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FINITE RANK APPROXIMATION
AND SEMIDISCRETENESS FOR LINEAR OPERATORS

by Christian LE MERDY

1. Introduction.

Approximation properties and factorizations through matrix spaces
have often played a major role in the study of C*-algebras. One of the most
remarkable illustrations of that fact is the result by Choi-Effros ([6]) and
Kirchberg ([22]) which says that a C*-algebra B is nuclear (i.e. A^^^B =
A0max-S for every C*-algebra A) if and only if there exists a net of diagrams
B —^ Mn^ —^ B such that o^, /^ are completely positive contractions, and
/3i0i converges to the identity mapping IB in the point-norm topology. Very
recently, Pisier ([31]) gave a new proof of that result relying upon operator
space theory. At the same time, he could extend the latter to the general
framework of C*-algebra-valued completely bounded maps. This extension
involves decomposable operators, that is linear combinations of completely
positive maps, and the associated decomposable norm [| ||dec introduced
by Haagerup in [18]. Let B and Y be a C*-algebra and an operator space
respectively, and let u:Y —> B be a completely bounded map. Given a
positive constant C, let us say that u is (7-nuclear provided that for any
C*-algebra A, the tensor map IA 0 u extends to a bounded map from
A0min y into A(g)max B, with norm less than C. Pisier showed in [31] that
this holds if and only if there exists a net of diagrams Y -oli-> M^ —-> B
such that I I ^ U c b l l A l l d e c ^ C and /^ converges to u in the point-norm
topology. Furthermore, if Y is a unital C*-algebra, if B is unital, and if u is
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unital completely positive (u.c.p. in short) and 1-nuclear, the above net can
be constructed in such a way that the a^s and /3^s are completely positive.
The Choi-Effros-Kirchberg characterization of nuclearity can therefore be
recovered by applying Pisier's result to the identity mapping of unital C*-
algebras.

In the category of von Neumann algebras, the priviledged notion
replacing nuclearity is that of semidiscreteness, introduced by Effros and
Lance in [11]. Let M be a von Neumann algebra, and let us say that M is
semidiscrete ifA(g)minM = Ac^nor^ for every C*-algebra A. It is proved in
[6], [11] that this holds if and only if there exists a net M -ol-'-> M^ —^ M
such that Q^, (3i are normal u.c.p. mappings, and /^o^ converges to the
identity mapping IM in the point-w* topology. The main purpose of this
paper is to investigate a natural notion of semidiscrete linear operators, and
to study possible relationships between nuclearity and semidiscreteness for
operators. Let Z be an operator space, and let u: Z —> M be a linear map.
We will say that u is (7-semidiscrete if for any C*-algebra A, the tensor
map I A ̂  u extends to a bounded map from A 0min Z mto A (g)nor M, with
norm less than (7. We will show the following analogue of Pisier's Theorem.
The linear map u: Z —> M is (7-semidiscrete if and only if there exists a net
Z -a1^ Mn, —^ M such that ||Q^||cb||A||dec ^ C and /^o^ converges to u in
the point-w* topology. We will also show that in that characterization, the
a^s can be chosen w*-continuous if Z is a dual operator space, and that
the o^s and the (3^s can be chosen u.c.p. if Z is an operator system and u
is u.c.p. and 1-semidiscrete.

A fundamental result on operator algebras is that semidiscreteness
is equivalent to injectivity for von Neumann algebras ([8], [33]). This led
to the following equivalence, established by Choi and Effros in [5]: a C*-
algebra B is nuclear if and only if its bidual 5** is semidiscrete. It is then
natural to compare the nuclearity of a linear map with the semidiscreteness
of its biadjoint. Let u: Y —> B be a completely bounded map from an
operator space into a C*-algebra. We will show that if n**:y** —> B** is
(7-semidiscrete, then u is (7-nuclear. Moreover the converse holds if Y is a
locally reflexive operator space.

In fact it is possible to extend the definition of C- nuclearity (resp. (7-
semidiscreteness) to completely bounded maps valued in a possibly non
self-adjoint operator algebra (resp. dual operator algebra), admitting a
contractive approximate identity (resp. a unit). The results outlined above
will be established in Section 4 in this broader context. The proofs will rely
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upon new properties of Pisier's delta norm that we shall establish in Section
3. The so-called delta norm is a norm which can be defined on the tensor
product of an operator space E and of an operator algebra B admitting a
contractive approximate identity. The resulting completion is denoted by

6
E 0 B. It was introduced and used in [31] to establish the characterization
of (7-nuclear operators mentioned at the beginning of this introduction. In
our Section 3, we shall introduce a normal version 0 of this delta norm,
adapted to dual operator algebra, and shall investigate its main features

6
and its relationships with 0. For instance, it will have the property that
(E |) B)** = E^ ^ B** for any E and B as above.

The delta norm, originally introduced to study nuclearity, has also
been used recently by M. Junge and the author in [21] to prove that
given a finite rank operator u: A —> B between two C*-algebras, we have
I Ml dec == mf { | | a 11 cb 11/311 dec} 5 where the infimum runs over all factorizations
u = /3a with A -^ Mn —> B. In Section 5, we will combine the latter
result will results from Section 3 to establish local reflexivity properties of
the decomposable norm. More precisely, let R be a von Neumann algebra
and let B be a C*-algebra. Identifying R^^B with the space of w*-to-norm
continuous finite rank operators from R into B we may define R^ 0dec B as
its completion under the decomposable norm. With this notation, we will
show that 7?* (g)dec -S** embeds isometrically into {R^ 0dec BY*.

In the next Section 2, we give preliminaries on operator spaces,
operator algebras, and tensor products, as well as a review of Pisier's delta
norm and (7-nuclear operators.

Acknowledgements. Part of this work was completed while the author
was visiting the University of Houston. I wish to express my indebtedness
to David Blecher and Vern Paulsen for the opportunity to visit.

2. Operator spaces, tensor norms,
and nuclear operators.

We will assume that readers are familiar with the basics of operator
space theory and completely bounded maps, for which we refer to [27], [2],
[3], [12], [14], [16], [32] and [31]. We shall use the following standard notation
and terminology. Given a completely bounded map u: X\ —> X^ between
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operator spaces, we will denote its completely bounded norm by ||n||cb. We
will say that u is completely contractive (or is a complete contraction) if
\\u\\cb ^ 1 and that it is completely isometric (or is a complete isometry)
if IM^ ^) u is an isometry from M^(Xi) into Mn(X^) for all n ̂  1. The
notation (g)min and 0/, will stand for the minimal and the Haagerup tensor
product respectively. We will use the notation || \\^ and || ||^ for the
corresponding norms.

The following convenient notation will be useful in our upcoming
definitions of tensor norms. Given a pair E, F of operator spaces, a
Hilbert space U, and two completely bounded maps u: E —^ B(1-L) and
v: F -^ B(n), we shall denote by u- v: E 0 F -^ B(H) the linear mapping
defined by letting

(2-1) u'v('E^^fk)=^u(ek)v(fk)
k k

for any finite families (e^ c E, {fk}k C F.

By an operator algebra, we will simply mean a closed subalgebra
A C B(H) of the C*-algebra of all bounded operators on a Hilbert space
H. We will be mainly concerned with operator algebras A which are unital,
or merely admit a contractive approximate identity (c.a.i. in short). This
means that there exists a net (e^ in A such that ||et|| ^ 1 and, for any
a e A, lim^ He^a - a|| = lim^ \\aet - a\\ = 0. Note that the class of operator
algebras with a c.a.i. includes C*-algebras. We now recall the definition of
the maximal tensor product of possibly non self-adjoint operator algebras,
introduced in [28]. Let A and B be operator algebras and let y e A (g) B.
Using notation (2.1), we let

(2-2) Nlmax=SUp{||p.7r(2/)||},

where the supremum runs over all Hilbert spaces U, and all pairs of
completely contractive homomorphisms p: A -> B(H), TT: B —> B{K) which
have commuting ranges (i.e. p(a)7r(b) = 7r{b)p(a) for any a € A, b <E B).
The completion of A 0 B for the norm || ||max is denoted by A (g)max B and
called the maximal tensor product of A and B. Note that if A and B are C*-
algebras, the latter definition coincides with the classical definition of the
maximal C*-norm defined on A (g) B. Indeed, a bounded homomorphism
between C*-algebras is completely contractive if and only if it is a *-
representation.

