
ANNALES DE L’INSTITUT FOURIER

FRÉDÉRIC HÉRAU
Fefferman’s SAK principle in one dimension
Annales de l’institut Fourier, tome 50, no 4 (2000), p. 1229-1264
<http://www.numdam.org/item?id=AIF_2000__50_4_1229_0>

© Annales de l’institut Fourier, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_2000__50_4_1229_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
50, 4 (2000), 1229-1264

FEFFERMAN^S SAK PRINCIPLE
IN ONE DIMENSION

by Frederic HERAU

1. Introduction and result.

We give in this paper a complete proof in one dimension of Fefferman's
SAK principle, as stated in [4, (f) page 130]. We illustrate in details the
levels I, II and III of microlocalization as suggested in [6] and [4]. Naturally,
the simplifications due to the one-dimensional situation are important,
nevertheless it seems interesting to provide a thorough investigation of
Fefferman-Phong's strategy in this case.

First let us recall some basic features of pseudo-differential calculus. In
dimension n of space, for any a hamiltonian - or symbol - in ^(R271), we can
associate operators acting on L^R71), via a procedure called quantization.
Throughout this article we chose the so-called Weyl quantization

(1) (a^x) = -^ jfe^-y^a^^^uWyd^

For m € M we also recall that a € C°°(R2) is in the Hormander class S^Q
(see chapter XVIII in [11]) if a satisfies Va, (3 e N, 3Ca,o such that

(2) V^ € M, \9^a(x^)\ ̂  C^ < $ >m-^

Keywords: Pseudo-differential operators - Microlocal analysis - Uncertainty principle
— Weyl-Hormander calculus — Garding inequality — Feffer man- P hong inequality — SAK
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Math classification: 35S05 - 35J10 - 35R45.



1230 FREDERIC HERAU

where < $ >= (1 + |^|2)1^2. We have then the following result:

THEOREM 0.1. — We consider a and b € S^o such that |a| ^ b. Then
V$: > 0, s e R, 3C^ such that \fu e <S(R) and s E M,

(3) iK<^^(ir<+ii<+e)-
where ||.[|^ is the usual Sobolev norm.

This question is closely related to the uncertainty principle. In the
present paper, we use the strong tools of microlocalization, and in particular
the proper metric introduced by FefFerman and Phong in [5], [6]. We also
assume that |a| ^ b everywhere. Other assumptions can be proposed, for
instance that a is smaller than the average of b on symplectic cubes.

We want to stress the fact that this result is not only due to a series
of successive microlocalizations involving an increasing sequence of metrics
(see e.g. [2]). As noticed in [6], this is sometimes not sufficient to obtain
sharp results, and we have to bent the phase space using Egorov theorem
[3] before refining the localization in the phase space.

A priori estimates have also been studied in the case of polynomials,
by Helffer and Nourrigat [9] in the general context of Lie algebra of
operators, by Mohamed and Nourrigat [14], by Shen [15] using singular
integrals, and Guibourg [8] in the spirit of Nourrigat.

We want now to give the main result. In fact Theorem 0.1 can be
stated in the semi-classical case. First recall that a semi-classical symbol a
of order m € M is a family of symbol OA satisfying for all a, (3 multi-indices
of length |a|, |/3|, if we write 9^ == %1...̂

sup l^faA^OIA-^^^ =7a,/3<oo.
A^l, (a^OeR271

This is a Frechet space with semi-norms 7a,/3- We have the following
statement:

THEOREM 0.2 (Main).— For all e > 0, there exist Ce > 0 and
Ne € N such that for any semi-classical symbols a, b of order 2 satisfying
\a(x^)\ ̂  b(x^) for (rr,$) € M2, there exists Ce^b such that \/u € <S(R),

(4) ^uf^C.^uf+C^^M2.

Here Ce a, b only depends on the first Ne derivatives of a and b, and ||.[[ is
the L2 norm.

ANNALES DE L'lNSTITUT FOURIER



1231FEFFERMAN'S SAK PRINCIPLE IN ONE DIMENSION

We can illustrate the procedure employed in the proof with the
following picture, in the spirit of those presented in the didactic paper
of Fefferman [4]. We will especially comment below the way of cutting and
bending the phase space R2 in function of the symbol b:

Fig. 1. - Cutting and bending the phase space

The level I of microlocalization (the algorithm of the 70's according
to [4]) is the one that permits us to reduce the problem in constant metrics.
The Littlewood-Paley decomposition is an example of such a procedure.
Using a scaling, we can then state the problem in the semi-classical metric
G = (\dx\2 + IC^PVA. This is standard and we shall only prove the semi-
classical Theorem 0.2.

The level II of microlocalization consists of cutting the phase space
thanks to a Calderon-Zygmund procedure on the symbol b. We introduce
the so-called proper metric and if the symbol is non-negative we obtain
three types of boxes in the phase space: "Negligible" boxes are boxes in
which the operator bw has the same behavior as a ^-bounded operator.
In "elliptic" boxes, the corresponding operator is bounded from below by
a very large constant. These two cases are easy to deal with. In fact,
"convexity" boxes concentrate all the difficulties.

In the last type of boxes, we can solve an implicit equation. There
is a vector U in the phase space such that U.Vb(x,^) = 0 is represented
by the dashed line in the picture. Through a Taylor expansion we get the
decomposition b(x, $) = ^(x, ̂ )+g(x, $) where U.^g(x, 0 = 0 everywhere.
This decomposition is the core of the proof of the well-known Fefferman-
Phong inequality [5]: For a € 6fo

3Cs.t. ^4-C^O.

TOME 50 (2000), FASCICULE 4



1232 FREDERIC HERAU

In our case, we use two striking facts corresponding to this level II.
On the one hand, for a and b semi-classical symbols of order 2, we prove
that |a(a*,^)| ^ b(x^) is a sufficient condition for a to be in the proper
class of b. This allows us to cut simultaneously a and b using the proper
metric of 6, without annihilating the symbolic properties of a. On the other
hand, in the operatorial point of view, we prove that we can microlocalize
a priori inequalities.

The level III deals with convexity boxes and can be splited into two
different steps. The first one consists of bending the phase space in order
to make b look like the Schrodinger operator. In fact, after a canonical
transformation, we can write that

bw=ew(D2^V{y)).

This bending is possible thanks to the Egorov theorem. The second
part of the level III is the introduction of the crucial metric gw which
we call metric of level I I I and which allows us to do a third order
microlocalization, involving polynomial approximation. This tool gives
symbolic estimates and a priori inequalities for Schrodinger operator. In
the context of microlocalization, this is the ultimate step for cutting the
phase space.

In this article, we shall closely follow the three steps described above.
In the first section, we give two lemmas of level II, the first one for symbols
and the second one for operators. The next section is devoted to the proof of
the main theorem, which essentially consists of bending the phase space. In
the last section, we establish the result for the Schrodinger operator using
the level III metric. Eventually an appendix is devoted to two technical
lemmas. The first one is a simplified version of the already quoted Egorov
theorem, and the second one is a preparation lemma.

Contents.

