linear transformation.
The decompositions (4.10) are trivial for l &#x3E; deg h. Assuming that the
decompositions (4.10) hold for l &#x3E; k, we want to show that (4.10) for 
is valid. ¿From (4.10)-(4.11) one sees that terms of order k in t are given
by

For fixed ~", r~", the above summation is real-valued for t E R K and

fl’ E Since the transformation t -~ b(t) is nonsingular, we know that
on Q

where B~ are the coefficients of the linear transformation

Now (4.12) implies that for a with I are

polynomials Since the linear transformation (4.13) is nonsingular,
then c,(", r") are power series in for 1/31 = k. Rewrite (4.10) as

__ _ _/""0 __ __ - -.

By induction, the proof of the lemma is complete.
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To state the next result, we need some notation. For a power series
denote by Po f the sum of terms in the power series expansion

of f, which are not of the form I

LEMMA 4.4. - Let rl, ... , rn be the formal power series in (4.6)
with qj being (4.3). Let dl, ... , dn be power series in ç, of order at

least k. Assume that

Then there exist formal power series di,..., dn such that

with and I

Proof. - Choose C-linear combinations r1, ... , of rl , ... , rK so

that
’YJ

It suffices to prove the lemma for

For brevity, we drop the superscript of r*j . For j &#x3E; 1, decompose 

Ujql + so that [U’lk contains only terms with 0152l == 0, or
0. Put

Then

Comparing terms with 1, one sees that = 0, and
hence

Inductively, one determines d2,... dK so that

and [7 To find dK+l, we decompose u’j -
contains only terms of the form
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Comparing the terms of the form aK+l, 0,(K+l) -&#x3E; 1 yields
= 0. Now the proof of the lemma is complete by induction. D

Proof of Theorem 4.1. - By Proposition 3.5, ri o p, ... , rn o p are
in the ideal generated by rl, ... , rn. In particular,

for some constants where

Since is nonsingular, then ql, ... , qn are linearly independent.
Now, a simple computation shows that cjj = 1 for j = 1,..., K,

for j - A" + l, ... , n, and = 0 k. In particular, lajl.
Now, we have decompositions

with 

’"

(4.16) minf ord = minf ord 2 &#x3E; 0.
k

By abuse of notation, we replace and Q(M) by M, etc. Then
M is of the form (4.6), while Hl, ... , Hn are formal power series.

We need to show that

For the purpose of induction we shall also prove that there exist decompo-
sitions

with

... - -J .I 

Obviously, (4.17)-(4.19) hold for d = 1 when formulae (4.18) are replaced
by (4. 5). Assume for induction that for k  d have been determined

such that (4.18)-(4.19) hold. We would like to show that (4.18)-(4.19) hold
if d is replaced by d + 1. For brevity we shall temporarily replace 
by Hj, and by etc. Then by (4.17)-(4.19), terms of order d + 2
in (4.18) yield
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with

Obviously, the real and imaginary parts of the left-hand side of (4.20), i.e.,
+ and + vanish on Q. ¿From

Lemma 4.3, it follows that Kj are polynomials in ql,..., qn ; in particular,
= 0. Now the non-resonance condition (1.2) yields 0, which

gives us (4.17) with d + 1 in place of d.

We now have

In view of Lemma 4.4, one can modify so that (4.18)-(4.19) hold
when d is replaced by d + 1. This completes the proof of the theorem. 0

The rest of section is to study the Levi-flat real analytic sets M C C~
of the form

with

where 1-ij and a (a permutation of 1, ... , n) satisfy

for some 0 x K x n + 1. We further assume that Rj satisfy the reality
conditions

With the above assumptions and the change of coordinates
; we can then apply Theorem 3.6. Thus, M is given by

where are given by (4.22), and

Introduce meromorphic functions
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PROPOSITION 4.5. - Let M be a real analytic set given by (4.22)-
(4.24). Then ml, ... , mn depend only on M. If M is invariant under cp
defined by (1.1)-(1.2), then = and