We now turn to dual structures. By definition, an operator space
X is called a dual operator space if there exists another operator space
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Y such that X = V* completely isometrically. Given a Hilbert space
H, we shall denote by S]_(H) the space of all trace class operators on
H. It has a natural operator space structure for which S-t(Hy = B(H)
completely isometrically. Indeed, it can be defined for example by regarding
S]_(H) as the dual operator space of the C*-algebra of compact operators
on H. In particular, B(H) is a dual operator space. More generally, let
X C B(H) be w*-closed. Then X is the dual operator space of the
quotient operator space S\{H)/X^. In that situation, we shall simply set
X, = S\(H)/X_\_. Note that conversely, any dual operator space can be
represented completely isometrically as a w*-closed subspace of B(H) for
some Hilbert space H (see e.g. [2, Proposition 2.1] or [12, Proposition 5.1]).
Accordingly, an operator algebra M is called a dual operator algebra if it
can be represented algebraically and completely isometrically as a w*-closed
subalgebra of B(H) for some Hilbert space H. Note for further reference
that in particular, any dual operator algebra is a dual operator space
(see [25] and Remark 3.5 below for a converse). The classical definition
of the normal tensor product ([11]) can be extended to our non self-adjoint
context, as follows. Let A be an operator algebra and let M be a dual
operator algebra. Then for any y e A 0 M, we let

(2.3) NInor =sup{||p.7rQ/)||},

where the supremum runs over all Hilbert spaces 7-^, and all pairs of
completely contractive homomorphisms p: A —>• B(H), TT: M —> B(H) with
commuting ranges, such that TT is w*-continuous. The completion of A(g)M
for the norm || ||nor will be denoted by A 0nor M.

Still concerning dual structures, we will need the following well-known
result going back to [2].

LEMMA 2.1. — Let H be a Hilbert space, let Z C B(H) be w* -closed,
let n ^ 1 be an integer, and let v: Z —^ Mn be some w* -continuous and
completely bounded operator. Then for any e > 0, there exists a w*-
continuous operator v:B(H) —> Mn extending v, with \\v\\cb ^ (l+£)||v||cb.

As announced in our introduction, we will use decomposable operators
and Haagerup's decomposable norm ([18]). Let A and B be two C*-
algebras. We recall that by definition a linear mapping u: A —>• B is
called a decomposable operator if it lies in the linear span of completely
positive maps. Equivalently, u is decomposable if it can be written as
u = (ni - u^) + i(us - ̂ 4), with ni, ZA2, HS, 14: A —> B completely positive.
We shall denote by DEC {A, B) the space of all such operators. For any
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u € DEC(A,B), we let |H|dec = inf{max{||5'i||||62||}}, where the infimum
runs over all completely positive maps S\: A —> B and 62: A —» B such that
the operator v: A —> M^(B) denned by

(2.4) t;(.r) =
' S ^ ( x ) u{x^
, ̂ ) ^)

is completely positive. It is shown in [18] that || ||dec is well denned and is
a complete norm on DEC(A^B). Moreover the inequality \\u\\cb ^ IMIdec
holds for any u e DEC(A^ B), and \\u\\ = \\u\\cb = IMIdec i1^ is completely
positive.

We now turn to a brief review on Pisier's delta norm and nuclearity
for linear maps. We mainly report on [31, Section 6] but we warn the reader
that some of the results given below are only implicit in [31], or given in
a slightly different form. We hope that the references and complements we
include will make the situation clear.

DEFINITION 2.2 ([31]). — Let E be an operator space and let B be an
operator algebra with a c.a.i.. For any z G E 0 B, we set

8(z) = inf{ |M|M )̂ IIE^F2 IIE^II172 } -
p=l q=l

where the infimum runs over all decompositions of z of the form z =
]C ^q ^ ̂ ^q ? with arbitrary n ^ 1, e?q € E, and Op, bq € B. The

i^p^n
6

completion o f E ( ^ B for the norm 6 is denoted by E (S) B.

This definition was originally given in [31, Theorem 6.3.1] for unital
operator algebras but it makes sense for operator algebras with a c.a.i.
as well. Indeed, let B be such an operator algebra. Then by Cohen's
factorization theorem (see [19]), any c € B can be written as a product
c = ab for some a, b € B. Likewise, the following theorem is proved in [31]
for unital operator algebras only. More precisely part (2) corresponds to
[31, Theorem 6.3.1] whereas part (1) is implicit in the proof of the latter.
However this proof readily extends to the framework of operator algebras
with a c.a.i..

THEOREM 2.3 ([31]). — Let E and B be as in Definition 2.2.

(1) For any $ e (E (g) B)*, there exist a Hilbert space 1-i, two vectors
/ii, h^ in H, and two completely contractive maps 0: E —> B(H) and
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TT: B —^ 5(7^) with commuting ranges such that TT is a homomorphism,
IMIM^lia and

Ve e E, & e B, ^(e (g) 6) = {0(e)7r(b)h^ h^).

Conversely, any ^: E^B -^ C of this form extends to a bounded functional
6 \ *OB [E (g) B) , with norm Jess than || î|| ||/i2||.

(2) For any z € E (g) B,

^)=sup{||0.7r(^)||},

where the supremum runs over all Hilbert spaces H, all completely contrac-
tive maps 0:E —> B(H), and all completely contractive homomorphisms
TT:B —> B(H) with commuting ranges.

Throughout the paper, given any n ^ 1, we shall denote by
(Epq)^p^n the canonical basis (= matrix units) of Mn' The delta norm
is related to factorization through matrix spaces by the following simple
observation. Let X be an operator space and let B be an operator algebra
with a c.a.i.. We shall use the canonical identification between X* (g) B and
the space of all finite rank operators from X into B. So let u'.X —^ B be
any finite rank operator, and let z e X* (g) B be associated to u. Assume
that we have a decomposition z = ̂ epq (g) dpbq, for some [epq] e M^(X*)
and (dp)^p^ (&g)i^n in B. Then let a'.X -> Mn and f3\ Mn -^ B be
the linear mappings defined by a(x) = [(epq.x)} for any x € X, and

(2.5) 0(Epq) = dpbq for any 1 ̂  p, q ^ n.

Then the factorization u = f3a holds and, by the definition of operator
space duality, we have \\a\\cb = \\[epq]\\M^x-)' One can therefore deduce
that

(2.6) 6(z) = inf{||a|^ E^ll172 IIE^II172 }-
P q

where the infimum runs over all factorizations

(2.7) u = (3a, x-^M^^B,

with /3 defined by (2.5). It is shown in [31, Corollary 6.3.5] that if B is a
C*-algebra, one actually obtains

(2.8) S(z) = mf{||a||e;> /3||dec : a, ft satisfy (2.7)}.
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We can now introduce one of the key notions of this paper, namely that of
G-nuclear operator, defined as follows.

DEFINITION 2.4. — Let Y be an operator space, let B be an operator
algebra with a c.a.i., and let u:Y —> B be a bounded operator. Given any
constant C > 0, we say that u is C-nuclear if whenever A is an operator
algebra, then I A <^ u extends to a bounded operator from A C^min Y mto
A 0max B, with

(2.9) || IA 0 U: A (^nin Y ——>A (g)n,ax B\\ ^ C.

In the C*-algebra literature, the name of "nuclear operator" is often
used to denote a u.c.p. map between C*-algebras which lies in the point-
norm closure of the set of all finite rank u.c.p. maps. Our terminology is
consistent with the usual one since Theorem 2.6 below shows that a u.c.p.
map is nuclear in the classical sense if and only if it is 1-nuclear in the sense
of Definition 2.4.

Remark 2.5. — Assume that B is a C*-algebra and let u: Y —> B be
a bounded operator. Then u is (7-nuclear provided that (2.9) holds for any
C*-algebra A.

Indeed let us assume that property, and let A be an arbitrary operator
algebra. Let z = ̂ dk0yk e A 0V, for some finite families (0^)^ C A and
(yk) C V. We wish to estimate ||(ZA <^ ^)(^)||max = || Z^/c ^ ^(2/fc)||max-

k
According to (2.2), we let p:A —> Bf^H) and TT: B —^ B(J~C) be commuting
completely contractive homomorphisms, for some Hilbert space 7-i. Since B
is self-adjoint, TT is a ^-representation hence its range 7r(B) is self-adjoint.
Therefore its commutant [^(B)]' C B(7~i) is self-adjoint as well. Now
observe that the p(afc)'s belong to [^(B)]'. Hence applying our assumption
that (2.9) holds for C*-algebras to [^(B)]', we obtain

||^p(afc)0^)|| ^C\\^p(ak)^yk
I I l l [7 r ( -o ) j (&)max-D I I [^WY^^Y

Since p is completely contractive we deduce

\\p'^lA^u){z)\\ =||^p(^)7r(^))||
k

^c'||yp(afc)®yJ ^ ciMlmm.
II-—- l lmin

k
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Taking the supremum over all pairs (p, 7r) as above yields || (JA^)O) Umax ^
CIMImin, which exactly means that u is (7-nuclear in the sense of Definition
2.4.

