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MIYANISHFS CHARACTERIZATION OF THE
AFFINE 3-SPACE

DOES NOT HOLD IN HIGHER DIMENSIONS

by S. KALIMAN and M. ZAIDENBERG

Introduction.

Let X be a smooth, contractible complex affine 3-fold. Recall

MIYANISHI'S THEOREM [Miy] (1). — X c± C3 if and only if the
following two conditions hold:

(i) there exists a regular function f : X —> C and a Zariski open
subset U CC such that f'1^) c^u U xC2 (in particular, the general fiber
Fc := /*(c) (c € U) of / is isomorphic to the affine plane C2), and

(ii) all the fibers Fc (c € C) are UFD-s (that is, for any c € C the
divisor Fc is reduced and irreducible, and the algebra Ac := C[Fc] of regular
functions on the surface Fc is a UFD).

Research of the first author partially supported by NSA grant MDA904-00-1-0016.
This work was started during the second author's stay at the IHES; he would like to
thank IHES for the hospitality.
Keywords: Affine space — Polynomial algebra — Polynomial curve — Locally nilpotent
derivation — Exotic structure.
Math. classification: 13A02 - 14J35 - 14R05 - 14R10 - 14R20.
^ In the original formulation, instead of assuming X to be topologically contractible,
it is subjected to the following weaker conditions: e(X) == 1, the algebra C|X] of regular
functions on X is a UFD, and all its invertible elements are constants. Likewise, in
condition (ii) resp. (ii') below the fibers themselves are replaced by their irreducible
components. But actually, one can show that all the fibers of the function / as in (i) are
reduced and irreducible.
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By [Ka2], Lemmas I, III, and [KaZa2] the theorem holds if one only
supposes that

(i7) the general fibers Fc of f are isomorphic to C2 and

(if) each fiber Fc (c e C) has at most isolated singularities.

The latter assumption (if) is essential, as shows the example of
Russell's cubic 3-fold X C C4, X = p"1^) where p = x + x^y + z2 -h t3. In
this example the fibers Fc(c € C) of the regular function f = x\X : X —^ C
are isomorphic to C2 except for the fiber FQ which has non-isolated
singularities (and therefore, it is not a UFD). And indeed, the Russell
cubic X is not isomorphic to C3 [ML1], that is, it is an exotic C3 (i.e., a
smooth affine variety diffeomorphic to R6 and non-isomorphic to C3; see
[Za2]).

More generally, the Main Theorem of [Ka2], [KaZa2] provides the
following useful supplement to MiyanishFs theorem:

A smooth, contractible affine 3-fold X is an exotic C3 if there exists
a regular function f : X —> C on X with general fibers isomorphic to C2,
but not all of its fibers being soS2^

In this paper we prove the following

THEOREM 1. — The hypersurface X in C5 given by the equation

(i) p=^+^±^_^±2)L±^=o
Z

where m ̂  2, k > I ^ 3, gcd(A;, 1) = 1, is an exotic C4.

COROLLARY. — Miyanishi^s Theorem does not hold in the dimen-
sion four.

Proof. — The regular function / = u\X : X —> C on this hypersur-
face provides a fibration with all the fibers Fc(c € C) being smooth reduced
contractible affine 3-folds, all but the zero one FQ being isomorphic to C3.
Moreover, the mapping

(x, y, z, u) i—> (x, y, z, u, v = u'^q^x, y, z))

where
_ (xz 4- 1^ - (yz -h I)1 + z

Qk,l '•— ~————————————————————z
w Notice that such a threefold X admits a birational dominant morphism C3 —>• X.

ANNALES DE L'lNSTITUT FOURIER
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gives an isomorphism /^(U) = X \ FQ ^u U x C3 where U = C \ {0}.
At the same time, the fiber FQ c± Sk,i x C is an exotic C3 (see [Zai],
[Za2]). Here Sk,i = ^^(0) C C3 is the torn Dieck-Petrie surface; this is
a smooth contractible affine surface non-homeomorphic to R4 [tDP]. By
Fujita's theorem [Fu], (1.18)-(1.20), [Kal], (3.2), any smooth, contractible
affine variety is a UFD. Hence all the fibers of the function / = u\X
are smooth UFD-s. Thus the both conditions (i) and (ii) of the Miyanishi
Theorem are fulfilled, whereas due to Theorem 1, X ̂  C4. D

Remark. — Theorem 1 still holds for a triplet (A;,Z,m) with I = 2
if gcd(m,2A;) = 1. The proof of this fact is not difficult but we prefer the
argument below since this enables us to demonstrate a nice connection with
the Diophantine geometry over function fields (see Section 2). However, we
do not know if the statement remains true for (say) the triplet (k^l^m) =
(3,2,2).

The proof of Theorem 1 is divided in two parts. The first one,
concerning the topology of the variety X, is done in [KaZal]. The second
one (which is done in Section 1 below) concerns exoticity of X; it mainly
relies on the fact that there are only few regular actions on X of the additive
group C+ of the complex number field and moreover, there are only few
polynomial curves in certain affine varieties related to X.

