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Introduction.

Gromov-Witten invariants "count" (pseudo-)holomorphic curves on
algebraic or symplectic manifolds. This amounts to intersection theory on
moduli spaces of such curves. Because in general these are non-compact,
singular and not of "expected dimension", a rigorous mathematical defini-
tion is far from trivial. For a reasonably large class of manifolds including
Fano and Calabi-Yau manifolds this has first been done using symplectic
techniques by Ruan and Tian [Rul], [RuTil], [RuTi2]. The point in this
approach is to restrict to sufficiently "generic" almost complex structures
(tamed by the symplectic form). Then the moduli spaces are smooth of the
expected dimension. This dimension is the index of the Fredholm operator
describing the moduli space locally as map between appropriate Banach
spaces. A certain positivity condition has to be imposed on the manifolds
to assure the existence of a compactification by strata of lower dimensional
manifolds.

The treatment of the general case required new techniques that would
not rely on genericity and replace the fundamental class of the manifold
by a homology class of the expected dimension, the virtual fundamental
class. This has first been achieved in the algebraic context by Li and
Tian by constructing a (bundle of) cone(s) inside a vector bundle over a
compactified moduli space; the virtual fundamental class is then obtained
by intersection with the zero section [LiTil]. A similar approach, based
on Li and Tian's idea of using cones inside vector bundles, but using the
cotangent complex and stack-theoretic language is due to Behrend and
Fantechi [Be], [BeFa].

The construction of virtual fundamental classes in the symplectic
category has been carried out shortly later by a number of authors [FkOn],
[LiTi2], [Ru2], [Sil]. The basic approach here is to write the moduli space
as zero locus of a section of a finite rank (orbi-) vector bundle over a finite
dimensional manifold (or rather orbifold). Locally this is not too hard. In
references [FkOn], [LiTi2] the crucial globalization is achieved by allowing
for jumps of dimension of the local models. This is still enough to construct
a homology class as intersection of the "Euler class" (of the bundle) with
the "fundamental class" (of the finite dimensional base). The other two
references use the author's construction of a finite rank orbibundle over (a
neighbourhood in an appropriate ambient space of) the moduli space. This
leads to a global description of the moduli space as zero locus of a section
of an orbibundle in an honest finite-dimensional orbifold.
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It is natural to expect that for complex projective manifolds, to
which both approaches apply, algebraic and symplectic virtual fundamental
classes do agree (hence the Gromov-Witten invariants derived from them).
As both approaches follow rather different tracks this is, however, far from
obvious. The purpose of this paper is to confirm that the expectation is
indeed correct. We prove

THEOREM 0.1. — Let M be a complex projective manifold, R e
H^M'.T), g , k > 0. Let C^g^(M) be the moduli space of stable maps of
genus g , with k marked points and representing class R (cf. Section 1.1).

Then the homology class associated to the algebraic virtual funda-
mental class (a Chow class on CR^^{M)) as in [Be] and the symplectic
virtual fundamental class as in [Sil] coincide.

For being specific we refer only to the constructions in [Be] and [Sil].
The equivalence of the two algebraic constructions and the four symplectic
ones within their categories is another, fairly straightforward albeit tedious
matter, that we rather leave to a more masochistic soul. For the symplectic
case there are some comments in [Si3], §3.4.

Our proof has three central ingredients. First, we need a holomorphic
version of the construction of the ambient space (denoted Z in [Si3], §1.3,
1.4) into which C^g^(M) embeds as zero locus of a section s of a finite
rank orbibundle F. This might not be possible globally, but we will gain
analyticity up to some smooth factor and this will be enough to make the
comparison work. The central point of the local construction is the fact
that spaces of holomorphic maps from a Riemann surface with non-empty
boundary (with continuous extension to the boundary) have a natural
structure of complex Banach manifold (Proposition 2.1). The rest of the
local construction, leading to "analytic Kuranishi models" for CR^^(M)
occupies Chapter 2.

The second part of the proof produces a cone C(s) inside F, as limit
of the graphs of t - Ts as t tends to infinity. We will see (Chapter 3) that
the fundamental classes of the graphs also convergence, to a well-defined
(dim Z)-dimensional homology class living on C{s) (denoted [C(s)], by
abuse of notation). Moreover, if s "splits off a trivial factor" then both C{s)
and [C(s)} split off a trivial factor too (a vector bundle with its fundamental
class). Of course, if s is holomorphic the cone is holomorphic too. It is in
fact the cone that one obtains by applying [BeFa] to an obstruction theory
naturally coming from the differential sequence associated to s. End second
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part.