Proof. - We first want to show that 1-ij, mj are uniquely determined
by M. Assume that M is also given by (4.23)-(4.24) with 
place of rj , pj, fj, gj, respectively. Define mj as in (4.25). By the Weierstrass
preparation theorem, we may assume that the coefficients of gj, gj satisfy
the normalizing condition

We need to show that Mj = IL-7, Ij == Yj, and ~~ = g. Since rj vanishes

on M, it follows form Proposition 3.7 that

with

Comparing the quadratic terms in (4.28) gives p* = J-Lj and Djk (0) = 0.
Assume for induction that

For brevity, we replace by fj, and by Djk, etc. In (4.28)
terms of the form with lal = d and + 161 = 1 give us

On Q, the right-hand sides of (4.30)-(4.31) vanish and one can put

Note that is independent of q,(j). Inserting (4.32) into the right-
hand side of (4.30) and discarding terms containing gj yields q) =
0, where 77 is given by (4.32). This shows that the holomorphic function

vanishes on Q. Since Q contains a totally real submanifold in of

maximal dimension, then Agj = 0, i.e., [~ 2013 0 for j  K. Similarly,
inserting (4.32) into the right hand side of (4.31) and discarding terms
containing ~,(j) yields [~ 2013 0 for K  j  n. Now (4.30)-(4.31)
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read TJ) = 0, in which q is given by (4.32). This shows that f) = fj.
Now formula (4.29) yields = 0. Thus, under the normalizing
condition (4.27) we obtain by induction that = and I
Therefore, pj, mj are uniquely determined by M.

Now, we can show that ( - and 77~ satisfy (4.26).
Note that M = is also given by (4.23) with pj being replaced by
I ~~ ~~ ( j ) I 2I-~~ and being replaced by

respectively. By the above uniqueness result, we have ] = 1 and

FJ*IG* = mj, which gives us (4.26). The proof of the proposition is

complete. 0

The above proposition leads us to the question: If a holomorphic sym-
plectic mapping ( l.l)-( 1.2) admits n meromorphic eigenfunctions (4.25),
can it be put into its Birkhoff normal form by a convergent transformation?

The rest of this section and Section 5 are devoted to this eigenfunction
problem.

Before we turn to the eigenfunction problem, we first remark that a
holomorphic symplectic mapping of the form ( 1.1 )-( 1. 2 ) satisfies -

IÀj I = 1, when it admits the Levi-flat real analytic set (4.23). Although
the existence of eigenfunctions (4.25) puts no extra restriction on the
eigenvalues of the mapping, it restricts the higher order terms in the
Birkhoff normal, as shown in the following.

THEOREM 4.6. - Let cp be a holomorphic symplectic mapping
defined by (1.1)-(1.2). Assume that cp admits n meromorphic eigenfunctions
mj given by (4.25). Let 4) be a formal symplectic transformation such that

Then 

where Kj are power series in ~i 7~1,... with rj (o) = 1. Moreover, the
formal power series cvl , ... , in the normal form (1. 3~ of ’P satisfy
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Proof. - For brevity, we replace by mj, and cp by 
Put mj in the form (4.25), where fj, gj are now formal power series with
gj satisfying the normalizing condition (4.27).

Assume for induction that

hold for some d  k - 1. We would like to show that the above identities

hold if d is replaced by d + 1. Setting = 0 in (4.34), one gets from
(4.35) and the normalizing condition (4.27) that

77) = 0(d + 1). Now, terms of order d + 1 in (4.34) give us

where is treated as zero if (d2013 1)/2 is not an integer. Set

where 1 is the j-th entry. Collecting terms çQ;r¡f3 for a - /3 = ej yields

We now have = Therefore, contains

only terms with a - ~3 = e~ , and (4.35) hold if d is replaced by d+1. By
induction, (4.15) holds for d = k. This shows that k,
as stated in the theorem.