To conclude, recall the following

PROBLEM. — Let X be a smooth, contractible complex affine n-fold
where n > 4, and let f : X —^ C be a regular function on X. Suppose that
/*(c) c± C71"1 for every c € C. Is it true that X c± C71, and that this
isomorphism sends f into a variable of the polynomial algebra C^ ?

The results of [Miy], [Ka2], [KaZa2], [Sa] cited above provide a
positive answer for^ n = 3.

We are grateful to the referee for useful remarks and suggestions which
served us to improve the exposition.

(3) It is worthwile noting that, without the assumption that X is affine, the answer is
negative even for n = 4. Indeed, consider the smooth non-affine 4-fold X = X \ Z where
X is the hypersurface uv = xy + z2 — 1 in C5 and Z is the plane u = x = z — 1=0 in
X. Then every fiber of the morphism (x,u) : X —> C2 is isomorphic to C2, and every
fiber of the regular function u\X is isomorphic to C3.

TOME 50 (2000) FASCICULE 6
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1. Proof of Theorem 1.

In [KaZal], Proposition 4.4, Example 6.2, it is shown that the smooth
affine 4-fold X as in Theorem 1 is contractible and moreover, diffeomorphic
to R6. Thus, to prove the theorem it is enough to verify that X 96 C4. The
proof of the latter assertion is based on the computation of the Makar-
Limanov invariant ML(X). Recall that ML(X) denotes the algebra of
regular functions on the variety X invariant under any regular C-i--action
on X (or in other words, of regular functions on X that are vanished by any
locally nilpotent derivation of the algebra C[X]; see e.g., [KaMLl], [Za2],
or also [De]).

In fact, we prove the following

PROPOSITION 1. — ML(X) D C[u\ where u = u\X. Hence
ML(X) 96 ML(C4) == C and therefore, X ^ C4.

Remark. — If m = 1 then ML(X) == C (and moreover, the group of
biregular automorphisms of X generated by the regular C+'actions on X
acts infinitely transitively [KaZal], Theorem 5.1). The question arises: is it
still true that X is an exotic C4 when m = 1, at least for some values of k
and I?

Notation. — Throughout the proof, we fix a weight degree function
d on the polynomial algebra C^l = C[;r, y, z, n, v] given by

(2) d^ =1, dy = fc, d^ =0, dn == -n\/2, dy = mnV'2 -{- kl

where n E N. This degree function d satisfies the following conditions:

kdx + (k - l)d^ = Idy + (I - l)dz = mdu + dy == kl
> max {O.idx -h (i-l)dz = il.jdy + (j - l)dz = jk}.

Z=l,...,fc—1,J'=1,...,!—1

It follows that

p := u^v 4- xkzk~l - y1^-1 = n^ + zl~l{xkzk~l - y1)

is the principal d-homogeneous part of the polynomial p from (1); indeed,
k / 1 \ ^ / 7 \

(3) p= ̂ m^+^(a•,^^) = u^^^ ( . }x^zi-l - ̂  ( .)yj^-l + 1.
Z=l w J=l v/

By C?A we denote the induced degree function on the algebra A := C[X] =
C^/(p). Let A be the associate graded algebra, and d^ be the induced

ANNALES DE L'lNSTITUT FOURIER
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degree function on A. Since the polynomial p is irreducible, by Proposition
4.1 in [KaML3] (see also [Za2], Lemma 7.1), the affine variety X :=specA
coincides with the hypersurface in C5 given by the equation p == 0. We
denote by £,..., v the images in A of the coordinate functions x , . . . , v,
respectively, whereas their restrictions to X are denoted as x , . . . , v. Thus
in the algebra A the following relation holds:

(4) umv=zl~l(yl -x^-1).

For an integral domain B of finite type, let LND(B) be the set of all
its locally nilpotent derivations. Fix arbitrary 9 € LND(B)\{0}. Recall the
following well known facts which we frequently use below (see e.g., [ML1],
[KaMLl], [Za2]).

LEMMA 0.

(a) The invariant subalgebra ker<9 C B is factorially closed, that is,
ab € ker<9 \ {0} =^ a, b € ker9. Moreover^,

c^+b1 Gke r<9 \{0} and k, l^ 2 =^a, b € ker Q.

(b) Let a G B be an element of 9-degree one, i.e., 9a G ker 9 \ {0}.
Then any element b € B can be presented in the form

N
(5) b=c-l^c,a^

i=0

where c, Co , . . . , CN € ker 9.

(c) The invariant subfield Fracker<9 C FracB is algebraically closed
in the fraction field FracB, and trdeg[FracB : Fracker9] = 1.

Fix a locally nilpotent derivation 9 € LND(A) \ {0}, and let 9 C
LND(A) be the homogeneous locally nilpotent derivation of the graded
algebra A associated with 9 (that is, the principal part of 9); notice that
9^0 once 9^0 (see [ML1] or also [KaMLl], [Za2]).

LEMMA 1. — ker<9 (^C[x,y^.

