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CONFORMALLY EQUIVARIANT QUANTIZATION:
EXISTENCE AND UNIQUENESS

by C. DUVAL, P. LECOMTE, V. OVSIENKO

In Memory of Moshe Flato and Andre Lichnerowicz

1. Introduction.

The general problem of quantization is often understood as the quest
for a correspondence between the smooth functions of a given symplectic
manifold, i.e., the classical observables, and (symmetric) operators on a
certain associated Hilbert space, which are called the quantum observables.
This correspondence must satisfy a number of additional properties that
heavily depend upon the standpoint of the authors and are, by no means,
universal.

One guiding principle for the search of a quantization procedure is
to impose further coherence with some natural symmetry of phase space.
This constitutes the foundations of the "orbit method" [14], geometric
quantization [17], [26], [15] in the presence of symmetries, Moyal-Weyl
quantization (see, e.g., [10]) defined by requiring invariance with respect
to the linear symplectic group Sp(2n,IR) of R271.

1.1. Equivariant quantization problem.

In all previous examples, the symmetry group was a Lie subgroup of
the group of all symplectomorphisms of the symplectic manifold. Here, we
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will confine considerations to the case of cotangent bundles, T*M, with
their canonical (vertical) polarization. This polarization, together with the
Liouville 1-form on T*M, should be preserved by the symmetry group
which naturally arises as the cotangent lift of a Lie group, G, acting on M.

We will thus look for an identification, as G-modules, between the
space, «?(M), of smooth functions on T*M that are polynomial on the
fibers and the the space, T^M), of linear differential operators on M.

Note that the Moyal-Weyl quantization does not fit into this general
framework in which the symmetries of configuration space, M, play a
central role. Indeed, the action of Sp(2n,]R) on T*W1 does not descend
to W.

Now, G-equivariance between <S(M) and P(M) is clearly too strong
a requirement if G is the group, Diff(M), of all diffeomorphisms of M. We
will therefore impose such an equivariance in the weaker case where G is a
finite-dimensional Lie group whose action on M is to be only local.

The main tool we will be using is provided by the notion of (flat)
(^-structure. Let us recall that a G-structure on M is defined by a local
action of G on M, compatible with a local identification of M with some
homogeneous space G / H . More precisely, it is defined by an atlas of charts
(^co Va) with (pa : Va —> G / H such that ^pa o(Pf^l ls given by an element of
G. This new approach significantly differs from the more usual one which
makes use of connections to intrinsically define quantization procedures
and symbol calculus.

The G-structure we will consider in this article is the conformal
structure with G ==• S0(p +1,9+1) modeled on the pseudo-Riemannian
manifold 5^ x 5'9.

Our purpose is to show that there exists, actually, a canonical
isomorphism of S0(p + l,g + l)-modules between the space of symbols,
5(M), and the space of differential operators, P(M).

Experience of other approaches to the quantization problem and
of the geometrical study of differential equations prompts us to rather
consider the space, P^^(M), of differential operators with arguments and
values in the space of tensor densities of weights A and p, respectively. So,
we will naturally need to study this space of differential operators as a
S0(p + 1, q + l)-module. As a consequence, the S0(p + 1, q + l)-module of
symbols will be twisted by the weight 6 = IJL — A, and denoted by Ss(M).
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Let us emphasize that equivariant quantization of G-structures has
already been carried out in the case of projective structures, i.e. SL(n +
1, Restructures, in the recent papers [22], [20]. As for conformal structures,
a first step towards their equivariant quantization was taken in [9] in the
case of second order operators.

In the particular case n = 1, both conformal and projective structures
coincide. We refer to [6] for a thorough study of sl (2, R)-equivariant
quantization and of the corresponding invariant star-product. See also [28]
for a classic monography on the structures of sl(2, ]R)-module on the space
of differential operators on the real line.

There exist various approaches to the quantization problem, however,
our viewpoint put emphasis on the equivariance condition with respect
to a (maximal) group, (7, of symmetry in the context of deformation
quantization. Now, G-equivariance is the root of geometric quantization
[26], [17], [15], Berezin quantization [2], [3], etc., but it seems to constitute
a fairly new approach in the framework of symbol calculus, deformation
theory and semi-classical approximations dealt with in this work.

1.2. Quantizing equivariantly conformal structures.

We outline here the main results we have obtained, and describe the
general framework adopted in this article to answer the question raised in
the preceding section.

We review in Section 2 the structures of the spaces of symbols
Ss(M) and of differential operators T>\^(M) as Vect(M)-modules. The
Lie algebra, o(p + 1, q + 1), of conformal Killing vectors of a conformally
flat manifold (M^g) is then described. The restriction of the preceding
Vect(M)-act ions is also explicitly calculated.

Section 3 presents the main theorems which establish the existence
and the uniqueness of a o(p + 1,9 + 1)-equivariant quantization in the
special and fundamental case A = /x. It turns out that the value A = ^ = ^
guarantees that our quantization actually defines a star-product on T*M.
This is precisely the value of the weights used in geometric quantization. In
the general case, we again obtain a canonical isomorphism of o(p+1,^+1)-
modules, except for an infinite series of values of 6 = fJ, — A, which we call
resonances.

Section 4 is devoted to the algebra of invariants. One considers the
action of o(p + 1,9 + 1) and the Euclidean subalgebra e(p, q) on the space
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of polynomials on r*R77'. Resorting to WeyPs theory of invariants, we
characterize the commutant of o(p4-1,9+1) within the algebra of operators
on the latter space of polynomials: it is a commutative associative algebra
with two generators. The commutant ofe(p, q) has already been determined
in [9]. These algebras of conformal and Euclidean invariants play a crucial
role in our work and enable us to compute the Casimir operators C<^ and
C\^ of the o(p + 1, q + l)-actions on 5<$(M) and V\^(M) respectively.

In Section 5 we provide the proofs of the main theorems. It should
be stressed that these proofs rely on the diagonalization of the preceding
Casimir operators in an essential way. The same idea has already been
exploited in [6] in the one-dimensional case, and in [20] in the case of
projectively flat manifolds of dimension n > 1.

Section 6 is concerned with the explicit expression of the quantization
map restricted to second order polynomials on T*M. It is worth noticing
that our conformally equi variant quantization on T^W^ differs from the
standard Weyl quantization to which it constitutes a new alternative.