1. Microlocalization of level I and II
1.1. Definitions
1.2. A symbolic property of the proper cla8S
1.3. Microlocalization of a priori inequalities

2. Proof of the main theorem
2.1. Change of metric
2.2. Microlocalization of level II
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2.3. Reduction of the cases
2.4. Translation of non-negativity for operators
2.5. Cutting Schrodinger symbols
2.6. Bending
2.7. End of proof

3. Level III metric and Schrodinger estimates
3.1. Level III metric
3.2. Symbolic estimates
3.3. Proof of the result for a Schrodinger operator

4. Appendix
4.1. Egorov theorem in dimension 1
4.2. A very normal form

1. Microlocalization of level I and II.

1.1. Definitions.

Let us first recall some definitions and basic tools about pseudo-
differential calculus in dimension n, which can be found in [10] or [2].
Consider the symplectic space R271 equipped with the symplectic form
a = Y^^ d^i A dxi. For g a positive definite quadratic form, we define

(6) 9<T(T)= sup a(T,V)2,
g(Y)=i

which is also a positive definite quadratic form. If F is a quadratic form
such that r^ = r, we say that F is symplectic. We also introduce a family
of metric:

DEFINITION 1.1. — An admissible metric is a Riemannian metric on
R271 satisfying the following conditions:

uncertainty Principle: \/X € R271, gx ^ 9'x;
slowness: 3Co > 0 s.t. gx(X - Y) < C^1 =^ (px/Pr)^ ^ Co;
temperance: 3C^ M > 0, s.t. gx/gv ^ C^ (1 + g^(X - Y))^ .
The constants are respectively called constants of slowness and tem-

perance.
A ^-admissible weight is positive function m on the phase space R271,

for which there exists Co, C\, N^ > 0 such that

(7) gx{X - Y) ^ Co =^ {m{X)/m(Y)f1 ̂  Co

(8) (m^MY))^ ^ Gi (1 + gW - V))^ .

TOME 50 (2000), FASCICULE 4



1234 FREDERIC HERAU

We define next the uncertainty function A, which is a special weight for g,

(9) A(X)=^(^(T)/^(T))1/2.

Let us now introduce some spaces of symbols:

DEFINITION 1.2. — Let g be a metric, and m be a weight for g . We
say that a function a is a symbol in S(m,g) if a G C^R271), and if the
following semi-norms are finite:

(10) sup a^(X)Ti...r, m-\X) := ||< ̂  . .
^XeR^xW^l ^^{m,g)

Ifm is of the form X^, we say that a is of order ^ and we note the family
S^(g). We also note S-°°{g) = H^R^).

Such families are given for example by the classes of symbols 5^ ̂
with 0 ^ 6 ^ p ^ 1 and 6 < 1, equipped with the metric gx = (O26 \dx\2 +
(^r2^!2, and the weight m(X) = (Q^, where (Q = (l+ |^|2)1/2. por
good functions (in S^^g) classes for instance), we define the composition
law ( such that (a^b)w = a^ o ^w by

(11) W(x) = Tr-271 f {e-^^-^-^y^z^ydz,

and for a € S^(g), b € S^(g), if {., .} denotes the Poisson bracket, then
there is r e S^^-t2{g) such that

(12) a^=ab+l{a^}+r.
Z/L

In particular for ^p € S°(g), a e S2^), since (p {a, (p} + {^, a} (p = 0, there
is r' C S'°(^) such that

(13) ^t^a^=^2+^.

1.2. A symbolic property of the proper class.

Recall first some results about the so-called proper metric, introduced
by Fefferman and Phong in [5] and which is the main tool for the proof of
the Fefferman-Phong inequality (5).

Let M271 be equipped with the symplectic form a. Let G be an
admissible metric (see definition 1.1) and consider b e S(A2,G), where

ANNALES DE L'lNSTITUT FOURIER
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A is the uncertainty function of G (see (9)). In the following, we denote by
II.H^ the multi-linear application norm in the metric Gx, i.e.,

||A||^= sup |A(ri,..,r,)|.
GxW=l

Note that for A multilinear symetric, |A[[|G'^ = sup^. (T)=I lAT^I is an
uniformly equivalent norm. Define next the new quantity

f /II II \2/(4-A;H
(14) A(X)=m^^,(|^)(X)|^A(X)-^) ^.

Then we have the classical result (see for example [12, prop. 3.3]):

LEMMA 1.3. — Let G be an admissible metric, b be in S'(A2, G), and
X be given relative to b as in (14). The metric g : X i—> A^X^X^Gx
is called the proper metric. It is admissible, of uncertainty function A, and
b is in the class 5(A2,^).

In order to do a simultaneous microlocalization on a and &, we need
the following lemma:

LEMMA 1.4.— Let G be an admissible metric, a, b be in ^(A^G),
and g be the proper metric of b. If \a\ ^ b then a G 5'(A2,^), where A is
given relative to b as in (14).

Proof. — Multiplying b by a positive constant, we can suppose that
the first four semi-norms of b are smaller than 1. We note Ok the semi-
norms of a in *S'(A2, G). To obtain the lemma, we have to show that VA; € N
we have

suplL^poll A(X)-2 <oo.
X " "^x

Let X C M271 be fixed for the rest of the proof. We first notice from (14)
that A(X) ^ A(X). Therefore we can write \/k ^ 4,

(15) ||«<*>(X)||^ W = ||<><1'W|^ AW- (^f"2 < ».

We must now evaluate the first derivatives of a. Let's take h € R272,
such as gxW ^ Gg"1, where Go is the slowness constant of g. The slowness
of the proper metric implies that

(16) b(X + h) ^ ^(X + h) ^ C^W.

TOME 50 (2000), FASCICULE 4



1236 FREDERIC HERAU

Besides we can notice from (15) that for all 0 e [0,1],

(17) \a^(X + eh)h^l^\ ^ A^JOCo-2^/^.

We know that \a(X + h)\ ^ b{X + /i). Making a fourth-order Taylor
expansion of a, and estimating the integral remainder using (17), we obtain
with a new constant C^ > 0

(18) |a(X) 4- a\X)h + a^X)h2/2 4- a^W^/Gl ^ ^A^X).

Dealing with this inequality for ±h/2 and =L/i, we obtain that there exists
do,..., 0:3 such that for all h satisfying gx{h) ^ Co~1 and 0 ^ k ^ 3 we have

|a^(X)^| ̂ A2^),

which gives [a^X)^] ^ ak\<2(X)gx{T)k/2C^2 for all T e R271, yielding
the lemma. D

1.3. Microlocalization of a priori inequalities.

Let us now recall the fundamental properties of any admissible metric
g. We denote by By^r the ball of radius r and center Y for gy. We first
introduce the space of confined symbols (see [2]).

DEFINITION 1.5.— Let g be an admissible metric on R272 and m be
a weight for g . We say that a function a is a symbol in conf(m, g^ Y, r) if
a G C^R2", C) and if the following semi-norms are finite:
(19)

sup a^(X)ri...T, m-\Y) (1 +^(X - By^2 < oo,
^^xeR^ffyCr^i

where g^(X — By^r} = mfzeBy,r g^{X — Z). In the case a is supported in
BY,T we note supp(m, (7, V, r).

With these notations, we have the following lemma of partition, (see
for example [11, section 18.4], or [2])

LEMMA 1.6. — Let g be an admissible metric and r2 < C^'1, where Co
is the constant of slowness ofg. Then there exists a sequence of points {X^},
of functions {<^i/} uniformly in supp(l,<7^,Xi/,r), such that ^^ ̂  = 1.

Moreover we have a property of finite overlap: for all r* such that
r2 ^ r*2 < Co"1, if we note B^ = Bx^.r*, there exists J\f* such that
V^ C N, ^£ > X* =>- D^B^ = (a- Furthemore if we define A^ =

ANNALES DE L'lNSTITUT FOURIER



FEFFERMAN'S SAK PRINCIPLE IN ONE DIMENSION 1237

max{l, g^ [B^ - B^), g^ [B^ - B^) }1/2 which we call the distance func-
tion, then there exists N * , (7* such that sup^ ̂ ^ ̂ ^N* < C*.