Proof. — Assume the contrary. Since tr.deg[A : ker 9} = 1 there exist
three algebraically independent elements, say, a,6,c C ker 9. Regarding
the elements a, &, c as polynomials in re, ^/, ^, consider the morphism a ==

(4) The latter statement is a lemma due to Makar-Limanov (see e.g., [Za2], Ex.(7.12.d)),
which also follows from the Davenport Lemma in Section 2 below.

TOME 50 (2000) FASCICULE 6
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(x, a, 6, c) : C3 —^ C4. The Zariski closure of the image of a being a proper
algebraic subvariety of C4, there is a non-trivial relation g(x,a,b,c) = 0
where g € C^l \ {0}. Hence we have a non-trivial relation

(6) ^(a,6,c)y=0
Nr^(^

i=0

in the algebra A where ̂ (a, b, c) € ker 0. Here N > 0 (indeed, otherwise the
elements a, 6, c would be algebraically dependent). It follows from Lemma
0(c) that x e ker 9. Similarly, we have y , z e ker 9. In virtue of the relation
(4) above, alsoJT^ e ker 9. By Lemma 0(a), it follows that u,v e ker 9.
Therefore, ker 9 == C[x, y , ?, u, v] = A, and so 9 = 0, a contradiction. This
proves the lemma. Q

LEMMA 2. — The following alternative holds: either u € ker9 or
v € ker 9.

Proof. — Due to (4), any element a € A = C[X] can be extended to
a unique polynomial 7^ C151 of the form

m-l

0) /-E^+EE6^
%^o 1=0 j>o

where a,, 6^ e C[;r,2/,;z]. It is known [KaML3] (see also [Za2], Ex.(7.8))
that

d^o} (M mm{d(f)\f e Ct5], f\X = a}

=min{d(/)|/== 7+^,^60^}

=W

Furthermore, if a e A is a d^-homogeneous element, then the polynomial
/ is ^-homogeneous, too.

Since the derivation 9 is homogeneous (i.e., graded) its kernel ker 9
is a graded subalgebra of the graded algebra A, and so it is generated by
homogeneous elements. Let a e ker 9 be a non-zero homogeneous element,
and let / e C^ be its d-homogeneous extension as in (7) above.

The degree function d : C^ \ {0} -^ Q[\/2] can be represented
as d = d' + y^d" where d ' . d " : Ci5! \ {0} -̂  Q. By (2), we have
d\C[x,y,z] = d'lC^,^/,^] and

d"^) = -m, ^(bijuV) = (jm - z)n, z = 0,..., m - 1

ANNALES DE L'lNSTITUT FOURIER
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assuming that a^ bij ^ 0. All these degrees are pairwise distinct. Hence the
polynomial / -=/=- 0 being d-homogeneous, the expression (7) for J consists
of a single term. Therefore, the following alternative holds:

(i) either a = ao € C[x, y , ?], or

(ii) a = diU1 for some i > 0 and for some a^ € C[x, y,^} \ {0}, or

(iii) a = b^v3 for some j > 0 and for some b^ e C[x, y , z} \ {0}.

Since the subalgebra ker 9 is factorially closed, we have u € ker 9 in
the case (ii) and v € ker 9 in the case (iii). By Lemma 1, (i) cannot happen
for all the homogeneous elements a e ker 9. Thus, the assertion follows. D

LEMMA 3. — v ^ ker 9.

Proof. — Assume on the contrary that v € ker 9. Then for a general
c G C, the locally nilpotent derivation 9 can be specialized to a locally
nilpotent derivation 9c G LND(Xc) \ {0} where for c e C \ {0} we denote

Xc = X H {v = c} c± Xi = [u^ + ̂ -l(:Kfezfc-^ - y1) = 0} C C4.

We keep the same notation 9 for <9i, and we still denote by (p the associated
C-(--action f\X\ on the threefold X\.

Note that the threefold X\ has divisorial singularities. Indeed, since
by our assumption, m ̂  2 and k > I ^ 3, it is singular along the divisor D-
of the regular function ? C C[Xi]: D^ C singXi. It follows that the divisor
D^ is invariant under the C+-action (p on X\. Hence a general y?-orbit 0
does not meet the divisor D^, and so the restriction ^z\0 does not vanish.
Therefore, the regular function ? is constant along general ^-orbits, that
is, ? is a ^-invariant, or equivalently, ? € ker 9.

Thus, we are in the position to repeat the specialization descent.
Namely, the C+-action (p can be further specialized to the general (p-
invariant surface

S, := {z = c} ̂  S, = [u^ + ̂ fc - ̂  = 0} C C3

providing a non-trivial C+-action on Sc and thereby also on Si. Now the
desired conclusion follows from the next lemma. D

LEMMA 4. — The Pham-Brieskorn surface

S = Sk^m = {^ + y1 + ̂  = 0} c C3

where A;, I , m ̂  2 admits a non-trivial regular C-(- -action if and only if this
is a dihedral surface 52,2,m- In the latter case ML(S) = C.

TOME 50 (2000) FASCICULE 6
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Proof. — Assume that (p is a non-trivial regular C+-action on 5'. Let
0 C S be a general y?-orbit. Since 0 ^ C, it can be parameterized by a
triple of polynomials (x(t),y(t),u(t)) e (C[t])3 satisfying the relation

xk(t)+yl(t)-i-zm(t)=0.