The next statement summarizes Pisier's work on (7-nuclear operators
contained in [31, Section 6]. In the latter paper, the author is concerned
with bounded operators between C*-algebras. Modulo the easy Remark
2.5 above, he proves the equivalence of the assertions (i), (ii), (iii)\ and
(iv) of Theorem 2.6 below, in the case when Y and B are both C*-
algebras ([31, Corollary 6.3.6]). Likewise, he proves the assertion (4) below
in the case when Y and B are unital C*-algebras ([31, Corollary 6.3.8]).
However it is easy to check that the proofs of [31, Corollary 6.3.6] and [31,
Corollary 6.3.8] can be adapted to our more general setting to show (1)
and (4) respectively. Note moreover that (2) immediately follows from (1)
by applying (2.8) above. Since no significant argument is needed to obtain
these generalizations, we omit their proofs.

THEOREM 2.6 ([31]). — Let Y be an operator space and let B be an
operator algebra with a c.a.i.. Let u:Y -^ B be a bounded operator and
let C > 0 be a constant.

(1) The following three assertions are equivalent:

(i) u is C-nuclear.

(ii) For any finite dimensional operator space E, IE ^ u extends to a

bounded operator from E (g)min Y mto E (g) B, with \\IE 0 u: E (g)min V -^

E ^ B\\ ̂  C.

(iii) There exists a net Ui:Y —> B of finite rank operators converging to
u in the point-norm topology, such that letting zi C V* 0 B be associated
to Ui, we have 6{zi} < C.

(2) IfB is a C*-algebra, then (i) is equivalent to:

(iii)' There exists a net u^'.Y —> B of finite rank operators converging
to u in the point-norm topology, such that every ui admits a factorization
Ui = f3i0i, with

Y^M^^B and |H|^||A||dec ^ C7.

(3) If B and Y are C*-algebras, then (i) is equivalent to

(iv) There exists a net Ui\A—>B of finite rank operators converging
to u in the point-norm topology, with ||^|[dec ^ C.
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(4) If B is a unital C* -algebra, ifY is an operator system, and ifu is a
u.c.p. map, then the assertion (i) holds with C = 1 if and only if

(v) There exists a net ui: Y —^ B of finite rank operators converging
to u in the point-norm topology, such that every ui admits a factorization
Ui = /SiOi, with

CK t3'Y —^ Mm —^ B and o^, /3i are c.p. and contractive.

3. The normal delta tensor product
6

and the second dual of E 0 B.

In this section, we shall define a normal version of the delta tensor
product, in analogy with the normal Haagerup tensor product of operator
spaces ([10], [15]). We give ourselves a dual operator space X and a unital

6 ^ 6
dual operator algebra M. We define [X (g) M) as the set of all $ € (X (g)

M)* which are separately w*-continuous. Namely ^ belongs to (X 0 M)^
provided that x i-̂  ^(x 0 mo) and m \—^ ^(xo 0 m) are w*-continuous for

^ \ * / ^ \ *any mo e M and any XQ G X. Clearly (X 0 M) C [X 0 M) is a closed
subspace. Now we define

(3.1) X^ M = ({X ̂ M^Y,

and we call this space the normal delta tensor product of X and M. We
a6

can obviously regard X 0 M as a subspace of X 0 M. The norm inherited
by this possibly non dense embedding is described by the following lemma.

LEMMA 3.1. — Let y e X 0 M and let K > 0 be a constant. Then
\\y\\ ^s ^ K if and only if there exists a net {yt)t C X 0 M such that

X(g)M

6(yt) < K and, for any ^ e (X (g) M)*, we have lim^(^) = ^(y).

Proof.— Assume that \\y\\ erg ^ K. By Hahn-Banach there exists
X^M

/ ^ \ **some y G [X 0 M) extending y^ with norm less than K. By Goldstine's
Lemma, one may find a net (yt)t C X 0M tending to y ' m the w*-topology

of (X 0 M)**, with S(yt) < K. This yields the 'only if part, and the
converse is obvious. D
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Our goal is now to introduce and to show Theorem 3.3, which is the
main result of this section. It gives a dual description of the norm induced

a6
on X (g) M by its embedding into X (g) M and should be regarded as a
normal analogue of the second part of Theorem 2.3.

DEFINITION 3.2. — Given any y e X 0 M, we set

?0/)=sup{||^7r0/)||},

where the supremum runs over all Hilbert spaces "h, all w* -continuous com-
pletely contractive maps 0: X —^ B(7i), and all w* -continuous completely
contractive homomorphisms TT: M —> B(H) with commuting ranges. We

? ^
denote by X 0 M the completion of X 0 M under 6, which is clearly a
norm.

THEOREM 3.3. — For any dual operator space X, for any unital dual
operator algebra M, and for any y e X 0 M, we have 6(y) = II ^6

X(g)M
Consequently,

? a6
X (g) M C X 0 M isometrically.

Our proof of Theorem 3.3 requires a special form of Wittstock's
factorization Theorem for completely bounded maps, that we now establish.
The following extends a result due to Haagerup corresponding to the case
when M is a von Neumann algebra (see [17, Proposition 2.12]).

PROPOSITION 3.4. — Let M be a unital dual operator algebra, let
H be a Hilbert space and let u: M —> B(H) be w* -continuous and
completely bounded. Then there exist a Hilbert space K, two linear
operators V: H —^ K, W:K —^ H , and a unital w* -continuous completely
contractive homomorphism TT: M —> B(K) such that \\V\\ \\W\\ = \\u\\cb
and, for any m € M, u(m) = W^(m)V.

Proof. — Let u: M —> B(H) be completely bounded. By the classical
form of Wittstock's factorization Theorem ([17], [26], [34]), we may find
a Hilbert space G, two linear operators S:H —^ G, T:G —^ H , and
a unital completely contractive homomorphism p\M —> B(G) such that
H ^ l l ||r|| = \\u\\^ and

(3.2) Vm C M, u(m) = Tp(m)S.
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Moreover we may clearly assume that G == Sp8Ln{p{M)S(H)}. Let us
introduce the closed subspace

K = Span{p(M)*r*(^)} C G.

Then let J: K —> G be the canonical embedding operator, and let P =
J*: G —> K be the corresponding projection. Lastly, we let Q = J P 6 B(G).
For any m G M, K is an invariant subspace of p(mY hence K^ is an
invariant subspace of p(m) hence

(3.3) Qp(m){I-Q)=Q.

Moreover since p is unital, the range of T* is included in K hence T* = QT*
or, equivalently, T(I—Q) = 0. These two identities together with (3.2) yield

(3.4) Vm G M, 2z(m) = TQp(m}QS.

Given any m 6 M, let us define 7r(m):K —>• K by 7r(m) = Pp(m)J. We
claim that TT: M —> B(K) is a homomorphism. Indeed, let mi, 777,2 be in M,
then we have

7r(mi?77,2) — 7r(mi)7r(m2) =Pp(m^)p(m^)J — Pp(m^)JPp(m'z)J

=Pp(mi)(J - Q)p(m^J =0 by (3.3).

Clearly TT is completely contractive and unital hence letting V = PS and
W = TV, we deduce from (3.4) the desired relation u(m) = W7r(m)V for
any m (E M.

It thus remains to show that TT is w*-continuous, under the assumption
that u itself is w*-continuous. We introduce

î = Span{7r(M)V(Jf)} and JC-2 = Span{7r(M)*TV*(^)}

which are, by construction, two dense subspaces of K. Let a, b be in M and
let a;, ?/ be in H. The multiplication mapping is separately w*-continous on
M hence according to our assumption on n, the mapping m \—> u(amb) is
w*-continuous hence the functional m ̂  (u(amb)x^ y) is w*-continuous on
M. Now observe that for any m € M,

(u (amb) x, y) = (W7r(amb)Vx^y) = (W7r(a)7r(m)7r(b)Vx,y)

=(7r(m)7r(b)Vx,7r(aYW*y).

Then taking linear combinations, we deduce that for any k\ (E /Ci and k^ C
/C2, the functional m \—> (7r(m)A:i, k^} belongs to M^. Since (7r(m)A;i, k^) =
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(TT*(A;I 0 k^Ym}^ we thus obtain that TT*(/CI <S) A^) C M^. Now recall that
K 0 K is dense in the space S-^(K) == B(K)^ of trace class operators on
K, hence /Ci 0 JC^ is dense in ^(T^) as well. By continuity, we obtain that
TT* maps S-i{K) into M^c, which exactly means that TT is w*-continuous. D

Remark 3.5. — From the above argument, it is easy to derive an
alternate proof of the characterization of unital dual operator algebras
established in [25]. The non trivial implication of that characterization
says that if M is a unital operator algebra such that

(a) M is a dual operator space,

(b) the multiplication mapping on M is separately w*-continuous,

then there exist a Hilbert space K and a unital w*-continuous completely
isometric homomorphism from M into B{K).