We can now introduce some lemmas involving these partitions in the
context of a priori inequalities. We denote by H.ll^^ the operator norm on
L^R71). We first recall (see [2]) that for g an admissible metric, r < GJ"1 ,
where Co is the constant of slowness of g, and X 6 R272,

(20) ^C, Va e conf(l^X,r), |K||̂ ) ^ C\\a\\^^^ ;

we also recall the well-known embedding

(21) 3C, Va G 5(U), lla-lj^.) ^ C\\a\\^^ ,

and if 772 is a weight for g , then \/k,3C,l s. t. Va 6 S{m^g\ b €
conf(l,^X,r),

(22) ll̂ ||,,̂ (i,,,̂ ) ^ Cm(X) M^m^ ̂ conf^^r) •

Let us keep the notations of Lemma 1.6 and write A^ = max{l,^5-
(^ - B^ g^ (B^ - B,)}1/2, where B, = Bx,,r. Then V^, 7v, 3^,^, ^ s'
t. V/2,i/ € N, a e conf(l,^,X^,r), 6 e conf(l,^,X^r),

(23) ll̂ ll,,conf(l,,,X,,r) + ll̂ ll̂ confd,,^^

^ Ck,N llall^,conf(l^,X^,r) ll^llz^onfCl^^^r) A/I,̂ •

LEMMA 1.7. — Let p be an admissible metric, {X^} a family of points
as introduced in Lemma 1.6, and for r*2 < Co'1, {r^} a family of functions
uniformly in coni(l,px.,^^*)- Then Y,r^ € £(L2).

Proof. — The result is immediate using Collar lemma and the third
point of Lemma 1.6. We can notice that we only suppose the functions to
be confined and not supported. D

The next lemma will be very useful in the context of microlocalization
of maximal inequalities. A proof is given in [1, Lemme 7.9].

LEMMA 1.8. — Let g be an admissible metric, {Xy} a family of points
introduced in Lemma 1.6, and for r2 < C^1, {^pv} a family of functions
uniformly in conf(l,<^,X^,r) satisfying ^j^py = 1. Then there exists C
such that for all u C S^),

(24) C-1 IHÎ ) ^ ̂  ll̂ ll̂ n) ^ C Miw '
v

TOME 50 (2000), FASCICULE 4



1238 FREDERIC HERAU

We also need two lemmas concerning microlocalization of symbols of
order higher than zero (namely 2). The following one deals with symbols
of finite order (see Definition 1.2).

LEMMA 1.9.— Let g be an admissible metric, X its uncertainty
function, {X^} a family of points introduced in Lemma 1.6, and for
r2 < ^o1, {^Pv} ^ family of functions uniformly in conf(l,(^,X^,r)
satisfying ̂  ̂ y = 1. Then for all m € N and a € S^^g), there exists C
such that for all u € ^(R2^ C),

(24) IKull̂  ^ C (^ ||â >||̂  + Mi^} .
\ ^ )

Proof.— Let a be in ^(A^^), and let us denote by (.,.) the scalar
product on L2^), and ||.|| the associated norm. Then for all u € L2^),
we get

(26) ^uf =Y^(av'^av'^u}.
tl,V

For r2 < r*2 < (7, consider the distance function defined in Lemma 1.6
for which there exists N * such that sup^ ̂ ^ A* ̂ - N ' < oo. We shall split
the sum (26) depending on the size of A^ with respect to p > 1. For all
u G <S(R77') we can write

(27) Ha-Hll2 = ^ (a^>, a-^u) + ^ (a», aw^u).
^^' ̂ î p P-^^ ^,^P

Let us first deal with the first term. Since 1 ̂  p(A* ^)~1 we get

^ |(a^>,a^>)| ^ ̂ ||a^>|| ̂ ^p^ (A^)-^ .
^'^ ^,v<p ^^

We can then apply the discrete Schur criterion: we consider the operator
on I2 with kernel {K^) = (^^-^Y It satisfies sup^ ̂  \K^\ ^ C*,
and sup^ ̂  |^,/x| ^ C*, and we obtain

(28) ^ Ka-^^a-^u)! ^ G*?^' ̂  Ha-^ull2 .
/A,^, A^ ^<p v

We write the second term of the sum (27) as

(29) (̂  u)= ^ (^aV^n, n).
^'^ ^,^P

ANNALES DE L'lNSTITUT FOURIER
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We shall use Cotlar lemma again in order to show that Rp is bounded
on L2. We set A^ = y^aV^, I, = {(^)/A^ > p} and write for
(f-i-o^o) e Ip ,
(30)

E IK...A,.IÎ ) = E ll^o^^^o^^^^ll^,-
(^)e^ (/^)e/p '

We can take advantage of the confinement properties ofy^ via inequalities
(20-22). We can write

(31) Vk, 3C,, s.t. W, l|a |̂|̂ m(i,,,^) ^ W,

where we recall the fact that m is the order of a. Writing

(32) IÎ Vy^aV ÎÎ

^ IK^^olC) IÎ W |̂|̂ )

ll^o^^ll^) ll^o^ll^) ll^a-^H^),

we get using (23) that for all N there exists C' such that

(33) llyo^^aV^I)^ < C^A^A^A^A-.

For all (^,i/) e I p , A^^ is greater than p > 1. This implies that B*^ and
5^ are disjoint, therefore there exists Co > 0 such that for all (p., v) e I p ,

(34) g^ - B^) > co, g^(B, - B^) ̂  co.

Using the fact that VX e R2" A(X)2ffjc ^ 5^, we write

(25) max {A^B, - ̂ ), A^(B, - B^)}1/2

< max {<(B, - ̂ ).^(B, - ̂ )}1/2 ^ A/,,,.

We get then from (34) that for (^,i/) € I p , max{A^,A,} < c^A^.
Putting this inequality in (33) yields for all (p., v), (^o, vo) e I p ,

(36) ^ya-^^^^w < ̂ o-A^A^A^^.

Taking N ^ N * + m , using the fact that A^ ^ ^ A^ and applying the last
property in Lemma 1.6, we get

(37) sup ^ K,A,,,J|̂  <oc.
(M,</o)6/p (^^ ^^ )

TOME 50 (2000), FASCICULE 4



1240 FREDERIC HERAU

The adjoint term A^A^ ̂  can be treated in a similar way and we get
using Collar lemma that Rp defined in (29) is uniformly in C(L2). D

We give now a second result of microlocalization for a non-negative
symbol b of order 2. This is in a way the reverse inequality of the one in
Lemma 1.9.

LEMMA 1.10.— Let g be an admissible metric, X its uncertainty
function, {Xy} a family of points as introduced in Lemma 1.6, and for
f2 < Co'1, {^} a family of functions uniformly in conf(l,^,X^,r)
satisfying ̂  ̂  = 1. Then for 0 ^ b € S{\2, g) there exists C such that for
all u C S^),

(38) ^"^^^^^(ll^f+M2)-
v

Proof.— We first notice that applying Lemma 1.8 to the function
bwu leads to the existence of a constant C^ such that for all u € «S(IR),

^V^uf^C^^uf.
i/

But for all v we can write

w^uf ̂  2 w^uf + 2 nr, ̂ ] uf.
In order to get inequality (38) it will be enough to prove the following
lemma.

LEMMA 1.11. — With b as in Lemma 1.10, there is a constant C^ such
that for allueS

Ell̂ ^NI2 ^ ^3 ((b^u) + M2) .

Proof.— For all v we set again ^ = gx^ ^ = A(X^), and B^
the p^-ball of center Xy and radius r for g^. Let us consider r* such
that r2 < r*2 < Co"1, and choose a family of functions ^v uniformly in
supp(l,^,X^r*) with value 1 on By. We also set b^ = ̂ b. For all v the
symbolic calculus gives

r,^]^^)^,^}-^-^
where {.} is the Poisson bracket and where ri^ e conf(l,^,X^r) uni-
formly w.r.t. v. Lemma 1.7 implies that there is a constant €4 such

ANNALES DE L'lNSTITUT FOURIER
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that
^|K,<^C4[H|2.

It is therefore enough to study the Poisson bracket. We write that there is
r2,i/ uniformly w.r.t. v in conf(l,^,X^,r) such that VZA 6 <S,

(39) ||({^ ̂ }F n||2 = ({&„ ̂ u, u) + (r̂ >, n),

and we observe that there is 65 such that ^y(^yU^u) ^ 65 ||n|| . Now
for all v^ in a symplectic basis ei..Cn,6'i..£n diagonalizing ̂ , we can write

(40) {by^y}2 ^ 2n \^{Qe,by)2{Q^y)2 + {Qe,by)\9^y)2 ) .
\ ^ /

We shall use the standard inequality for non-negative function:

LEMMA 1.12.— / ^ o, / e W^W =^ (f(t))2 ^ 2f(t) ||n|̂ .
This inequality applied to by, and the uniformity of the estimates on

the ^,/s imply that there is a constant CQ such that for all ^,j,

(41) (BeA)2 + (^A)2 ^ ^AA..