The identity (4.33) follows from the above result (with k = oo) and
the existence of ~ that normalizes p. The proof of the theorem is com-
plete. 0

As a consequence of Proposition 4.5 and Proposition 4.6, we know
that if c,p has an invariant Levi-flat real analytic set defined by (4.21) with
and = Id for some odd integer, then (4.33) implies that all wj = 0, that is
that p is formally linearizable. By a theorem of Rfssmann [14], we obtain
the following.

COROLLARY 4.7. - Let p be a holomorphic symplectic mapping
defined by (1.1)-(1.2). Assume that cp admits an invariant Levi-flat real
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analytic set given by (4.21) with ak = Id for some odd integer k. If the
eigenvalues Aj of cp satisfy the Diophantine condition

for some positive constant c, T, then p is linearizable by holomorphic
symplectic mappings.

For n = 1, see Proposition 4.2 with weaker hypotheses.

To state the next theorem, we need some notation. Let a be a

permutation of l, ... , n, and let given by (4.25), be meromorphic
eigenfunctions of cpo Theorem 4.6 implies that if 4Y normalizes p, then

For 1  j  n, recall that Tj is the smallest positive integer with ( j ) = j.
Define

One readily sees that

The dependence of on the formal normalizing transformation 4) is

described as the following.

PROPOSITION 4.8. - Let blr~, ... , bn~ be as above. Fix j with

n. The formal power series 6j K is independent of the choice of
4Y if 7j is even, but 6jK = 1 for some formal normalizing transformation q,
if Tj is odd.

Proof. - Let 4Y be another formal symplectic mapping which trans-
forms p into (1.3). Put o 4Y = For (/, 17’) == o c-1 (, ),
one has

Since preserves the normal form of Sp, the formal theory of Birkhoff’s
normal form says that

where G is a formal power series in ( = Now (4.39) yields
í’t 
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which gives us b~ i~(~) = 6jK(() if Tj is even. When Tj is odd, we get

Solving the above equation for a formal power series G, one obtains a
formal normalizing transformation ~ such that 1. The proof of the
proposition is complete. 0

We now state the following theorem.

THEOREM 4.9. - Let r.p, mi,..., mn be as in Theorem 4.6, and let
be the associated formal power series. Assume that a-2 = Id, and

that there exists a formal transformation I&#x3E; normalizing cp such that all
are convergent. Then ~p is normalizable by holomorphic symplectic

mappings.

In conclusion of this section, note that Theorem 1.2 follows from

Proposition 4.5 and Theorems 4.6 and 4.9.

5. Normalization of holomorphic symplectic mappings
with meromorphic eigenfunctions.

Recall that Proposition 4.5 provides us the relationship between the
Levi-flat invariant sets of the form (4.23) of a holomorphic symplectic map-
ping and meromorphic eigenfunctions of the mapping. The relationship
between meromorphic eigenfunctions and Birkhoff normal forms of holo-
morphic symplectic mappings might be interesting in its own right.

In Section 4, we introduced the following eigenfunctions:

where a is a permutation of 1, ... , n, and = =

O(3) are holomorphic. We should mention that we have no example of
holomorphic symplectic mappings having eigenfunctions mj, for which the
Birkhoff normalization diverges.

The purpose of this section is to prove Theorem 4.9. However, we need
a further reduction for the theorem, which is a necessary step for us to be
able to apply the KAM method. Recall from Section 4 (Theorem 4.6) that
if a formal holomorphic symplectic Inapping 4Y normalizes the symplectic
mapping p, then mj o are of the form
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Assuming that CJ2 = Id and all 6i o 4Y are convergent, we now modify m~
such that

we simply put mj = mj. Otherwise, = 2, we put

Then 81m = 1 62in. Let us still denote by m~ the modified
meromorphic functions In such a way we achieve (5.3).

Since a 2 = Id, Proposition 4.8 implies that (5.3) remains true under
all formal symplectic transformations that normalize cp. Also, (5.3) is

equivalent to fB¡j == ~cr(j’)? since b~ r~ _ when a 2 = Id.

Thus, Theorem 4.9 is reduced to the following special case.

