
ANNALES DE L’INSTITUT FOURIER

DAVID M J. CALDERBANK

HENRIK PEDERSEN
Selfdual spaces with complex structures, Einstein-
Weyl geometry and geodesics
Annales de l’institut Fourier, tome 50, no 3 (2000), p. 921-963
<http://www.numdam.org/item?id=AIF_2000__50_3_921_0>

© Annales de l’institut Fourier, 2000, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_2000__50_3_921_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
50, 3 (2000), 921-963

SELFDUAL SPACES WITH COMPLEX STRUCTURES,
EINSTEIN-WEYL GEOMETRY AND GEODESICS

by D.M.J. CALDERBANK and H. PEDERSEN

1. Introduction.

Selfdual conformal 4-manifolds play a central role in low dimensional
differential geometry. The selfduality equation is integrable, in the sense
that there is a twistor construction for solutions, and so one can hope to
find many explicit examples [2], [23]. One approach is to look for examples
with symmetry. Since the selfduality equation is the complete integrability
condition for the local existence of orthogonal (and antiselfdual) complex
structures, it is also natural to look for solutions equipped with such complex
structures. Our aim herein is to study the geometry of this situation in detail
and present a framework unifying the theories of hypercomplex structures
and scalar-flat Kahler metrics with symmetry [7], [12], [19]. Within this
framework, there are explicit examples of hyperKahler, selfdual Einstein,
hypercomplex and scalar-flat Kahler metrics parameterised by arbitrary
functions.

The key tool in our study is the Jones and Tod construction [16],
which shows that the reduction of the selfduality equation by a conformal
vector field is given by the Einstein-Weyl equation together with the linear
equation for an abelian monopole. This correspondence between a selfdual
space M with symmetry and an Einstein-Weyl space B with a monopole is
remarkable for three reasons:

(i) It provides a geometric interpretation of the symmetry reduced
equation for an arbitrary conformal vector field.

Keywords: Sefdual manifolds - Hermitian surfaces - Conformal symmetry - Einstein-
Weyl 3-manifblds — Geodesic congruences — Abelian monopoles — Twistor theory.
Math. classification: 53A30 - 32L25 - 53B35 - 57M50.



922 D.M.J. CALDERBANK AND H. PEDERSEN

(ii) It is a constructive method for building selfdual spaces out of
solutions to a linear equation on an Einstein-Weyl space.

(iii) It can be used in the other direction to construct Einstein-Weyl
spaces from selfdual spaces with symmetry.

We add to this correspondence by proving that invariant antiselfdual
complex structures on M correspond to shear-free geodesic congruences
on B, i.e., foliations of B by oriented geodesies, such that the transverse
conformal structure is invariant along the leaves. This generalises Tod's
observation [29] that the Einstein-Weyl spaces arising from scalar-
flat Kahler metrics with Killing fields [19] admit a shear-free geodesic
congruence which is also twist-free (i.e., surface-orthogonal).

In order to explain how the scalar-flat Kahler story and the analogous
story for hypercomplex structures [7], [12] fit into our more general
narrative, we begin, in Section 2, by reviewing, in a novel way, the
construction of a canonical "Kahler-Weyl connection" on any conformal
Hermitian surface [9], [32]. We give a representation theoretic proof of the
formula for the antiselfdual Weyl tensor on such a surface [1] and discuss its
geometric and twistorial interpretation when the antiselfdual Weyl tensor
vanishes. We use twistor theory throughout the paper to explain and
motivate the geometric constructions, although we find it easier to make
these constructions more general, explicit and precise by direct geometric
arguments.

Having described the four dimensional context, we lay the three
dimensional foundations for our study in Section 3. We begin with some
elementary facts about congruences, and then go on to show that the
Einstein-Weyl equation is the complete integrability condition for the
existence of shear-free geodesic congruences in a three dimensional Weyl
space. As in Section 2, we discuss the twistorial interpretation, this time in
terms of the associated "minitwistor space" [14], and explain the minitwistor
version of the Kerr theorem, which has only been discussed informally in
the existing literature (and usually only in the flat case). We also show that
at any point where the Einstein-Weyl condition does not hold, there are
at most two possible directions for a shear-free geodesic congruence. The
main result of our work in this section, however, is a reformulation of the
Einstein-Weyl equation in the presence of a shear-free geodesic congruence.
More precisely, we show in Theorem 3.8 that the Einstein-Weyl equation is
equivalent to the fact that the divergence and twist of this congruence are
both monopoles of a special kind. These "special" monopoles play a crucial
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role in the sequel.

We end Section 3 by giving examples. We first explain how the
Einstein-Weyl spaces arising as quotients of scalar-flat Kahler metrics
and hypercomplex structures fit into our theory: they are the cases of
vanishing twist and divergence respectively. In these cases it is known that
the remaining nonzero special monopole (i.e., the divergence and twist
respectively) may be used to construct a hyperKahler metric [3], [7], [12],
motivating some of our later results. We also give some new examples:
indeed, in Theorem 3.10, we classify explicitly the Einstein-Weyl spaces
admitting a geodesic congruence generated by a conformal vector field
preserving the Weyl connection. We call such spaces Einstein-Weyl with a
geodesic symmetry. They are parameterised by an arbitrary holomorphic
function of one variable.

The following section contains the central results of this paper,
in which the four and three dimensional geometries are related. We
begin by giving a new differential geometric proof of the Jones and
Tod correspondence [16] between oriented conformal structures and Weyl
structures, which reduces the selfduality condition to the Einstein-Weyl
condition (see 4.1). Although other direct proofs can be found in the
literature [12], [17], [19], they either only cover special cases, or are not
sufficiently explicit for our purposes. Our next result, Theorem 4.2, like the
Jones and Tod construction, is motivated by twistor theory. Loosely stated,
it is as follows.

THEOREM. — Suppose M is an oriented conformal 4^-manifold with
a conformal vector field, and B is the corresponding Weyl space. Then
invariant antiselfdual complex structures on M correspond to shear-free
geodesic congruences on B.

In fact we show explicitly how the Kahler-Weyl connection may
be constructed from the divergence and twist of the congruence. This
allows us to characterise the hypercomplex and scalar-flat Kahler cases
of our correspondence, reobtaining the basic constructions of [3], [7], [12],
[19], as well as treating quotients of hypercomplex, scalar-flat Kahler and
hyperKahler manifolds by more general holomorphic conformal vector
fields. As a consequence, we show in Theorem 4.3 that every Einstein-
Weyl space is locally the quotient of some scalar-flat Kahler metric and
also of some hypercomplex structure, and that it is a local quotient of
a hyperKahler metric (by a holomorphic conformal vector field) if and
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only if it admits a shear-free geodesic congruence with linearly dependent
divergence and twist.

We clarify the scope of these results in Section 5 where we show
that our constructions can be applied to all selfdual Einstein metrics with a
conformal vector field. Here, we make use of the fact that a selfdual Einstein
metric with a Killing field is conformal to a scalar-flat Kahler metric [31].

The last four sections are concerned exclusively with examples.
In Section 6 we show how our methods provide some insight into the
construction of Einstein-Weyl structures from R4 [26]. As a consequence,
we observe that there is a one parameter family of Einstein-Weyl structures
on S3 admitting shear-free twist-free geodesic congruences. This family is
complementary to the more familiar Berger spheres, which admit shear-free
divergence- free geodesic congruences [7], [12].

In Section 7, we generalise this by replacing R4 with a Gibbons-
Hawking hyperKahler metric [13] constructed from a harmonic function
on R3. If the corresponding monopole is invariant under a homothetic
vector field on R3, then the hyperKahler metric has an extra symmetry,
and hence another quotient Einstein-Weyl space. We first treat the case of
axial symmetry, introduced by Ward [33], and then turn to more general
symmetries. The Gibbons-Hawking metrics constructed from monopoles
invariant under a general Killing field give new implicit solutions of the
Toda field equation. On the other hand, from the monopoles invariant under
dilation, we reobtain the Einstein-Weyl spaces with geodesic symmetry.

In Section 8 we look at the constant curvature metrics on H3, R3

and S3 from the point of view of congruences and use this prism to explain
properties of the selfdual Einstein metrics fibering over them. Then in the
final section, we consider once more the Einstein-Weyl spaces constructed
from harmonic functions on R3, and use them to construct torus symmetric
selfdual conformal structures. These include those of Joyce [17], some of
which live on A;CP2, and also an explicit family of hypercomplex structures
depending on two holomorphic functions of one variable.

This paper is primarily concerned with the richness of the local
geometry of selfdual spaces with symmetry, and we have not studied
completeness or compactness questions in any detail. Indeed, the local
nature of the Jones and Tod construction makes it technically difficult
to tackle such issues from this point of view, and doing so would have
added considerably to the length of this paper. Nevertheless, there remain
interesting problems which we hope to address in the future.
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2. Conformal structures and Kahler-Weyl geometry.

Associated to an orthogonal complex structure J on a conformal
manifold is a distinguished torsion-free connection D. The conformal
structure is preserved by this connection and, in four dimensions, so is J .
Such a connection is called a Kdhler- Weyl connection [5]: if it is the Levi-
Civita connection of a compatible Riemannian metric, then this metric is
Kahler. In this section, we review this construction, which goes back to Lee
and Vaisman (see [9], [21], [32]).

It is convenient in conformal geometry to make use of the density
bundles Lw (for w C R). On an n-manifold M, Lw is the oriented
real line bundle associated to the frame bundle by the representation
A i-» IdetA^/77' of GL(n). The fibre L^ may be constructed canonically
as the space of maps p: (A^M) \ 0 -^ R such that p(\uj) = ̂ ^^p^)
for all A 6 R" and a; € (A^M) \ 0.

A conformal structure c on M is a positive definite symmetric bilinear
form on TM with values in L2, or equivalently a metric on the bundle
^-ly^f (When tensoring with a density line bundle, we generally omit
the tensor product sign.)

The line bundles Lw are trivialisable and a nonvanishing (usually
positive) section of L1 (or Lw for w ^ 0) will be called a length scale or
gauge (of weight w). We also say that tensors in Lw 0 (TM)3 0 (T^M)^
have weight w -\- j — k. If p is a positive section of L1, then p~2c is a
Riemannian metric on M, which will be called compatible. A conformal
structure may equally be defined by the associated "conformal class" of
compatible Riemannian metrics.

A Weyl derivative is a covariant derivative D on L1. It induces
covariant derivatives on U" for all w. The curvature of D is a real 2-form
F0 which will be called the Faraday curvature or Faraday 2-form. If F0 = 0
then D is said to be closed. It follows that there are local length scales p,
with Dp = 0. If such a length scale exists globally then D is said to be exact.
Conversely, a length scale p, induces an exact Weyl derivative D^ such that
D^fi == 0. Consequently, we sometimes refer to an exact Weyl derivative as
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926 D.M.J. CALDERBANK AND H. PEDERSEN

a gauge. The space of Weyl derivatives on M is an affine space modelled on
the space of 1-forms.