But (^ C 6'(1, ̂ ) uniformly in ^ also implies that there exists C'j such that
for all i / J , \y{0e,^)2 4- \y{9e^Y ^ Cr, which yields with (40) and (41)

{bv,^y} ^Csby,

where Cs == ^n^C^C^. Then we get that for all v^ there is 7*3,^y^,^,^
uniformly in conf(l,^,Xi/,r) such that

(({^^.}2)w^u) ^ (({b^^Y ^u^u) +(r^n),

then by the Fefferman-Phong inequality (5) applied to Csby — {by^y} ,
we get

([{by^y}2)' u^u) ̂  Cs (b^u^u) + (r^u)

^Cs(Wu^u)+(r^u).

The finite overlap property (see Lemma 1.6) implies that there exists Cg
such that ^^ b^ ^ C^b. Summing up and using the Fefferman-Phong
inequality again yield the existence of €3 such that

E (({b.^^Y u,u) ^ 63 ((b^u) + ||zz||2) ,
v

which is the conclusion of the lemma. D
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2. Proof of the main theorem.

Let e > 0 be given and a, b be symbols satisfying the assumptions of
Theorem 0.2 that is to say |a| ^ b for a, b € ^(G) where

(42) G^l2^2, A > 1 .

We can of course assume that a is real-valued. We have to prove that there
is a constant Cg depending only on e and a finite number of semi-norms of
a and b such that the following inequality is verified for all u e <S(R)

(43) Ha^ll2 ^ C, (ll^H2 + A4^ |H|2) .

The proof of the main theorem will be done in several steps.

2.1. Change of metric.

The fact that |a| < b and Lemmas 1.3, 1.4 imply that a and b are
in the proper metric of b, which besides is not constant anymore. We can
suppose that the first four semi-norms of a and b are less than or equal to
1. We denote by g the new metric, and A its uncertainty function.

^—M^
2.2. Microlocalization of level II.

Consider r > 0 such that 0 < r2 < Co"1, where Co is the slowness
constant of g. Let {Xy} be a family of points as introduced in Lemma 1.6,
and {^pv} a family of real functions such that

(45) ^ € supp(l,^,X^,r) uniformly , ^^ = 1,

associated with the proper metric ^, where for all z^, g^ = g ^ ^ ^ B y =
Bg^{Xy^r). We have the following lemma of level II,

LEMMA 2.1. — In order to prove the main theorem, it is sufficient to
prove that there exist a constant C^ > 0 and a family of symbols {ry}
uniformly in conf(l,^,X^,r), such that for all v € N, u € <?(M).

(46) IK^nf ^ C', (l|̂ >||2 + A46 (r>, u)) .

ANNALES DE L'lNSTITUT FOURIER



FEFFERMAN'S SAK PRINCIPLE IN ONE DIMENSION 1243

Proof.— Let us take u € S(R). Lemma 1.9 implies that there is a
constant C such that

lla^f^C^lla^^f+ll^
\ v )

Inequality (46) implies then that for all v,

IK^>||2 ^ ̂  (l|yV>||2 + A46 (r>, ̂ )) .

Now b is non-negative and of order 2. Lemma 1.10 implies that there exists
C' such that

Ell^^ll^^Ol^f+IHI2).

From Lemma 1.7 we get that there is C" such that Y,^ (r^u.u) ^
C^A4^ I I ^ H .We conclude that there is a constant Ce such that

IK^f^^^f+A^iHI2),
that is to say inequality (43). The proof of the lemma is complete. D

2.3. Reduction of the cases.

We therefore only need to prove the following inequality, where C' is
a constant uniform in v to be defined later,

(47) W, ||a^>||2 ^ ̂  (ir^>||2 + A46 (r>, u)) .

Following closely Fefferman-Phong's strategy, we first notice that b is
non-negative, so that we can sort out the points in the phase space in three
different types, "negligible", "elliptic", or "of convexity" as summarized in
Lemma 4.2 of the appendix. It is important to stress that this classification
is independent of the radius r of the partition, provided it is small enough
with respect to the slowness constant of g. Let R > 0 be the radius of
validity of the decomposition given by Lemma 4.2.

2.3.1. Negligible case.

In this case \y is bounded above by a uniform constant. We get

(^), (a^,) e conf(l,^,X,,r).
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The associated operators are therefore uniformly in C{L2). So if we set
Ty = b^ipy — a^(py we obtain

n^>n2 ̂  2 (ir^»i2 + A46 iir>n2).
This implies (47) and in this particular case, the error term is bigger than
the others.

2.3.2. Elliptic case.

^ ^Bg^(x^,r) ls elliptic - that is to say Xy is elliptic in lemma 4.2's
terminology - then there is a constant Co uniform in v such that

b(X)^Co\2^ VXeB^(X,,r).

There is no restriction to suppose from now on r < J?/4, which will be
needed later. Let b e S2^) be equal to b on By and such that b ̂  (Co/2)\2,
elsewhere. We get b-1^ e S°(gy), and using (12) we get that there is a
symbol 7-1^ uniformly in conf(l,gy,Xy,r) such that

^A^^^+ri,,

since b^b = 1 and {& - l,6} = 0 on supp((/^). Therefore there exists (7i
such that

^ \\^u\\ ̂  ̂ (b-^D^^u + \\r^u\\ ̂  Gi |r̂ >|| 4- \\r^u\\.

and we obtain then that there is an other symbol r^^y e conf(l,^,X^r)
and C'2 such that

>t ll^^ll2 ^ ^2 ||yV>||2 + (r^u) .

On the other hand there exists €3 ̂  0 such that |a| ^ C^ on Bg^Xy, r).
Using S°(gy) ̂  C(L2) again yields a new symbol r^y e conf(l,^,X^,r)
such that for all u € <S

l la^^f^G^H^^f+^^H)

for a new constant C^. These two inequalities together give (47).

2.3.3. Case of convexity.

This is the important case. We get from Lemma 4.2 the following
decomposition on B{Xy, R), ^-ball of radius R:

(48) b{X, 0 = Cy(X, 0 (\y^ - Oy(x))2 + Vy(x)},
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where Cy, ay, Vy are uniformly respectively in S°(gy), ^^(gy) and S2(gy)^
and Cy ^ C~1 with G a uniform constant. Let ̂  be the following canonical
transformation globally defined on R2 provided Oy in (48) is suitably
extended in R2:

Xv'' (y^ ̂ '—^ (y^+ <^0/)) = (^ 0
which components are also in S l / 2 ( g y ) on •\^1 (B(Xy,R)). With these
notations we have, for all (y^rj) 6 \y1 {B(Xy,R))^

(49) (—^H^) ^A^+y^?/).
v0^ /

2.4. Translation of non-negativity for operators.

We stick from now on to the convexity case. Let us define a new
real-valued function ^y G S°(gy) such that

(50) ^ = 1 on B{Xy, R/2), ^y = 0 on B(Xy, Ry.