THEOREM 5.1. - Let rp be a holomorphic symplectic mapping
given by (1.1)-(1.2). Let ml,..., mn be n meromorphic eigenfunctions of
p of the form (5.1) with 7~ = Id. Let 4Y be a formal transformation that
normalizes cp and transforms rj into (5.2). Assume that = for

j = 1,..., n. Then cp can be transformed into its Birkhoff normal form by
some holomorphic symplectic transformation.

We now proceed to prove Theorem 5.1, by applying the KAM method.
Starting with the holomorphic symplectic mapping cp defined by (1.1)-(1.2),
we construct a sequence of holomorphic symplectic mappings On as follows.
Put cpl = p. Let 4b, be the unique normalized formal transformation

transforming Spl into its normal form. Let + be the

generating function of rpl, that is,

Let + be the generating function ¿From the formal

theory of Birkhoff’s normal form, one knows that ord S1 = do - ord 
for 

-

Let 01 be the holomorphic symplectic mapping generated by the truncated
power series

2dn-3

with
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Define p2 = g#1 0 pi o 01 1. Repeating the above construction, we find
holomorphic symplectic transformations ~,~ with = cpk o pk o Ok 1 -

be the generating function of Wk and put dk =
ord PHk.

If one of d~ is infinite, proof of Theorem 5.1 is trivial; so we will
assume that all dk are finite. Then

In particular, dk - 2 &#x3E; 2~, l~ = 0,1, .... It is clear that as k - oo the limit
of 4Jk o g#2 0 ... 04Jl is a formal symplectic mapping 0 such that 0 o p o ø-l is
in the Birkhoff normal form. We shall complete the proof of Theorem 5.1
by showing the convergence of 0.

To avoid functional equations involving small divisors, we shall de-
termine ~1 through eigenfunctions Changing notations, replace 
and ~1 by d, ,S’, 4J, respectively. We also rewrite

where fj, gj satisfy

in which e~ - (0,..., 1,..., 0). Theorem 4.6 implies that ord fj, 
d-1.

One knows that

is determined by

where S, according to the normalizing condition on (D, satisfies

One also has

Set 
A

with satisfying (5.5). By Theorem 4.6, we have
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The linearized equations of (5.9) are

with

In particular

with

in which the omitted terms are of the form ) with + 1/31 ~
2d - 2. Using (5.3), we obtain

in other words,

for a(j) =1= j.

LEMMA 5.2. - + S(ç, 1]), satisfying (5.8), be the gener-
ating function of the unique formal mapping 4D that normalizes cp. Then
s - [5’]d + ’’’ + [S]2d-3 is uniquely determined by (5.12) and (5.14).

Proof. Let ,S’ be the solution to (5.12) and (5.14), which satisfies
the normalization condition (5.8). Fix a, /3 with a - 13 ~ 0 and choose j so
that

= j, then (5.12) implies that

Assume now To determine 30(3, we need to consider all
coefficients of ço’T/(3’ in (5.14), for which
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Put = 0 for ¿From (5.14) we obtain

If aj + /3; = min{ , then

J 
- I 

J

Assume that S,,O, have been determined for all a’, /3’ with o
and a’ + 0.~  l. Then for a’, /~ with a’ + /3; = l, we have

Thus, (5.16)-(5.18) determine all Sal(31 for a’ - ~3’ == a - /3. This completes
the proof of the lemma. D

We should point out that the proof of Lemma 5.2 does not depend
on any assumption on 6jK, and that the convergence of all b~ ~, as assumed
in Theorem 4.9, would not give us an immediate good control of S due to
the recursive formulae (5.18) when some Tj &#x3E; 2. To get estimates for S,
it is crucial that all vanish, which is obtained via (5.3) for the
modified eigenfunctions. Even - 1, the recursive formulae (5.18) lead
to another problem: The radius of convergence would shrink by a constant
factor of 1 if Tj &#x3E; 1. Therefore, only for 1, 2 shall we have the
control of the radius of convergence that is useful in iteration.