Any connection on TM induces a Weyl derivative on L1. Conversely,
on a conformal manifold, the Koszul formula shows that any Weyl
derivative determines uniquely a torsion-free connection D on TM
with DC = 0 (see [5]). Such connections are called Weyl connections.
Linearising the Koszul formula with respect to D shows that (D + 7)xV =
DxY + ^{X)Y + 7(V)X - (X,r)7, where (. , .) denotes the conformal
structure, and X, Y are vector fields. Notice that here, and elsewhere, we
make free use of the sharp isomorphism ([: T*M —>• L~2TM. We sometimes
write 7 A X(Y) = <-y(7 A X) for the last two terms.

2.1. DEFINITION. — A Kdhler- Weyl structure on a conformal mani-
fold M is given by a Weyl derivative D and an orthogonal complex
structure J such that DJ = 0.

Suppose now that M is a conformal n-manifold (n = 2m > 2) and
that J is an orthogonal complex structure. Then fl.j: = (J.,.) is a section
of L^f^T^M^ called the conformal Kdhler form. It is a nondegenerate
weightless 2-form. (In general, we identify bilinear forms and endomorphism
by^(x,y)=(^(x),y).)

2.2. PROPOSITION (cf. [21]). — Suppose that fl is a nondegenerate
weightless 2-form. Then there is a unique Weyl derivative D such that d°Q.
is trace-free with respect to f2, in the sense that ̂ d^^,^,.) == 0, where
ei,e[ are frames for L~1TM with ^(e^.e^) == <^j.

Proof. — Pick any Weyl derivative D° and set D = -D0 + 7 for some
1-form 7. Then d0^ = d00^ + 27 A ̂  and so the traces differ by

2(7 A ^)(e,, e^.) = 27(^(4 .) + 27(e^(., e,) + 27 Q(e,, eQ

= 2(n - 2)7.

Since n > 2 it follows that there is a unique 7 such that d0^ is trace-free. D

2.3. PROPOSITION. — Suppose that J is an orthogonal complex
structure on a conformal manifold M and that dDQ,J = 0. Then D defines
a Kahler-Weyl structure on M, i.e., DJ = 0.

Proof. — For any vector field X, DxJ anticommutes with J
(since J2 = —id) and is skew (since J is skew, and D is conformal).
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Hence {(DjxJ — JDxJ)Y,Z}^ which is symmetric in X,Y because J is
integrable and D is torsion-free, is also skew in Y,Z. It must therefore
vanish for all X, Y, Z. If we now impose dDQ.J == 0 we obtain:

o = d^(x, y, z) - ̂ (x, jr, j z )
= {(DxJ)Y^Z} + {(DyJ)Z^X} + {(DzJ)X^Y}
- {(DxJ)JY.JZ} - { { J D v J ) J Z , X } - { { J D z J ) X , J Y )

=c2{(DxJ)Y^Z).

Hence DJ == 0. D

Now if n = 4 and D is the unique Weyl derivative such that dD^J
is trace-free, then in fact dDQ,J = 0 since wedge product with Hj is an
isomorphism from T*M to L2A3T*M. Hence, by Proposition 2.3, DJ = 0.
To summarise:

2.4. THEOREM (cf. [32]). — Any Hermitian conformal structure on
any complex surface M induces a unique Kahler-Weyl structure on M. The
Weyl derivative is exact if and only if the conformal Hermitian structure
admits a compatible Kahler metric.

On an oriented conformal 4-manifold, orthogonal complex structures
are either selfdual or antiselfdual, in the sense that the conformal Kahler
form is either a selfdual or an antiselfdual weightless 2-form. In this paper
we shall be concerned primarily with antiselfdual complex structures on
selfdual conformal manifolds, z.e., conformal manifolds M with W~ = 0,
where W~ is the antiselfdual part of the Weyl tensor. In this case, as is well
known (see [2]), there is a complex 3-manifold Z fibering over M, called
the twistor space of M. The fibre Zx given by the 2-sphere of orthogonal
antiselfdual complex structures on Ta;M, and the antipodal map J H-> —J
is a real structure on Z. The fibres are called the (real) twistor lines of Z
and are holomorphic rational curves in Z. The canonical bundle Kz of Z is
easily seen to be of degree —4 on each twistor line. As shown in [10], [25],
any Weyl derivative on M whose Faraday 2-form is selfdual induces a
holomorphic structure on L^, the pullback of L1 (g) C, and (up to reality
conditions) this process is invertible; this is the Ward correspondence for
line bundles, or the Penrose correspondence for selfdual Maxwell fields.

The Kahler-Weyl connection arising in Theorem 2.4 can be given a
twistor space interpretation. Any antiselfdual complex structure J defines
divisors P,P in Z, namely the sections of Z given by J,—J. Since
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the divisor T> + T> intersects each twistor line twice, the holomorphic
line bundle \D + T>]K^ is trivial on each twistor line: more precisely,
by viewing J^ as a constant vector field on L2A2_T^M^ its orthogonal
projection canonically defines a vertical vector field on Z holomorphic on
each fibre and vanishing along T> + V. Therefore [D + T>] is a holomorphic
structure on the vertical tangent bundle of Z. In fact the vertical bundle
of Z is L^K^ and so J determines a holomorphic structure on -L^1,
which, since [D -t- T>] is real, gives a Weyl derivative on M with selfdual
Faraday curvature [11].

Similarly, by projecting each twistor line stereographically onto the
orthogonal complement of J in L2A2_T*M, which we denote L2KJ, we see
that the pullback of L^Kj to Z has a section s meromorphic on each fibre
with a zero at J and a pole at —J. Therefore the divisor T> — T> defines
a holomorphic structure on this pullback bundle and hence a covariant
derivative with (imaginary) selfdual curvature on L^Kj. This curvature
may be identified with the Ricci form^ since if it vanishes, [P — T>] is trivial,
and so 5, viewed as a meromorphic function on Z, defines a fibration of Z
over CP1; that is, M is hypercomplex.

The selfduality of the Faraday and Ricci forms may be deduced
directly from the selfduality of the Weyl tensor. To see this, we need a few
basic facts from Weyl and Kahler-Weyl geometry.

First of all, let D be a Weyl derivative on a conformal n-manifold and
let R0^ denote the curvature of D on LW~1TM. Then it is well known
that

(2.1) R^ = W^y + wFD(X, Y) id -^(X) A Y 4- rD(Y) A X.

Here W is the Weyl tensor and r0 is the normalised Ricci tensor, which
decomposes under the orthogonal group as

rD=rP-^ ——1——r scaP id - ̂ F^,0 2n{n - 1) 2

where r^ is symmetric and trace-free, and the trace part defines the scalar
curvature of D.

2.5. PROPOSITION. — On a Kahler-Weyl n-manifold (n > 2) with
Weyl derivative D, F° A Oj and the commutator [R^^^J] both vanish.
Ifn > 4 it follows that F0 = 0, while for n = 4, F0 is orthogonal to fl,j.

ANNALES DE L'lNSTITUT FOURIER
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Also ifR0 = R071 then the symmetric Ricci tensor is given by the formula

| {R^^X^JY) =(n- 2)7^ (X,V) + ^ scal^X.V),

where on the left we are summing over a weightless orthonormal basis e^.
Consequently the symmetric Ricci tensor is J-invariant.

Proof. — The first two facts are immediate from dDfl,J = 0 and
DJ = 0 respectively. If n > 4 then wedge product with fl,j is injective
on 2-forms, while for n = 4, F° A ^j is the multiple ±{FD ,^tj} of the
weightless volume form, since ^tj is antiselfdual. The final formula is a
consequence of the first Bianchi identity:

^{R^X^JY} = {R^Je^JY} = {R^e^Y}

= F°(X^ e,)(e^ Y} - ̂ (X) A e, e^ Y) + {r0^) A Xe^ Y}

=(n- 2)7^ (X, V) + 1 scal^X, Y) - 1 (n - ̂ (X, Y)
i t Zi

and the last term vanishes since F° = 0 for n > 4. D

Now suppose n = 4. Then W^ y commutes with J, and so

J ° wxy - wxy o J = J o (^(X) A Y - ̂ (V) A X)
- (r^X) A Y - rD(Y) A X) o J.

The bundle of antiselfdual Weyl tensors may be identified with the
rank 5 bundle of symmetric trace-free maps Z^A^T^M —> A^T^M,
where W-(U A V)(X A Y) = {W^yX.Y) and we identify L2A2_T]'M
with L~2A2_TM. Under the unitary group Z^A^T^M decomposes into the
span of J and the weightless canonical bundle I - ^ K j . This bundle of Weyl
tensors therefore decomposes into three pieces: the Weyl tensors acting
by scalars on ( J ) and L^Kj'^ the symmetric trace-free maps L^Kj —> Kj
(acting trivially on (J)); and the Weyl tensors mapping (J) into Kj and
vice versa. These subbundles have ranks 1,2 and 2 respectively. Since
no nonzero Weyl tensor acts trivially on Kj, it follows that the above
formula determines W~ uniquely in terms of r0. Now this is an invariant
formula which is linear in r^, so r^ and Ff cannot contribute: they are
sections of (isomorphic) irreducible rank 3 bundles. Thus the first and third
components of W~ are given by scal^ and F? respectively, and the second
component must vanish. The numerical factors can now be found by taking
a trace.
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2.6. PROPOSITION (c/. [1]). — On a Kahler-Weyl ^-manifold with
Weyl derivative D,

W- = ̂ scal^^idA^-^^0^)- ^ ( J F D ^ ^ J + ^ J ^ J F D ) ,

where J F ° = F? o J . In particular W- = 0 if and only if F? = 0 and
scal^ = 0.

The Ricci form p0 on M is denned to be the curvature of D on the
weightless canonical bundle I^Kj. Therefore

PD^Y)=-^(R^e^Jek)

=-^W,e^JY} - {R^e^JX))

= i (270^ JX, Y) + ^ scal^JX, V) + 2F_D(JX, V)).

Thus W- = 0 if and only if p° and F° are selfdual 2-forms.

3. Shear-free geodesic congruences and Einstein-Weyl
geometry.

On a conformal manifold, a foliation with oriented one dimensional
leaves may be described by a weightless unit vector field ^. (If K is any
nonvanishing vector field tangent to the leaves, then \ = ±K/\K\.) Such a
foliation, or equivalently, such a ^, is often called a congruence.

If D is any Weyl derivative, then D\ is a section of T*M (g) L-^TM
satisfying {D\, \) = 0, since \ has unit length. Let ^-L be the orthogonal
complement of \ in L^TM. Under the orthogonal group of ^-L acting
trivially on the span of ^, the bundle T*M (g) ^J- decomposes into four
irreducible components: L^A2^), L-^S^^), L-1 (multiples of
the identity ^J- h-> ^-L), and L-1^1- (the ^-valued 1-forms vanishing on
vectors orthogonal to ^).