To show that, observe that the proof of Proposition 3.4 works as well
for a unital operator algebra M satisfying (a) and (b). Moreover (a) implies
that there exist a Hilbert space H and a w*-continuous completely isometric
mapping u: M —> B(H) (see [2, Proposition 2.1] or [12, Proposition 5.1]).
Let us therefore apply Proposition 3.4 to u, and let u{) = WTT( )V be the
resulting factorization, for some unital w*-continous completely contractive
homomorphism TT: M —^ B{K). For any n ^ 1 and any [rripq] e Mn(M), we
have

IIMI = 11["(^)]11 ^ IMI llbr(^)]|| mi ^ ||k(m^)]||.

Since ||[7r(^pg)]|| ^ I I D71^] I I 5 we obtain that TT is a complete isometry,
whence the result.

The following statement is the next step in the proof of Theorem 3.3.
It should be regarded as a weak*-analogue of the first part of Theorem 2.3.
Its proof follows a similar scheme as that of [31, Theorem 6.3.1], with a
special attention given to the w*-continuity of the linear maps involved.

PROPOSITION 3.6. — Let X be a dual operator space, let M be a
6 \ *unital dual operator algebra, and let ^ € [X (g) M) . Then ^ belongs

to [X 0 M)* if and only if there exist a Hilbert space 7-i, two vectors
/ii, /i2 ^ ^~i, 5, w*-continuous completely contractive map 0:X —> B(7i)
and a w*-continuous completely contractive homomorphism TT: M —>• B(H)
such that | \h\ \ \ \\h^\\ ^ ||^||, 0 and TT have commuting ranges, and

(3.5) \/x e X, m <E M, ^{x 0m) = {0{x)^(m)h^,h^.
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Proof. — First note that the 'if part5 clearly follows from (the easy
part of) Theorem 2.3 so we only focus on the 'only if part5.

Let ^ be in [X (g) M)^ and assume that ||^|| ^ 1. Let :̂ M^X^M —>
C be the functional denned by letting ^(mi (g) x 0 7712) = ̂ (x 0 m^m^) for
any x e X and mi, 7722 G M. Given TT^, . . . , m^, m^, . . . , m^ in M and
[a;pg] in M^(X), we have

E (̂m? (g) Xpq 0 mj) = ^ ^(^ 0 m^mj)
l^p,g^n l^p,g^n

^ 1 1 ^ 1 1 <?( ^ ^®m?mj)
l^p,qr^n

^ 1 1 ^ 1 1 IIMII llE^II172 HE^r^r2
P=l Q=I

by Definition 2.2. This shows that $ extends to an element of (M (g)^ X 0/i
M)* with norm less than 1. By the factorization theorem of multilinear
completely bounded maps ([7], [29]), there exist a Hilbert space H, two
vectors ei, 62 € H with norms ^ 1, and three completely contractive maps
HI: M -^ B{H), v: X -^ B(H), and u^'.M -^ B(H) such that
(3.6)

\/x C X, Vmi, 7722 € M, ^(x^m^m^} = {u^(m^)v{x)u^(m^)e^,e^).

Now note that since the multiplication mapping is separately w*-continuous
on M, our assumption on ^ implies that ^ is separately w*-continuous in
each of the three variables. It therefore follows from [14, Theorem 3.1] that
the factorization (3.6) can be achieved with w*-continuous maps HI, ^2,
and v. Assuming this, we may find, by Proposition 3.4, two Hilbert spaces
J^i, K^, two unital w*-continuous completely contractive homomorphisms
Ti-i: M —^ B(J^i), 7T2: M —> B(K^) , and four contractions

V2:H—>K^ W^.K^ —>H, Vi'.H —^K^ W^:K^ —> H,

such that u^{ ) = W^( )^ and u^( ) = W^{ )V^. Letting e^ = V^,
e[ == W^e^ and v\ ) = V^v( )W^, we can then rewrite (3.6) as follows:
(3.7)

^x G X, Vmi, m2 G M, <^(g)mim2) = (^{m^^Tr^m^e^e^) .

We can now conclude as in the proof of [31, Theorem 6.3.1]. First, changing
K-2 and K^ into Span {^2(^)62} and Span {71-1 (M)*e'i} if necessary, we
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may and do assume that ^(M}e'^ and 7ri(M)Vi are dense in K^ and K^
respectively. Then we deduce from (3.7) that

(3.8) \/x e X, Vm C M, v\x)^(m) = 7Ti(m)^(^).

Indeed, for any x € X and m, mi, 7712 C M we have

(^(mimV^^r^e^e'i) = {Tr^miV^^mTT^e^e'i)

by (3.7), whence the equality

(7^l(m)v/(a:)7^2(m2)e2^l(^l)*e/l) = (^(^2(^)^2(^2)62,7ri(mi)Vi).

This yields (3.8). Now let U = JCi C ̂ 2 and let TT: M ̂  B(^) and
(9: X ̂  B(T^) be denned by

/ /7Ti(m) 0 \ /O ^(^^
'^'l 0 .2(m)J and ^'(o 0 )•

It follows from (3.8) that 6 and TT have commuting ranges. Furthermore,
0 and TT are w*-continuous and completely contractive. Indeed. v ' \ X —>
B(K^, JCi) is w*-continuous and completely contractive, since v is. Letting
^2 = OQe^ and /ii = e^ ©0 in H, we obtain the desired factorization (3.5).

D

Proof of Theorem 3.3. — We consider y c X (g) M. Let ^ be given in
{X (g) M)^, with 11^11 = 1. Then let U, /ii, h^ 0, TT be as in Proposition 3.4
such that (3.5) holds and ||/ii|| ||/i2|| ^ 1. We have f^(y) = (^•Tr^/ii,^),
hence

|̂ )| ^\\0^{y)\\\\h,\\ \\h^\\^6(y)

by Definition 3.2. Taking the supremum over ^, we obtain \\y\\ ^s ^ 6(y)
X(g)M

by (3.1).

To check the converse inequality, we let K = \\y\\ ^ and we give
X(g)M

ourvelves a Hilbert space H and 0:X —> B(H) and TT: M —> B(H) as in
Definition 3.2. It suffices to show that

(3.9) \\0^(y)\\^K.

Let /ii and /i2 be two elements of H, with ||/ii|| = ||/i2|| = 1, and let

^ C (X 0 M)^ be defined by (3.5). We now consider a net (yt}t C X 0 M
given by Lemma 3.1. By Theorem 2.3, ||(9-7r(^)|| ^ K for any t, hence
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|^(^)| ^ K for any t. Passing to the limit, we obtain that \^(y)\ ^ K and
taking the supremum over all pairs (/ii, /^>), we finally have (3.9). D

Let E be an operator space and let B be an operator algebra with a
c.a.L. Our aim is to describe (E 0 B)** in terms of the normal delta tensor
product. Recall that the second dual space 5** is a unital dual operator
algebra and that given any bounded homomorphism TT: B -^ B{H), the
second adjoint mapping TT**:B** -^ 5(7^)** is a homomorphism as well.
(See [13, Section 2] and the references therein for details.)

Given any ^ e (^** (g) B**)^ , we let ^ G (E 0 B)* be obtained by
restricting ^ to E 0 B. Clearly the linear mapping

J:(^**0B**^-.(^B)*; ̂

is contractive and one to one. We claim that it is actually an isometric
isomorphism.

Indeed, let ^ be in (E 0 5)*, with ||(^|| = 1. By Theorem 2.3, we
may find a Hilbert space 1-L, two vectors /ii, h^ e 1-i with norms ^ 1,
and two completely contractive maps 0: E -^ B(H) and TT: B -> B(H)
such that TT is a homomorphism, 0 and TT have commuting ranges, and
(p{e (g) b) = <(9(e)7r(6)/ii, /is) for any e G ^ and 6 G B. Let 6'i(7^) = B(7^,
and let Q:B(^)** -^ B(?^) be the adjoint of the canonical embedding
of S^(H) into its second dual B(7^)*. We introduce 0: E^ —> B(H) and
TT:B** -^ B(^) by letting 0 = Q(9** and TT = QTT**. By construction,
each of these two operators is w*-continuous and completely contractive.
Moreover since Q is a ^representation and TT** is a homomorphism, TT is
a homomorphism as well. Now let us fix x e E** and m C B**, and let
(et)t C E and (65)5 c B be two nets converging to x and m in the w*-
topologies of E^ and B** respectively. Then for any / e 5'i(^) = B(7i)^
we have

(^)Tr(m),/) =lim^(e,)7r(m),/) = limlim^(e,)7r(^),/)
r t s

=\im\im{7r(bs)0{et),f) = (7r{m)0(x), f) .