We first notice that zpya o ̂  and ipya o -^y are in S'2^). We get

LEMMA 2.2. — There is a constant Ce > 0, such that \/v e <S,

K ; \ w 2

(51) ^o^) ^ ^cJiKA^+y^^f+A^iMi2).
e^ / \ /

Proof.— The symbol ̂  is supported in B{Xy^R), therefore (49)
becomes ((e^^^o^Q/,^)! ^ XyTj2 4- ^(2/) everywhere provided XyTj2 +
V^ (y) is extended in the whole of M2. The symplectic change of variables

{t,r)=^2y,\l/2r,)

allows us to apply Proposition 3.1 given in the next section. The proof of
the lemma is complete. D

2.5. Cutting Schrodinger symbols.

We now want to go back to bo^y. Let us first define a new real-valued
function f3y € SQ{gy) such that

(52) (3y = 1 on B(Xy, R/4), (3y = 0 on B(Xy, R/2)°.
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We can write

LEMMA 2.3. — There is a constant C^ such that Vv e <S(R),

(^oxX^x.rv2
\ ^ /

( , , , Mt> ll2 \

^ P-o^) (f3^x.r4 +A^|H|2 .
\ e^ / II /

Proof.— Applying Lemma 2.2 to the function (^o-^^v leads to
the following estimate for all v € <?(M):

/ / \w ^(^^} (p^x.rv\ e^ /
^ c, (||(A^2 + W^o^^H2 + A^ ||(^o^)^||2).

Since we have 1 = ̂  + (1 — ^v) and (e^1^^)0^^ = (^°X^)(^^7?2 + ̂ )
we obtain

( / r \ W 2IKA^+wa^,)^!!2^ ^'-o^) (/?.o^)^ +2||c>n2,
e^ /

where c^ is defined by Cy = ((1 - ̂ o^)(A^2 4- V^)) tt(/^°X^) (see 11).
In order to get Lemma 2.3, it is sufficient to prove:

LEMMA 2.4.— c^ C C{L2), uniformly in y .

Proof. — We introduce the following metric on R2.:

9V = x 'iv—v~i2 ' where yl/ = ̂ l(^).^i/ f l ^ — - l^|

whose uncertainty function is A^(V) = A^ + |V - Yv\2 (see (9)). Using
the fact that the components of ̂  are in S'1/2^) and that ^^ € S°(g^),
Vy G S^^Qv) uniformly in ^, we get that

((1 - ̂ )ox.) (W + ̂ ) e S<2{gy\ (/3.o^) e 5° (p.).

Moreover these two symbols have disjoint supports. This implies that
Cy G S~°°{civ) (see Definition 1.2) with semi-norms independent of v. The
proof of the lemma is complete. D
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2.6. Bending

1247

We now go back to the initial coordinates (a^). We first use the
weak version of the Egorov theorem given in Theorem 4.1 of the appendix.
We first define a new function Ay(x) = ^ a^(s)ds, and we note U^ the
unitary operator (on L^R)) of multiplication by e^^). We can then write
that there exists three symbols r^, r^, r^ e S°(g^ with semi-norms
independent of v such that since ^a, ̂ b and A^ are real-valued of
S2^

(53)

(54)

(55)

^a Y _^ ^a\
I —— °^ = Uy [——}
\ ̂  ) \ ̂

f ̂ yd

. ̂

'^b
eu

°^

°^

=U.(^Yu^r
e^ 1,1 /5

'^i/a>

=U. U^r^.

^o^=u^u;+\^^
This conjugating process is a way of seeing the inequality of Lemma 2.3 in
other coordinates. We notice that

/, = (e,)V2 ^ s°(g^)

since Cy is elliptic of order 0. We can then write:

LEMMA 2.5. — There is a constant Ce and for ail v a symbol r^ e
conf(l,^,X^,r) with uniform semi-norms such that for all u e S(R) we
have

f ̂ v^
/» ^G (^Y rw-[ ——— ) h ̂ y U

\ ^v /
+A^(r>^)

Proof.— We generically write Ty for symbols in the class
conf(l,^,X^r). We suppose from now on that the partition radius r
satisfies

r = R/^
so that f3^ = 1 on the support of (p^. Therefore we have

f ̂ vO

Cu
f^^u ^ 2 ' ̂ v^

^f^^U +l|rwd|2.

The fact that Uy is unitary implies
< w n2^a'

T I * J J ( ' l / a \ TT^TT ^TT^TT f'w w If3W fW,..W.
P^ h ̂ v u

I ~e~ ) v I/ v j y (PL/ u
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We obtain
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f^) f^^^u
\ ^y /

2 ^(^o^ (A^)^/^ +lk>112.
\ ^y /

Let us use again the fact that U^ is unitary and set v = Uyf^^u. We get

K i \ w ^ I I / / \ w 2

^a) ^/^> ^2 (^o^) (/3.o^ 4-(r>,n).e^ / || \ e^ /

We can now apply Lemma 2.3 which implies that there exists a uniform
constant Ce such that

(56) 'f ̂ vO
^f^^U

^C,[ f^o^) (/3,o^)^ +A^(r>^)|.
\ \ ^ / y

We have here used the immediate property ||z;|| ^ C \\^u\\. From equalities
(53-55) and v = U^f^^u we get

'^a' tQW fW -W-Pv iv ^vu

^fl^f^) u^u^u^u^^u +A^(r>^)V
\1 \ e^ / /

^ Ce ^

The fact that U^ is bounded on L2 completes the proof of the lemma. D

2.7. End of proof.

We first notice that f^~1 = (e^)-1/2 e S°(g^) since e^ is elliptic of
order 0. Moreover we have three immediate symbolic properties (see (13))
(57)

J_ / l .O , ^. la(^)tt l4-^ ^= la(^ 14-^
I JV ) e^ ]V ]v Cy Jy Jy

with T y , S y C 5fo(^). We keep the generic notation Ty for symbols in
conf(l,^,X^r) and from Lemma 2.5 we obtain that there are uniform
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constants all denoted by Ce, such that
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( i \ w z
IKM-̂ II2 ^ 2 /,- ^) /^> +2||r>||2(58)

6^ /

K i \ w 2

<^ ^) /^> +2||r>||2t^ /

( / / h\w 2 \
^ ^-) /^> +A^(r>,H)V ^ / y^

l/ l l / 1 \ w / / h\w ^ \
<^ -) ^(^-) ^> +A4.£(r>,^,) .\ji \ J^ / \ e^ / y

The fact that (/^.-l)w is bounded on L2 and the third equality in (57)
imply that

(59) IK^a)" ̂ uf ̂  C, (\\{W ^uf + A^ (r^^ u)) .

Recall that ̂  is supported in B{Xy,R/^), and that ̂  is equal to 1 on
B(X^,R/2). We can then write

(60) 11^>||2 ^ C, (H^^^H2 + A4^ (CH^)) .

Using the fact that X^ ^ A we conclude the proof of (47) which induces
Lemma 2.1. The proof of the main Theorem 0.2 will be complete when
Proposition 3.1 below is proved. D

3. Level III metric and Schrodinger estimates.

One of the most important step in the proof of Theorem 0.2 is to get
an inequality when bw is the Schrodinger operator. This is possible thanks
to a special metric, called metric of level I I I , which we give below. Let
Rj. where T = (t, r) be equipped with the new (family of) semi-classical
metrics

GA=\dt\2-^A-2\dr\2 (A ^ 1).

We shall prove the following:

PROPOSITION 3.1.— For e > 0 there exists N^ such that for all
symbols a e S(A2, Gp,) and 0 ^ V € 5(1, \dt\2) satisfying \a\ ^ r^A2^),
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there is a constant Ce.a,v such that for all u € <S(M),

(61) lla-nf ^ C^v (l|(^2 + ̂ V)u\\2 + A46 hf)

Moreover Ce.a.v depends only on a finite number of semi-norms of a and V.

3.1. Level III metric.

Consider a smooth function V ^ 0 of one real variable, bounded as
well as all its derivatives.

DEFINITION 3.2. — Let e > 0, We call level I I I metric the metric on
R2^ defined by

(62) gw = (W(t) + r2) \dt\2 + (W(t) + T2)"1 |dr|2,

where W is defined by W{t) = r(t)~2, with r(t) the unique solution of

(63) ^r I r (A2y^) + A2£) ds = L
2 Jt-r

This metric is well defined according to the fact that the left-hand
side of (63) is a strictly increasing function of r from 0 to infinity. It is not
hard to prove its slowness (see Definition 1.1).