The first three components of D\ may be found by taking the skew,
symmetric trace-free and tracelike parts of D\ - \ 0 D^, while the final
component is simply D^\. These components are respectively called the
twist, shear, divergence, and acceleration of \ with respect to D. If any
of these vanish, then the congruence \ is said to be twist-free, shear-free,
divergence-free, or geodesic accordingly.
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3.1. PROPOSITION. — Let \ be a unit section of L^TM. Then the
shear and twist of \ are independent of the choice of Weyl derivative D.
Furthermore there is a unique Weyl derivative Dx with respect to which \
is divergence-free and geodesic.

This follows from the fact that (D + 7)^ = D\ + 7(x) id —X 0 7.

The twist is simply the Frobenius tensor of ^-L (i.e., the \ component
of the Lie bracket of sections of ^-L), while the shear measures the Lie
derivative of the conformal structure of ^-L along \ (which makes sense
even though \ is weightless).

3.2. Remark. — If Dx is exact, with Dx|l = 0, then K = u^ is
a geodesic divergence-free vector field of unit length with respect to the
metric g = /^-2c. If \ is also shear-free, then K is a Killing field of g. Note
conversely that any nonvanishing conformal vector field K is a Killing field
of constant length a for the compatible metric a'2\K\~2c: \ = K/\K\ is
then a shear-free congruence, and Dx is the exact Weyl derivative D^^
which we call the constant length gauge of K.

We now turn to the study of geodesic congruences in three
dimensional Weyl spaces and their relationship to Einstein-Weyl geometry
and minitwistor theory (see [14], [20], [26]). We discuss the "mini-Kerr
theorem" which is rather a folk theorem in the existing literature, and
rewrite the Einstein-Weyl condition in a novel way by finding special
monopole equations associated to a shear-free geodesic congruence.

The minitwistor space of an oriented geodesically convex Weyl space
is its space of oriented geodesies. We assume that this is a manifold {i.e.,
we ignore the fact that it may not be Hausdorff), as we shall only be using
minitwistor theory to probe the local geometry of the Weyl space. The
minitwistor space is four dimensional, and has a distinguished family of
embedded 2-spheres corresponding to the geodesies passing through given
points in the Weyl space.

Now let \ be a geodesic congruence on an oriented Weyl space B with
Weyl connection D3. Then

(3.1) D13^ = r(id -x 0 X) + ^ *X + S,

where the divergence and twist, r and AC, are sections of L~1 and S is the
shear. Note that Dx = DB - r\.

TOME 50 (2000), FASCICULE 3



932 D.M.J. CALDERBANK AND H. PEDERSEN

Equation (3.1) admits a natural complex interpretation, which we
give in order to compare our formulae to those in the literature [15], [26].
Let H == ^± 0 C in the complexified weightless tangent bundle. Then H
has a complex bilinear inner product on each fibre and the orientation
of B distinguishes one of the two null lines: if 61,62 is an oriented real
orthonormal basis, then e\ + ie^ is null. Let Z be a section of this null line
with (Z,Z) = 1. Such a Z is unique up to pointwise multiplication by a
unit complex number: at each point it is of the form (ei 4- i e ' z ) / ^ /2 . Now
DBx = pZ (g) Z + ^oZ (g) Z + crZ (g) Z + aZ 0 Z, where p = r + ̂  and
a = E(Z, Z) are sections of L~1 (g> C. Note that a depends on the choice
of Z: the ambiguity can partially be removed by requiring that D^Z = 0,
but we shall instead work directly with S.

3.3. Conventions. — There are two interesting sign conventions for the
Hodge star operator of an oriented conformal manifold. The first satisfies
a A */? = (Qs/^Qr, where or is the unit section of ^P^T^M given by
the orientation. This is convenient when computing the star operator of
an explicit example. The second satisfies *1 = or and L^ *a = *(X A a),
which is a more useful property in many theoretical calculations. Also
*2 = (—l)^71-1) depends only on the dimension of the manifold, not on
the degree of the form. If a is a A;-form, then *a = (—1) i ̂ "^a.

3.4. PROPOSITION. — The curvature of D3 applied to the geodesic
congruence \ is given by

R^°YX = ̂  [D^r x A V - D^r \ A X - D^ *V + D^K *X

+ (r2 - /^)X A V - 2r^ A *(X A Y)] + (D^S)(V)

- (D^)(X) - r(S(X)(x,n - W{^X))

+ K * (Y A S(X) - X A S(V))
and also by its decomposition
pB.Q^x,yX

= r^Y^X - ̂ (Y^X + (rf(X) + ^ scal^X - ̂ (X))^)

-r^(X,x)r+ IF^X.X)^- (r^(Y)+ Jscal^V- IF^Y))^).

The first formula follows from R^yX = ̂ (P^y - D^^^x^
using

^(^X) = ^jMid -X ̂  X) + ̂  *X
- r(^^ 0 X + x ̂  -Dix) + ̂  *^ix + -DiS.
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The second formula follows easily from R^y = -^W A y + ̂ (Y) A X
where r5 == rf + ^ seal5 - \ F3.

In order to compare the rather different formulae in Proposition 3.4,
we shall first take Y parallel to \ and X orthogonal to \. The formulae
reduce to

D^r X + D^K, JX + (r2 - i^)X 4- 2r^ JX
+ S(J9J^) + (2^S)(X) + rS(X) - ̂ S(JX)

= -^X

= -^(X) + ̂ (X, x)x + I (^W - ̂ (^ X)X)

-^(^X^-jscal^X,

where JX: = ̂  *^ and we have used the fact that

(^S)(x)+E(£»$x)=0.

If we contract with another vector field Y orthogonal to \, then we obtain

D^T (X, V) + D^K {JX, Y} + <(Z^E)(X), V)

+ (r2 - ̂ ){X, Y} + 2rK{JX, Y} + 2r{^(X), Y} + <S(X), E(V))

= -r^X,Y) + IF^Y) - (r^x,x) - ̂  scal5)^,^.

Decomposing this into irreducibles gives the equations

(3.2) ^+^-^+ JIEI2^ |roB(x,x)+ ^scal5 =0,

(3.3) Z^4-2T^+J(x,*^)=0,

(3.4) D^T, + 2TS + sym^ r^ = 0,

which may, assuming D^Z = 0, be rewritten as

(3.5) ^p+^+aa+ |r^(x,x) + ̂  seal5 +^ *^) == 0,

(3.6) 2^(7 + (p + p)cr + r^(Z, Z) = 0.

Along a single geodesic, these formulae describe the evolution of
nearby geodesies in the congruence and therefore may be interpreted
infinitesimally (cf. [26]). We say that a vector field X along an oriented
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geodesic r with weightless unit tangent \ is a Jacobi field if and only if
(D5)^ ^X == R3^^. The space of Jacobi fields orthogonal to F is four
dimensional, since the initial data for the Jacobi field equation is X, D^X.
In fact this is the tangent space to the minitwistor space at F. If we now
consider a two dimensional family of Jacobi fields spanning (at each point
on an open subset of F) the plane orthogonal to F, then we may write
D^X = rX + K J X 4- S(X) for the Jacobi fields X in this family. If we
differentiate again with respect to ^, we reobtain the equations (3.2)-(3.6).

A geodesic congruence gives rise to such a two dimensional family
of Jacobi fields along each geodesic in the congruence. We define the
Lie derivative C^X of a vector field X along \ to be the horizontal
part of D^X - D^\. Then if C^X = 0, X is a Jacobi field, and such
Jacobi fields are determined along a geodesic by their value at a point.
Next note that C^J = 0 (i.e., C^(JX) = JC^X) if and only if \
is shear-free. However, equation (3.4) shows that if \ is a shear-free,
then rf(X,Y) = -^r^(x.x)(X,Y) for all X,Y orthogonal to \. More
generally, this equation shows that J is a well defined complex structure
on the space of Jacobi fields orthogonal to a geodesic T if and only if
rf(X,y) = -^(\,\){X,Y) for all X,Y orthogonal to F. The Jacobi
fields defined by a congruence are then invariant under J if and only if the
congruence is shear-free.

3.5. DEFINITION (cf. [14]). — A Weyl space B,DB is said to be
Einstein- Weyl if and only ifr^ == 0.

As mentioned above, the space of orthogonal Jacobi fields along a
geodesic is the tangent space to the minitwistor space at that geodesic.
Therefore, if B is Einstein-Weyl, the minitwistor space admits a natural
almost complex structure. This complex structure turns out to be
integrable, and so the minitwistor space of an Einstein-Weyl space is a
complex surface <S containing a family of rational curves, called minitwistor
lines, parameterised by points in B [14]. These curves have normal
bundle 0(2) and are invariant under the real structure on S defined
by reversing the orientation of a geodesic. Conversely, any complex surface
with real structure, containing a real {i.e., invariant) rational curve with
normal bundle 0(2), determines an Einstein-Weyl space as the real points
in the Kodaira moduli space of deformations of this curve. We therefore
have a twistor construction for Einstein-Weyl spaces, called the Hitchin
correspondence. We note that the canonical bundle Ks of S has degree —4
on each minitwistor line.
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Since geodesies correspond to points in the minitwistor space, a
geodesic congruence defines a real surface C intersecting each minitwistor
line once. By the definition of the complex structure on <S, the surface C
is a holomorphic curve if and only if the geodesic congruence is shear-free.
This may be viewed as a minitwistor version of the Kerr theorem: every
shear-free geodesic congruence in an Einstein- Weyl space is obtained locally
from a holomorphic curve in the minitwistor space. In particular, we have
the following.

3.6. PROPOSITION. — Let B,DB be a three dimensional Weyl space.
Then the following are equivalent:

(i) B is Einstein-WeyL

(ii) Given any point b € B and any unit vector v € L^T^B, there
is a shear-free geodesic congruence \ defined on a neighbourhood of b
with Xb =v'

(iii) Given any point b € B there are three shear-free geodesic
congruences defined on a neighbourhood of b which are pairwise non-
tangential at b.

Proof. — Clearly (ii) implies (iii). It is immediate from (3.4) that
(ii) implies (i); to obtain the stronger result that (iii) implies (i) suppose
that B is not Einstein-Weyl, i.e., at some point b € B, r^ -^ 0. If \ is
a shear-free geodesic congruence near b then by equation (3.4), r^ is a
multiple of the identity on ^-L, and one easily sees that this multiple must
be the middle eigenvalue Ao ^ L^2 of r^ at b. Now at b, r^ may be
written a (g) fl/3 + f3 0 (la + Ao id where a, (3 <E T^B with (a, (3) = - j Ao.
The directions of (ja and ^ / 3 are uniquely determined by r^ and \ must lie
in one of these directions. Hence if B is not Einstein-Weyl at b, there are
at most two possible directions at b (up to sign) for a shear-free geodesic
congruence. (Note that the linear algebra involved here is the same as that
used to show that there are at most two principal directions of a nonzero
antiselfdual Weyl tensor in four dimensions; see, for instance [1]. Our result
is just the symmetry reduction of this fact.)