Assume first that 1/k -h l / l -h 1/m ^ 1. Then by the Halphen Lemma (a)
in the next section these polynomials cannot be relatively prime in pairs,
and so a general orbit 0 meets one of the axes x = y = O o T x = z = O o T
y = z = 0, hence it must pass through the origin, a contradiction.

In the remaining cases, S is one of the Platonic surfaces 62,2,771» 62,3,3,
62,3,4 or S'2,3,5- Anyhow, to exclude the last three cases we will assume in
the sequal more generally that gcd(m,kl) = 1, and that on the contrary,
LND(S') 7^ {0}, that is, that the surface S admits a non-trivial regular
C+-action.

Let QQ € LND(5), QQ ^ 0. Fix a weight degree function d! on the
polynomial algebra C^l given by d^ == 1/k, dy == l / l , d^ = 1/m. Since the
polynomial xk-\-yl-{-zm is d'-homogeneous, the algebra B = C[S] is graded.
The graded locally nilpotent derivation OQ of the algebra B associated with
9o is also non-zero. In virtue of the relation ̂  = —(2^ -+- y1), any element
b € B extends to a unique polynomial / € C^ with deg^ / < m. If the
element b is d'^ -homogeneous then also the polynomial / is d'-homogeneous,
and the following statement holds.

CLAIM. — f=cxocyf3z^Y[,(xkf -ay1') where k' = A;/gcd(M),r =
l/gcd(k, <), c, Ci € C*, and 7 < m.

Proof of the claim. — Letting d^x^^z8) = d'f(xi' y 3 ' ' z8 f) where 0 ^
s ^ s' ^ m — 1 we will have

(8) ^l^^t^.
m k I

Since by our assumption gcd(m,A;Z) = 1, it follows from (8) that
mKs7 — s] ==> s = 5', and hence <L=^- = 1^1 =^ 1^ = ^-jr1' Now
the claim follows. D

The graded subalgebra keroQ of the algebra B being generated
by homogeneous elements, there exists a non-zero homogeneous element
b e kei9o. Since the subalgebra ker9o is factorially closed, in virtue of the
above claim, the following alternative holds:

(i) x C ker 9o or

ANNALES DE L'lNSTITUT FOURIER
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(ii) y € ker QQ or

(iii) ? 6 ker 9o or

(iv) rc^ — c^ € ker 9o for some Ci 7^ 0.

Since a^ 4- ̂  4- 37"' == 0, in the case (i) we have y1 -h ̂  € ker 9o. As
^m > 2, by Lemma 0(a) this implies y^ € ker^o- Henceforth, 9o == 0, a
contradiction. Similarly, the cases (ii) and (iii) lead to a contradiction.

If mn^A/,^} ^ 2 then by the same arguments as above, (iv) implies
that x ^ y € ker^o, and then also ? G ker9o, which again gives a contradic-
tion. Thus it must be min{A/, I ' } = 1; let V = 1. Then k = Zfc'. The regular
function x^ — Ciy € C[S] being invariant under the associated regular C+-
action <^ on the surface 5', its general level sets contain general ̂  -orbits.

CfQ (JQ

Being irreducible, these curves should be isomorphic to C. On the other
hand, they are isomorphic to the affine plane curves with the equations

xlkt^(xk^\\zrn=Qv a )
where c' € C is generic. It is easily seen that such a curve cannot be
isomorphic to C unless k = I = 2 and c? = —1, in which case 6' is a
dihedral surface (hint: notice that an irreducible affine curve is isomorphic
to C if and only if it admits a regular C-(--action, and then proceed in the
same fashion as above).

To prove the last statement of the lemma, notice that there is an
isomorphism 5'2,2,m ^ Tm := {uv — w"1 == 0}, and hence ML(«S2,2,m) ^
ML(Tyn) == C. The latter equality is well known; see e.g. [DanGi], [Be],
[ML2], [ML3], [KaZal]. Indeed, the subgroup (a,/?) of the automorphism
group AntTm generated by the following C-(--actions on Tm (restricted
from C3):

/ / ^ ( (w-h^)771-'^ \a : (t,(u,v,w)} i—> n,v-h -————-—————,w+tu ,
\ u )

( (w 4- ivY^ — w771 \
/?:(^,(H,v,w))—. u^-———}-————,v,w+^l,

has a dense orbit; therefore, ML(Tyn) = C. This concludes the proof. D

From Lemmas 1-3 we obtain such a corollary.

COROLLARY. — u € ker 9.

LEMMA 5. — 9v ^ ker 9.

TOME 50 (2000) FASCICULE 6
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Proof. — Assume the contrary. Then by (4) and the above corollary,
we have

Q^v) = u^Qv € kera^^-1^ - x^-1)] = <9(pî ) € ker<9

where g^ :== ^-1 and g^ := y1 — xkzk~l e C[X}. Hence the restriction of
the product g\g^ onto a general orbit 0 serves as a coordinate function of
the curve 0 ^ C (for instance, this follows from Lemma 0(b)). In other
words, degt[(g-^g^)\0] = 1 where t is a coordinate in 0 c± C (notice that
deg^(/|0) = degg-/ where the latter degree is defined below). This provides
the following alternative:

- either deg^i|0) == 0 and deg^palO) = 1, or

- deg,(^|0) = 1 and deg,(^|0) = 0.