LEMMA 3.3. — The metric gw above is slow, of slowness constant
equal to 1/4.

Proof.— Let ^1,^2 be in R and set r\ = ^(^i) and r^ = ^^^ If
l^i — t21 ^ ^i then [t\ — r\,t\ + n] C [^2 — 2ri, i^ + 2ri] therefore

1 /^i+7-i /*t2+2ri
-n / (A2^) + A^) ̂  = l =^ n / (A2^^) + A^) ̂  ^ l,
- Jti-ri Jt2-'2n

which implies r^ ^ 2ri. In a similar way from \ti —1^\ ^ ri/2 we get
[^2 - ̂ 1/2^2 + ^i/2] C [^i - ri^i + ri]. We have then
1 /^i+ri 1 /•*2+ri/2
- ri / (A2^) + A2") ̂  = 1 =^ - n / (A2V(^) + A2^) ̂  ^ 1,
2 ^i-ri 4 ^2-ri/2

and we obtain r2 ^ ^1/2. Eventually we can write |^i — t2| ^ ^i/2 ==^ ^ ^
D- ^ 2. The lemma is then easily obtained. D

Remark. — We don't know much about the temperance of gw, even
if we restrict it on balls for the metric GA, (that would suffice to obtain
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a good microlocalization via the procedure described in [2]). We overcome
this difficulty by a polynomial approximation. We want also to point out
that gw is symplectic, i.e., gw == Qw Consequently the gw balls in the
phase space have a symplectic area equivalent to 1.

Another striking point is the fact that the main tools for obtaining
level III inequalities are the Bernstein inequalities about polynomials,
coming from the equivalence of norms in finite-dimensional spaces. Indeed,
let m C N, then for any V € Rm[X]

(64) max|y(^)|- f1 \V(t)\dt.
H^ J-l

These inequalities allow us to control V by its average W as given by the
procedure used by Fefferman and Phong. Rephrasing this, it means that
V is in the symbolic calculus associated with W. The fact that we have
| a | ̂  r2 + V also implies that a is in the same symbolic calculus.

3.2. Symbolic estimates.

First take e > 0, and set for the rest of the proof

(65) N, = [2/e] - 2,

where [.] is the integer part.

LEMMA 3.4.— Consider a € S^A^GA), V € 5(1, \dt\2) such that
\a{t,r)\ ^ r2 + A2^^). IfW and gw are defined according to Definition
3.2, then for all a, (3 € N with ( 3 ^ 2 ,

(66) \9?9?a^r)\ ̂  C,^ (r2+W(t))^^~^ ,

where Cs,a,/3 omv depends on a finite number of semi-norms of a and V.
Moreover if a vanishes for |r| ^ A we get a € S(r2 + W(t)^gw)-

The cases are to be distinguished, according to the values of the
derivatives indices.

Proof in the case a = f3 == 0. — We first notice that the non-
negativity of V and (63) imply r{t)~2 ^ A26 i.e., 0 < r(t) < A-^. Consider
for m integer, Vm,t the Taylor expansion of V at t of order m,

Vm,t(s) = V(t) + V\t)(s - t) + ... + V^\t)(s - ̂ /m!.
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We get for \s - t\ ̂  r(t) ^ A-^,

^\Vm^s) - V(s)\ ̂  /^lA2-^^,

where (3k is the A;-th semi-norm of V. Taking m = [2/e] — 2 = N^ yields

(67) A2!^,^) - V(s)\ ̂  Ar^iA2^

By hypothesis |a(t,T)| ^ r2 + A2V(t). We therefore get that there is a
constant CQ^.V such that

\a{t, r)| ^ r2 + max {A^Vm^s) + Co^vA2^ .
|t—s|^r(t)

The Bernstein inequalities then give the existence of a constant C depend-
ing on e via m such that

1 P^r{t)

la^l^+C-.-. / (A^OQ+A2^.
^W Jt-r(t)

We use again (67) as well as the definitions of r and IV given in (63) and
we get that there is a constant Co,e such that

(68) la^T^Co^+H^)).

This ends the proof in the case a = (3 = 0. D

Proof in the case of any a, and (3=0. — For to C M let Jo be the
interval Jo = {t s.t. \t — to\ < A"6}. Consider for m e N

a^ r) = a(to, r) + (t - to) ̂  (^o, r) + ... + {t ~^ ^ (to, r).

If we bound the remainder of the Taylor expansion of a on Jo, we get for
all t C Jo, r 6 M:

(69) |a^(^T)-a(^T)| ^7m+lA2-(m+l)^
(70) \9?am^r) - 9?a^r)\ ̂  ̂ m+i+aA2-^1^, a e N.

We take again m = Ne for controlling the remainders by C^e^A26'. Now
consider the Bernstein inequality for the polynomial t —> a^(t, r) (see (64)).
For all A > 0 we get

\Q^am(t,r)\ ̂  Cm-^ max^|a^(5,T)|.
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According to the former estimates (69-70), this inequality can be trans-
posed on a, and we get for all t C IQ, A ^ A"6,

(71) |cW,r)| ̂  ̂ lA26 x ̂  +C^ ̂ m^ |a(.,r)| -^m+i+aA26.

We first use the fact that A ^ A"6 in order to bound the first term and
estimate the error term in (71), so we can write for t € Jo,

(71) |^a(^)| ^ C^ (^ + ̂  ,m^|a(.,r)l) .

Now (68) implies for all A ^ A-6

(73) |W,r)| <, C^ (^ + ̂  ,m^(r2 + W(s))) .

Let's take A defined by (2A)~2 = r2 + W(^) ^ A25, and use the slowness
of the metric gw, which constant of slowness is 1/4 (see Lemma 3.3). We
can now uniformly bound W(s} by ^W(t} for all \t - s\ ^ A. We then get
the desired result, i.e., for all t, r, a,

(74) W^r^^C^r^W^^

The proof in the case (3 = 0 is complete. D

Proof of the case a = 0, f3 = 1.— Inequality (66) has already been
proved in the case a = (3 = 0. It gives the estimate

(Ka^.rl+C^o^+H^)).

For fixed t the function r i—> a(t,r) + C^o,o (r2 + W(t)) is non-negative,
smooth, with second-order derivatives uniformly bounded by 72 + SCg o o,
where 7^ is the A;-th semi-norm of a. We can therefore apply to it the
classical Lemma 1.12 which leads to the following estimate for all t, T:

(75) ^(^r)+2C,,o,oT ^ (72+2C,,o,o) (a^r)+C,^o (r2 + W{t))\

We use again (66) to bound a by r2 + W(t), and we get that there exists
C'£,i,o such that

(76) l̂ ,r) ^,1,0 (r^T^))172.

The case a = 0 and (3 == 1 in (66) is done. D
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Proof in the case of any a, and (3 = 1. — We can use the same tools of
approximation by polynomials used in the case /? = 0. Keeping the notation
of the case (3 = 0, we get again thanks to the Bernstein inequalities that
for a € N, t, r C M,

^M^^ .̂,.)
Approximation inequalities of type (69-70) are true when replacing a by
9a/9T, 7yn+i by 7^+2 and 7m+i+a by 7^+2+0. Choosing again m = Ne,
we obtain that the polynomial remainders are bounded by C^ ^ aA2^. If we
take A defined by (2A)~2 = r2 + W(t) > A2^ we get the desired estimate

9?||̂ T) ^^(T2-}-^))^,

i.e., (66) in the case /3 = 1. D

Proof in the case (3=2. — For (3 ^ 2 the symbol inequality is

(77) \Q?Q^a(t,r)\ ̂  7a+/3A2-^ ^ 7a+/3.

Choosing f3 = 2 implies that for all a we have (r2 + W(t)) 2 2 ^ 1.
The proof in that case is complete. D

Remark.— The fact that a is supported in {|r| ^ cA} would have
been sufficient for a to be in 5'(r2 + W(t\gw)- Indeed in that case
|r2 + H^)| ^ Cc^2 on the support of a. Therefore the first inequality
of (77) implies that (66) is satisfied for all derivatives of a. This will often
be the case in what will follow below. Anyway we will only use the first
two derivatives of a.