Finally, to see that (i) implies (ii), we simply observe that given any
minitwistor line and any point on that line, we can find, in a neighbourhood
of that point, a transverse holomorphic curve. This curve will also intersect
nearby minitwistor lines exactly once. D
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We now want to study Einstein-Weyl spaces with a shear-free geodesic
congruence in more detail. As motivation for our main result, notice that
the curve C in the minitwistor space given by \ defines divisors C 4- C
and C — C such that the line bundles [C + C]Kg and [C — C] are trivial on
each minitwistor line. It is well known [16] that such line bundles correspond
to solutions (w, A) of the abelian monopole equation *DBw = cL4, where w
is a section of L~1 and A is a 1-form. Therefore, we should be able to find
two special solutions of this monopole equation, one real and one imaginary,
associated to any shear-free geodesic congruence.

These solutions turn out to be K, and ir. To see this, we return
to the curvature equations in Proposition 3.4 and look at the horizontal
components. If X, Y are orthogonal to a geodesic congruence \ on any
three dimensional Weyl space then

D^r Y - D^r X + D^ JY - D^K J X
+ (D^S)(Y) - (JD^E)(X) + K *(V A E(X) - X A S(V))

=r^Y^)X-^FB(Y^)X-r^{X^)Y^ ^FB(X^)Y.

If \ is shear-free this reduces to the equation

D^r - D^ + ̂ (x, X) + J^(x, X) = 0,

where X 1. \. From this, and our earlier formulae, we have:

3.7. PROPOSITION. — Let \ be shear-free geodesic congruence with
divergence r and twist K in a three dimensional Weyl space B. Then \
satisfies the equations

(3.7) JDBT+T2-^+^scalB=0,/v b

(3.8) D^K + 2TK + J {x, * F13) = 0,

(3.9) (DBT-DBKoJ)^+lt,^FB =0,
Zi

if and only ifB is Einstein-Weyl.

The last equation, like the first two (see (3.5)), admits a natural
complex formulation in terms of p. Instead, however, we shall combine
these equations to give the following result.
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3.8. THEOREM. — The three dimensional Einstein-Weyl equations
are equivalent to the following special monopole equations for a shear-free
geodesic congruence \ with D3^ = r(id —\ 0 \) + K, *^:

(3.10) ^r = - J *^F5 - ^ seal5 *x - (r2 + K2)^ + d(^).

(3.11) ^ D B K = ^ F B - d ( r x ) .

(By "monopole equations", we mean that the right hand sides are closed
2-forms. Note also that these equations are not independent: they are
immediately equivalent to (3.7) and (3.11), or to (3.8) and (3.10).)

Proof. — The equations of the previous proposition are equivalent to
the following:

DBr=DB^oJ+^2-r2)x-^^Bx-^FB^

D3^ = -^r o J - 2r^ - 1 ̂ a.

Applying the star operator readily yields the equations of the theorem.
The second equation is clearly a monopole equation, since F3 is closed.
It remains to check that the right hand side of the first equation is closed:

d(^X A *F5 + ^ seal5 *^ + (r2 + ̂ )*x)

= 1 ̂ x A *F5 - \ x A ̂ ^ + ̂ B seal5 A*xz z 6
+ (2TDBT + 2^0^) A *^ + (1 seal5 +r2 + A<^X

^JXA^J^scal5-^5)

+ (/^(x, *^5) + 2r^r + 2^/, + 2r(1 seal5 +r2 + ̂ ))*1.

Here 63 = tr -D5 is the divergence on forms, and so the first term vanishes
by virtue of the second Bianchi identity. The remaining multiple of the
orientation form *1 is

^ ̂ B) + 2/^9^ + 2/<2^r) + 2rD^r + 2r(1 seal5 +r2 - /A

which vanishes by the previous proposition. 0

Two key special cases of this theorem have already been studied.
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LeBrun-Ward geometries

Suppose an Einstein-Weyl space admits a shear-free geodesic
congruence which is also twist-free. Then K = 0 and so the Einstein-Weyl
equations (3.7), (3.11) are:

(3.12) ^^2^1^B
X Q

(3.13) F3 = 2d(rx) = 2DBr A x.
As observed by Tod [29], these Einstein-Weyl spaces are the spaces first
studied by LeBrun [19], [20] and Ward [33], who described them using
coordinates in which the above equations reduce to the SU(oo) Toda field
equation u^x + Uyy + (e^zz = 0. Consequently these Einstein-Weyl spaces
are also said to be Toda.

It may be useful here to sketch how this follows from our formulae,
since Lemma 4.1 in [29], given there without proof, is only true after making
use of the gauge freedom to set z = f(z) and rescale the metric by f/(z)~2.
The key point is that since DLW: = DB — 2r\ is locally exact by (3.13),
there is locally a canonical gauge (up to homothety) in which to work,
which we call the LeBrun-Ward gauge {^LW- Since \ is twist-free and also
geodesic with respect to DLW, the 1-form ^~j)^\ is locally exact. Taking
this to be dz and introducing isothermal coordinates (a", y) on the quotient
of B by ^, we may write g^^ = eu(dx2 4- dy2) + dz2 for some function
u(x,y,z), since \ is shear-free. By computing the divergence of \ we then
find that the Toda monopole is r = — j n^^y, and equation (3.12) reduces
easily in this gauge to the Toda equation. One of the reasons for the interest
in this equation is that it may be used to construct hyperKahler and
scalar-flat Kahler 4-manifolds [3], [19], as we shall see in the next section.

LeBrun [19] shows that these spaces are characterised by the existence
of a divisor C in the minitwistor space with [C + C] = Kg . This agrees
with our assertion that [C 4- C]Kg' corresponds to the monopole K.

In [4], it is shown that an Einstein-Weyl space admits at most a three
dimensional family of shear-free twist-free geodesic congruences.

Gauduchon-Tod geometries

Suppose an Einstein-Weyl space admits a shear-free geodesic
congruence which is also divergence-free. Then r = 0 and so the Einstein-
Weyl equations (3.7), (3.11) are:

(3.14) H2 = 1 seal5,
h
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(3.15) *D^== IF5.

It follows that these are the geometries which arose in the work of
Gauduchon and Tod [12] and also Chave, Tod and Valent [7] on
hypercomplex 4-manifolds with triholomorphic conformal vector fields.
Gauduchon and Tod essentially observe the following equivalent formulation
of these equations.

3.9. PROPOSITION. — The connection D^ = DB - /^*1 on L~^TB
is fiat.

Proof. — The curvature of D^ is easily computed to be:

R^Y = -r^{X) A Y + r^(Y) A X - 1 seal5 X A Y + ̂ F3^) A Y

- ^FB(Y) A X - Z)j^*Y + D^^X + ̂ X A V.

Now Dj^*y - D^K^X = (*D^)(X) A Y - (*D^)(y) A V, so equa-
tions (3.14) and (3.15) imply that R^y vanishes if B is Einstein-Weyl.
(Conversely if there is a \ with R^yX = 0 for all X , Y , then B is
Einstein-Weyl.) D

This shows that the existence of a single shear-free divergence-free
geodesic congruence gives an entire 2-sphere of such congruences and
we say that these Einstein-Weyl spaces are hyperCR [6]. There is also
a simple minitwistor interpretation of this. The divisor C corresponding
to a shear-free divergence-free geodesic congruence has [C — C} trivial,
i.e., C — C is the divisor of a meromorphic function. Hence we have a
nonconstant holomorphic map from the minitwistor space to CP1, and
its fibres correspond to the 2-sphere of congruences. This argument is
the minitwistor analogue of the twistor characterisation of hypercomplex
structures discussed in the previous section.

Since the Einstein-Weyl structure determines K, up to sign, it follows
that an Einstein-Weyl space admits at most two hyperCR structures. If it
admits exactly two, then we must have K -^ 0 and F3 = 0, z.e., the
Einstein-Weyl space is the round sphere.

Einstein-Weyl spaces with a geodesic symmetry

The Einstein-Weyl equation can be completely solved in the case of
Einstein-Weyl spaces admitting a shear-free geodesic congruence \ such
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that \ = K/\K\ with K a confbrmal vector field preserving the Weyl
connection. In this case Dx = D3 — r\ is exact, \K\ being a parallel section
ofL1 (see Remark 3.2). We introduce g = l^l^c so that Dx = D9'. Since K
preserves the Weyl connection and CKQ = 0, we may write r == Tg\K\~~1^
K = K,g\K\~1, where QK'TQ = QK^Q = 0. Now ̂ FB == L^d(r\) = —Dgr and
so equation (3.9) becomes

- drg — dKg o J = 0.

This is solved by setting 2^g — iTg = ff, where H is a holomorphic function
on the quotient C of B by K. Since D^r = —r2 and D3^ = —r^, the

1 r>remaining Einstein-Weyl equations reduce to TK, + ^(^,*I7'^} = 0 and
/^2 = - seal . The first of these is automatic. To solve the second we note
that seal5 can be computed from the scalar curvature of the quotient metric
on C using a submersion formula [2], [5]. This gives scal^ = scal^ —Ir2—^2

and hence seal0 == 2r2 + 8^2 = 2|2/^ — %r|2. If this is zero, then r == /^ = 0
and J95 is flat. Otherwise we observe that logl^l2 is harmonic, and so
rescaling the quotient metric by \H\2 gives a metric of constant curvature 1
(z.e., the scalar curvature is 2).

Remarkably, these Einstein-Weyl spaces are also all hyperCR: since
K2 = | seal5 and ̂ ^ = ̂ FB - d(r\) = - JF5, reversing the sign of K,
(or equivalently, reversing the orientation of B) solves the equations of the
previous subsection. Thus we have established the following theorem.

3.10. THEOREM. — The three dimensional Einstein-Weyl spaces with
geodesic symmetry are either flat with translational symmetry or are given
locally by

g=\H\-2(ai+a2,)+/32,

u;=^(H-H)f3,

d(3= ^ ( f f+^l f f j -^ iA^,
Zt

where a2 + <jj is the round metric on S2, and H is any non vanishing
holomorphic function on an open subset of S2. The geodesic symmetry K
is dual to /3 and the monopoles associated to K/\K\ are r = ^ i(H — H)^1

and K = ^ {H + H)fi'g1. These spaces all admit hyperCR structures^ with
flat connection D3 + K, *1.
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The equation for (3 can be integrated explicitly. Indeed if C is a
holomorphic coordinate such that o-i A a^ = 2idC, A c?C/(l + CC)2 then one
can take

^ = ^ + _ - f ^ _ ^p "i+cc^ c^'
Of course, this is not the only possible choice: for instance one can write
d ^ / { ^ H ) = dF with F holomorphic and use

0=d^-i{F-F)d(——-).
l + C C '

Note that uj is dual to a Killing field of g if and only if H is constant,
in which case we obtain the well known Einstein-Weyl structures on the
Berger spheres. The Einstein metric on S3 arises when H is real, in
which case the connections DB ± ^*1 are both flat: they are the left and
right invariant connections. The flat Weyl structure with radial symmetry
(which is globally defined on S1 x S2) occurs when H is purely imaginary.
Gauduchon and Tod [12] prove that these are the only hyper CR structures
on compact Einstein-Weyl manifolds.