Taken together this will be used in Chapter 4 to reduce the compar-
ison of algebraic and symplectic virtual fundamental classes to a compar-
ison of two morphisms of two-term complexes to the cotangent complex
of C^g^(M). One is coming from the description as zero set of a section
as just mentioned, the other one is abstractly constructed in[BeFa] from
the universal family and universal morphism to M. This comparison is the
least obvious part of the proof. It requires an explicit study of the ab-
stractly defined morphism (in derived categories) using Cech cochains. It
is quite satisfying to see how the (9-equation (describing s) naturally arises
by partial integration applied to fiber integrals coming from the explicit
version of relative (Serre-) duality (see the proof of Lemma 4.8).

The first Chapter serves two purposes. First, it contains an account
of the algebraic definition of virtual fundamental classes to fix notations
and to make the paper more self-contained. We follow the elementary
reformulation (avoiding Artin stacks) of [BeFa] previously given by the
author [Si2]. Second we go over from algebraic to analytic spaces, or rather
from Deligne-Mumford stacks to complex analytic orbispaces. The last
Chapter 5 provides a GAGA-type result concerning push-forwards and
relative duality in algebraic and analytic derived categories of sheaves.
The main result is Proposition 5.4 which gives an explicit description of
algebraic relative duality for algebraic families of prestable curves in terms
of analytic Cech cochains and fiber integrals.

Our proof of the comparison theorem has been sketched in some detail
in the survey [Si3], submitted in May 1997. Shortly afterwards we learned
from J. Li and G. Tian that they were able to prove the same result, using
their respective definitions of algebraic and symplectic virtual fundamental
classes [LiTi3].

1. Complex analytic GW-theory.

To compare algebraic and symplectic definitions of GW-invariants,
as a first, mostly trivial step, it is natural to translate the former into
the category of complex (analytic) spaces. This will be the purpose of this
chapter.
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1.1. Analytic orbispaces versus Deligne-Mumford stacks.

Given a smooth projective scheme M over a field k the natural
arena for GW-theory is the space C(M) of stable marked curves in M
(Kontsevich's "stable maps"). So the /^-rational points ofC(M) are in one-
to-one correspondence with isomorphism classes of triples ((7, x, (^) with
C a reduced, connected algebraic curve, proper over k and with at most
ordinary double points, x = (.TI, . . . , x^) a tuple of ^-rational points in the
regular locus C^eg C <7, and (p : C —> M a ^-morphism with the property
that

Aut(C7,x,^) == {^ G Aut(C) | ̂ (x) =x , ( ^o^ = (p}

is finite (stability). With the obvious notion of families of stable marked
curves over (that is, parametrized by) /^-schemes, C(M) (or rather the
associated fibered groupoid) has been verified to be a Deligne-Mumford
(DM-) stack [BeMa].

In the analytic category, i.e. k = C and M viewed as complex
projective manifold, the DM-stack can be replaced by a notion of analytic
orbispace that we now introduce. This will be a generalization of both
complex orbifolds and complex spaces.

Local models for such spaces are tuples (q : U —>• [7, G, a) with

• G is a finite group, viewed as zero-dimensional reduced complex space

• U is a (not necessarily reduced, but finite-dimensional) complex space

• a : G x U —> U is a (not necessarily effective) holomorphic group
action on U

• q is a quotient of U by G in the category of complex spaces (or,
equivalently, in the category of ringed spaces, cf. e.g. [KpKp], §49A.

We will often just write U = U/G for such local uniformizing system
(g, G, a). The definition of analytic orbispaces now runs completely analo-
gous to the case of orbifolds as given in [Sa]: One first defines the notion of
morphisms, and in particular open embeddings of local uniformizing sys-
tems. An analytic orbispace structure on a Hausdorff space X is then a
covering by local uniformizing systems {Uz = Ui/Gi}z^i (i.e. X = \JUi)
compatible on overlaps Ui Fl Uj• ^ 0 by open embeddings. Finally, an ana-
lytic orbispace is an equivalence class of analytic orbispace structures. By
abuse of notation we will also just write X for the analytic orbispace. Of
course there is also a notion of morphisms of analytic orbispaces making
the set of analytic orbispaces into a category, denoted SInDtb.
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Similarly, we may introduce the notions of (topological or analytic)
orbibundles and of coherent orbisheaves on X by requiring the associated
linear fiber space over X (cf. e.g. [Fi], §1.4) to be analytic orbispaces over X
with local uniformizers having a well-defined linear structure on the fibers.