Thus 0 and TT have commuting ranges. Therefore letting ^(x <g) m) ==

(0(x)^(m)h^,h2) for a; e £'** and m € B** defines ^ e (J^** |) B**)*
o v /<T

with 11^1 ^ 1. Since ^ clearly equals to ^, this completes the proof that
J is an isometric isomorphism. Summing up and recalling (3.1), we have
proved the following.
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PROPOSITION 3.7.—For any operator space E and any operator
algebra B with a c.a.i.,

(1) {E |) B)* = (^** d) B**)^. isometrically.

(2) (£; |) B)** = E** ̂  B** isometricaJJy.

Clearly 6 ^ 6 hence combining Theorem 3.3 and Proposition 3.7
immediately leads to the following results.

COROLLARY 3.8. — Let E be an operator space and let B be an
operator algebra with a c.a.i.,

(1) We have E^ |) B** C {E |) B)** isometrically.

(2) We have E** |) B** —^ (£; 0 B)** contractiyefy.

(3) If E is finite dimensional, then E 0 B** = (£; 0 B)**
isometrically.

Remark 3.9. — In general, for arbitrary dual operator space X and
unital dual operator algebra M,

(3.10) X |) M ̂  X |) M.

In other words, the norm induced by the normal delta tensor product on
the algebraic tensor product may be different from the delta norm. This is
in sharp contrast with the corresponding situation for the Haagerup tensor
product. Indeed, it is shown in [15] that for any dual operator spaces
X\,..., XN , the norm induced by the normal Haagerup tensor product

ah ah
Xi (g) • • • (g) XN on Xi (g) t • • (g) XN is the Haagerup norm itself.

Let us now explain (3.10). Let B be any nuclear (7*-algebra whose
second dual B** is not nuclear (for instance, B is the (7*-algebra of all
compact operators on some infinite dimensional Hilbert space). Then let E
be an arbitrary finite dimensional operator space. Since nuclear (7*-algebras
are locally reflexive (see [I], [9]), (^0min^)** = -E^mm-S** isometrically.

6
Moreover E 0min B = E 0 B isometrically by Theorem 2.6. These two
identities together with the third part of Corollary 3.8 yield:

(3.11) E 0 B** = E (g)min B** isometrically.
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<? 6
Let M = B** and assume that contrary to (3.10), one has X 0 M = X 0
M for any X. Then there is a constant J^ ^ 1 such that for every finite
dimensional operator space E^

||ld: E i) M —> E 0 M|| ^ K.

Under this assumption, (3.11) implies

||ld: E (g)min M —> E (g) M|| ^ K

for every finite dimensional E. By Theorem 2.6 again, this implies that M
is nuclear, whence a contradiction.

4. Semidiscrete operators.

In the first result of this section (Theorem 4.3), we characterize
semidiscrete operators, defined below, by a suitable finite rank approxi-
mation property. We shall make use of the normal tensor product of oper-
ator algebras defined by (2.3). Then we shall specify our result for unital
completely positive semidiscrete operators with domain an operator sys-
tem. Lastly, we shall investigate the relationships between nuclearity and
semidiscreteness for operators.

DEFINITION 4.1.— Let Z be an operator space, let M be a unital
dual operator algebra, and let u: Z —^ M be a bounded operator. Given
any constant C > 0, we say that u is C-semidiscrete if whenever A is an
operator algebra, then IA^U extends to a bounded operator from A^min Z
into A 0nor M, with

(4.1) || I A ̂  U: A ̂ nin Z ——>A 0nor M\\ ̂  G.

Note that for any integer n ^ 1, Mn 0min Z = Mn(Z) and
Mn 0nor M = Mn(M) isometrically hence any (7-semidiscrete operator
u is completely bounded, with \\u\\cb ^ C. Furthermore, any (7-nuclear
operator from Z into M is automatically (7-semidiscrete.

Remark 4.2. — Assume that M is a von Neumann algebra. Then
arguing as in Remark 2.5, it is easy to check that a bounded operator
u: Z —> M is C-semidiscrete provided that (4.1) is fulfilled for any (7*-
algebra A.
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THEOREM 4.3. — Let u: Z -^ M be any bounded operator from an
operator space into a unital dual operator algebra, and let C > 0 be a
constant.

(1) The following three assertions are equivalent:

(i) u is C-semidiscrete.

(ii) For any finite dimensional operator space X, Ix 0 u extends to a

bounded operator from X (g)min Z into X (g) M, with \\Ix^u:X (g)min Z —>

X0M|| <^C.

(iii) There exists a net ui: Z —> M of finite rank operators converging to
u in the point-w* topology (i.e., for any z e Z, u{z} = w* - lim,^(^)^
such that letting ̂  e Z * (g)M be associated to Uz, we have 6{yi) < C. More
explicitly, for any i, there exist n, ^ 1, c, i , . . . , c^d^.... din, in M, and
a bounded operator of. Z -^ Mn such that1/2iv.... - n1/2

lE^r2 |E^^\\cb iL^V 2^^^ <c

P q

and Ui = ftiOLi, where f3i:Mn, —^ M is the bounded operator defined by
f3i{Epq) = Cipdiq.

(2) Assume moreover that M is a von Neumann algebra. Then (i) is
equivalent to:

(iii)' There exists a net ui: Z —> M of finite rank operators converging
to u in the point-w* topology, such that every HI admits a factorization
Ui = f3i0i, with

Z^Mn^M and ||a,|U|A||dec < C.

(3) Assume now that M is a von Neumann algebra and that Z is a C*-
algebra. Then the assertion (i) is equivalent to:

(iv) There exists a net Ui: Z —> M of finite rank operators converging
to u in the point-w* topology, with ||^||dec < C.

Proof.— We only have to prove (1). Indeed, one can readily deduce
(2) from (1) by means of (2.7). Moreover (3) follows from (1) and [21,
Theorem 2.1]. (We observe however that the equivalence (i) ̂  (iv) can be
proved without appealing to [21].)
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(i) =^ (ii):

We assume that u is (7-semidiscrete and we fix a (finite dimensional)
operator space X. Let y = ^ Xk 0 Zk G X 0 Z be given, with

l^fc^n
a ; i , . . . , Xn G X and z\,..., Zn C Z. We give ourselves a Hilbert space
H, a w*-continuous completely contractive homomorphism TT: M —^ B(H)
and a completely contractive map 6: X -^ B(H) commuting with TT. We
let A = [^(M)]7 C B{H) be the commutant algebra of the range of TT. Our
assumption that 0 and TT commute means that ^ as valued in A. We have

(0'7r)[(Ix^u)y] =^0(xk)7r(u{zk)).
k

Hence according to the w*-continuity of TT and our assumption (i),

\\{0^)[(Ix^u)y]\\ ^\\^0{xk)^u(zk)\\
11^ llA^norM

^d|^>(^)0j|
N——^ llA(g)^nZ

Since ||(9||cb ^ 1, we finally obtain that ||((9-7r) [(Ix 0 u)y\ \\ ^ C||?/||min.
Taking the supremum over all pairs {0,7r) as above and applying Definition
3.2, we obtain the inequality 6{(Ix 0 u)y) ^ C ||^||mm. This shows (ii).
(ii) =^ (iii):

Let Zi (resp. Za) be the set of all finite subsets of Z (resp. M,), and
let Z = Zi x 22 x (0,1). We endow Z with its canonical order, given by

i = ( I ^ I ^ e ) ^ z' = { I ^ I ^ e ' } ̂  h C Jl, J2 C J^ ̂  ^/.

We assume (ii) and fix some i = (Ji, I^e) in Z. We let £; C Z be the finite
dimensional subspace spanned by /i and let j:E -^ Z be the canonical
embedding. Then we denote by X = E* the dual operator space oiE. Next,
we let y e X (g) Z be the tensor representing the mapping j. Note that we
have l l ^ / I Imm = Hj' l lcb ^ 1 hence our assumption yields ?((Jx ^ ^)2/) ^ C'.
According to Theorem 3.3 and Lemma 3.1, there exists a net (st)t C X0M
such that 6(st) < C and, for any / € M^,

(^x (^ /) [(Ix ^ u)y] = lim(Jx ^ /)5^

It now follows from this approximation property that there exists some t
(in fact, an infinity) such that

(4.2) V^eJ i , V / C J 2 , \ ( ( I x 0 u ) y , z ^ ) f ) - { s ^ z ( S ) f } \ ^ e.
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We now fix some t satisfying (4.2). Since 6{st) < C we may find,
by Definition 2.2, an integer n ^ 1, a matrix [xpq] e M^(X), and
c i , . . . , Cn, d i , . . . , dn C M such that 5^ = ̂  o-pg (g) Cpdg , and

P,9

.illlE^l^lE^I1'̂ ^1^11112^^11 ||2^W|
Let v:£" —> M be the finite rank operator associated to ^. Then v =
a/3, where a'.E —^ Mn is the linear mapping represented by [xpq], and
f3:Mn -^ M is defined by letting f3{Epq) = Cpdq for each element Epq of
the canonical basis of Mn. By Wittstock's extension Theorem ([17], [26],
[34]), there exists a completely bounded map a: Z —> Mn extending a, with
Mcb=\\a\U=\\[xpq}\\).