3.3. Proof of the result for a Schrodinger operator.

We want now to prove Proposition 3.1. We consider two symbols
a and V satisfying the hypothesis. We also define W and gw according
to Definition 3.2. We can therefore use the symbolic results of level III
of the previous section, described in Lemma 3.4. We keep the definition
Ne = [2/e] — 2 already introduced.

LEMMA 3.5. — There is a constant Ce,a,v such that for all u € 5(IK),

(78) lla^H2 ^ C^v (\\W(t)u\\2 + (W(t)D^ D^u) + \\D^u\\2 + \\u\\2) .
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Proof. — We first write the Taylor expansion of a up to order 2 in
M).

r\

a(t, r) = a(t, 0) + ̂  (t, 0)r + &o(f, r)r2,

with &o e 6'(1, (?A). The triangle inequality gives Vu e <?(R):
(79)

( / ^ \ w 2 \

lla^H2^ \\a(t^)u\\2^ [^M)r) H +|(6o(^T)T2)w^^|| .

As for the third term of the right hand side of (79), we can use the symbolic
calculus (see 12):

&OT2=MT2-{^T2}/(2^)+6l

= bo^r2 + b^r/i + 61

= Mr2 + b'^r/i + b^

with 62,60* e S°{GA.)' I^-continuity for symbols of order 0 implies that
there exists a constant Ca > 0 such that Vu € <S,

(80) l^oMr2)^!2 < Go (||I5M|2 + ||u||2) .

As for the second term of (79), the symbolic calculus also gives

,̂O),̂ M).-̂ M,

We can deduce that the second term of (79) satisfies
w ||2

(1^)"" ^M)°."2^ (̂.,
2 1 II 92" „ .,, II3

0)u

(81) =2 |g(,o) A.A. .1 |̂ «, M) zz.n .

The estimates of Lemma 3.4 for (a,/?) = (0,1) and (a, /?) = (1,1) give

(82)
w n2r\ \ W ^ y ^

^:M)rj n ^^^^(IVD^.P^+^^.u)).

For the first term of (79), we can use the case {a,/3) = (0,0), i.e., the fact
that a is bounded by W:

(83) Mt^)uf^C^y\\Wu\\\

According to the three estimates (80), (82) and (83), we get Lemma 3.5. D
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We state now a classical lemma (for a proof see for instance [8], [15],
and in a far wider context [9]). It would also be possible to give a direct
proof using level III metric.

LEMMA 3.6 (Polynomial estimate).— For all m there exists Cm > 0
s.t. ifV is a polynomial of degree at most m and W is defined by

(84) W(t} = r-2^), where ^r F' \V(s)\ds = 1,
2 Jt-r

then for all u € <S(R), we have

(85) \\Wuf + (WD^ Dm) + IÎ H2 ^ Cm ||(^2 + \V\)uf ,

Using this result we get

LEMMA 3.7. — There is a constant CeaV such that for all u € S
(86)

^^^(^^^^^^^^^^^^(ll^+A^Hll'+A^H^

Proof. — We have to cut the ^-space according to the constant metric

A^l^l2.

For R > 0 to be picked below, we can associate a partition of unity, i.e.,
families of points {^} and of functions {^} with E ̂  = 1, such that for
all k, there exists 7^

^ I^^I^C^.

We can suppose that every ̂  is supported in the ball

B^={t, \t-t^\ ̂ RK^}.

We first localize the problem. We write

(87) E II W + A2y^)) ̂ ll2 ̂ 2 II W + A2^)) u\\2
v

+2^||[D^H2.
v

As for the commutator, we say that for all v,

|| [D^ ̂ ] u\\2 ̂  2 IK Î2 + 8 IKA^I2 .
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We next sum over v, and we get that there is a constant Ci such that

^ || [D2, ̂ ] n||2 ^ Ci (A46 |H|2 + A2- ||D^||2) .
v

Therefore, using \\DtU\\2 = (D^u.u) we get for all p, > 0 the existence of
C^, such that

(88) 2^ || [D2, ̂ ] u\\2 ^ C^ \\u\\2 + ̂  H^H2 .
V

Eventually (87) becomes

(89) E II W + A2y^) ̂  ̂  21|^2 + A2^)^!!2i/
+C'^A4£||u||2+^||£»(2u||2.

Let us study now the first term of (89). For all v e N, we note Vrn,v
the Taylor expansion of V at t^ of order m

Vm,^(t) = V(t^ + V'{t^{t -1^) + ... + V^^t - ̂ )TO/m!.

We then write 1v € N,

IK^+A^+A26)^)!2

(90) < 3 || (D2 + A2^) ̂ u||2 + 3A4 ||(y - V^) ̂ u\\2 + 3A26 \\^u\\2.

We know that Vi/ e N, \V(t) - V^(t~)\ ̂  (3m+i\t - ̂ ^/(m + 1)! where
f3k is the fc-th semi-norm of V. If we choose m = [2/e] - 2 = Ng, and fi
such that

(91) ^+l(4J^)m+l/(m + 1)! < 1/2,

then we get for all t such that \t - ty\ ^ 4.RA-£

(92) A^V^-V^^I^A26^.

Moreover ^y is supported in By = {\t-ty\ ^ AA"6}. We can a fortriori
apply (92) and obtain

(93) \\^(V-V^)^u\f

^ (^+lfim+l/(m + I)!)2 A4-2^)6 ||̂ u||2 ^ A46 ||̂ ||2 .
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Applying this we get that there is a constant Cs such that for all v
(94)
||(^2 ̂  ̂ 2y^ ^ A26)^2 ^ G2 (|| (D2 + A2^^!2 + A46 ||̂ ||2) .

As for the first term of the right-hand-side of (90), we can use Lemma
3.6 applied to the polynomial V = A^-V^y + A2^ We get that there is a
constant 63 such that if we set

Wm^t)=r^(t)^

where Tm is the unique solution of

1 /^+r

(95) ,r / \A2V^(s)+A2£\ds=^
L Jt-r

we have

(96) ^Wm^uf+^Wm^Dt^Dt^u) + \\D^u\\2

^ €3 (H (D2, + |A2^, + A^D^^H2) .

According to (92) we can write for all s such that \s -1^\ ̂  4RA-8,

A^.OO-vooi^^A26,
therefore

^Vm^s) + A26 ^ 2-l(A2y(5) + A^) ^ 0.
This implies that for all t such that \t-ty\ ̂  ^A'^, we have an alternative.
First assume that r(t) ^ J^A"6. We can write

1 = ̂ r(t) [ (A2V(s) + A^ds ^ r(t) f |A2^ ,(^) + A2^^
z J|s-t|^r(t) J|s-t|^r(t)

(97) ^r(^) f lA^QO+A2^
^|s-t|^2r(t)

since A2y^^(s) + A26 ^ 0 on |s - ̂ | ^ 2r(^). This implies from (95) that
rm(t) ̂  2r(t), and we get for all t € By = {\t -1^\ ̂  RA-6}

W(t) ^ 41^,,^).

If we suppose that r(t) > RA-" we can write IV(t) ^ J?-2A2£. Anyhow
we get that there is a constant £4 uniform in ;/, such that for all t e
supp(^) c B^, we have

H^K^A^+TV^)).
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This implies that there is a constant €5 such that

\\W^u\\2 + (WDt^Dt^u) + \\D^u\\2

^ €5 ( ||̂ m,i/0 |̂|2 + (Wm^Dt^yU, Dt^yU)

+A26 (D^u, D^u) + A46 II^^H2 + \\D^u\\2 )

^ 3C5 (\\Wm^u\\2 + (T^A^,AM +A46 IIV^f + ||D^n||2) .

According to (96) and (94) we get that there is Co > 0 such that

\\W^u\\2 + lllV1/2^^^!!2 + \\D^u\\2

^ Ce (|| [D2, + A2^) ̂ n||2 + A46 ||̂ n||2) .