This article is also related to various different subjects, namely
representation theory, the theory of invariant differential operators and
the cohomology of Lie algebras. A number of very concrete problems could
be tackled in this framework. For example, the quantization of the geodesic
flow has been achieved in a purely conformally invariant manner [9]. Also
the Yamabe-Laplace operator (or conformal Laplacian), see [4], arose from
the quantization of the same geodesic flow in a resonant case (recall that
this operator is of special importance in field theory in a curved space-time,
see, e.g., [24]).

Let us finally mention that this work opens up a number of orig-
inal questions under current investigation, viz the determination of the
o(p + l,q + l)-invariant star-product and multi-dimensional Schwarzian
derivative.

Acknowledgments: We are indebted to A. A. Kirillov for most en-
lightening discussions and also to S. Loubon-Djounga for his efficient help.
Special thanks are due to D. Leites for clarifying conversations.
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2. Basic definitions and tools.

2.1. Differential operators on tensor densities.

Let us recall that a tensor density of degree A on manifold M is a
smooth section of the line bundle ^\(M) == \AnT*M\(s)x over M. The
space of tensor densities of degree A is naturally a DifF(M)- and Vect(M)-
module. In this paper, we will consider the space J:'\(M) (or T\ in short) of
complex-valued smooth tensor densities, i.e., of the sections of A,\(M) (g)C.

The space "D\^ of linear differential operators

(2.1) A:^^^.

from A-densities to /^-densities on M is naturally a Diff(M)- and Vect(M)-
module. These modules have been studied and classified in [8], [21], [22],
[12], [II], [23], [9], [19].

There is a filtration P^ C V\^ C " • C P$^ C • • •, where the
module of zero-order operators P^ — T^-\ consists of multiplication
by (/^ — A)-densities. The higher-order modules are defined by induction:
A e P^ if [A, /] G P^1 for every / C C°°(M).

2.2. Symbols with values in tensor densities.

Consider the space S = r(S(TM)) of contravariant symmetric tensor
fields on M which is naturally a Diff(M)- and Vect(M)-module. We will
define the space of ^-weighted symbols on T*M as the space of sections

(2.2) ^=r(^(rM)(g)A^(M)).

The space Ss is also, naturally, a DifF(M)- and Vect(M)-module.

Again, there is a filtration S^ C Sj C • • • C S^ C • • •, where <S^
denotes the space of symbols of degree less or equal to A;. In contrast to the
filtration on the space "D\^ of differential operators, the above filtration on
the space (2.2) of symbols actually leads to a Diff(M)-invariant graduation

(2.3) S^Q)S^6
k=0

where Sk,6 denotes the space of homogeneous polynomials (isomorphic to
^/^-1)
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2.3. V\^ and Ss as Vect(M)-modules.

We will always assume M orientable and identify F\ to C°° (M) 0 C
by the choice of a volume form, Vol. on M.

It is clear from the definition ofV\^ that the corresponding Vect (Ab-
action, Cx^^ is given by

(2.4) C^{A)=L^A-AL^

where X € Vect(M), and L^ is the standard Lie derivative of A-densities
F\. Now, any A-density being represented by /[Vol^ for some / C
C°°{M) 0 C, the Lie derivative L^ is thus given by

(2.5) L^( / )=X( / )+ADiv(X) /

where Div(X) = Lx(Vol)/Vol.

As to the Vect(M)-action, L6, on Ss, it reads

(2.6) L^(P) = Lx(P) + 6Div(X) P

where Lx denotes here the Lie derivative of contravariant tensors given by
the cotangent lift of X <E Vect(M).

2.4. The modules 2 (̂1 )̂ and ^(BF).

In a given coordinate system (a;1,.... x^ on R71, the expression of a
differential operator A € V^ ̂  (see (2.1)) reads

(2.7) A = A^-^ ... 9,, + • • • + A[9i + Ao

where 9, = Q/9x\ the coefficient A^-^ € C00^) being symmetric in
% i , . . . , ia for ^ = 0 ,1 , . . . , k. From now on we suppose a summation over
repeated indices.

The local expression of a symbol P € «S^ (see (2.2)), in the canonical
coordinate system (a-1 , . . . , o-^, ̂ i , . . . , ̂ n) on T*^ is then

(2.8) P=P^••^ fc^...^+•••+P^+Fo

where p^1---^ ^ C'00^71) represent the components of symmetric con-
travariant tensor fields on W1 (for £ = 0 ,1, . . . , k).
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As vector spaces, T>\^ and <Sg are clearly isomorphic, though not in
a canonical way. For example, the normal ordering map

(2.9) ^^^•^^...^^A^-^^...^

defines such an isomorphism.

The Vec^R^-action (2.4) on differential operators is, of course,
different from the standard Vec^R^-action (2.6) on polynomials. We will,
therefore, distinguish the two Vec^R^-modules

(2.10) PA,^ = (PoicrR^), r^),
(2.11) ^^(PoicrBr),!/).
In particular, a vector field X corresponds to a first-order polynomial,
X = X1^. The operator of Lie derivative is then given by the Hamiltonian
vector field

(2.12) L^ = 9^X9, - 9,X9^ 4- 6DX,

where D = Q^QI is the divergence operator (see Section 4.1). This local
expression precisely corresponds to the previous expression (2.6).

One easily proves the

PROPOSITION 2.1.— The Vec^R72) -action on V\^ has ihe following
form:

(2.13) C^ =L6^ - 1 9i9jX9^ - X (<9, o D)X9^
Zi

+ (higher order derivatives 9^ • - • 9i^X)

where 6 = p, — X.

2.5. Conformally flat manifolds.

Throughout this paper we will deal with conformally flat manifolds.
Let us recall that a smooth pseudo-Riemannian manifold (M, g) is confor-
mally flat if, for every x € M, there exists a neighborhood V^ of x and
F € C°°(Vx,R^) such that (V^,g) is flat with the new metric g = F g.

The basic example of a Riemannian n-dimensional conformally flat
manifold is the sphere S71 with its canonical metric, and 5^ x Sq in the case
of signature p— q. A conformally flat manifold is locally identified with such
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a homogeneous space and thus admits a local action of S0(p +1,^+1) .
The associated, locally denned, action of the Lie algebra o(p + l,q + 1)
corresponds (if n = p + q ̂  3) to that of the subalgebra of the vector fields
X solutions of

Lxg = fg
for some / e C°°(M) depending upon X.

It is well known that a conformally flat manifold admits an atlas in
which o(p + 1, q + 1) is generated by

X - 9
x' ~ 9^

_ 9 9
i j ~ ^9x3 x3^(2.14)

xo = xi
ôx1xt = ̂ ^-^^

where i,j = 1,... ,n and Xi = g^x3. In the sequel, indices will be raised
and lowered by means of the (flat) metric g .