For the index i = (1^,1^, e) € I considered here, we let Ui = (3a. By
(2.6, 2.7), the tensor ^ e Z* (g) M associated to ui satisfies 6{yi) < (7.
Now observe that (Ix 0 u)y e X (g) M represents uj:E —> M, that is the
restriction of ZA to ^. Hence (4.2) can be rewritten as follows:

\/z e A, V/ e J2, |(^)J) - (^(^)J)| ^ e.

This shows that n^ tends to u in the point-w* topology, and concludes the
proof.

(iii) =^ (i):

Let {ui)i be a net satisfying (iii), and let A be an arbitrary operator algebra.
By Theorem 2.6, we know that for every z,

(4.3) [JA ̂  U,: A (g)min Z ——> A (g)max M\\ ̂  C.

Let TT:M —> B(1-t) and p ' . A —> B(7-() be two commuting completely
contractive homomorphisms, and assume that TT is w*-continuous. Then
le^ V = S a^ ̂  ^fc G A (g) Z be given, with OA; C X and 2^ € Z. Then

fe

(4.4) ||^p(a,)7r(^(^)) = ||(p.7r) [(JA ̂  u,)y] || ^ C7||^||^n
fc

by (4.3). For any k, we know that Uz(zk) -u—^ u{zk] hence 7r(^(^)) ̂
7r(n(^)). Consequently,

\/k, p{ak)/K(ui(zk)} -UL^ p(ak)7r(u(zk)).
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Passing to the limit in (4.4), we thus obtain that ||Syo(a/.;)7r(n(^))|| ^
k

C\\y\\mm' Then taking the supremum over all pairs (p,7r), we obtain that
|| (JA^ Elinor ^ C\\y\\^ a

We now turn to unital completely positive maps. We recall that an
operator system is an operator space Z C B(H) containing the identity
(that we shall simply denote by 1), and such that whenever z e Z, then
z* C Z. We refer e.g. to [27] for the necessary information on that notion
and on completely positive maps whose domain is an operator system.
Given a bounded operator u: Z\ —r Z^ between two operator systems, we
let u^.'.Z\ —>• Z^ be defined by u^(z) = n(z*)*, and we say that u is
self-adjoint provided that u = u^. In particular, any positive map is self-
adjoint. By a dual operator system, we shall mean a w*-closed operator
system Z C B[H). Our aim is to specify Theorem 4.3 when Z is an
operator system and u is 1-semidiscrete and u.c.p.. We will make use of the
following decomposition result, which is somewhat implicit in the proof of
[31, Lemma 6.3.7].

PROPOSITION 4.4. — Let Z C B(H) be an operator system and let
B be a C*-algebra. We give ourselves a finite rank self-adjoint operator
u : Z - ^ B .

(1) Let y € Z* (E) B be representing u and let C > 6(y). Then
there exist an integer n ^ 1 and three completely positive maps a: Z —>
Mn, f3:Mn -^ B and ^: Z -> B such that u = (3a - ̂ , \\f3a + ̂ [| ^ C,
\\a\\ <, 1, and ||̂ || ^ C.

(2) Assume moreover that Z is a dual operator system, and that y G
Z^ 0 B. Let C > 6{y). Then the conclusion of (1) holds with the following
additional property. There exist a Hilbert space K, a unital w*-continuous
^-representation TT: B(H) —> B{K), and a contraction V'.f^—^K such that
a(z) = y*7r(^)y for any z G Z.

Proof.—We first consider (1). By our assumption and (2.6, 2.7),
there exist a completely bounded map v: Z —>• Mn and a i , . . . , a^, 61, . . . .
bn € B such that \\v\\cb < 1, || E^ll < c. I I E^M < ̂  and u = wv.

p q
where w: Mn —> B is defined by w(Epq) = dpbq. By Wittstock's factor-
ization Theorem we may find a Hilbert space K^ a unital ^representation
7r:B(H) —> B{K\ and two bounded operators Vi, V'2:^ —> K such that
v(z) = V^7r(z)V^ for any z 6 Z, and ||Vi|| = \\V-2\\ ^ 1. Then we de-
fine fi, w.Z —> Mn by the formulae ^i( ) = V^7r{ )Vi and v^( ) =
V^*^ )V25 and we define wi, w^'.Mn —> B by letting w\(Epq) = OpO* and
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^{Epq) = b^bq. Clearly these are four completely positive maps and more-
over, ||z;i|| ^ 1, ||v21| ^ 1, ||wi|| ^ C7, and ||w2|| ^ C. We now let

(p = (1/4) (wi^i + 2u + W2^) and ^ = (1/4) (wi-^i - 2u + W2^2).

By construction u = ^ - -0 whereas (/? + ^ = (l/2)(wi2;i + ^2^2). We
immediately deduce that ||(^ + -0|| ^ (7.

We now define a: Z -^ M-^n and /3: M^n —> B as follows:

(4.5) V^ C Z, a(^) = (1/2) (̂  7r(z) (Vi,^),

and for any 1 ̂  p,q ^ 2n, ^(£'pg) = (l/2)c;c^ where Ck = a^ if 1 ̂  k ^ n
and c/c = ̂  if ri + 1 ̂  A; ^ 2n. A thorough examination of these definitions
shows that f3a = (l/4)(wi'yi + w^v^ + wv + W2f2). However n = wy is
assumed self-adjoint hence w^z^ = u^ = u. Accordingly we have y = f3a.
Furthermore a and f3 are clearly completely positive, with ||a|| ^ 1 and

1 1 ^ 1 1 = |KE^)| = (V^IIE^+E^^ ^a
P=l p=l q=l

Lastly observe that by the same reasoning as above, we may write ^
as a composition of two c.p. map, whence the property that ^ is completely
positive. This proves (1).

The assertion (2) is easy to deduce from the above proof. Indeed, let
us assume that Z is a dual operator system and that y € Z^ (g) B. Then the
factorization u = wv used above can be achieved for some w*-continuous
v:Z -^ Mn with ||'y||c6 < 1. By Lemma 2.1, v has a w*-continuous and
completely contractive extension v: B(H) —> Mn hence it follows from [17,
Proposition 2.12] (see also Proposition 3.4 above) that the ^representation
TT can be assumed w*-continuous. The result therefore follows from (4.5).

D

THEOREM 4.5. — Let Z be an operator system, let M be a von
Neumann algebra, and let u: Z -^ M be a u.c.p. map. The following two
assertions are equivalent:

(i) u is 1-semidiscrete, i.e. (by Remark 4.2):

For any C^-algebra A, \\IA 0 u: A 0min Z —> A 0nor M|| = 1.
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(ii) There exists a net ui\Z —> M of finite rank operators converging
to u in the point-w* topology, such that every Ui admits a factorization
ui = f3iai, with

Z —4 Mm —> M and o^, /^ are u.c.p.

Proof. — Clearly by Theorem 4.3 we only have to show that (i) implies
(ii). So we assume that u is 1-semidicrete. By the implication (i) => (iii) of
Theorem 4.3, there is a net ui: Z —^ M of finite rank operators converging
to u in the point-w* topology such that if we let yi € Z*(g)M be representing
Ui, we have 6{yi) < 1. Since u is self-adjoint, we may assume that each ui
is self-adjoint as well, by changing u^ to (l/2)(n, + u^) if necessary. Let
us apply part (1) of Proposition 4.4 to each ^, with C = 1. Then we may
write Uz = (pi - ̂ , where (pi and ^ are finite rank completely positive
maps with the following two properties. First,

(4.6) 1 1 ^ + ^ n ^ i ^

and second, there is a factorization (pi = /^c^, for some completely positive
contractive maps a,: Z —> Mn, and /^: Mn, —» M. We claim that

(4.7) V^eZ, ^)^o.

Indeed let / € M, be a state. Since (n(l), /) = (1, /) = 1, we know that

(^(1),/)-(^(1),/)-^1.

However (^(l),/) and (^(l),/) are two nonnegative real numbers whose
sum is ^ 1 by (4.6). Hence we have (-0,(1),/) —> 0. Now let ^ ^ 0 be in
Z. Then 0 ^ 2; ^ ||2;||1 hence 0 ^ ^i(z) ^ ||z||^(l), hence applying /, we
finally obtain

0 <.{WJ)^ \\z\\W) J).