The fact that the Einstein-Weyl spaces with geodesic symmetry are
hyperCR may equally be understood via minitwistor theory. Indeed, any
symmetry K (a conformal vector field preserving the Weyl connection) on
a 3-dimensional Einstein-Weyl space induces a holomorphic vector field X
on the minitwistor space S. If K is nonvanishing, then on each minitwistor
line, X will be tangent at two points (since the normal bundle is 0(2))
and if the line corresponds to a real point x, then these two tangent points
in S will correspond to the two orientations of the geodesic generated by
Kx. Hence X vanishes at a point of S if and only if K is tangent along the
corresponding geodesic.

Now if K is a geodesic symmetry then X will be tangent to each
minitwistor line precisely at the points at which it vanishes, and the zeroset
of X will be a divisor (rather than isolated points). This means that X is a
section of a line subbundle H = [div X] of TS transverse to the minitwistor
lines (H must be transverse even where X vanishes, because K, being real,
is not null, and so the points of tangency are simple): the K monopole
of K is therefore H 0 K^2. Now the integral curves of the distribution H
in the neighbourhood U of some real minitwistor line give a holomorphic
map from U to CP1. Viewing this as a meromorphic function (by choosing
conjugate points on CP1) we obtain a divisor C -C, where C+C is a divisor
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for TS/H^ because TS/H is isomorphic to TCP1 over each minitwistor
line. Since K^ = H (g) T S / H we find that [C + C]^J/2 is dual to H (g) ̂ /2,
which explains (twistorially) why the K monopole of the hyperCR structure
is simply the negation of the K monopole of the geodesic symmetry.

Another explanation is that the geodesic symmetry preserves the
hyperCR congruences. Indeed, we have the following observation.

3.11. PROPOSITION. — Suppose that B is a hyperCR Einstein- Weyl
space with flat connection D3 -h K *1. Then a vector field K preserves the
hyperCR congruences x (i.e., CKX = 0 f01 eac^ x) ^ an^ omv ^ lt ls a

geodesic symmetry with twist K.

Proof. — Since \ is a weightless vector field,

CKX = D^x - D^K + 1 (tr D^)x.
o

This vanishes if and only if D^K = ^(tr^JT)^ - K,^(K /\\). Hence
CKX = 0 ^OT a^ °f ^ne hyperCR congruences x ^ an(! only if
D3!^ = ^(trJ9B^)id+^*^. This formula shows that K is a conformal
vector field, and that K/\K\ is a shear-free geodesic congruence with twist
K. Also K preserves the flat connection D3 + /^*1, since it preserves the
parallel sections. Finally, note that the twist of K is determined by the
conformal structure from the skew part of D^K^ so it is also preserved by
K. Hence K preserves D3 and is therefore a geodesic symmetry. D

4. The Jones and Tod construction.

In [16], Jones and Tod proved that the quotient ofaselfdual conformal
manifold M by a conformal vector field K is Einstein-Weyl: the twistor
lines in the twistor space Z of M project to rational curves with normal
bundle 0(2) in the space S of trajectories of the holomorphic vector field
on Z induced by K. Furthermore the Einstein-Weyl space comes with a
solution of the monopole equation from which M can be recovered: indeed Z
is (an open subset of) the total space of the line bundle over <S determined
by this monopole. In other words there is a correspondence between selfdual
spaces with symmetry and Einstein-Weyl spaces with monopoles. In this
section, we explain the differential geometric constructions involved in
the Jones and Tod correspondence, and prove that invariant antiselfdual
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complex structures on M correspond to shear-free geodesic congruences
on B. These direct methods, although motivated by the twistor approach,
also reveal what happens when M is not selfdual.

Therefore we let M be an oriented conformal manifold with a
conformal vector field K, and (by restricting to an open set if necessary)
we assume K is nowhere vanishing. Let D^ be the constant length gauge
of K, so that {D^K,.) is a weightless 2-form. One can compute D^\ in
terms of an arbitrary Weyl derivative D by the formula

D\K\ ̂  r. _ WK} ^ _ 1 {trDK)K 1 (d^)(^,.)
( K ^ K } 4 ( K ^ K ) ' ' 2 { K ^ K } '

where ̂ K^X.Y) = {DxK.Y} - {DyK.X).

The key observation for the Jones and Tod construction is that there
is a unique Weyl derivative D^ on M such that (D+K,.) is a weightless
selfdual 2-form: let a; = -(*dDjf)(jf, . ) / { K , K} (which is independent ofD)
and define

^sd ^ r.\K\ . I/, n 1 {^DK)K 1 (d^)^,.)-^^)^,.)
2 4 { K ^ K } " ' 2 ( K ^ K ) '

Since D is arbitrary, we may take D = D^ to get (.D8^-*.?8^)^,.) = 0
from which it is immediate that D^K = ^D^K since an antiselfdual
2-form is uniquely determined by its contraction with a nonzero vector
field. The Weyl derivative D^ plays a central role in the proof that
D3 = D^ +0; is Einstein-Weyl on B. Notice that the conformal structure
and Weyl derivatives Dl^l, D^, D3 do indeed descend to B because
K is a Killing field in the constant length gauge and a; is a basic 1-
form. Since the Lie derivative of Weyl derivatives on L1 is given by
CKD = -dtrDK + F0^,.), it follows that F8^,.) = F5^,.) = 0.

Tb

We call DB the Jones-Tod Weyl structure on B.

4.1. THEOREM (c/. [16]). — Suppose M is an oriented conformal
4:-manifold and K a conformal vector field such that B = M/K
is a manifold. Let D^ be the constant length gauge of K and
^ = -2(^DWK){K,.)/(K,K}. Then the Jones-Tod Weyl structure
D3 == D^\ + UJ is Einstein-Weyl on B if and only ifM is selfdual.

Note that ^^l^-1 = -w\K\~1 is a closed 2-form. Conversely,
if (B,D5) is an Einstein-Weyl 3-manifold and w e C°°(B,L~1) is a non-
vanishing solution of the monopole equation d^DBw = 0 then there is
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a selfdual ^-manifold M with symmetry over B such that ^^w is the
curvature of the connection denned by the horizontal distribution.

Proof. — The monopole equation on B is equivalent, via the definition
ofo;, to the fact that D^ lies midway between DB and DW. So it remains
to show that under this condition, the Einstein-Weyl equation on B is
equivalent to the selfduality of M. The space of antiselfdual Weyl tensors
is isomorphic to S^(K1-) via the map sending W- to W~^K, and so it
suffices to show that r^ = 0 if and only if W~^K =0.

Since D^ is basic, as a Weyl connection on TM, 0 = (C^D^x =
^x + D^D^K. Therefore

D^D^K = W^ + r^{K) A X - r^X) A K.

If we now take the antiselfdual part of this equation, contract with K
and V, and take (X, K) = (V, K) = 0, then we obtain

^x,^ V} + ̂ (X, Y)(K^ K) + r8^, K){X^ Y)

+*(^Ar s d ( ^ )AXAy) =0.

Symmetrising in X, V, we see that W~ = 0 if and only if the horizontal part
of the symmetric Ricci endomorphism of D^ is a multiple of the identity.
The first submersion formula [2] relates the Ricci curvature of DW on B
to the horizontal Ricci curvature of Z)W on M. If we combine this with the
fact that D^ = D^ + jo; and D3 = D^\ + a;, then we find that

symRicg^X.V) = sym Ric^ (X, V) + 2{DWK^DWK)

+|^(x)a;(y)+^x,y)

for some section p, of L~2. Since D^K = 0, a; vanishes on the plane
spanned by D^K, and so, by comparing the lengths of uj and D^K,
we verify that the trace-free part of ^(D^K.D^K) + ^UJ(X)(^(Y)
vanishes. Hence W~ = 0 on M if and only if D3 is Einstein-Weyl on
B. Q

The inverse construction of M from 5 can be carried out explicitly
by writing ^^DBw = dA on U C B, so that the real line bundle M is
locally isomorphic to U x R with connection dt + A, where ^ is the fibre
coordinate. Then the conformal structure c^ == 7r*Cg + w~2(dt + A)2 is
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selfdual and K = 9/Qt is a unit Killing field of the representative metric
QM = 7r*w2^ -h (dt-\-A)2. Note that w = ±\K\~1 and that the orientations
on M and B are related by *(^Aa) = (^^a)w\K\ where a is any 1-form on B
and $ = ^|J<T|-1. This ensures that if D3 = jDl^l + a;, then the equation
-(*^o;)w = ^jD^w = dA is equivalent to ^f\^)\K\~1 = -d(dt + A)
and hence uj = -^^cP^O/l^]2 as above.

Jones and Tod also observe that any other solution (wi,Ai) of the
monopole equation on B corresponds to a selfdual Maxwell field on M with
potential Ai = Ai - (w^/w)(dt + A). Indeed, since (dt + A) = \K\~1^ one
readily verifies that

dAi == (w-l\K\-l^DBw^dA^ - w^{w-l\K\-l^^DBw^dA),

which is selfdual by the monopole equations for w and wi, together with
the orientation conventions above.

We now want to explain the relationship between invariant complex
structures on M and shear-free geodesic congruences on B. That these
should be related is again clear from the twistor point of view: indeed ifP is
an invariant divisor on Z, then it descends to a divisor C in <S, which in turn
defines, at least locally, a shear-free geodesic congruence. The line bundles
[D + P]^J/2 and [D - V] are the pullbacks of [C + C}K^2 and [C - C] and
so we expect the Faraday and Ricci forms on M to be related to the twist
and divergence of the congruence on B. In order to see all this in detail,
and without the assumption of selfduality, we carry out the constructions
directly.

Suppose that J is an antiselfdual complex structure on M
with CKJ = 0, so that K is a holomorphic conformal vector field. If D
is the Kahler-Weyl connection, then DK = -^oid+-7-oJ+ ^-{d0!^^
where (d0!^)^ is a selfdual 2-form and ^o^o are functions.

Now let K = KQ\K\-\ r = TO\K\-\ ^ = K\K\-1, ^ = J$. Since
d°K = 7-oJ + (^jFf)+, it follows that

^JW .)\K\-2 = rx + (c^W m-2^
and

(^K^K, ,)\K\-2 = -rx + ̂ Kr^, .)\K\-2.