Let us introduce the following nested Lie subalgebras that will be
considered below, namely

(2.15) o(p, q) C e(p, q) C ce(p, q) C o(p + 1, q + 1)

where o(p,q) is generated by the X^, the Euclidean subalgebra e(p,q) by
Xij and Xi and the Lie algebra ce(p, q) = e(p, q) x R by X^-, X, and XQ.

Remark 2.2. — It is worth noticing that the conformal Lie algebra
o(p + l,g + 1) is maximal in the Lie algebra Vectpo^M71) of polynomial
vector fields in the following sense: any bigger subalgebra of Vectpol^)
necessarily coincides with Vectpol^). See [5] for a simple proof. The
uniqueness and the canonical character of our quantization procedure
definitely originates from this maximality-property ofo(p+l, ̂ +1). See also
[25] for a classification of a class of maximal Lie subalgebras ofVectpol^).

Remark 2.3. — From now on, we will use local coordinate systems
adapted to the flat conformal structure on M in which the generators of
o(p+1,94-1) retain the form (2.14). This flat conformal structure precisely
corresponds to a S0{p+1, q+ ̂ -structure on M (cf. Introduction) defined
by the atlas of these adapted coordinate systems. Clearly, our formulae will
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prove to be independent of the particular choice of an adapted coordinate
system and to be globally denned.

2.6. Explicit formulae for the o(p + l,q-\- l)-actions.

As a first application of the preceding results, let us compute the
action of the conformal algebra on Sg and on V^ which is given by the
following two propositions.

PROPOSITION 2.4. — The action o f o ( p + l , ^ + l ) on Ss reads

^ = 9i
L6^ = x,9j - XjQ, + ̂  - ̂ i

(C2A^ L^=^-^+n<5
L^ = X3X3^^ - 2 (̂9, - 2(^x, - ̂ Xi)Q^ + 2 '̂<9^ - 2n6xi.

Proof. — These expressions follow from the explicit form (2.14) of the
o(p + 1, q + ^-generators, and from (2.12). D

PROPOSITION 2.5. — The action ofo(p + 1, q + 1) on V^ reads

(2.17) ^=^

for all X e ce(p, q), where 6 = ̂  - X; one furthermore has

(2.18) C^ = L6^ - ̂ T + 2(8 + n\) 9^

for all infinitesimal inversions Xi (with i = 1,. . . , n) where T = 9^9^. is
the trace and 8 = ̂ 9^ the Euler operator. (See Section 4.1.)

Proof. — This is a direct consequence of Proposition 2.1, and of the
formulae (2.14). Q

Remark 2.6. — The formula (2.18) captures the difference between
the o(p+ 1, g+ l)-modules 2\^ and Sg. Note that the operator C^ - L6^
is nilpotent since it maps S^ to ̂ -1.

3. Main results.

In this section we formulate the main results of this article. All the
proofs will be given in Section 5.
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3.1. Quantization in the case 6 = 0.

Let us consider first the special case 6 = ^ — X = 0 and use the
shorthand notation <S = SQ and T>\ = PA,A- Although this is definitely not
the most general case to start with, this zero value of the shift is of central
importance to relate our conformally equivariant quantization to the more
traditional procedures such as geometric or deformation quantization.

THEOREM 3.1.— (i) There exists an isomorphism of o(p + 1,9 + 1)-
modules

(3.1) QA:5-^A.

(ii) This isomorphism is unique provided the principal symbol be
preserved at each order, i.e., provided it reads Q\ = Id + A/A with nilpotent
part A/A :^-^5A-1.

Let us introduce a new operator on symbols that will eventually
insure the symmetry of the corresponding differential operators. Define
Tn : <% -^ S^ih] by

(3.2) Wm = P(z^).

Note that we will understand h either as a formal parameter or as a fixed
real number, depending upon the context.

Remark 3.2.—It is evident that Z^ is an invariant operator, i.e.,
[L^.In} = 0 for all X <E Vect^).

DEFINITION 3.3. — We will call conformally equivariant quantization
the o(p + 1, q + l)-equi variant map Q\-^ '• S —> T>\[ih] defined by

(3.3) Qx,H=Qx^Tn

where h is a formal parameter and 1^ is given by (3.2).

Theorem 3.1 and the preceding definition enable us to look for a
conformally invariant star-product on the space of symbols S over T*M.
In fact, as soon as one gets an isomorphism such as (3.3), one can readily
define an associative bilinear operation (depending on A)

(3.4) *A,^5(g)5-^<?[[^]]

such that

(3.5) Q^(P *A;, Q) = Qx-^P) o QA^(Q).
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Recall that an associative operation */^ : S 0 <S —>• S[[ih}] is called a
star-product [I], [7], [10] if it is of the form

ifi
(3.6) P *, Q = PQ + ^ {P, Q} + 0(^2)

where { • , • } stands for the Poisson bracket on T*M, and is given by bi-
differential operators at each order in h.

THEOREM 3.4. — The associative, conformally invariant, operation
*^ denned by (3.5) is a star-product if and only if X = -

Let us emphasize that this theorem provides us precisely with the
value of A used in geometric quantization and, in some sense, links the
latter to deformation quantization.

3.2. General formulation. Resonant values of 6.

In this section we formulate our result about the isomorphism of the
o(p 4-1, q + l)-modules Ss and T>\^ in the general situation.

The discussion below mainly relies on the structure of the spectrum
of the Casimir operator C\^ of (the o(p + 1, q -h l)-module) T)\^. Indeed,
the Casimir operator C<5 of Sg turns out to be diagonalizable. Therefore,
a necessary condition for the o(p + l,q + l)-modules Sg and V\^ to be
isomorphic is that C\^ be diagonalizable. This is of course the case if its
eigenvalues are ^simple", while some problems could arise otherwise. The
latter case occurs only if the shift 6 = [i — X belongs to the set

(3.7) S = {6k^s,t I k, ̂  s, t <E N; k > £', 2s ^ k', 2t ^ £}

where

_, ^s,t= ————-. {{k- £+t-s){k 4-^-2(5 + ^ ) + n - 1)
^O.OJ Tl\^K — t )

+(5 - t)(k + £ + 1) + 2(kt - £s)).

The elements of E will be called resonances.

THEOREM 3.5 (Generic case).— I f n = p + q ^ 2 and 6 ^ S, then
there exists an isomorphism ofo(p + 1, q + 1) -modules

(3.9) Qx^ : Sg -^ Vx^

which is unique provided the principal symbol be preserved at each order.
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If 6 (E S, the Casimir operator C\^ has "multiple" eigenvalues and,
in some cases, is even not diagonalizable. The corresponding critical values
of 6 are difficult to determine; however, they belong to

(3.10) So = {6k^t eS Q < ^ s - t ^ k - £ } .