This all being a trivial translation of [Sil], §1.1, which treats the
case of topological Banach orbifolds, to the category of complex spaces we
merely give these indications and refer to op.cit. for more details.

We claim that C(M) has naturally the structure of an analytic
orbispace, in such a way that C(M) represents the functor

€{M) : SInOrb —> ©ets
f analytic families of stable holomorphic 1 /
[ curves in M parametrized by T J / '

Here we use the following

DEFINITION 1.1. — Let T and M be analytic orbispaces. An ana-
lytic family of stable holomorphic curves in M parametrized by T is a tuple
of morphisms

( g : X ^ r , x : T - > X X T . . . X T X , ^ : X ̂  M)
of complex orbispaces with

• q is flat

• for any teT, (q~l(t),•K(t), ̂ \q-i^)) (with the induced analytic struc-
ture) is a stable marked holomorphic curve in M ( [ S i l ] , Def. 3.5). D

The precise result is

PROPOSITION 1.2. — For any complex space M, (^(M) is repre-
sent able by an analytic orbi-space C(M).

Proof. — To define a local uniformizing system at some stable holo-
morphic curve ((7, x, (p) in M let (q : C —>• S^ x) be an analytically semi-
universal deformation of (C7,x), cf. e.g. [Sil], §2.2. It is well-known that
Hom.§(C, M), the space of morphisms from the fibers of q to M, is a com-
plex space (representing the corresponding functor) [Do], [Po]. This is al-
most the space we want, but if Aut°(G,x) is non-trivial we have to the
equivalence relation on Honi5'(C,M) generated by the germ of the action
of Aut°(C',x) on q. We refer to this process as "rigidification".

To this end let y = ( ^ / i , . . . , yi) be a tuple of points in C such that
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• (C7,x) is a (Deligne-Mumford) stable curve, where x = (a;i , . . . ,.z'/c,
^ • • •^ )

• for any z, (^ is an immersion at yi (possible by stability).

The first property requires in particular finiteness of {^ C Aut((7, x) |
^(yi) = yi}^ so a minimal choice requires the insertion of I = dim Aut((7, x)
points. By the second property we may choose local Cartier divisors
H ^ , . . . , H i C M and open disks Ui C C with (^l^)"1^) = yi (^
with reduced structure). Now let (q : C —>• 5',x) be an analytically
universal deformation of ((7, x) with x = (a ; i , . . . , Xk, y i , ' • . , y i ) ' Extend
Ui to open poly cylinders (say) Ui C C. By restriction to an open subspace
Z C Hom^(C, M) we may assume that ('^ly.)"1^^) consists of exactly one
reduced point for any ^ € Z. Evaluation at the deformation of the i^-th
marked point defines k + I morphisms

ev^ : Z —> M.

Set
U := (evAH-l,. . . ,evfc+^) - l(77l x . . . x Hi).

We claim that the restriction of the universal curve C Xs Hom.s'(C,M) —>
Hom^(C,M) to U together with the universal (evaluation) morphism from
the universal curve to M, is a universal deformation of ((7,x,(^). So let
(X -^ T.x', <!>') be an analytic family of stable holomorphic curves together
with an isomorphism of the fiber over some point 0 (E T with ((7,x,<^).
Since (p is transverse to J^, local defining equations of Hi pull back
to local holomorphic functions on X that restrict to local holomorphic
coordinates for C near (^^(T^) on the central fiber. This shows that
possibly after replacing T by a neighbourhood of 0 € T the Cartier divisor
^>f~l(Hi) is a section of X —-> T. We denote this section by y^. and write
x' = (^'i,... ,^,^' . • • ,^'). By the universal property of (C —^ S,x) there
exists a unique morphism T -^ S such that (X —> r,x') is isomorphic to
the pull-back of the universal family over S. Moreover, there is a unique
such isomorphism inducing the given identification of XQ with C.