We can commute as in (87), use the fact that ̂  \WyU\\2 ^ €7 \\u\\2,
and use again (88) during summation over v > 0. We get that there is a
constant Cy^ > 0 such that

^Wuf+^W^Dtuf+^D2^2

^ Cr,, (|| W + A^) n||2 + A4- |M|2) + 4/. ||D |̂|2 .

Taking ^ = 1/8 completes the proof of the Lemma 3.7. D

Proof of Proposition 3.1. — This is immediate, according to Lemmas
3.5 and 3.7.

4. Appendix.

4.1. Egorov theorem in dimension 1.

We give here a version of the theorem of Egorov ([3]), in the very
special case of dimension one of space, and with a gain of two derivatives.
This is essentially the version given by Fefferman and Phong in [6]. An
homogeneous statement can be found for example in [7].

THEOREM 4.1 (Egorov).— Let G = A-^dX]2 a family of semi-
classical metrics on R2, with X = (rc,^) symplectic coordinates. Let
x ̂  a(x) be real-valued in ^^(G) (see def. 1.2), A(x) = ̂  a(s)ds, and
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let U be the unitary operator (on L2) of multiplication by e^^. Finally
let us define the following canonical transformation:

X '' Q/, rj) •—> (y, r] -h a(y)) = (x, ̂ ).

Then for all real symbols a € ^(G), a o ^ e S'2{G) and there exists
ao € S°(G) such that

^a^^ao^+a^.

Remark. — This version does not use confinement, and we can notice
that the canonical transformation \ is globally defined. A similar statement
in dimension n can be written, and the tools for the proof are similar. In
fact the unitary operator U is here the simplest example of Fourier integral
operator, and the function A is related to the generating function of \ (see
for example [7], [10]).

Proof.— We only give a sketch of the proof. Let a € S2(G), and
denote by K the kernel of the operator Ud^U*

K{x^ = (2^ fe^-^^-y^a (^^U

(in the oscillatory integral sense). Let us define the Weyl symbol a a priori
in <?' such that K is also the kernel of a^. Then

(98) a(x, 0 = ( e-^K (x + t/2, x - t / 2 ) dt

= (2^ /^(A('+t)-A('^)^-^)^(^^)^.

We only need to prove that a = a o ̂  + 0,0 around 0. Given any X = (x, ̂ ),
let us set

<S>x(t, rj) = A (x + 1 / 2 ) - A (x - t / 2 ) -+- trj - t^
and study the critical points:

^M = ° ̂  {^ - .(.)' D2^. (^ - ̂ ) = (? ; ) .
We can apply the Morse lemma with parameter X around 0, taking into
account the scale A inherited from the metric. We get that there is a
local diffeomorphism Kx : (5,<) ^ (t,r]} smooth in X around 0, on a
G-neighborhood of (t, rj) = 0, such that

^x(Kx(s^))=(s^-(a-a(x))},
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whose Jacobian at the critical point is 1. Then let us take for all X around 0,
a symbol u;x of order 0, depending smoothly on X in the scale A, supported
on a (7-ball of radius r and center the critical point (0, $ - a(x)), with value
1 on ball of radius r/2, where the precedent form is valid. We get that for
all X around 0, a = ai + 02, where

(99) aiQr.O = (2^)-" / e^x ̂  ̂ ujx {t, r j ) a (x, rj)drjdt^

02(^0 = (270-" L^x(^)(i -^(t^))a(x^)drjdt.

The second term can be treated thanks to the non-stationary phase formula.
We get 02 € S~°°(G) near X = 0. As for the first term, the stationary phase
formula gives
(100)

ai(^,0 = (270- / e^-^-^ \K^ C)|^x(^x(^ 0)a(^, rj^ Q)d^ds.

&X(5,C)

We get then according to the quadratic form of the phase

^i(^0 = ^x(0,^ - a(x)) + i9^bx(0^ - a(x)) + ao(x^).

aQ is then of order 0. The fact that ai is real implies that the second term
vanishes. Moreover the fact that the Jacobian and ujx have value 1 at the
critical point gives bx(0^-a(x)) = a(x^-a(x)) = ao^(x^). The proof
is complete. Q

4.2. A very normal form.

We give here a useful preparation lemma, in the spirit of the
Fefferman-Phong classification (see [5]). The proof uses a Calderon-
Zygmund decomposition and some tools of differential geometry, such as
the Malgrange preparation theorem (see [13], [10, Lemma 7.5.5]).

LEMMA 4.2 (Very normal form).— Let G = A-^dX]2 a family of
semi-classical metrics on R27^ Let a be in ^(G) and let (g,\) be the
proper metric of a. Then there exists (7, R > 0 depending only on a finite
number of semi-norms of a such that the phase space is made of the three
following types of g- balls:

For any XQ, if we pose (go, \o) = (gxo,\(Xo)), then for any X in the
go-ball of radius R and center XQ.
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(1) either Ao ^ C,

WoraW^C-1^

(3) or e^a(X) = Ao($i - a^x'^ ^))2 + Vo^i, < ̂ ),

where X = (.ri^'.^i,^) is a set of linear symplectic coordinates, and eo,
ao, VQ are globally defined and respectively in S°(go), S1^^) and S2(go),
with semi-norms controlled by those of a, and eo ^ C~1. The point XQ is
said to be respectively either negligible or elliptic or of convexity.

Remark. — The new fact is that from (3) we shall be directly able to
get e^1 a = r]2 + V(y), without a non-constant factor attached to the term
rf2.

Proof. — We again give only a sketch of proof. The result is essen-
tially an improvement of the following decomposition which is a standard
result of level II (see [5], [12], [11, Lemma 18.6.9]):

(1) either Ao ^ (7,

(2) or a(X) ^ C^A2,

(3) or a(X) = Aoe(X)($i - a(;n,^))2 + V^i,^,^),

where e, a, and V have the same properties as eo, ao, and VQ. The
only difference is that e is factor of the square, and not of the whole
right-hand-side. In order to prove the lemma, we first use the rescaling
X ̂  AQ^X - Xo). It is sufficient to show it for XQ = 0, and Ao = 1. First
study the following function:

F(X,^)=6(X)(^-^)24-^

for which we have the following derivatives at 0:

F(0,0,0) = 0, 9F/9^ (0,0,0) = 0, c^F/c^ (0,0,0) = 2e(0) > 0.

From the estimates on e and the rescaling, we get that the constant e(0)
can be framed by absolute positive constants. The Malgrange preparation
theorem (see [13], [10, Lemma 7.5.5]) then implies that we can find three
smooth functions K > 0, /?, and 7 such that for X = (a;i, ̂ i, X') we have

(101) F(X,./, z) = K(X^ y , z) (Ci + 2/^i, X')^ + 7(^1, X'))
= K(X^,/, z) ((^1 + (3(x,, X'))2 + W(x,, X1)}

on a (X, y , ̂ -neighborhood V of 0, where W = 7 - ff-. We can suppose,
in the computational proof, a(0) and V(0) to be sufficiently small and so
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to be in V (otherwise we get ellipticity). It implies the existence of RQ > 0
such that in the X-ball B(0, Ro),

(102) eo(X) =K(X^(^Xf)^V{x^Xf))^
ao(^X') = -^X^a{^X')^V{x^X1)),

V^X^^W^X^a^X^^V^X1)).

We then obtain a = eo(($i ~ ^o)2 + Vo}' Moreover, for the same reason as
before, we can also suppose that (x\, ̂ i, o'o(a'i, X')) is in B(0, Ro) for X in
a smaller ball B(0,R). Taking ^i = ao(^i,X')) in a = eo((^i - ao)2 + Vo)
leads to Vo ^ 0 on i?(0, J?). We observe that the estimates on ao, eo and Vo
are inherited from the ones on a, e and V. Using eventually the rescaling
gives the result of the lemma. D
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