THEOREM 3.6 (Resonant case).— I f n = p + q ^ ( 2 and 6 e S\So,
then there exists an isomorphism (3.9) of o(p + 1, q + l)-modules which is
unique provided the principal symbol be preserved at each order.

The proofs of Theorems 3.5 and 3.6 both consist mainly in showing
that C\^ is diagonalizable. In the case of Theorem 3.5, this is quite
immediate to prove, whereas the resonant case is much more involved.

Remark 3.7. — The isomorphisms of o(p + 1, q + l)-modules obtained
in the above results are in fact decribed in terms of local operators: they
are expressed by differential formulae in the coordinates ( x ' ) and (<^) of
the bundle T*M. It is worth noticing that this is not an assumption but
just a fact.

Remark 3.8.—If 6 G So, then there are values of the weights A
and [i for which the sought isomorphism does exist (being, however, not
necessarily unique). We have no precise statement for this degenerate case,
but in the example of second order symbols, the table (6.6) provides special
values of A and ^ leading to an isomorphism (3.9).

Remark 3.9. — One easily finds values of n for which 0 C S (for
instance, n = 2, for which &4,3;2,o = 0). However, we will show that if 6 = 0
is resonant, it is not critical (Lemma 5.12).

Remark 3.10.—In the one-dimensional case, n = 1, the above
theorems still hold true but the resonances are simply 6 = 1, |, 2, 5 , . . .
and appear in [6], [11]. (The conformal structure is then replaced by the
natural sl(2,R) infinitesimal action.)

Again, we will introduce the quantization map as the o(p + 1, q + 1)-
equivariant map Qx^n : Ss -^ T>\[ih] defined by

(3.11) Qx^=Qx^oIn

as a natural generalization of (3.3).

Let us recall that if A + ^ = 1, there exists, for compactly-supported
densities, a Vect(M)-invariant pairing T\ (g) J^ -^ C defined by

(3.12) (^0^^ / Tp^.
J M
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We can then formulate the important

COROLLARY 3.11.— Assume 6 ^ Eo and A+/x = 1. The quantization

(3.13) P=Q^^,^P)

of any symbol P € Sg is a symmetric (formally self-adjoint) operator.

Proof. — Let us denote by A* the adjoint of A e V\^-\ with respect
to the pairing (3.12). Consider the symmetric operator

Symm(Q^;,(P)) = J (QA,^(P) + (QA,^(P))*)

which exists whenever A+/^ = 1. Notice that it has the same principal sym-
bol as Q\^n(P). Now, the map Symm(<3A,/^) is obviously o(p+ 1,^+ 1)-
equivariant. Theorems 3.5 and 3.6 just apply and yield Sy mm (Q;^;/,(?)) =
Qx^n(P)' ' ' D

The particular case 6 = 0 is of special importance and related to
Theorem 3.4 since A == fi = -

3.3. Quantum Hamiltonians.

To recover the traditional Schrodinger picture of quantum mechanics,
one needs to associate to the operator P resulting from our quantization
map (3.13) an operator

(3.14) p:^-^

on the space of complex-valued functions on a conformally flat manifold
(M.rg).

Using the natural identification ^o —^ ^\ between tensor densities
and smooth functions given (see Section 2.3) by

(3.15) /^/|VolJ\

one can introduce the differential operator, P, defined by the commutative
diagram

TQ ——> fo
(3.16) [Voi^ | | |voi^

^ D 4-r> -^ ^
where P is given by (3.13) in the case A + ju = 1.
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Remark 3.12. — So far, we only needed a conformal class of metrics
to define a conformally equivariant quantization map. But, in the current
construction, we definitely make a particular choice of metric, ^, in the
latter class to express the operator P.

In the case 6 = 0, which is relevant for quantum mechanics, the
operator P admits a prolongation as a (formally) self-adjoint operator
on the Hilbert space F^_ (the completion of the space of compactly
supported half-densities with Hermitian inner product (3.12)). It will be
therefore legitimate to call P the quantum Hamiltonian associated with
the Hamiltonian P 6 S ^ Pol(T*R71). This quantum Hamiltonian is then
a (formally) self-adjoint operator on the space L^M, |Vol^|).

4. Conformally invariant operators.

The space C[x1,..., a171, ̂ i , . . . , ^n} °f polynomials on T*W1 is nat-
urally a module over the Lie algebra, Vectpoi(M77'), of polynomial vector
fields on R71. This module structure is induced by the Vec^R71) action on
T*R71. But, we will rather consider, as in Section 2.4, the deformed action
(2.12) depending on a parameter 6-, we will henceforth denote this module
byC^1,...,^!,...,^.

DEFINITION 4.1. — We denote byEnddiff(C[;r1,... .a;71,^,... ,^]) the
subspace

C\x1 x-f 6 -Q- -°- -9- -9-!L ' ' " ' ^i-'-^^i,..., ̂ , Q ^ ' " ' 9^\

of polynomial differential operators on C[.r1,..., re71, ̂ i,..., ̂ ].

DEFINITION 4.2.— To any Lie algebra Q C Vectpo^M71) we associate
its commutant, Q-, as the Lie subalgebra ofEnddiff(C[:r1,..., x71, ̂ i , . . . , ̂ n])
of those operators that commute with Q.

This classical notion of commutant has first been considered in the
context of differential operators by Kirillov [16].

4.1. Algebra of Euclidean invariants.

To work out a conformally equivariant quantization map, we need to
study first equivariance with respect to the Euclidean subalgebra e(p,^).
To this end, we will introduce the commutant e(p,^)1.
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Let us recall the structure of e(p, q)1 which has been shown [9] to be
the associative algebra generated by the operators

( A n p eic ^ € 9 i n rp 9 9
(4.1) R=^, E=^^r T =^^

whose commutation relations are those of sl(2,R) together with

..^ ^ ., 9 - 3 9 ., <9 <9
(42) G=f^ D=^^ A =^^

which generate the Heisenberg Lie algebra hi.