In turn the universal property of the Horn-space produces a unique
morphism T —^ Hom^(C,M) such that <!>' is the composition of the
evaluation map and the product morphism from X to C Xs Hom.$(C,M).
And if Wi = 0 is a defining equation for Hi then (<!>' o i/)*u^ = 0 by
definition of y ' . . So the map from T to Roms(C,M) indeed factors over
U. Given any other map from T to U with these properties, we can pull-
back the sections x to T to see that this map coincides with the one just
constructed.
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Since Aut(C7,x,(^) c Aut(C,x) acts on (C -^ 5',x) ((C -^ S,x)
is a semi-universal deformation of (G,x)!) the universal property now
immediately implies an action of this group on U and compatibility
of this action with open embeddings of local uniformizing systems, the
existence of which being itself provided by universality. A final remark
concerns global existence of the universal curve and universal morphism.
In fact, the universal curve is itself isomorphic to C(M), the evaluation
morphism is evaluation at the last marked point and the morphism to
C(M) is by forgetting the last marked point and stabilizing (i.e. successively
contracting all unstable components on which the map is trivial). These are
morphisms by work of Knudson [Kn]. D

1.2. Analytic global normal space, local construction.

By the analytic analog of [BeFa] or its elementary reformulation in
[Si2] we need a (free) global normal space ([Si2], Def.3.1 and §4.1) for C{M)
relative "the Artin stack ofprestable curves" 971 = ]J Wg^ to construct the

g,k
virtual fundamental class on C(M). Recall that a global normal space for
C(M) relative 9JI would be a morphism in the derived category of coherent
orbisheaves on C(M)

(p9 : ̂ 9 = [^~1 —> J^\ ——> ^(M)/97t

with

• J70 and ^F~1 are locally free

• y* induces an isomorphism in H° and an epimorphism in H~1.

Here ^c(M}/m ls tne ̂ ^y^ cotangent complex relative 9Jt. Invoking
existing literature ([BiKo], [Fl], [II]) for the case of analytic orbispaces (or an
appropriate analog of DM-stacks in the analytic category) relative an Artin
stack is however questionable. Instead of justifying this rather technical step
we will give our construction on the level of local uniformizing systems and
show in the next section that the corresponding quotients of cones in the
complex orbibundle H with local uniformizer F\ = L(J='~1) globalize. It
will be clear from the local construction of this cone that the result will
be exactly the complex space associated to the DM-stack of cones in the
stack-theoretic version of H in [BeFa].

We start with the "obstruction theory" for spaces of morphism as in
[BeFa], Ch. 6, in the relevant relative formulation. The following discussion
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is literally valid both algebraically or analytically. For (C, x, (p) G C(M) let
(q : C —^ S^ x) be a universal deformation of a rigidification (C, x) of (C, x),
x = (a; i , . . . , Xk^ y i , . . . , yi)i as in the proof of Proposition 1.2. Over the open
subspace Z C Hom^C, M) lives the universal curve TT : T := C Xg Z —> Z
with the universal morphism <I> : F —» M:

c ^- r ^Mi i-
5 <— Z

From the functorial properties of the cotangent complex [II], [Fl], 1.2.17 we
obtain morphisms

L^ C^ —> Cy —> ^r/c'

and, by flatness of TT, an isomorphism [Fl], 1.2.26, [II], II.2.2.3

LTT ^ z / g —^ ^rye-
All these morphisms are to be understood in D~(0y) the derived category
of the category of (9r-modules, bounded to the right, or rather the derived
category D^^(0r) of complexes with coherent cohomology. The resulting
morphism L<I>*/^ —>• LTT*^z / s ls Censored (in the left-derived sense) with
c<;7r, the relative dualizing sheaf of TT : T —> Z. Applying RTT^ we get

RTT^L^C^ t) ̂ ) —> RTT^L^^/S ^ ̂ ) ^ C^z/s ^ -R^^Tr.

Now by smoothness of M, C^ = ̂ M (viewed as complex concentrated in
L

degree 0), hence L^C*^ 0 uj^ = ̂ *^M ̂ ^5 and by relative duality [Ha],
[RaRuVe]

RTT^^M^^) ^ [RTT^TM^^ RTF^ ^ Oz,

where TM = ̂ )^ is the locally free sheaf of holomorphic vector fields on M.
For any complex <f* of coherent sheaves, bounded to the left, we use the
notation (f*^ = Ext^*, 0) for the dual complex in the derived sense. In
particular, F^ = Homo(.F,0) for locally free coherent sheaves. We have
thus produced a morphism (which is in fact an "obstruction theory for Z
relative 5" in the notation of [BeFa])

(1.1) [RTT^TM^ -^ C^s'

To represent the left-hand side by a morphism of locally free sheaves one
needs to assume M projective. Let HM be an ample line bundle on M.
Then by stability