It therefore follows from above that (^(2;), /) —> 0. Since Z (resp. M,) is
spanned by its positive elements (resp. by its states), this shows (4.7). We
thus obtain that (pi = /^c^ converges to u in the point-w* topology hence
it remains to check that ai and /^ can be modified to become unital maps.

First note that given any completely positive map a: Z —> Mn, there
exists a u.c.p. map S: Z -^ Mn such that a(z) = ^(l)1/2^)^!)1/2

for any z € Z. Indeed this follows either from [4, Lemma 2.2] or from
Stinespring's factorization Theorem (see the proof of Lemma 4.9 below).
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Moreover if (3: Mn -^ M is any c.p. map and if ft: Mn -> M is defined
by /3(m) = /^(l)1/^^!)1/2), then /3 is c.p. as well and (3a = /3$.
Furthermore if a and f3 are both contractive, then a and (3 are contractive
as well. This shows that in the above construction, we can now assume that
each Q.i is unital.

For every z, we let rji e M^ be a state and define a new map
^Mn, -^ M by letting f3[(m) = ft(m) + ^(m)(l - /?,(1)). With that
definition, we clearly have ^(1) = 1. Note that since ||/3,|| ^ 1, we have
1 — (3i(l) ^ 0 hence /^/ is a u.c.p. map. Moreover

1 - A(l) = 1 - /Wl) = 1 - Ui(l) ̂  0

hence ^a^ - (3^ tends to 0 in the point-w* topology. Changing ̂  to /3^
we thus obtain the expected fact that f3i can be assumed unital. D

Remark 4.6. — Up to an obvious modification, the simple unitization
process explained above can be applied as well to (7-nuclear operators. Thus
the assertion (v) in Theorem 2.6 can be replaced by

(v)' There exists a net Ui: Y —^ B of finite rank operators converging
to u in the point-norm topology, such that every u^ admits a factorization
Ui = /^Q^, with

Y -% M^ —> B and o^, f3i are u.c.p.

COROLLARY 4.7. — Let Z C B{H) be an operator space, let M
be a unital dual operator algebra, and let u: Z -^ M be a bounded
operator. If u is C-semidiscrete for some C > 0, then there exists a C-
semidiscrete operator u: B(H) —> M extending u. Assume moreover that
Z is an operator system, M is a von Neumann algebra and u is u.c.p.
and 1-semidiscrete. Then u admits a u.c.p. and 1-semidiscrete extension
u: B(H) -^ M.

Proof. — Assume that u is (7-semidiscrete. By Theorem 4.3, there
exist nets ai'.Z -> Mn, and f3i: Mn, —^ M as in part (hi) of Theorem
4.3. For any i we may find, by Wittstock's extension Theorem, an operator
Oi: B{H) -^ Mn, extending a,, with ||a,||cb = ||a,||cb. Letting ui = /^a,, we
obviously have ||̂ || ^ G. Since bounded sets of B(B(H), M) are relatively
compact in the point-w* topology, we see that (n,), admits a limit point
u: B(H) —^ M for that topology. By construction, u extends u and by the
implication "(iii) =^ (i)" of Theorem 4.3, we see that u is G-semidiscrete.
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The second part of the corollary immediately follows from the first
one, since unital completely contractive maps are automatically completely
positive. D

By definition ([11]), a von Neumann algebra M is semidiscrete if and
only if the identity operator IM is 1-semidiscrete in the sense of Definition
4.1. It is well known that in that case, IM satisfies the assertion (ii) of
Theorem 4.5 with the additionnal property that the a^s are w*-continuous
(see [6]). It is thus natural to ask whether the a^s can be assumed to be
w*-continuous in part (iii) of Theorem 4.3 (resp. in part (ii) of Theorem
4.5), when Z is a dual operator space (resp. a dual operator system). It
turns out to be the case, and this is essentially a consequence of the proofs
written above. We record these facts in the next statement. It should be
emphasized that in either (1) or (2) below, u is not assumed w*-continuous.

PROPOSITION 4.8

(1) Let u: Z —>• M be C-semidiscrete from a dual operator space into
a unital dual operator algebra (resp. a von Neumann algebra). Then the
assertion (iii) (resp. (Hi)7) of Theorem 4.3 is fulfilled with the additional
property that each Oi: Z —> Mn^ is w*-continuous.

(2) Let Z be dual operator system (that is, Z C B(H) is a w*-closed
operator system). Let M be a von Neumann algebra and let u: Z —^ M be
u.c.p. and 1-semidiscrete. Then the assertion (ii) of Theorem 4.5 is fulfilled
with the additional property that each ai: Z —> M^ is w*-continuous.

LEMMA 4.9.— Let H be a Hilbert space and let ^ y : B ( H ) —> Mn
be some completely positive, w*-continuous, and contractive map. Then
there exists a w*-continuous u.c.p. map ^:B(H) —> Mn such that ^(z) =
7(l)l/2^(^(l)l/2 f^ any z € B(H).

Proof. — By the normal form of Stinespring's Theorem, there exist a
Hilbert space K, a unital w*-continuous ^-representation TT: B(H) —>• B{K\
and a contraction V: £^ —> K such that 7(z) = V*7r(z)V for any z € B(H).
Let V = U\V\ be the polar decomposition of V. That is, \V\ = (V*y)1/2 e
Mm and U: £^ —> K is 81 partial isometry, with kerU = kerV. Let 77 € B(H)^
be a normal state and let 7: B(H) —> Mn be defined by

^f(z) = U^(z)U + r](z)(l - U^U).

By construction, 7 is u.c.p. and w*-continuous. Moreover 7(1)1/2 = \V\
whereas |y|(l-[/*[/)|y| = 0, so that 7() = 7(l)l/27( )7(l)l/2 as required.

D
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Proof of Proposition 4.8.—To prove (1), we need to come back
inside the proof of the implication "(ii) => (iii)" of Theorem 4.3, with
the new assumption that Z is a dual operator space. With the notation
therein, the operator space E C Z spanned by Ji is finite dimensional
hence w*-closed. It therefore follows from Lemma 2.1 that the operator
a: Z —> Mn extending the operator a associated to [xpq] can be chosen to
be w*-continuous, with

l/'2\\^ . . || 1/2

IH ÎE Î ||E^ <a

This yields (1).

To obtain (2), we re-write the first part of the proof of Theorem
4.5, using the second part of Proposition 4.4 and the property (1) we just
proved. We thus obtain a net of diagrams Z —^ M^ —^ M such that

(a) (3i0i converges to u in the point-w* topology and the a^s and
P^s are contractive and completely positive.

(b) Each o.i admits a factorization ai(z) = V^7Ti(z)Vi^ where
Vi:£y —> Ki is a contraction, and TT^: B(H) —> B(Ki) is a unital w*-
continuous ^-representation.

Applying Lemma 4.9 to each ^fi:B(H) —^ B{Ki) defined by 7^( ) =
1^*71-( )Vi, we see that (a) can be achieved with the additional property
that each ai is w*-continuous and u.c.p.. Arguing as in the last part of the
proof of Theorem 4.5, we finally obtain that the /Vs can also be assumed
unital. D

We recall that by definition ([9], [12]), an operator space Y is locally
reflexive provided that

(4.8) (E (g)min Y) ** = E (g)min V** isometrically

for any finite dimensional operator space E. More explicitly, given any
operator spaces Y and E^ with E finite dimensional, let J E ' ' (E^rnmY) —^
E 0min ^** be the identity mapping. Then we always have \\JE\\ ^ I? and
Y is locally reflexive provided that H^1!! ^ 1 for any E. We can obviously
extend this definition by saying that Y is (7-locally reflexive (C > 1) if
IIJ^1!! ^ C for any finite dimensional E.

In (7*-algebra Theory, local reflexivity, nuclearity, and semidiscrete-
ness are related as follows. On one hand a (7*-algebra B is nuclear if and
only if the von Neumann algebra B** is semidiscrete ([5]) and on the other
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hand, every nuclear (7*-algebra is locally reflexive, by [1, 9]. The next
corollary indicates relationships between local reflexivity, nuclearity, and
semidiscreteness in the broader context of operators.

COROLLARY 4.10. — Let Y be an operator space, let B be an operator
algebra with a c.a.i., and let u:Y —^ B be a bounded operator.

(1) Jfn**:y** -> B** is C-semidiscrete for some C > 0, then u is
C-nuclear.

(2) Ifu is C-nuclear and Y is C'-locally reflexive for some C > 0 and
C' ^ 1, then n** is C C-semidiscrete.

(3) Ifu is completely isometric, then n** is 1-semidiscrete if and only
ifu is 1-nuclear and Y is locally reflexive.

Proof.— We use the notation introduced before Corollary 4.10. We
shall consider:

6 ,5"
I E ^ U : E (g)min Y —> E (g) B and IE 0 n**: E (g)min ^** —> E 0 B**.