We need some notation. Let f = ( f l , ... , f~.,.t ) be an m-tuple of
holomorphic functions defined on A, C C~. Expand Eljaza and
let

In particular, one has ~ uhere (fl, q) are coordinates
of C2,. We also put

Given holomorphic functions f and g, one has
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Also

LEMMA 5.3. - Let f be a holomorphic function defined on Or C

Proof. Since . , is bounded by

This completes the proof of the lemma.

LEMMA 5.4. - Let 0, S’ be given by (5.6)-(5.8). Assume that

Then

Proof. Fix (~, r~) E A(l-kO)r- Consider the mapping

¿From (5.20) it follows that T maps into itself and

Hence, with the norm 11(Ç’,17)1I = T is a contraction

map. By the fixed-point theorem, equations (5.7) determine a mapping
Applying the above argument to the map-

ping ç lone gets 
Consequently, we have

The proof of the lemma is complete. 0

Let ~~ (~1, ... , ~n) be as in (5.4). Put

LEMMA 5.5. - Let cp and S be as in Lemma 5.2, and let 0 be given
by (5.7~. Assume that
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There exist constants cl , C2 &#x3E; 1 such that if

then

Proof. We first introduce the following notation:

which will be used only in the proof of this lemma. Fix a, ~3 with rx ~ 13
and let j be defined by (5.15). Note that (5.15) implies that

for a’ - ~3’ = cx - ,~. Hence, for = j one gets from (5.16) that

( 5 .17)-( 5 .18 ) yield

Notice that we have used the essential assumption that Tj = 2 to obtain
the first inequality above. Thus,

¿From (5.19) we get and

for some constant cl. ¿From (5.25) it follows that

Now, Lemma 5.4 implies that the mapping 0, determined by (5.6)-(5.7),
satisfies (5.24), provided (5.22)-(5.23) hold. t7

The following is a special case of the Weierstrass preparation theorem.
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LEMMA 5.6. - Let f be a holomorphic function on 0 C (C2n.
Assume that 0  0  1/2 and

Fix I x j x n. There is a unique decomposition

where u, g are holomorphic on witll 9 satisfying the normalizing
condition (4.27). Moreover, for some constant C2 &#x3E; 1 one has

Proof. - From (5.26) it follows that for gj E A, there exists a unique
solution &#x3E;

-oJ

given by

Thus, Cauchy inequalities imply that

Now the desired estimate for g* in (5.28) follows from Lemma 5.3.

To estimate u*, note that u = + g(~, r~) ) . ¿From (5.26) and
(5.29) it follows that
In view of Lemma 5.3, we obtain (5.27). This completes the proof of the
lemma. D

PROPOSITION 5. 7. - Let 0 be as in Lemma 5.5. Let kj, be as

in (5.9). There exist constants C3, C4 &#x3E; 1 such that

provided (5.22) holds, and

Proof. - Changing the notation in (5.6), we write
.. , ..
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We first want to express in terms of fj, gj and S. Start with the
decomposition

¿From (5.24), one sees that

In view of (5.26) and Lemma 5.6, we get from (5.28) that

for c4 &#x3E; 24c2. Since 2d - 3 &#x3E; d, the Schwarz lemma yields

For 0  0  1/6 and c4 &#x3E; C2C2, (5.32)-(5.33) imply that

We now decompose

Then

We also have

where the last inequality comes from (5.22) and (5.24). Using (5.33) and
(5.37), one gets from (5.36) that

for some constant c5 &#x3E; 1. Note that 1; and Kj)* are majorized by
(£) ( k) ~ ’~3 ) (£u) + ij (~, 77)) *. Thus,
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Since ord d, the Schwarz lemma gives

Obviously, (5.34) and (5.39) yield (5.30) for c3 &#x3E; 2C2C2 + c5. Note that

(1 - 8/2)(1 - 48)2 &#x3E; (1 - 50)2. Using (5.38) and Cauchy inequalities, we
get

In view of (5.19), we obtain

for some larger ~5. The above inequality yields the first half of (5.31) for
c3 &#x3E; c5. For the second half of (5.31), note that

Thus, (5.38) and (5.32) yields

This completes the proof of the proposition. 0

Put

Rewrite the above as

Let us first prove a numerical result.