Consider each of these two possibilities.

Assuming first that z\0 = const € C \ {0} (i.e., ? € ker<9) and
^gt[(y1 - xkzk~l)\0} == 1, we would have that deg^y^t) - cxk(t)) = 1
for two polynomials x(t}^y(t) € C[t] and for a general constant c -^ 0.
We may also suppose that gcd(x(t),y(t)) = 1 (i.e., that the orbit 0 does
not meet the codimension two subvariety D^ D D^ of X). Then by the
Davenport Lemma in the next section, for a certain m' € N the inequalities
1 > m'(kl — k — I ) ^ 1 must hold, which is impossible.

In the second case we would have: deg^i|0) = (I — 1) deg^(z|0) = 1
which is also impossible since by the assumption of Theorem 1 , ^ — 1 ^ 2 .
This proves the lemma. D

Recall the notion of the degree function associated with a locally
nilpotent derivation 9 e LND(A):

degQ a d^ max{n e N U {O^a / 0} if a C A\ {0}; deg^ 0 = -oo.

For the associated locally nilpotent derivation 9 € LND(A) we have the
inequality

degQ a ^ deg^a, Va C A,

where a € A denotes the principal d-homogeneous part of a.

Lemma 5 provides the following

COROLLARY. — 9v ^ ker<9; moreover, deg^v ^ deggV ^ 2.

LEMMA 6. — Let a € A be an element such that degga ^ 1. Then
a can be extended to a polynomial f € C^ which does not depend on v.

ANNALES DE L'lNSTITUT FOURIER
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Proof. — Since p\X = 0, in virtue of (3) the restriction u^v of the
polynomial u^v to X can be expressed as a polynomial in x,y and ?.
Hence the element a € A can be extended (in a unique way) to a polynomial
/ € C^l written in the form (7). Let us show that this polynomial / does not
depend on v. Assume the contrary. Letting the constant n in the definition
(2) of the weight degree function d be large enough, we can achieve (by
the same arguments as in the proof of Lemma 2) that the principal d-
homogeneous part / of / is as in (iii) of this same proof. In particular, v
is a factor of the polynomial /. Hence v is a factor of a = f\X. By Lemma
5, we have the inequalities

degQ a ̂  degg-2 ^ deg^v ^ 2
which contradicts our choice of the element a. The lemma is proven. D

Proof of Proposition 1 (cf. [KaMLl], [ML3]). — We have to show
that u € ker9 for any 9 € LND(A). Fix an element a € A of <9-degree 1.
Letting in (5) b == v, from (1), (3) and (5) we obtain

N N
{f\ \ '~" — 1 ^"^ i '""'— 771 / '"'•' '"̂  '^\ '"""m 'V ^ j / '-•' -~ ^^\
(9) v=c i^c,a^=-^A mqkAx^y^ ̂ ^-u Z^0^ cqk^x^y^'

i=0 z=0

By Lemma 6, the element c € A resp. ^^o ̂ ^ € ^ can ^e extended to a
polynomial, say, rj € C[x, y , z, u] resp. C € C[x,y,z,u}. By (9), there exists
a polynomial g € C^ such that
(10) u^^x, y, z, u) - qk,i(x, y, z)r](x, y, z, u) == pg.

The left hand side of (10) does not depend on v but the polynomial p does,
hence we must have g = 0. Since gcd(n,gfe,z) = 1 it follows from (10) that
u divides rj in the algebra C^ and so, u divides c in the algebra A, that
is, c = ub where b € A. Since c € ker9 and ker9 is factorially closed, also
u € ker 0, as stated. This completes the proof. D

2. Ai-poor varieties: the lemmas of Mason,
Davenport and Halphen.

In course of the proof of Proposition 1 we have used the lemmas of
Davenport and Halphen; for the sake of completeness, we provide them
below with simple proofs based on the following well known

MASON'S ABC-LEMMA [Mas]. — Let a,&,c € C[t] be three polyno-
mials, not all three constant. For a polynomial p € C[t], denote by do(p)

TOME 50 (2000) FASCICULE 6



1660 S. KALIMAN & M. ZAIDENBERG

the number of its distinct roots (without counting multiplicities). Assume
that a -h b -+- c = 0 and gcd(a, b) = 1. Then we have

(11) max{deg a, deg 6, deg c} ^ do(a&c) - 1.

See [La], [Mas], [Si] for an elementary proof. We would like to sketch

An alternative proof. — Let / : Fi -. F^ be a proper, surjective
morphism of smooth quasiprojective curves. Then the following inequality
for Euler characteristics holds:

(12) e(riK(deg/)e(r2).
This inequality follows from the obvious relations

card(CrPt(f)) ^ (deg/)card(CrVa(/))
and

e(ri \ CrPt(/)) = (deg/)e(r2 \ CrVa(/))

where CrPt(/) resp. CrVa(/) denotes the set of critical points resp. critical
values of /.