We will find it useful to deal with the Euler operator

(4.3) ^^-J-

An example of Howe dual pairs of (non semi-simple) Lie algebras is
given by

THEOREM 4.3 [9]. — The commutant e(p, 9)' in Enddiff(C[.r1,..., x71,
^i, • •«^n]) is isomorphic to £/(sl(2,R) ix hi)/Z where the ideal, Z, is as
follows:

(i) i f n = 2 , the ideal Z is generated by

(4.4) Z=(C+| )A+^([D,[G,C]]^- [G, [D,C]]^) ,

where [ • , • ] + stands for the anticommutator, and

(4.5) C=E 2 - j [R ,T]+

is the Casimir element ofsl(2,R),

(ii) ifn ^ 3, one has

(4.6) Z = {0}.

This theorem is a generalization of the celebrated Brauer-Weyl The-
orem [27] (see also [16], [9]).

Let us mention that we will, actually, need considering invariant
operators with respect to homotheties generated by XQ (see (2.14) and
(2.15)) inside e(p,^)'. We readily have the
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COROLLARY 4.4. — The commutant ce(p, q)' m Enddiff(C[.r1,...,^n,
^ • • • ^n]<$) is the associative algebra generated (see (4.1) and (4.2)) by

(4.7) E, R o = R T , D, G o = G T , A o = A T .

4.2. Algebra of conformal invariants.

The commutant o(p +1,9+1)', is given by the following corollary of
Theorem 4.3.

COROLLARY 4.5. — The commutant o(p + 1, q + 1)' in

End^C^...,^,^,...,^],)

is, for n ^ 3, the commutative associative algebra generated by E and Ro.

Proof. — In view of the preceding corollary, we need only the commu-
tation relations of the operators (4.7) with the generators L6 of inversions
given in (2.16) in order to determine o(p + 1, q + 1)'.

Straightforward calculation leads to

[E,L^]=0

[Ro^J=0

(4.8) [Go,2^J = 2(RoC^ + (2 - n<%T)

[D, L^J = 2( - ̂ T + 2E9^ + n(l - 6)9^)

[Ao, L^J = 4(^T + Go^z - ̂ DT) + 2(2 + n(l - 26))9,T

for % = 1,... ,n.

Now, Theorem 4.3 guarantees that the monomials We,r,d,g^ =
E6 R5 D^ Gg A^ are independent; they are of degree

(4-9) deg(We,^,d^^) = e + 2r + d + 2g + 2^

as differential operators in ^. We thus have to look for the commutant of
inversions in ce(p, ^)', i.e., to determine the linear combinations of the pre-
vious monomials that commute with L^. The commutator [We,r,d,g,£, L6^ ]
is a differential operator (in ^) of degree deg(We,r.,d,<^) + 1. We are there-
fore led to study the principal symbol of this operator, which can be eas-
ily computed with the help of (4.8). In order to make our calculations
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more tractable, let us rather deal with the principal symbol of the operator
n

S ^[We,r,d,p,^^.]; it is of the form
1=1 'l

2^Ee+ lRS+lDdGg- lA^
(4.10) - 2d(E6 R^1 D^-1 Gg A^ - 2 E^2 R^ D^-1 Gg A^)

+ 4^(2 E64-1 R^ D^ G^1 A^-1 - E6 R^4-1 D^1 Gg A^-1).

We then seek the linear combinations of the monomials We^,d,^ of fixed
degree (4.9), for which the previous expression is identically zero. Resorting
to Theorem 4.3, we immediately get g = 0 since the first term in (4.10) is
clearly independent of the others. The same is true for the next two terms,
yielding d = 0 and £ = 0. D

4.3. Casimir operator C<$.

We have computed in Section 4.2 the commutant o(p + 1, q + 1)' of
the conformal Lie algebra. Now, representation theory tells us that there
exists a distinguished invariant within this commutant, namely the Casimir
operator.

Recall that the Casimir operator of a given representation p : Q —^
End(V) of a semi-simple Lie algebra Q is

(4.11) C=B^p(X^p(X^)

where B is the Killing metric and (Xa) any basis of g with B^ =
B(Xa, Xft), the components of the associated Gram matrix. It is well known
that the Casimir operator is invariant, i.e. [C,p(X)] =0 for all X G Q.

In this section, we will provide the explicit calculation of the Casimir
operator of the o(p + 1, q + l)-action, L6, on Ss given by Proposition 2.4.
We choose the Killing form as

(4.12) B(X,V) = -^Tr(XY)

where X, Y e o(p + 1, q + 1) in their (n + 2) x (n + 2) matrix realization.
We can then give the explicit formula for this Casimir operator, denoted
by C<$, in terms of the invariant operators (4.7).

PROPOSITION 4.6. — One has

(4.13) Cs = Ro + 2(1 + n{6 - 1) - £)8 - n2^ - 1)

where n = p + q.
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Proof. — The matrix realization of the o(p+l, 9+1 ̂ generators (2.14)
is given by

/ 0 -V2ei 0'
(4.14) Xi = 0 0 0

\^N 0 0,
(e,e\-e^ 0 0\ /O 0 0'

(4.15) X^ - 0 0 0 , Xo = 0 -1 0
V 0 0 O/ \0 0 1,
/ 0 0 ^2e,\

(4.16) X, = -^le\ O O .
\ 0 0 0 /

where (e,) is the canonical basis of R" and {e\ = g(e,)) its dual basis
associated with the metric g.

A simple calculation yields the basis (X° = B^X/)) of o(p +1, q +1)
dual to (Xa) with respect to the Killing metric (4.12). One gets

(4.17)

Xi = -Jff^

X^ = g^g^Xki

XQ = -Xo

x1 = -J^-
Using the o(p + l,q + l)-action, L6, on Sg given in (2.16), one shows
immediately that the Casimir operator

(4.18) C, = ̂ VL^L^ - (L^)2 - \^L^ - J<^£i,

actually retains the form (4.13). Q

Remark 4.7.— It is worth noticing that the Casimir operator (4.13)
can be alternatively expressed in terms of the Casimir operator, C, (see
(4.5)) and the Cartan generator, E, ofsl(2,R). One finds

(4.19) C, = -C - (E - n6)2 - n (l - n ) .

4.4. Casimir operator C\^.

The Casimir operator of the o(p + 1, q + l)-action on 2\^ is defined,
accordingly, by

(4.20) C^ = B^C^C^.
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PROPOSITION 4.8. — The Casimir operator of the o(p+l, q-}-l)-action
on "D\^ is of the form

(4.21) Cx^ = Cs + Go - 2(nA + £)D.

Proof. — The explicit formula for C\^ is obviously obtained by replac-
ing L6 by C^ in (4.18). Applying then (2.17) and (2.18) to that expression
immediately leads to the result (4.21).

5. Proofs of the main theorems.

Throughout this section we use, for convenience, the local identifica-
tion (2.9) ofV\^ and Ss.