LEMMA 5.8. - Let rk, Ok be given as above, and let 0  ro = r  1.

Let bk, Bk, Kk be nonnegative numbers satisfying

for k &#x3E; 0. Let c4 be the constant given in Proposition 5.7. There exists
C6 &#x3E; 1, independent of r, such that if
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then for all k &#x3E; 0

Proof. - Put

It is easy to see that

On the other hand, one has

Hence, there exists N, independent of r, such that

Set

Then (5.42) implies that

This shows that for sufficiently large C6, one bk, k = 0,..., N.
Now (5.44) implies that bk - bk for all k. In particular, the estimates (5.43)
hold for bk. Also,

and - This completes the proof of the
lemma. 0

We now complete the proof of Theorem 4.9 as follows. With the
notation introduced at the beginning of this section, we would like to show
the convergence of a subsequence of o 0 2 lo ... To this end, it
suffices to show that the sequence is bounded, or that

are well-defined for suitable ro = r.

Start with
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Set

Choose ro - r so small that initial condition (5.42) holds. Applying
Lemma 5.5 to cp1 and ~1 gives us (5.45) for 01. Put m i (2) == m i (1) o o1 1
and

Since dk &#x3E; 2~, Proposition 5.7 says that inequality (5.41) holds 1.

Consequently, Lemma 5.8 implies that the initial condition (5.43) holds for
I~ = 1. Recursively, one sees that the mappings (5.45) are well-defined for
all k. This completes the proof of Theorem 4.9.

6. Hamiltonian vector fields.

This section is to apply results for holomorphic symplectic mappings
obtained in previous sections to holomorphic Hamiltonian systems.

Consider a holomorphic Hamiltonian function

The corresponding Hamiltonian system of H is

The formal Birkhoff normal form of H is then given by

where h is a formal power series in products provided
A = (À 1, ... , An) satisfies the non-resonance condition

for all a # (0,..., ,1, ... , 0). The formal flow of the Hamiltonian (6.3)
is given by

for t E C. We say that a real or complex time t is non-exceptional
with respect to Ai,..., An , if the eigenvalues etÀl, ... , satisfy the non-
resonance condition (1.2). Note that, given Ai , ... , An satisfying (6.4), the
exceptional t values are countable.
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We need the following.

PROPOSITION 6. l. - Let H be the Hamiltonian function (6.1) with
Aj satisfying (6.4), and let ~pt be its Hamiltonian flow. Assume that t is non-
exceptional. If Spt is in its Birkhoff normal form, so is H.

Proof. - Replacing H by tH, one may assume that t = l. We need
to prove that H is a function of ç 1 T/l, ... , Put

where Hk(Ç, TJ) = + 1), and all terms in the power series expansion
of H have order at most k in ~, q. Note that for two holomorphic vector
fields v (~, TJ), v(ç, TJ) with v (0) = IJ(0) = 0 and i3(g, TJ) - v(~, r~) = O(1~), the
corresponding flows Spt and §3t satisfy

uniformly for It  T  oo. The flow pt of (6.5) is of the form

with

For a = k, one gets

with = 0. Hence

for + 1/31 - k, a - ,C3 7~ ej. Since CPl is in the normal form, then
vanish for a - Q ~ e3 and lal + 1/31 = k. Hence, H,,3 = 0 for

/3,lal + 1/31 - l~ + 1, and /3 ~ 0. Computing the coefficients of
yields 0 for a ( = k + 1. Thus, is a power series

in Çl 7]1, ... , By induction, H is a power series in Çl 7]1, ... , The

proof of the proposition is complete. 0

With the above observation, we now introduce a notion. Let M be the
germ of a set at 0 E C~. We say that the germ M is weakly invariant under
the flow if the germ pt (M) is contained in M for some non-exceptional
t E C. From Theorems 1.1 and 4.1 and Proposition 6.1, we obtain the
following.
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COROLLARY 6.2. - Let ~pt be a holomorphic Hamiltonian flow
defined by (~.2) and (6.4), and let M be a Levi-flat real analytic set defined
by (1.4). Assume that M is weakly invariant under the flow pt. Then
the Hamiltonian system (6.2) is normalizable by convergent holomorphic
symplectic mappings. Moreover, M is invariant under CPt for all t E C.