C := ^(^...+^)0^*^3
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has positive degree on each irreducible component of any fiber of TT, where
we wrote x^ for the Cartier divisor corresponding to the z-th entry of x. It
is not hard to see that choosing v large enough the natural morphism

M := 7r*7r,($*rM0r^)0r0-'—^*TM
is surjective and Tr^Af = TT^/C = 0, /C := ker(W -^ ^>*TM) (cf. [Be], Prop. 5).
Pushing forward the exact sequence

(1.2) 0 —— /C —— N —— ^*TM —— 0
by TT in the derived sense we obtain an exact triangle

^TT^*TM[-I] —> [0 -^ R1^^} —>[0-^ J^TTJV] —. RTT^TM,
hence an isomorphism of the mapping cone of the middle morphism with
R^^TM:

[R1^-^ R^^Af] ^RTY^TM.

Note that R1^^, R1^^ are locally free for TT^/C = Tr^Af = 0, The
derived dual of [R^^fC -^ ^TrJV] may thus be taken entrywise. Write
Q •= (R^^y, U := (R^^My, and G, H for the corresponding vector
bundles: Q = ©(G^), U = 0(Jfv). Together with (1.1) we arrive at a
morphism in the derived category

^ : [H - Q} -^ {R^TMY — C ^ / s '
This is the local version of the free global normal space ̂  -^ ^(M}/W In

fact, by [BeFa], Prop. 6.2.

PROPOSITION 1.3. — (/;• induces an isomorphism in H° and an epi-
morphism in H~1. Q

1.3. Analytic global normal cone.

We now review how to produce a cone (over Z) from a global normal
space (f)9 : [H —> Q} —> C^,g. It is convenient to go over to linear fiber
spaces over Z. In a hopefully self-explanatory notation (f)* thus becomes
^e : ( L z / s ) . -> [G -^ H}. Let Z ^ W be an embedding of Z into a
complex space W that is smooth over S. This is possible at least locally.
Let Cz\w be the normal cone of Z in W, which is a closed subspace of
the normal space Nz\w^ the linear space associated to the conormal sheaf
Z/Z2, T C Ow the ideal defining Z. There is a natural morphism (in the
derived sense) of linear fiber spaces over Z [II], Cor. 3.1.3

PIVIS'IZ —> Nz\w} —^ [Lz\s)»
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inducing isomorphism in H° and H1. We are now in position to produce
a cone C(^) c H by pushing forward the Tw\s\z-cone Cz\w C Nz\w
under the composition of this morphism with ̂  in the way defined in
[Si2], Ch. 2. G(^*) depends only on the map in cohomology induced by ^e

[Si2], Thm. 3.3.

From the free global normal space for unrigidified local models of
C(M) we thus get a well-defined closed analytic cone C11 C H , To globalize
first note that G and H have straightforward analogs on C(M). In fact, if
(TT : F -^ C{M), x) is the universal (marked) curve with universal morphism
^ : r —>• M we put

C := ^(^+...+^)0^*7^3, At := ^(^TM^/^3)^/:0-3,
1C := ker(A/'->^*7M).

Then G, H are the orbibundles belonging to the orbisheaves ^T^/C,
^Tr^At. To keep the notation within limits we stay with our previous
symbols G, H, F etc. If we want to explicitely refer to uniformizing objects
over a local uniformizer U say, we will use the notation H\- etc.

Now let (C, x, (p) c C(M). A chart U for the analytic orbispace C(M)
was given by imposing incidence conditions on an open Z C Hom.s(C, M),
cf. the proof of Proposition 1.2:

U = (ev^+l,...,evfc+0- l(7:fl x ...^).

Letting ^e be associated to the universal objects on the unrigidified chart
Z we define

C11 := C7(^)|^,

that is, the intersection of C(^9) with H ^ as closed analytic subspaces of
H (meaning the bundle over Z). Since the automorphism group of (C7, x, ip)
acts naturally on the whole construction, C11 is Aut(C7,x, (p) -invariant.
With the identification of H\^ with a local uniformizer of H we may now
view C11/ Aut(C7, x, (p) as locally closed complex subspace of H.

PROPOSITION 1.4. — The germ ofC^/Aut(C,x,^) c H at any
point of its support is independent of choices.