5.1. Diagonalization of the Casimir operator C^.

We have already mentioned that we will study the diagonalization
of the Casimir operators Cs and C\^. Here, we understand that an
endomorphism of an infinite-dimensional space is diagonalizable if any
element of the latter is a (finite) sum of eigenvectors of the former.

Let us recall that [<?,Ro] = 0, so that [C^S] = 0 and [C<$,Ro] = 0.
We can thus simultaneously diagonalize the three operators <^,Ro and C<$.

LEMMA 5.1. — The eigenvectors of the operator Ro restricted to the
space Sk,s of homogeneous polynomials (see (2.3)) are of the form

(5.1) Pk^s = R'O,

where R is given by (4.1) and Q e Sk-2s,6 is tracefree (harmonic), viz
TQ = 0, and

(5.2) ^€ {0 ,1 ,2 , . . . , [A ; /2 ] } .

The associated eigenvalues are

(5.3) ^=2s(n+2(k-s-l)).

For a proof, see, e.g., [27].

We readily have the following
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COROLLARY 5.2. — The spectrum of the Casimir operator C<$ is given
by

(5.4) ^s = 2s(n + 2(k - s - 1)) + 2k(l + n(6 - 1) - k) - n2^ - 1).

Proof.— This follows immediately from Lemma 5.1 and the expres-
sion (4.13) of the Casimir operator C<5. Q

We have thus the following useful decomposition: every ? € < ? < $ can
be decomposed as a locally finite sum

oo [ k / 2 ]

(5-5) ^EE^.
k=0 s=0

where [k/2] is the integer part of k / 2 . In other words, we have a direct sum
decomposition

00

(5-6) ^ = (B s^s
k=0

s^[k/2]

into eigenspaces off and Ro. (See Theorem (5.6.A) in [27].)

We are now able to explain the origin of the resonant values (3.8)
of 6 = ̂  — A.

LEMMA 5.3. — One has 6 = 6k^;s,t if and only if^k,s = 7^.

Proof. — This is straightforward from (5.4). D

5.2. Diagonalization of the Casimir operator C\^.

We establish, in this section, the main technical statement that helps
us to prove the existence of an equivariant quantization map for almost all
values of the shift 6.

The expression (4.21) of the Casimir operator is of the form C\^ =
Cs + NA with nilpotent part NA : ̂  -^ <S^-1 (for k = 0,1,2,.. .), ' see
Section 4.4. This implies that any solution P e V^ of the equation

(5-7) C^P=^P

is of the form P = P^ + P ' where P^ is as in (5.1) and P ' e P^"1; the
eigenvalue 7 clearly coincides with 7^5 given by (5.4).
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PROPOSITION 5.4 (Generic case).— If 6 ^ E, then the eigenvalue
problem (5.7) for the Casimir operator C\^ has a solution if and only if
7 = 7M for some k, s (as given by (5.4)). The corresponding eigenvectors
are uniquely determined by their principal symbols, arbitrarily taken in
S{k,s),6'

Proof. — The highest degree component of the eigenvalue equation
(5.7) is just the eigenvalue equation for C<^. Hence, a solution of (5.7) is
necessarily of the form 7 = 7^ s and

(5.8) P=PM+ E p^
£<k

t^/2]

according to the decomposition (5.6). The remainder of equation (5.7) reads
now

(5.9) E (^s - 7^)P^ = NA?
£<k

t^/2]

Since 6 ^ E, by Lemma 5.3, the coefficients 7^5 — 7^ do not vanish. In
view of the nilpotency of N^, the result follows immediately. D

In order to handle the case of non-critical resonant values of 6, we
need the following

LEMMA 5.5.— IfP e <S(fc,s),6, then

(i) the polynomials D(P) and Go(P) belong to S^-i^-i)^^S^-i,s),6,

(ii) the polynomial Ao(P) belongs to 5(^-2,5-2), 6 ® S^-2,s-i^s ®
^(fc-2,s),<$.

Proof. — Any polynomial P € <?(/c,s),<$ is of the form P = R^Q where
Q € <S(^_2s,o),<$ ls harmonic, see (5.1). One has

D(P)=[D,RS](Q)+RSD(0)
S-1

= ̂  R^D, RIR8-7-1 (Q) + R^Q)
r=0

=2sRS- lG(Q)+R5D(0)

since [D, R] = 2G and [R, G] = 0 in the Lie algebra sl(2, R) K hi (see Section
4.1).
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At last, D(Q) is harmonic because [T,D] = 0 and one furthermore
easily checks that G(Q) € 5(A;-25+i,o),<5 © <5(A;-2^-i,i),<5- Hence, D(P) G
S(k-l,s-l),6 ® «^(A;-1,5),<$-

The proof for Go(P) and Ao(P) is analogous and will be omitted. D

Let us then introduce the space

(5.10) 5(^)^ = (3) S^t),s
0<^s—t<^k—£

which is "generated" by the tree

^{k,s),6

^\

/^-m ^{k-l^s-l),6 S(k-l,s),6
(5•ll) ^\ ^\

(5(A;-2,s-l),<$

In view of the preceding lemma, <S(/,;,«),<$ is stabilized by the Casimir operator
C\^. Moreover, i f^ ^ So (see (3.10)), 7^ ^ 7;,̂  whenever S^t),6 C <?(/c,s),<5-

PROPOSITION 5.6 (Resonant case). — If6e S\So, then the eigenvalue
problem (5.7) for the Casimir operator C\^ has a solution if and only if
^ == ^^ for some k ^ s (as given by (5.4)). Every P^^s ^ ^(A;,^),^ ls ^ne

principal symbol of an eigenvector of C\^. This eigenvector is uniquely
determined provided it belongs to S^^),s-

Proof. — One proceeds just as in the proof of Proposition 5.4. The
fact that one restricts £,t in the decomposition (5.8) to those values for
which <?(^t),<5 C <5(fc,s),6 again insures that the coefficients in equation (5.9)
do not vanish. D

Remark 5.7. — In Proposition 5.6, if 6 ̂  <^;s,t for some £, t, then any
eigenvector with principal symbol in S^,s),6 necessarily belongs to 5(fc,s),<$.

If 6 is not critical, it then follows from Propositions 5.4 and 5.6 that
every P^.s ^ <5(A;,5),<$ ls the principal symbol of an eigenvector Pk,s ^ ^{k,s),6
of the Casimir operator C\^. Hence the

COROLLARY 5.8. — If 6 ^ Eo the Casimir operator C\^ is diagona-
lizable.
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5.3. Proof of Theorems 3.5 and 3.6.