Take Fi = R \ S where R is a smooth projective curve of genus
g and S is a finite subset of R, and let F^ ^ C \ {0,1} be realized as
?2 = [u + v = l,u ^ 0,v ^ 0} C C2. Then for a pair / = (u,v) of non-
constant rational functions on R with zeros and poles only on S such that
u + v = 1, from (12) we obtain the inequality (see [Mas])

(13) deg u == deg v ^ -e(R \ S) = 2g - 2 + card,?.
Letting

R = P1, S = {00} U a-^O) U ̂ (O) U ̂ (O), u = -a/c, v = -b/c

(so that the condition a + b + c = 0 of the lemma becomes u + v = 1), from
(13) we get (11). Q

As an immediate corollary, we obtain

DAVENPORT'S LEMMA ([KINe], [Dav], Thm. 2)<5). — Let three
polynomials x, y , z e C[t] satisfy the relation z = ̂  - y1 where k and I are
relatively primed, z ^ 0, gcd(x,y) = 1 and degz < ma^deg^.deg^}.
Denote n = deg z, Im == deg x, km = deg y. Then we have

n > m(kl — k —I).

^ See also [DvZa] and the literature therein for closely related results.
( ) One can find in [Dav] a general formulation with arbitrary k and I.

ANNALES DE L'lNSTITUT FOURIER



MIYANISHFS CHARACTERIZATION OF THE AFFINE 3-SPACE 1661

Proof (cf. [Pr]). — By Mason^s abc-Lemma, we have the inequality
mox{kdegx,ldegy} ^ deg x 4- deg y 4- deg z - 1.

Hence
kim ̂  km -+- Im 4- n — 1,

and the lemma follows. D

Remark. — It is known [St], [Zn], [Orel] that (whatever k,l and
m with gcd(fc,Z) = 1 are) the bound in Davenport's Lemma is the best
possible one. See also [Si] on exactness in Mason's abc-Lemma.

A contemporary exposition of Halphen's results [Ha] is given in
[BaDw]. Actually, the original Halphen's Lemma has a broader meaning
in the context of our subject. To formulate it in an appropriate way, we
introduce the following notions^.

DEFINITION. — Let X be an algebraic variety. We say that X
is Ai-poor if there exists a subvariety Y of X of codimension at least 2
such that every curve (i.e., a non-constant morphism) f : C —> X meets
Y : f(C) H Y ^ 0. In contrast, we say that X is Ai-rich if, for any two
disjoint closed subvarieties V, Z C X with codimx Y ^ 2 and dim Z = 0,
there exists a polynomial curve C —^ X omitting Y and passing through
every point of Z.

Remarks.

1. Evidently, an Ai-poor variety X does not admit non-trivial reg-
ular C+-actions. Or equivalently, LND(X) = {0} <===^ ML(X) = C[X].
Moreover, the latter equality holds assuming that the algebra A = C[X} is
endowed with a degree function such that for the associated graded algebra
A, the variety X = specA is Ai-poor. This justifies our interest in Ai-poor
varieties.

2. The affine space C^n ^ 2) is Ai-rich. Indeed, given two disjoint
closed subvarieties V, Z C C71 with codim^n Y ^ 2 and dim Z = 0, by
a theorem due to Gromov and Winkelmann [Grm], [Wi], one can find
an automorphism a € AutC" such that a(Y) = Y and the image a(Z)
is contained in an affine line L C C71 \ Y. Then the polynomial curve
C ̂  L a—> a~l{L) C C^ omits Y and passes through every point of Z, as
required.

(7) cf. the notion of abc-variety in [Bu]. Presumably (over the field C) these are the affine
varieties X which do not admit non-constant morphisms C* -» X [Bu], p. 231.
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3. If a variety X admits a finite morphism X' —> X from an Ai-rich
affine variety X/ (for instance, from X' = C^n ^ 2), then clearly X is
also Ai-rich. Notice also that the family of polynomial curves in an Ai-rich
affine variety is unbounded (that is, their degrees are not bounded).

The following two lemmas provide examples of Ai-poor resp. Ai-rich
surfaces in C3.

HALPHEN'S LEMMA [Ha], [Ev], [BaDw]. — Consider the Pham-
Brieskorn surfaces

Sk^m = {^ + y1 + ̂ m = 0} c C3

where k, /, m ̂  2. Then the following statements hold:

(a) The surface Sk,i,m is Ai-poor if and only if 1/k 4- l / l 4- 1/m ^ 1.
Actually, under the latter condition any polynomial curve f '' C —> Skim
passes through the singular point 0 e Sfc,z,m C C3.

(b) In contrast, every Platonic surface Sk,i,m where 1/k-^-l/l-^-l/m >
1 is Ai-rich.

Proof.

(a) Suppose first that 1/k 4- l / l 4- 1/m ^ 1. Let us show that no triple
of non-constant relatively prime polynomials (x(t),y(t},z(t}) satisfies the
relation xk -I- y14- z171 = 0. Assuming the contrary, by Mason's abc-Lemma,
we have

max{fc deg x, I deg y , m deg z} ̂  deg x 4- deg y + deg z - 1.
Thus,

deg x ^ l/fe(deg x 4- deg y 4- deg z - 1)
(14) deg y ^ 1/^deg x + deg ?/ + deg z - 1)

deg z ^ l/m(deg re + deg y+degz-1).