We clearly have (IE 0 ^)** = {IE ^ U^)JE by Corollary 3.8, (3). Since
JE\\ ^ 1, we deduce that for any E,

\\IE 0 u\\ = \\{IE 0 ̂ )**|| ^ \\IE 0 ̂ **||.

Hence (1) follows from the equivalences "(i) ^ (ii)" in Theorem 2.6 and
Theorem 4.3. Similarly, we have

\\IE^U^\\^\\J^\\\\\\IE^U\\

for any E, whence (2).

We now turn to (3). By (1), we only have to check that if u is
completely isometric and u** is 1-semidiscrete, then Y is locally reflexive.
First observe that given an arbitrary finite dimensional £', the identity

6 T)
mapping is a contraction from E 0 B into E (g)min B, hence from E 0
B** into [E (g)min B)** by Corollary 3.8. Thus assuming that n** is 1-
semidiscrete, we then obtain that 7^0^** is a contraction from E^minY**
into (E (g)min B)**. Moreover since u is a complete isometry, n** is a
complete isometry as well hence J^ (g) n** is a complete isometry from
E 0min ^** into E (g)min B**. Since the identity mapping is a contraction
from {E (g)min ^)** into E (g)min -S**, we finally obtain that

(4.9) IE 0 n**: ̂  0min y** —> (^ 0min B) ** is a complete isometry.
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Using again the assumption that u is a complete isometry, we see that
IE (E) u is a complete isometry from E 0min Y into ̂  ̂ min ̂  hence passing
to the biadjoint,

(4.10) IE^>U^'. (£'0min^)** —^ (-E'^min^)** is a complete isometry.

Comparing (4.9) and (4.10), we obtain that (4.8) holds for any finite
dimensional jE, whence the local reflexivity of Y. This proves the result. D

Remark 4.11.— Let Y be an operator space and let j:Y —>• B(H)
be a completely isometric embedding, for some Hilbert space H. Then Y
is exact (in the sense of [30]) if and only if j is 1-nuclear. A remarkable
theorem of Kirchberg asserts that any exact C*-algebra is locally reflexive.
We mention that the more general problem whether any exact operator
space is locally reflexive is open. This is equivalent to the question whether
in Corollary 4.10 (3), we have u 1-nuclear ^=> u** 1-semidicrete.

5. Local reflexivity properties of the decomposable norm.

We recall that given any two operator spaces E and V, there is a
natural embedding of £'** 0 V** into (E 0min V)**, inducing a norm at
least greater than || ||min on £'** (g)Y**. However this norm can be different
from || ||min and is in general quite difficult to determine. This phenomenon
has been discovered before the operator space theory arose, by Archbold
and Batty ([!]), and it is now known that it is related to the lack of either
local reflexivity or exactness of certain operator spaces. More precisely, an
operator space Y is locally reflexive if and only if E^mmY** C (-E^min^)**
isometrically for any E whereas E is exact (in the sense of [30]) if and only
if E (g)niin Y^ C (E (g)min ^)** isometrically for any Y. We refer to [I],
[9], [16], [20] and [31, Section 6.5] for the proofs of these results and more
information.

The aim of this section is to show, by combining Corollary 3.8 with the
main result of [21], that the phenomenon briefly recalled above disappears
if we replace the completely bounded norm, corresponding to || ||min, by
the decomposable one, in the case when Y is a C*-algebra and E is the
operator space predual of a von Neumann algebra. Let us introduce a
relevant notation. We give ourselves an arbitrary (7*-algebra B. For any
von Neumann algebra 7?, we shall denote by R^ ̂ ^ecB the closure of R^ 0B
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into DEC(R,B), so that

R^ 0dec B C DEC(R, B) isometrically.

Let A be a C*-algebra and let u: A -^ B be any finite rank operator. Then,
let z e A* 0 B be associated to u. It is shown in [21, Theorem 2.1] that
IHIdec = |M| 6 . Furthermore, if A = R is a von Neumann algebra and

A*(g)B
z € R^ 0 B, then we also have |H|dec = \\z\\ 6 . Thus for any B and J?

J?.(g)B
as above, we have

(5.1) R^decB=R,, d)B,

whereas for any C*-algebra A, we obtain that

(5.2) A* (g)dec 5 C DEC{A, B) isometrically.

THEOREM 5.1. — For any C^-algebra B and any von Neumann alge-
bra R, we have

R* 0dec -S** C (Ax (g)dec 5)** isometrically.

More explicitly, given any finite rank bounded operator u:R -^ B**,
then IHIdec ^ 1 if and only if there is a net of w*-to- norm continuous
finite rank operators Ut: R —^ B with ||^||dec < 1 such that for all
^ G (^ 0dec B}' : (^u) = \imt(^Ut).

The proof of Theorem 5.1 will require the following elementary fact.

LEMMA 5.2. — Let A be a C*-algebra and let M be a von Neumann
algebra. Let u: A —^ M be a bounded operator and let C be a constant.
Assume that there exist a net (v,t)t C DEC{A,M) converging to u in
the point-w* topology, with ||^||dec < C. Then u <E DEC{A,M), with
IHIdec ^ C.

Proof. — By the definition of the decomposable norm (see (2.4) and
above it) there exist, for each t, two completely positive maps S[: A —^ M
and S^: A —> M such that the mapping v^-A-^ M^(M) defined by

^.(W u^Y\
^-[^(a) S^a))

is completely positive, with ||̂ || ^ G, ||5 |̂| < C. Refining the net if
necessary, we can assume that the two nets {S{)t and (6^ converge in the
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point-w* toplology ofI?(A, M). That is, there exist 5i: A —> M, 62: A —> M
such that for all a € A, S{ (a) -w-^ 6'i(a) and S^(a) w—^ S^a). Obviously
5'i and S'z are completely positive with norms ^ C. By construction, the
mapping v: A —^ M^(M) denned by

v{a) =
'6'! (a) n(a*)*
^ u(a) 62(0)

is the point-w* limit of (vt)t hence is completely positive. This proves that
IHIdec ^ C. D

Proof of Theorem 5.1.—It follows from (5.1) applied twice that

R^ 0dec B = R^ (g) B and R* 0dec B^ = R* |) B** isometrically.
Hence applying Corollary 3.8, (2), we obtain that the norm induced by
{R^ 0dec B) on -R* 05** is dominated by the decomposable one, whence
a contraction

J: JT 0dec 5** —— (-R* ^dec B)**.

Let us denote by j: B —^ jB** the canonical embedding of B into its second
dual. We let z € ^* (g) 5**, and we assume that \\J(z)\\ ^ 1. Then by
Goldstine's Lemma, there is a net (zt}t C R^ 0 B converging to J ( z ) in
the w*-topology of (^ (g)dec -S)**, and satisfying ||^||^0^B < 1 for any
t. We now let u: R —^ B** be associated to z. Likewise for each t, we let
Ut:R —^ B be associated to Zt. The w*-convergence of Zf to J { z ) implies
that juf converges to u in the point-w* topology. Moreover we have

Ib'^lldec ^ \\Ut\\dec = INÎ decB < 1.

Hence applying Lemma 5.2 with M = B**, we find that ||u||dec ^ 1-
However by (5.2) we know that ||^||dec coincides with the norm of z in
R* 0dec 5**. Thus H ^ l l ^ 1 if \\J(z)\\ ^ 1. This shows that J is indeed an
isometry. D

We consider now the special case when B has the weak expectation
property (WEP in short). We refer to [24] for the definition of that notion
and to [23] for recent deep developments. If B is a G*-algebra with the
WEP, then R^ 0min B = R^ 0dec B for any von Neumann algebra R, by
[18, Proposition 3.3]. We thus derive from Theorem 5.1 the following.

COROLLARY 5.3. — Let B be a. C"-algebra with the WEP and let R
be a von Neumann algebra. Then

jR* (g)dec ^** C (^ (g)mm -S)** isometrically.
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It should be noticed that if B is not nuclear, then R* 0dec ^** and
^^min-S** are different in general. Indeed, this follows from [18, Theorem
2.1].

COROLLARY 5.4. — Let A, B be two C*-algebras, and assume that A
is finite dimensional.

(1) We have DEC(A,BV = DEC(A.B^) isometrically.

(2) If B has the WEP, then GB(A,B)** = DEC(A.B^) isometri-
cally.

Proof. — Apply Theorem 5.1 and Corollary 5.3. D

Note added in proof. — Extending a result of Kirchberg, Effros-
Ozawa-Ruan have proved in a recent paper "On injectivity and nuclearity
for operator spaces" that any exact operator space is locally reflexive.
This implies (see Remark 4.11) that part (3) of our Corollary 4.10 may
be replaced by ^u is 1-nuclear ̂  u** is 1-semidiscrete", for any completely
isometric u : Y —^ B.
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