Let us show that the diagonalization of the Casimir operator actually
leads to the determination of a unique isomorphism ofo(p-t-l, g+l)-modules
Q\^ '' ^6 —> ̂ \^- Looking for a map Q\^ such that

^ ̂  Vx^

(5.12) 5^ Q^

<S, -°^ Ss

be a commutative diagram, we are led to the

DEFINITION 5.9. — The linear map Qx^ : Ss -^ V\^ is defined by

(5.13) QxAPk.s) = Pk^s

using the decomposition (5.5).

This map has, obviously, the following properties:

1. C\^Q\^ = Qx^Cg,

2. Q\,p. = Id +A/A,^ with nilpotent part A/A,^ : ̂  -^ ̂ -1.

5.3.1. Proof of Theorem 3.5.

Let us first prove that

(5.14) ^Q^ = Q\^x

for all X G o(p + 1, q + 1). From Property 1, we see that if P^s e 5(A;,s),<$
then C^Q\^Pk,s and Q\,p.L^Pk,s are both eigenvectors of the Casimir
operator C\^ associated with the same eigenvalue 7^- Moreover, Property
2 and (2.13) entail that C^Qx^Pk^s and Qx^L^Pk^s have the same
principal symbol, namely L^P^s. It follows from Proposition 5.4 that
these eigenvectors actually coincide. Hence, the existence of the sought
quantization map.

Now, to prove the uniqueness, it suffices to note that an isomorphism
of the o(p + l,g + l)-modules Sg and T>x^ necessarily intertwines the
corresponding Casimir operators. If it moreover preserves the principal
symbol, then Proposition 5.4 shows that it is, indeed, Qx^-

The proof of Theorem 3.5 is complete.
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5.3.2. Proof of Theorem 3.6.

This proof is built on the same pattern as the previous one. But,
since 6 has resonant values, we must resort to Proposition 5.6 instead of
Proposition 5.4. This is done at the expense of some preparation due to the
fact that the uniqueness of the eigenvector P^g is guaranteed only within
^(k, s } , 6 '

The above proof of the equivariance property (5.14) should now be
completed with the help of

LEMMA 5.10. — For every X 6 o{p + 1, q + 1), one has L^S^^s)^ C
^{k,s),6 an(^ ^X^^{k,s),6 C <5(fe,s),6-

Proof. — The first inclusion easily follows from Corollary 4.5. As to
the second one, we then proceed as in the proof of Lemma 5.5, using (2.18).

D

The existence of the isomorphism Q\,p. is thus proven.

In the same way, the uniqueness of the sought isomorphism is estab-
lished as in the proof of Theorem 3.5, provided we apply the following

LEMMA 5.11.— Any linear map Q '. Ss —^ Sg that intertwines the
ce(p, q)-action and do not increase the degree stabilizes each space S^,s),6'

Proof. — It has been shown in Lemma 7.1 of [19] (see also Theorem
5.1 of [22]) that such a map Q is necessarily a differential operator with
constant coefficients. We can thus apply Corollary 4.4: Q is a polynomial
in the operators (4.7). We conclude by using Lemma 5.5. D

This ends the proof of Theorem 3.6.

5.4. Proof of Theorem 3.1.

In order to prove Theorem 3.1, it is enough to show that 6 = 0 is not
a critical value, i.e., 0 ^ So. This follows from the stronger

LEMMA 5.12. — If the following inequalities hold

(5.15) O ^ s - t ^ k - C ,

one has 6kp:s,t > 0.
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Proof.—In the expression (3.8), both factors in the first term,
k — £ -\-1 — s and k + i — 2(5 + t) + n — 1, are non-negative in view of
(5.15) and (5.2). Also (5.15) yields kt - £s ^ -£(s -1) so that the second
term is bounded from below by {s - t)(k - £ + 1), which is non-negative.
We have just shown that 6 ^ 0.

Now, if s = t, one has n 6 = k + £ + n - ( 2 t - l ^ k because of (5.2).
The result follows since k > 0 in (3.8). D

5.5. Proof of Theorem 3.4:
Conformally invariant star-product.

Throughout this section we will only consider the case X = fi. Let us
give an explicit expression for the quantization map (3.3) up to the second
order in h.

PROPOSITION 5.13.—If Pk,s ^ ^(k,s) ls a homogeneous polynomial
(see (5.6)) with k > 2, then

(i) if s > 0, the quantization map is of the form
(5.16)

Q^s) = PM + J (D(P.,) + ^a^_A):^) OO(PM)) ^ 0^

(ii) if s = 0 (i.e., the harmonic case), one has

( ^\ | L, _ 1 \

(5.17) Qx-APk,o)=Pk,o+ih .., . D(Pfc,o)) + 0(fi2).
U -\- Z^K, — l ) y

Proof. — (i) An eigenvector of the Casimir operator C\ \, with prin-
cipal symbol P/e^, is of the form

P = Pk,s + Pk-i,s + PA;-I,S-I + terms of degree ^ k - 2.

(See the formula (4.21) and Lemma 5.5.)

The eigenvalue problem (5.7) therefore leads to ^k,sPk,s = 7-Pfc,^
where 7^^ is the eigenvalue of the Casimir operator Co given by (5.4), and
to

^k-l,sPk-l,s + 7fe-l,5-A-l,5-l =7(^-1,5 + Pfc-l,s-l)

(5.18) + 2(nA + k - l)D(P^) - Go(P^).
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In order to solve this equation for P/c-i s o^d Pfc-i s-i^ one needs to
introduce the projectors

T-rk-l,s RO — Qk-l,s-l , TT^-1,5 ^0 — Qk-l,s111 = ———————•——— and 11.2 = ————————:——
Qk-l,s — ^/c-l,s-l ^-l,s-l — Qk-l,s

from the space <^(A;-i,s)®<5(A;-i,s-i) to the first and second summand
respectively, where Qk,s is the eigenvalue (5.3) of Ro.

From equation (5.18) one gets

Pk-i,s= - n l — — (2(nA+A;-l)D(P^)-Go(P,,.))
7fc,s - 7fc-i,s
^-i^

Pfc_i,,-i= -———2———— (2(nA+A;-l)D(P^)-Go(Pfc,.)).
7k,s -7A;- l,s-l

To rewrite the previous expression in terms of D(P^s) and GO(PA;,«), one
resorts to the following formulae:

RoD(P^) = ̂ D(P^) - 2Go(Pfc,.)