Summing up the three inequalities in (14), in virtue of our assumption, we
obtain

1/k + l / l + 1/m ^ (1/k + l / l + 1/m - l)(degx 4- degy + deg^) ^ 0,
a contradiction.

(b) Every one of the Platonic surfaces S = S^m (m ^ 2), 6233,
62,3,4 or S'2,3,5 admits a finite morphism C2 —^ S (the orbit morphism
of the standard linear action on C2 of the corresponding finite subgroup
r c SU(2); see e.g., [Mil], §4 and Remark 2.1; see also [Schw], [Kl], Ch. I
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or [Beu], [BaDw], p. 56 for explicit formulas). Since the affine plane C2

is Ai-rich so is S (see Remark 3 preceding the lemma). This proves the
lemma. D

The next lemma is a simple corollary of Theorem 1 in [Sch] (see also
[Br], [Ve], [FIZa] for relevant results).

SCHMIDT'S LEMMA [Sch]. — Let S be a surface in C3 given by the
equation

z^^Ux.y)

where fd G C[a;,z/] is a homogeneous polynomial of degree d without
multiple roots. Suppose that m ^ 4 and d ^ 3, or m = 3 and d ^ 5,
or m = 2 and d ^ 17. Then the surface S is Ai-poor and, moreover, every
polynomial curve f : C —» S passes through the singular point 0 € 5'.

The purpose of the next lemma is to strengthen the lemmas of
Halphen and Schmidt (cf. the examples below). Recall that a regular action
of the multiplicative group C* on an affine variety X is called good if it
has a unique fixed point (called vertex), and this fixed point is elliptic, that
is, it belongs to the closure of any orbit. Let S be a normal affine surface
with a good C*-action; denote 5* = S \ VQ where Vo is the vertex, and set
F = 6'*/C*. If the curve F is rational then the singularity of the surface S
at the origin is called quasirational [Ab] (cf. also examples in [Ore2]).

LEMMA 7. — Let S be a normal affine surface with a good C*-
action. Suppose that the singularity of the surface S at the vertex VQ € S
is not quasirational. Then any rational curve r : C -—>• S, as well as any
holomorphic entire curve h : C —> S in the surface S is contained in an
orbit closure C*V for a certain point V € S * . Consequently, any polynomial
curve f : C —> S passes through the vertex VQ € S, and so the surface S is
A i-poor.

Proof. — Let F —> F be a normalization. The rational mapping
r Ti-7 ~ ~g : C —> S —> r can be lifted to a morphism g : C —>• F, which is

constant because (by our assumption) the geometric genus g(T) > 1. Thus,
the image r(C) C S is contained in the closure 0 of an orbit 0 = C*V
of the C*-action, as stated. The proof for an entire curve h : C —>• S is
similar. D

Remark. — This lemma (with the same proof) remains true also for
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meromorphic curves m : C —> S assuming that e(F) < 0 i.e., ^(F) ^ 2 (cf.
e.g., [Ja], [Grs]).

The following facts will be useful in order to provide examples
of quasihomogeneous surfaces in C3 which satisfy the assumption of
Lemma 7. For integers ai , . . . , a,n denote [ai,..., a,n} = lcm(ai,..., On) and
(ai,..., an) = gcd(ai,..., Oyi), whereas (ai,..., dn) denotes the vector with
the coordinates ai , . . . , a,n.

LEMMA 8. — Let f 6 C[x, t/, z] be a quasihomogeneous polynomial
such that

f^x^^y.X^z) == A^Qr,^), VA € C

where qo,qi^q2,d > 0 and (qo,qi^q2) = 1- Suppose that d = Omod^, i =
0,1,2, and that the surface S := /^(O) C C3 has an isolated singularity
at the origin. Then the singularity (5,0) is quasirational if and only if one
of the following two conditions holds:

(i) d = [qo, gi, 92]? and for some natural numbers p, g, r, s coprime in
pairs we have (up to a reordering): (qo^qi^q2) = (Wi^i^s).

(ii) d = 2 [90 5 Qi-,q2\, and for some natural numbers p, 9, r coprime in
pairs we have: (90^1^2) = (pq^pr.qr).