¿From Theorem 4.6, we have the following.

COROLLARY 6.3. - Let M be a Levi-flat analytic set defined by
(1.5), and let CPt be the holomorphic Hamiltonian flow of (6.2) and (6.4). If
M is invariant under CPta for some non-exceptional to, then M is invariant
under cpsto for all s E R.

Proof. - By Theorem 3.6, M is actually given by rl - ... 
-

rn - 0 with rj being given by (4.23). Let rnj = be

the meromorphic functions defined by (4.25). Take a formal symplectic
transformation (D = Id+0(2) which transforms the Hamiltonian (6.1) into
the Birkhoff normal form. Fix a non-exceptional to such that CPta (M) = M.
By Theorem 4.6, we know that 77~ o (D-1 is an eigenfunction of the flow

with Hence, m~ is also an eigenfunction
of cpt with the same eigenvalue. Thus, Fj o Wt - uj e-tA3Fj, o cpt =

where uj = 1+0(1) are holomorphic functions dependent
of t. Note that I = I hold for t = to, and hence holds for all
t = sto when s is real. Now, it is straightforward that for each real s,

r~ o cpsto = vjrj for some v j =1= 0. In particular, M is invariant under 
This completes the proof of the corollary. m

Finally, Theorem 1.2 gives us the following.

COROLLARY 6.4. - Let M be as in Theorem 1.2, and let cpt be as
in Corollary 6.3. Assume that M is weakly invariant under the now 
The Hamiltonian system (6.2) is normalizable by holomorphic symplectic
mappings.

Appendix: Birkhoff normal forms in terms
of time-one mappings of formal Hamiltonian systems

and formal generating functions.

There are two ways to formulate the Birkhoff normal form for

holomorphic symplectic mappings, of which one is of the form (1.3). The
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other normal form can be described in terms of generating functions. For
the sake of the reader, we derive one normal form from another in this
appendix.

Let (ç’,1]’) - be a holomorphic symplectic mapping (1.1).
Regarding the mapping as a graph over ~, on which the 1-form 

is closed, one has

for some convergent power series 9(~, 7/) == 0(3). Assume that Aj satisfy
the non-resonance condition (1.2). By comparing the coefficients as in
the Hamiltonian case (see [4], p. 85), there is a formal power series

T (~, q’) = O(3) such that for the formal symplectic mapping 4D determined
by

ø == 1&#x3E; o p 0 4~-’ is of the form (7.1) with

being a formal power series in the products (j = Thus, the formal
mapping given by (7.1)-(7.2) can also be referred as the Birkhoff normal
form of p.

Next, we want to put the formal mapping (7.1)-(7.2) into the form
(1.3). From (7.1)-(7.2), one has

for j = 1,..., n. Hence, are invariant by (~. Solving for from the

last n equations above, one sees that

for some formal power series with = 0. Note that Gj are
determined by

On the other hand,
(7.3) yields

The left-hand side vanishes. Hence, Gj = H~~ for some formal power series
H in (.
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Conversely, if (~’, = cp(~, is given by (1.3), then cp preserves the
products and is of the form

with

Now, one has

Hence, the last summand is closed, from which it follows that Kj =
A31,~C, (() for some formal power series S’. This shows that ~p is of the

form (7.1)-(7.2). From (7.4)-(7.5), one can also see that the convergence
of S implies the convergence of H, and vice versa.

Therefore, two normal forms (1.3) and (7.1)-(7.2) are equivalent,
i.e., if one of the normal forms is realized by a holomorphic symplectic
transformation, so is the other.
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