RoGo(Pfe,.) = 2D(Pfc,,) + (̂ ,, - 2(n + 2/^ - 2)) Go(Pfe,s)

obtained with the help of the commutation relations of the generators (4.1)
and (4.2) of sl(2,R) ix hi. A lengthy but straightforward calculation gives

pfc-l•s + pfc-1-1 = \W^ + 2s^l-~^nn^GO^•

Then, the definition (3.3) of the quantization map yields the formula (5.16).

(ii) In the harmonic case, s = 0, the equation (5.18) reduces to

(5.19) 7fc-i,(A-i,o = 7fc,o^-i,o + 2(nA 4- k - l)D(P^o)

since Go(Pfc,o) = 0. With the help of (5.4), one gets the formula (5.17). D

-Remaric 5.14. — In the lower-order cases k ^ 2, there exists an explicit
formula for the quantization map; it is given by the two formulae (6.2), (6.3)
and (6.4) below.

With this preliminary result, we are ready to prove the announced
theorem.

PROPOSITION 5.15.— Given a differential linear operator Q : S —>
T>x[[ih]] of the form

Q(P) = p + ih(aD(P) + ^Go(P)) + 0(^2),
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the associative product * : S 0 «S —^ <S defined by Q(P * Q) = Q(P) o Q(Q)
is a star-product if and only if a = - and (3=0.

Proof.— One can consider the inverse map Q~1 : V\[[ih}} —^ <^[[^]],
which is given by Q-^P) = P - ih(aD(P) + /3Go(P)) + 0(h2). Using the
well-known composition formula for differential operators

po(?=E(TC^•••(WP)^•••<w),(ihY

£=0
i\

(5.20) = PQ + ih9^{P)Oj(Q) + 0(^2)

one obtains

P*Q=Q-l(Q(P)oQ(Q))

=PQ + ih9^(P)9j{Q) + zto(D(P)Q + PD(Q) - D(PQ))

+ ih(3(Go(P)Q + PGo(Q) - Go(PQ))

+ 0(^2)

=PQ+^{P,Q}+^(a-J)(D(P)Q+PD(0)-D(PQ))

+ ̂ (Go(P)Q + PGo(Q) - Go(PQ))

+0(/i2).

Recall that the Hochschild boundary of a 1-cochain A e End(<?<$) is given
by (dA)(P, Q) = A(P)Q+PA(Q) -A(PQ) and observe that the preceding
expression is therefore

(5.21) P*0=PQ+^{P,0}+^d((a-J)D+^Go)(P,0)+0(/l2) .

One sees that P * Q satisfies the definition (3.6) of a star-product if and
only if a = ^ and f3 = 0. D

The operation (3.4) is, actually, given by bi-differential operators
because the quantization map Q\.^ given by (3.3) and its inverse are
differential operators at each order in h. Indeed, we have Q\ = Id + A/A as
in Theorem 3.1, so that {Q\^)~1 is a differential operator as is Q\.^.

Theorem 3.4 follows now from the preceding two propositions in the
case k > 2 and from the explicit formula (6.4) in the case k < 2.
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6. Quantizing second-order polynomials.

This problem has first been solved in [9]. It was proved that if
n = p + q ^ 2, there exists an isomorphism of o(p + 1,^ + l)-modules
Q2^ : s] ̂  ̂  where 6 = ̂  - A. Provided

f e n ^P n + 2 i n + l n+2}[b'L) b9L\n'~~2r^^~^^'~n~]'

This result is clearly consistent with the general Theorem 3.5. Moreover,
the latter guarantees the uniqueness of such an isomorphisms under the
further condition that the principal symbol be preserved at each order.

6.1. Explicit formulae.

In the non-resonant case, the explicit formula for the unique isomor-
phism has also been computed in [9]. One has

(6.2) Qi^ = Id + 71 Go + 72D + 73<^D + 74Ao + 7sD2

where the numerical coefficients are given by

_ n(\+ IJL- 1)
71 ~ 2{n6-2)(n(6-l)-2)'

X
^-T——6-

_ 1 - A -^___
(6.3) 73 = ( ^ - l ) (n (^ - l ) -2 ) ?

n\(2 + (4A - l)n + (2A2 - \^ - ̂  + 2/^ - l)n2}
74 = 2(n{6 - 1) - l)(n(26 - 1) - 2)(n6 - 2)(n(6 - 1) - 2) '

nA(nA + 1)
75 = 2 (n (^ - l ) - l ) (n (^ - l ) -2 ) '

In particular, the half-density quantization map (3.3) is given by

(») ^^-^^^^^).
Remark 6.1. — At this stage, it is interesting to see how our confor-

mally equivariant quantization compares with the Weyl quantization on
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r*^71. In our framework, the Weyl quantization map, Sweyb retains the
very elegant form

/ ih \
Qweyl = e x p l — D l

(6.5)
= Id+^D-^+O^3)

2 8
where the divergence operator D is as in (4.2). (See, e.g., [10] p. 87.)

6.2. Study of the resonant modules.

For the sake of completeness, let us study in some more detail the
particular modules of differential operators corresponding to the resonances
(6.1). It has been shown [9] that, for each resonant value of <5, there exist
pairs (A, p) of weights such that the o(p + 1, q + l)-modules Sj and P^
are isomorphic, namely

(6.6)

6

X

^

2
n

n-2
2n

n+2
2n

n+2
2n

n-2
°' 2n
n+2

2n '

1

0

1

n+ 1
n

0,-in
n+ 1 .,

1 1n

n+2
n

1
n

n+ 1
n

However, in these cases, the isomorphism is not unique. For the particular
values 6 = 2/n, 1, (n + 2)/n, there is a unique choice of (A,^) which,
furthermore, leads to symmetric quantized symbols; for example (see [9])
the so-called Yamabe operator (also know as the conformal Laplacian)
shows up naturally in the first resonant case in (6.6).

6.3. Quantizing the geodesic flow.

Let us finally illustrate our quantization procedure with a specific
and important example, namely the quantization of the geodesic flow on a
conformally flat manifold (M,^).

Consider, on T*M, the quadratic Hamiltonian

H=gijUr

whose flow projects onto the geodesies of (M^g).
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Let us put A == IJL = - and apply, using (6.4), the construction of
the quantum Hamiltonian (3.14) spelled out in Section 3.3. In doing so, we
recover a result obtained in [9], namely

n2

^ ^-^^^(n-lXn^)^

where Rg stands for the scalar curvature of (M,g). The operator (6.7) is
therefore a natural candidate for the quantum Hamiltonian of the geodesic
flow on a pseudo-Riemannian manifold.
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