Proof. — By [OrlWa], Prop. 3, F = S * / C * is a smooth curve of genus

.(D-V d2 ^ x i 1 i 1 ̂2\gogi<?2 \ko,gi] [90,92] bi,g2]/ /
Thus g(T) = 0 if and only if

(15) 1 I 1 I 1 ^ d I 2

[9o, qi] [90,^2] [gi,92] 9o9i92 d '
Letting qij := (qi^qj) we can write

(16) ^0 = 901902^ Ql = 9019129^ 92 = ^029l2^2

where the integers 9oi^02,9i2,9o»9^92 are coprime in pairs, since by our
assumption (go^i,^) = 1. Set do :== goi9o29i2; then [qo,qi,q2\ = doq^q^
and so d = pdoq^q^ with /? € N and 90^1^2 = <^9o^^2- Therefore, (15)
can be written as

p \qoQ[ ^2 ^1^2 / ^i ̂ 2 ~
It follows that p = 1 or p = 2. In the first case the only solutions of
this Diophantine equation are (up to a reordering) (^o?^?^) = ( l?^? 5)
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(s C N), and in the second case (q^q^q^) = (1,1,1) is the only solution.
Letting in (16) goi ='' P,qo2 ==: q^qi2 ='- r and taking into account the
above observations, we get the desired conclusion. D

The next corollary in the particular case of the Pham-Brieskorn
surfaces can be found in [BarKa], p. 117 .̂

COROLLARY. — Assume that the polynomial

/ == aa^ + 6^ + cz^ 4-... € C[x, y , z] (where a, fr, c € C*)

is quasihomogeneous and such that the surface S := /^(O) C C3 has an
isolated singularity at the origin. Then the singularity (5,0) is quasirational
if and only if one of the following two conditions holds:

(i7) up to a reordering, (A;, Im) = 1, or

(if) (M)=(fc ,m)=M=2.

Proof. — Letting k = pk^l = pV,m = pm' where p := (fc,Z,m), set
do := (A/.QO^m'^r.m7) and

Vm1 k'm1 k'V
qo -*= —,/—? qi :== ~~n~^ 92 ;= -,7-.do d'o do

These are the unique weights with (go?<?i»<?2) = 1 making / a quasihomo-
geneous polynomial of degree

k'V'mfd := kqo = Iqi = mq^ = p——— = p[A;7, l\ m1} = [fc, Z, m].
"o

To apply Lemma 8 assume that

7—————r ( I ' m ' ktmf k'l^ -,—————.
(qo.qi.q2) = \-^^^) == (^^^)

with j),^,r,s coprime in pairs. Then we would have [<?o?(?i 592] = p^ys =
[A^r.m7], whence d = p[(?o?9i»92]- In view of this observation, it is easily
seen that the condition (i) resp. (ii) of Lemma 8 is fulfilled if and only if (i')
resp. (if) holds (more precisely, iff p = 1 and up to a reordering, (fc, I , m) =
(rs,g5,p) resp. p = 2 and up to a reordering, (k^l.m) = 2(r,g,p)). Now
the statement follows from Lemma 8. D

^ cf. [Ev], Thm. 2 where in fact, several possibilities covered by the condition (ii')
below have been omited, because of a gap in the reduction of problem B to problem C.below have been omited, because of a gap in
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Examples.

1. By Lemma 7 and the above corollary, the Fermat cubic surface
x3 + y3 + z3 = 0 in C3 is Ai-poor, and moreover, any rational curve in
it has the diagonal form t i—> (^p(f}xQ^(t)yQ^{t)zo) with y? € C(^). In
contrast, the cubic surface x3 + y3 + ^3 == 1 in C3 is rich with rational
curves, as it is rational [Man]. Furthermore, being non-rational [CIGr], the
affine Format cubic threefold x3 -I- y3 + z3 -h u3 = 0 in C4 is unirational,
and even is dominated by the affine space C3; see [PaVa], §3 for explicit
formulas^.

2. For the Pham-Brieskorn surfaces Sk,i,m, Lemma 7 and the above
corollary provide information additional to those given by Halphen's
Lemma. Namely, such a surface possesses a non-diagonal polynomial curve
(i.e., not of the form

t——(^)^H^2^)) with ^€ C^], 2=0 ,1 ,2 )

if and only if one of the conditions (i') or (if) holds, (cf. [BoMu], [Beu],
[DarGr], [Ev] for similar results, including the more general situation of
Pham-Brieskorn type surfaces over function fields. Besides, in [DarGr] one
can find a historical account on the subject.)

3. Let a surface S = {z771 — fd(x,y) = 0} in C3 be as in Schmidt's
Lemma. We may choose a coordinate system in C^ in such a way that
neither x nor y divides the polynomial fd' Then the assumptions of the
above corollary are fulfilled with k = I = d, and so the singularity (<S',0)
is quasirational if and only if either d = 2 or (m,d) = 1. According to
Lemma 7, the conclusion of Schmidt^s Lemma remains true for any pair
(m,d) with m ^ 2,d ^ 2, except for possibly the pairs (2,2), (3,2), (3,4)
and (2,2^+1), A; =1,. . . , 7.

Added in proof. — After this paper was written, it was established in
[FIZa] that a normal affine surface S with a good C*-action which possesses
a closed rational curve not passing through the vertex VQ 6 5, has at
most rational singularity (6', Vo) at the vertex. In particular, this nicely
fits Halphen's Lemma; indeed, the singularity (5^/^,0) of the Pham-
Brieskorn surface Sk,i,m is rational precisely for the Platonic surfaces. This
also implies that the conclusion of Schmidt's Lemma is true exactly when
d^ 3 and (d,m) ̂  (3,2).

^ In a discussion with the authors H. Flenner conjectured that this threefold does not
admit a nontrivial C-j.-action; however, so far we do not possess a proof of this.
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