Therefore Dsd=D+K^+ T\ and (d^AT)-^, -)\K\-2 =T^-UJ.
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4.2. THEOREM. — Let M be an oriented conformal ^-manifold with
conformal vector field K and suppose that J is an invariant antiselfdual
almost complex structure on M. Then J is integrable if and only if
\ = J^ = JK/\K\ is a shear-free geodesic congruence on the Jones-Tod
Weyl space B. Furthermore, the Kahler-Weyl structure associated to J is
given by D = D^ — ̂  — r\ where D3^ = r(id —\ (g) \) 4- ^ ̂ \ on B.

Proof. — Clearly \ is invariant and horizontal, hence basic. Let
r./c be invariant sections of L~1 and set D = D^ — K,^ — r\. If J is
integrable then we have seen above that the Kahler-Weyl connection is
of this form. Therefore it suffices to prove that DJ = 0 if and only if
DB\ = r(id —\ 0 \) + K, *^ on B. Since J = ^ A \ — *(^ A \) this is a
straightforward computation. Let X be any vector field on M. Then

D^J=D^AX+^A^X-*(^X$AX-$AD^X).
Now D = D^ + i^ — ̂  — r\ and so, since D^^ = — j *^ A a;, we have

^x^=- |*(^A^Aa;)-j^,X)a;-/ .(X-^,X)$)+T^,X)x.

Also D = D3 — j (jj — ̂  — r\ and so

DxX = D^x - ̂ W + (X, X}^ - r{X - (x, X}x) + ̂  X)^
Therefore

Dx^X= |<X,^)*($Aa;)- |^)*($AX)

- K(X - <€, ̂ 0$) A X - | <^)^ A x

$A£»^=^AD^^-Ja;(^AX+J(x,X^Aa;

-T^A(X-<x ,X)x)
and so

^ A D^x - *(£>x€ A x) = ̂  A D^x - TC A (X - (x,X)^)

+K*((X-($ ,X)$)AX)+ |^ ,X)*(O;AX).

Since the right hand side is vertical, it follows that D^J = 0 if and only if

D^-(D^X^}=r(X-{x,X)x-{^X)^+K^^x

-j<^)*(^Ao;A;0.

If X is parallel to ^, this holds automatically since CK\ = 0, and so by
considering X J- ^ we obtain the theorem. D
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When M is selfdual, this theorem unifies (the local aspects of)
LeBrun's treatment of scalar-flat Kahler metrics with symmetry [19], [20]
and the hypercomplex structures with symmetry studied by Chave, Tod
and Valent [7] and Gauduchon and Tod [12]. To see this, note that since D
is canonically determined by ^j, and CK^-J = 0, it follows that CKD == 0
on L1, which means that d/^o = ^'D(^? •)• Since K is a conformal vector
field, it follows that CK.D = 0 on TM as well, which gives:

JdTo(X)J+ ̂ D^KY + W^ - rD{K) A X +rD(X) A K = 0.

If we contract this with J, we obtain dr^ = 2r^{JK,.) = —ip0^,.). Thus
p0 and F0 are the selfdual Maxwell fields associated to the monopoles ir
and K respectively. Since they are selfdual, it follows that d/^o = 0 if and
only if M, J is locally scalar-flat Kahler, while dr^ = 0 if and only if M, J
is locally hypercomplex.

Now suppose that B is Einstein-Weyl and that w is any nonvanishing
monopole, and let M be the corresponding selfdual conformal 4-manifold.
Then each shear-free geodesic congruence \ induces on M an invariant
antiselfdual complex structure J. On the other hand if we fix ^, then, as
we have seen, its divergence and twist, r and /<, are monopoles on B. Using
these we can characterise special cases of the construction as follows.

(i) (M, J ) is locally scalar-flat Kahler if and only if K, = aw for some
constant a, and if a is nonzero, we may assume a = 1, by normalising w.

• If K = 0 then M is locally scalar-flat Kahler and K is a holomorphic
Killing field. I f r = bw, then M is locally hyperKahler [19], [20].

• If K = w then M is locally scalar-flat Kahler and K is a holomorphic
homothetic vector field.

(ii) (M, J ) is locally hypercomplex if and only if r = bw for some
constant &, and if b is nonzero, we may assume b = 1, by normalising w.

• If T = 0 then M is locally hypercomplex and K is a triholomorphic
vector field. If K = aw, then M is locally hyperKahler (see [7], [12]).

• If T = w then M is locally hypercomplex and K is a hypercomplex
vector field.

Here we say a conformal vector field on a hypercomplex 4-manifold is
hypercomplex if and only if CKD = 0 where D is the Obata connection. It
follows that for each of the hypercomplex structures J, Cp^I is a D-parallel
antiselfdual endomorphism anticommuting with I . The map I i—^ CKI -J- I
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is therefore given by I h-> [cJ, J] for one of the hypercomplex structures J
and a real constant c. Consequently K is holomorphic with respect to ±J,
and is triholomorphic if and only if c = 0.

The twistorial interpretation of the above special cases is as follows.
Firstly, if K, = 0 on B then the corresponding line bundle on S is trivial;
hence so is its pullback to Z. On the other hand, if K, = w then the line
bundle on S is nontrivial, but we are pulling it back to (an open subset of)
its total space. Such a pullback has a tautological section, and hence is
trivial away from the zero section. The story for r is similar.

We now combine these observations with the mini-Kerr theorem.

4.3. THEOREM. — Let B be an arbitrary three dimensional Einstein-
Weyl space.

(i) B may be obtained (locally) as the quotient of a scalar-flat Kahler
4-manifold by a holomorphic homothetic vector field.

(ii) It may also be obtained as the quotient of a hypercomplex 4^-manifold
by a hypercomplex vector field.

(iii) B is locally the quotient of a hyperKahler 4:-manifold by a
holomorphic homothetic vector field if and only if it admits a shear-free
geodesic congruence with linearly dependent divergence and twist.

Proof. — By the mini-Kerr theorem B admits a shear-free geodesic
congruence. The divergence r and twist K are monopoles on B, which may
be used to construct the desired hypercomplex and scalar-flat Kahler spaces
wherever they are nonvanishing. The hyperKahler case was characterised
above by the constancy of TQ and KQ. On B, this implies that r and K, are
linearly dependent, i.e., c\r 4- C^K = 0 for constants ci and 02. Conversely
given an Einstein-Weyl space with a shear-free geodesic congruence \ whose
divergence and twist satisfy this condition, any nonvanishing monopole w
with K, = aw and r = bw gives rise to a hyperKahler metric (and this w is
unique up to a constant multiple unless r = K, = 0). D

Maciej Dunajski and Paul Tod [8] have recently obtained a related
description of hyperKahler metrics with homothetic vector fields by
reducing PlebanskFs equations.

The following diagram (Fig. 1) conveniently summarises the various
Weyl derivatives involved in the constructions of this section, together with
the 1-forms translating between them.
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Figure 1

The Weyl derivatives in the right hand column are so labelled because
on B we have D^ -^ Dx -Lr2^ D3', where D3 is Einstein-Weyl, Dx

is the Weyl derivative canonically associated to the congruence ^, and, in
the case that K = 0, Z^^ is the LeBrun-Ward gauge. The central role
played by D^ in these constructions explains the frequent occurrence of
the Ansatz g = Vg^ + V~l(dt + A)2 for selfdual metrics with symmetry.
In particular, if g^ is the LeBrun-Ward gauge of a LeBrun-Ward geometry
and V is a monopole in this gauge, then g is a scalar-flat Kahler metric.

5. Selfdual Einstein 4-manifolds with symmetry.

In this section we combine results of Tod [31] and Pedersen and
Tod [27] to show that the constructions of the previous section cover
essentially all selfdual Einstein metrics with symmetry.

5.1. PROPOSITION (c/. [27]). — Let g be a four dimensional Einstein
metric with a conformal vector field K. Then one of the following must
hold:

(i) K is a Killing field ofg;

(ii) g is Ricci-flat and K is a homothetic vector field (z.e., Cp^D9 = 0);

(iii) g is conformally flat.

Now suppose g is a selfdual Einstein metric with nonzero scalar
curvature and a conformal vector field K. Then, except in the conformally
flat case, K is a Killing field of g and so we may apply the following.

5.2. THEOREM (c/. [31]). — Let g be a selfdual Einstein metric with
nonzero scalar curvature and K a Killing field of g. Then the antiselfdual
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part ofD9!^ is nonzero, and is a pointwise multiple of an integrable complex
structure J . The corresponding Kahler-Weyl structure is Kahler, and K is
also a Killing field for the Kahler metric.

If, on the other hand, scal5' is zero, then g itself is (locally) a
hyperKahler metric and, unless g is conformally flat, C^D9 = 0, and so K
is a hypercomplex vector field. In the conformally flat case, K may not
be a homothety of ^, but it is at least a homothety with respect to some
compatible flat metric. Thus, in any case, the conformal vector field K is
holomorphic with respect to some Kahler structure on M.

We end this section by noting that in the case of selfdual Einstein
metrics with Killing fields, Tod's work [31] shows how to recover the
Einstein metric from the LeBrun-Ward geometry. More precisely, if M is a
selfdual Einstein 4-manifold with a Killing field, and B is the LeBrun-Ward
quotient of the corresponding scalar-flat Kahler metric, then either B is flat,
or the monopole defining M is of the form

(a(l- ̂ ^)+ ̂ z)^LWw= [ a i l -

where u(x^ y^ z) is the solution of the SU(oo) Toda field equation, and
a, b € M are not both zero. Conversely, for any LeBrun-Ward geometry
(given by n), the section (a(l — ^zuz) + J^)/^LIV °^ ̂ -1 ls a monopole
for any a, b € M, and if g^ is the corresponding Kahler metric, then
(az — ^)~2^ is Einstein with scalar curvature —Via. When a = 0, we
reobtain the case of hyperKahler metrics with Killing fields, while if a 7^ 0,
one can set b = 0 by translating the z coordinate (although u will be a
different function of the new z coordinate).

6. Einstein-Weyl structures from R4.

Our aim in the remaining sections is to unify and extend many of
the examples of Kahler-Weyl structures with symmetry studied up to the
present, using the framework developed in Sections 2-4. We discuss both the
simplest and most well known cases and also more complicated examples
which we believe are new. We begin with M4.

A conformally flat 4-manifold is both selfdual and antiselfdual, so
when we apply the Jones and Tod construction we have the freedom to
reverse the orientation. Consequently, not only is D3 = jD^I +0; Einstein-
Weyl, but so is D3 = D^ - uj. Therefore

0 = symQ(DB(JJ +^00;)= symo D^UJ = symQ(DBu; — uj 0 a;).
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Since l^l"1 is a monopole, g = {K^c^ (the gauge in which the monopole
is constant) is a Gauduchon metric in the sense that uj is divergence-free
with respect to D9 = D^. It follows that uj is dual to a Killing field
of g. Furthermore, the converse is also true: that is, if D3 = D9 + uj is
Einstein-Weyl and uj is dual to a Killing field of g , then D3 = D9 — uj
is also Einstein-Weyl, and therefore the 4-manifold M given by the
monopole /^1 is both selfdual and antiselfdual, hence conformally flat.

The condition that an Einstein-Weyl space admits a compatible metric
g such that D = D9 + uj with uj dual to a Killing field of g is of particular
importance because it always holds in the compact case: on any compact
Weyl space there is a Gauduchon metric g unique up to homothety [9], and g
has this additional property when the Weyl structure is Einstein-Weyl [28].
Consequently, the local quotients of conformally flat 4-manifolds exhaust
the possible local geometries of compact Einstein-Weyl 3-manifolds. These
geometries were obtained in [26] as local quotients of S4. Now any conformal
vector field K on 5'4 has a zero and is a homothetic vector field with respect
to the flat metric on R4 given by stereographic projection away from any
such zero. Hence we can view these Einstein-Weyl geometries as local
quotients of the flat metric on R4 by a homothetic vector field and use the
constructions of Section 4 to understand some of their properties.

Suppose first that K vanishes on M4 and let the origin be such a zero.
Then K generates one parameter group of linear conformal transformations
of the flat metric g. This is case 1 of [26] and we may choose coordinates
such that

g = dr2 4- ̂ (dC2 + sin2 0d(/)2 4- (^ + cos(9d0)2),

K = a r 9 - ( b ^ c ) 9 - { b - c ) 9 '
9r 9(f> Q^

Note that K is also a homothety of the flat metric g = r~^g obtained
from g by the orientation reversing conformal transformation r i—> r = 1/r.
With a fixed orientation,

D9K= a l d - ^ l ( b + c ) J + - ^ l { b - c ) J - ,
Z 2t

Z^=-aid-^ l(6-c)J++ ^ { b - ^ c J J - ,
2i z

where J± are D9-parallel complex structures on R4, one selfdual, the
other antiselfdual, and, similarly, J^ are 2^-parallel. The Weyl structures
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D^ ± uj are Einstein-Weyl on the quotient B, where

_ {b+c)g(J+K^)-(b-c)g(J-K^)
9 ( K ^ K )

_ (b - cYg^K,.) - (b + c)g(J-K,.)
9(K,K)

Without loss of generality, we consider only DB = D^ + a;. By
Theorem 4.2, J ~ K and J ~ K generate shear-free geodesic congruences
withr- =(6+c)|jf |- l ,f- =(b-c)\K\-1 and K- = a\K\-1 = -k-.

If b2 = c2, then K is triholomorphic, and so the quotient geometry
is hyperCR: it is the Berger sphere family. If we take b = c then J~ is
no longer unique, and the hyperCR structure is given by the congruences
associated to J K ^ where J ranges over the parallel antiselfdual complex
structures of g\ J ~ K ^ by contrast, is the geodesic symmetry 9/9(f) of B.
In addition, the antiselfdual rotations all commute with K, so B has a four
dimensional symmetry group, locally isomorphic to S1 x S3.

If be = 0, then although K is not a Killing field on R4 unless a = 0,
it is Killing with respect to the product metric on S2 x "H2 which is scalar
flat Kahler (where the hyperbolic metric on H2 has equal and opposite
curvature to the round metric on S2) and conformal to R4 \ R. Hence these
quotients are Toda.

If a == 0, then K is a Killing field, and so the (local) quotient geometry
is also Toda, simply because it is the quotient of a flat metric by a Killing
field.

If b2 = c2 and be = 0 then b = c = 0 and the quotient is the round
3-sphere, while if a == 0 and be = 0 it turns out to be the hyperbolic metric.
If a = 0 and b2 = c2, the quotient geometry is the flat Weyl space: the
hyperCR congruences become the translational symmetries, and (for b = c)
J ~ K is the radial symmetry.

We now briefly consider the case that K does not vanish on R4

(and so is not linear with respect to any choice of origin). This is case 2
of [26], and we may choose a flat metric g with respect to which K is a
transrotation. Since K is a Killing field, the quotient Einstein-Weyl space
is Toda. For b = 0, it is flat, while for c == 0 we obtain M3.
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7. HyperKahler metrics with triholomorphic
Killing fields.

If M is a hyperKahler 4-manifold and K is a triholomorphic Killing
field, then r and ^ both vanish, so the corresponding Einstein-Weyl space is
flat and the congruence consists of parallel straight lines. HyperKahler
4-manifolds with triholomorphic Killing fields therefore correspond to
nonvanishing solutions of the Laplace equation on an open subset ofR3, or
some discrete quotient. This is the Gibbons-Hawking Ansatz for selfdual
Euclidean vacua [13].

In [33], Ward used this Ansatz to generate new Toda Einstein-Weyl
spaces from axially symmetric harmonic functions. The idea is beautifully
simple: since the harmonic function is preserved by a Killing field on R3, the
Gibbons-Hawking metric admits a two dimensional family of commuting
Killing fields; one of these is triholomorphic, but the others need not be, and
so they have other Toda Einstein-Weyl spaces with symmetry as quotients.

Let us carry out this procedure explicitly. In cylindrical polar
coordinates (77,?,^), the flat metric is drf 4- dp2 + p2d(t)2 and the
generator of the axial symmetry is 9 / 9 ( / ) . An invariant monopole (in
the gauge determined by the flat metric) is a function TV(p, rj) satisfying
p~l(pWp}p + W^ == 0. Note that if W is a solution of this equation,
then so is W^, and W^ determines W up to the addition of C\ log(C2p) for
some Ci, 62 € R. This provides a way of integrating the equation d^dW = 0
to give ^dW = dA: if we write W = Vyp then we can take A = pVpdcf).
This choice of integral determines the lift of 9/9(f) to the 4-manifold. The
hyperKahler metric is

g = V^drf2 + dp2 + p2d(t>2) + V^W + pVpd^)2.

In order to take the quotient by c5/9<^, we rediagonalise:

9=Vr,(dp2+dr|2+———^d^)
1

r] ' v p' 'n ' v o '

-^(-TO-)2

We now recall that the hyperKahler metric lies midway between the
constant length gauge of 9/9(f) and the LeB run-Ward gauge of the quotient.
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Consequently we find that D3 == DLW 4- UJ where

QLW = P2^ + VpW + drf2) + p2^2

= p2(dy2 + d^2) + (pVpdrj - pV^dp)2^

2V
^ = p2(y2^y2) W^ - ̂ W-

Note that d(pVpdrj — pV^dp} = 0. This can be integrated by writing
V = Ur), with U(p,r]) harmonic. Then z == pUp parameterises the
hypersurfaces orthogonal to the shear-free twist-free congruence, and
isothermal coordinates on these hypersurfaces are given by x = £/yp
y = ^. Hence, although the Einstein-Weyl space is completely explicit,
the solution eu = p2 of the SU(oo) Toda field equation is only given
implicitly. Nevertheless, we have found the congruence, the isothermal
coordinates and the monopole Uz^'j^y'

The symmetry Q/9^^ like the axial symmetry Q / Q ( J ) on R3, generates
a congruence which is divergence-free and twist-free, although it is not
geodesic. For this reason it is natural to say that Ward's spaces are
Einstein-Weyl with an axial symmetry. They are studied in more detail
in [4].

Ward's construction can be considerably generalised. First of all,
one can obtain new Toda Einstein-Weyl spaces by considering harmonic
functions invariant under other Killing fields. The general Killing field
on R3 may be taken, in suitably chosen cylindrical coordinates, to be
of the form b9/9(/) + c0/9rj for 6, c G R. By introducing new coordinates
^ = (brj - c(f))/Vb2 + c2 and 0 = (b(f) + erf) /Vb2 + c2, so that the Killing
field is a multiple of 9/90, one can carry out the same procedure as before
to obtain the following Toda Einstein-Weyl spaces:

QLW = G(p, C)(dp2 + 1WC2) + /^(p)-1/?2

= ̂ (dy2 + 52^2 {APW - F^-'pV^dp] + bd^)2)

+ 6T^2 (^PW - F^-'pVfdp} - c^)2,

" = (̂ ?,0) (b[pw ~ F^~lpv^ - cd^
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where

(^+cV (^ îf^^v^
^)= f,2p2+^ ' ^'^—————————6?T^—————————'

/3 = ̂  - ̂ ^ [^dt? - FW-'pV^dp].

Note that the symmetry 0/0^ is twist-free if and only if be = 0. When
6 = 0 , the Toda Einstein-Weyl space is just R3 (the only Einstein-Weyl
space with a parallel symmetry), while c = 0 is Ward's case.

A further generalisation of this procedure is obtained by observing
that the flat Weyl structure on R3 is preserved not just by Killing fields,
but by homothetic vector fields. Now, for a section w of L~1, invariance
no longer means that the function wfi^s is constant along the flow of the
homothetic vector field, since the length scale /^a is not invariant. Hence it
is better to work in a gauge in which the homothetic vector field is Killing.
To do this we may choose spherical polar coordinates (r, 0, (f)} such that the
flat Weyl structure on R3 is

gQ == r"2^2 + d02 + sin2 Odcf)2, UJQ = r^dr

and the homothetic vector field is a linear combination of rO/Or and 9/9(f).
For simplicity, we shall only consider here the case of a pure dilation
X = r9/9r. If w = W^Q1 is an invariant monopole (where fio is the length
scale of go) then Wr = 0 and W(0,(f)) is a harmonic function on S2. We
write (^2 == ̂  + ̂ j and W = j (h + h) with h holomorphic on an open
subset of S2. Then the hyperKahler metric is

9 = '-^^P- (\hW + <.J) + /?2) + -^^ (dr +i(h+ -h)rf3)2,

where f3 is a 1-form on S2 with d/3 = j (h + ^)o-i A 02. One easily verifies
that the quotient space is the Einstein-Weyl space with geodesic symmetry
given by the holomorphic function H == 1/h.

The computation for the general homothetic vector field is more com-
plicated, but one obtains Gibbons-Hawking metrics admitting holomorphic
conformal vector fields which are neither triholomorphic or Killing, and
therefore, as quotients, explicit examples of Einstein-Weyl spaces (with
symmetry) which are neither hyperCR, nor Toda, yet they admit a shear-
free geodesic congruence with linearly dependent divergence and twist.
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8. Congruences and monopoles on 7^3, R3 and S3.

An important special case of the theory presented in this paper is the
case of monopoles on spaces of constant curvature. Since each shear-free
geodesic congruence on these spaces induces a complex structure on the
selfdual space associated to any monopole, it is interesting to find such
congruences.

The twist-free case has been considered by Tod [29]. In this case we
have a LeB run-Ward space of constant curvature, given by a solution u
of the Toda field equation with u^dz exact. This happens precisely when
u ( x ^ y ^ z ) = v{x^y) + w(z). The solutions, up to changes of isothermal
coordinates, are given by

^ 4.(az2 + bz + c)
~ (l+a^+y2))2

where a,fr ,c are constants constrained by positivity. As shown in [29],
there are essentially six cases: three on hyperbolic space (b2 — 4ac > 0),
two in flat space {b2 — 4ac = 0), and one on the sphere (b2 — 4ac < 0).
One of the congruences in each case is a radial congruence, orthogonal
to distance spheres. The other two types of congruences on hyperbolic
space are orthogonal to horospheres and hyperbolic discs respectively,
while the other type of congruence on flat space is translational. Only the
radial congruences have singularities, and in the flat case, even the radial
congruence is globally defined on S1 x S2. We illustrate the congruences in
the diagrams of Figure 2.

The congruences on hyperbolic space H3 have been used by LeBrun
(see [19], [20]) to construct selfdual conformal structures on complex
surfaces. The first type of congruence gives scalar-flat Kahler metrics on
blow ups of line bundles over CP1. The second type gives asymptotically
Euclidean scalar-flat Kahler metrics on blow-ups of C2 and hence selfdual
conformal structures on kCP2 and closed Kahler-Weyl structures on blow-
ups of Hopf surfaces. The final type of congruence descends to quotients
by discrete subgroups of SL(2, R) and leads to scalar-flat Kahler metrics on
ruled surfaces ofgenus^ 2.

If we look instead for hyperCR structures (i.e., divergence-free
congruences), we have, in addition to the translational congruences on R3,
two such structures on S3: the left and right invariant congruences, but
this exhausts the examples on spaces of constant curvature. Of course
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b2 > 4ac b2 = 4ac b2 < 4ac

a > 0

a=0

a < 0

Figure 2

there is still an abundance of congruences which are neither twist-free nor
divergence-free. For instance, on R3, a piece of a minitwistor line and its
conjugate define a congruence on some open subset: if the line is real then
this is a radial congruence, but in general, we get a congruence of rulings of
a family of hyperboloids (figure 3).

This congruence is globally defined on the nontrivial double cover
of R3 \ 5'1. Its divergence and twist are closely related to the Eguchi-
Hanson I metric as we shall see below.

In general, a holomorphic curve in the minitwistor space of R3

corresponds to a null curve in C3 and the associated congruence consists of
the real points in the tangent lines to the null curve. Since null curves may
be constructed from their real and imaginary parts, which are conjugate
minimal surfaces in R3, this shows that more complicated congruences are
associated with minimal surfaces.

Turning now to monopoles, we have two simple and explicit types
of solutions of the monopole equation: the constant solutions and the
fundamental solutions. Linear combinations of these give rise to an
interesting family of selfdual conformal structures whose properties are
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Figure 3

given by the above congruences. Since such monopoles are spherically
symmetric, these selfdual conformal structures will admit local U(2)
or S1 x SO (3) symmetry.

The 3-metric with constant curvature c is

^(YT1^7'24"7'2^
and the monopoles of interest are a + bz^ where z = (1 — cr2)/^ is the
fundamental solution centred at r = 0. The fundamental solution is the
divergence of the radial congruence, and if we use the coordinate z in place
of r, we obtain

dz
=(———}\ z 2 - { - c )

+9c = 9s^ •"c V ^ + c / z2+c
Rescaling by (z2 + c)2 gives the Toda solution

2z
QLW = (z2 + c)^ 4- dz2, UJLW = - 2 . dz

In the LeBrun-Ward gauge, the monopoles of interest are

w= (a+bz)/{z2 +c).

If c ̂  0 then w = ac'^l — \zUz} + ^bu^ and so we may apply Tod's
prescription for the construction of Einstein metrics with symmetry.
Rescaling by (a2 + c^/c gives the Einstein metric

a2 + c2 / a + bz , - 9 / o . ^ z2 + c . , , ..o\
f f=(^-^^^+ ( '+ c )^)+aT^W + A ))
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of scalar curvature -12ac/(a2 + c2), where dA = ̂ Dw = 6vol^. This is
easily integrated by A = -bcos0d(/) where g^ = d02 + sin2^2. These
metrics are also well-defined when c = 0 when they become Taub-NUT
metrics with triholomorphic Killing field 9/9^. They are also Gibbons-
Hawking metrics for a = 0, when we obtain the Eguchi-Hanson I and II
metrics: this time 9/9(f) (and the other infinitesimal rotations of S2) is a
triholomorphic Killing field. To relate the metrics to those of [24], one can
set z = 1/p2 and rescale by a further factor ^. Then

— Q2 +C2 ( a?2 + b ^ 2
9- {a-bcp^^TTc^ p

+ 1 p2 \(ap2 + b)g^ + 1±^- W-b cos 0d^2])
^ L dp i o J /

is Einstein with scalar curvature -48ac/(a2 + c2). Up to homothety, this
is really only a one parameter family of Einstein metrics, since the original
constant curvature metric and the monopole w can be rescaled. However,
the use of three parameters enables all the limiting cases to be easily found.

These metrics are all conformally scalar-flat Kahler via the radial Toda
congruences [18]. The metrics over 7i3 are also conformal to other scalar-flat
Kahler metrics, via the horospherical and disc-orthogonal congruences. The
translational congruences on R3 correspond to the hyperKahler structures
associated with the Ricci-flat c = 0 metrics. The metrics coming from S3

admit two hypercomplex structures (coming from the hyperCR structures),
which explains an observation of Madsen [22]. In particular when a = 0,
the Eguchi-Hanson I metric has two additional hypercomplex structures
with respect to which 9/9^ is triholomorphic. On the other hand, although
9/9(f) is triholomorphic with respect to the hyperKahler metric, it only
preserves one complex structure from each of these additional families.
The corresponding congruences on R3 are the two rulings of the families
of hyperboloids, which have the same divergence but opposite twist.
The monopole giving Eguchi-Hanson I must be the divergence of this
congruence.

In [27], it is claimed that the above constructions give all the Einstein
metrics over H3. This is not quite true, because we have not yet considered
the Einstein metrics associated to the horospherical and disc-orthogonal
congruences. These turn out to give Bianchi type VIIo and VIII analogues of
the above Bianchi type IX metrics (by which we mean, the SU(2) symmetry
group is replaced by Isom(R2) and SL(2,R) respectively—see [30]). This
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omission from [27] was simply due to the nowhere vanishing conformal
vector fields on hyperbolic space being overlooked.

9. Kahler-Weyl spaces with torus symmetry.

On an Einstein-Weyl space with symmetry, an invariant shear-
free geodesic congruence and an invariant monopole together give rise
to a selfdual Kahler-Weyl structures, possessing, in general, only two
continuous symmetries. Many explicit examples of such Einstein-Weyl
spaces with symmetry were given in Section 7. Being quotients of Gibbons-
Hawking metrics, these spaces already come with invariant congruences,
and solutions of the monopole equation can be obtained by introducing
an additional invariant harmonic function on R3, lifting it to the Gibbons-
Hawking space, and pushing it down to the Einstein-Weyl space. Carrying
out this procedure in full generality would take us too far afield, so we
confine ourselves to the two simplest classes of examples: the Einstein-Weyl
spaces with axial symmetry, and the Einstein-Weyl spaces with geodesic
symmetry.

We first consider the case of axial symmetry, when the Kahler-Weyl
structure is (locally) scalar flat Kahler. In [17], Joyce constructs such torus
symmetric scalar-flat Kahler metrics from a linear equation on hyperbolic
2-space. In this way he obtains selfdual conformal structures on kCP2,
generalising (for k >: 4) those of LeBrun [19]. Joyce does not consider the
intermediate Einstein-Weyl spaces in his construction, but one easily sees
that his linear equation is equivalent to the equation for axially symmetric
harmonic functions, and that the associated Einstein-Weyl spaces are
precisely the ones with axial symmetry [4].

Let us turn now to the spaces with geodesic symmetry, where
a monopole invariant under the symmetry is given by a nonvanishing
holomorphic function on an open subset of S2. Indeed, if we write (as
before)

<7=|^|-2(^+aj)+/^ ^ = ^ ( H - H ) { 3

with f3 dual to the symmetry, then an invariant monopole in this gauge is
given by the pullback V of a harmonic function on an open subset of 52,
as one readily verifies by direct computation. Hence V = ^ (F + F) for
some holomorphic function F. The selfdual space constructed from V will
admit a Kahler-Weyl structure (coming from the geodesic symmetry) and
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also a hypercomplex structure (coming from the hyperCR structure).
By Proposition 3.11, the geodesic symmetry preserves the hyperCR
congruences, and so it lifts to a triholomorphic vector field of the
hypercomplex structure. Since 3.11 is a characterisation, we immediately
deduce the following result.

9.1. THEOREM. — Let M be a hypercomplex 4:-manifold with a two
dimensional family of commuting triholomorphic vector fields. Then the
quotient ofM by any of these vector fields is Einstein-Weyl with a geodesic
symmetry, and so the con formal structure on M depends explicitly on two
holomorphic functions of one variable.

There are two special choices of monopole on such an Einstein-Weyl
space: the K, and r monopoles of the geodesic symmetry. The K monopole
{F = H) leads us back to the Gibbons-Hawking hyperKahler metric, but
the r monopole (F = iH) is more interesting. In this case, the Kahler-
Weyl structure given by the geodesic symmetry is hypercomplex and so
these torus symmetric selfdual spaces are hypercomplex in two ways. The
symmetries are both triholomorphic with respect to the first hypercomplex
structure, but only one of them is triholomorphic with respect to the
additional hypercomplex structure. If we take the quotient by the bi-
triholomorphic symmetry, we obtain an Einstein-Weyl space with two
hyperCR structures, which must be S3. Hence the spaces with geodesic
symmetry, as well as coming from invariant monopoles on R3, also come
from invariant monopoles on S3.

We end by discussing a third situation in which the spaces with
geodesic symmetry occur. This involves some explicit new solutions [6] of
the SU(oo) Toda field equation generalising the solutions on 5'3 described
earlier. The corresponding LeB run-Ward geometries are:

/ i \ / T \ / 9 9\ i 9 ~^ ' ' ^ i H/ -ig = (z + h){z + h){a^ + aj) + dz2, a; = - ^ dz,

where h is an arbitrary nonvanishing holomorphic function on an open
subset of S2. These spaces have no symmetries and so one obtains from
them Einstein metrics with a one dimensional isometry group. However,
9 / 9 z does lift to a shear-free congruence on the Einstein space, and a
generalised Jones and Tod construction may be used to show that the
quotient by this conformal submersion is the Einstein-Weyl space with
geodesic symmetry given by H = 1/h (see [6]). In fact this was how these
interesting Einstein-Weyl spaces were found.
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