Proof. — To compare two local uniformizing systems U ' C Z9 c
Hom^C'.M), U" C Z" C Hom^C", M), constructed from the insertion
of V respectively /// points y[, y^ into C (cf. the proof of Proposition 1.2)
we may consider (appropriate shrinkings of) Z ' and Z " as subspaces of
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a common bigger space Z" C Hom^C.M). The latter space is simply
constructed by inserting the union of {y[} and {y^}, which is a tuple of
I <, I ' +1" points. The point is that for any increase of numbers of inserted
points there is a forgetful map (forgetting the additional points), and this
induces morphisms Z -^ Z ' , Z -^ Z " . In fact, Z is just a product of Z '
with an open set D in C1-1' that rules the deformation of the additionally
inserted points. A similar statement is true for the universal curve over
Z, and this is obviously compatible with the evaluation map. So the cone
constructed from Z is just a product of the cone constructed from Z ' with
D. Now the composition

Z ' ^—^Z —^Z"

induces the unique isomorphisms of the corresponding universal deforma-
tions U ' , U, U" of (C,x,(^) and this shows the claim. D

The locally closed subcones of (the underlying complex space of) H
thus glue to a well-defined closed subcone C11 C H that is locally pure
dimensional of dimension rk G plus expected dimension.

The comparison with the symplectic treatment will happen on the
level of underlying spaces to which all relevant objects descend. In the
symplectic case this is the set of isomorphism classes of stable holomorphic
curves, whereas from the complex-analytic treatment it also inherits the
structure of a locally ringed space. In case M is projective it follows either
by construction or by using the universal property that the latter space
is exactly the analytic space corresponding to the coarse moduli space
underlying the DM-stack of stable curves in M (which is in fact projective
algebraic as shown in [FuPa]).

Now the (associated analytic) map from local etale covers of the
stack (7(M)aig to the coarse moduli space ([BeMa], after Prop. 4.7) factors
(locally analytically) through a smooth map to our (even unrigidified)
charts. Moreover, the GAGA-theorems from Chapter 5 show compatibility
of the stack-theoretic global normal space and our analytic global normal
space ( p * . This proves

PROPOSITION 1.5. — The analytic cone C C H over the coarse
moduli space associated to the stack-theoretic cone from [Be] coincides
with the complex space underlying the complex orbispace C11. D

To obtain the analytic analog of Behrend's virtual fundamental class
J(M) (an element in the Chow group A^{C(M})) we finally need to
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intersect the fundamental class [C11] e A^((7^) with the zero section of H.
Algebraically this is done by applying a bivariant class a- 6 A*(C(M) ^->
H) 0z Q- The existence of the latter in the category of DM-stacks follows
from the work of Vistoli. It results from the compatibility of algebraic
intersection theory with homology theory ([Fu], Ch. 19) that the image of
J{M) in H^(C(M)) (that we will also denote J(M)) is nothing but

(1.3) J(M) = [C^nQn € ^*(C(M)),
where [C11] is the fundamental class (of the underlying coarse modulis
spaces), and OH ^ ^^WQ) is the Thorn class of the orbibundle H
(taking into account multiplicities coming from the stabilizers of the local
groups, cf. [Sil], §1.2) (1).

2. Analytic Kuranishi models.

A Kuranishi model for C(M) is a locally closed embedding of a local
uniformizer ofC(M) into some CN won from a holomorphic Fredholm map
between complex Banach spaces having C(M) as one of its fibers. Finding
Kuranishi models in our situation of an integrable complex structure on
M is easier than in the general symplectic case, because we may restrict
to holomorphic maps on a large part of the curve, notably near the
singularities. This is due to the Stein property of open Riemann surfaces.
We thus begin with a study of moduli spaces of holomorphic maps from an
open Riemann surface.

2.1. Spaces of holomorphic maps from open Riemann surfaces.

Throughout this section we fix an open Riemann surface E, whose
ideal boundary (denoted <9E by abuse of notation) we assume to consist
of circles only (no punctures). Denote by E = E U <9E the corresponding
Riemann surface with boundary. Sobolev spaces for maps or functions on
E will be understood with respect to a Riemannian metric on E extending
over a neighbourhood of the boundary.

As a preparation let us generalize the decomposition

L?(E; C) = 27(E; C) x (^(E), (^(E) := 0(E) n L?(E; C),

(1) We could also define J{M) as analytic Chow class, but since we want to compare
J{M} with the homologically defined G^VM 6 H^(C{M}} we prefer to work in homology
already at this point.
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that we used implicitely in [Sil], §4.3 for plane circular domains, to
arbitrary open Riemann surfaces. To that end let K e ^(E x E \ A) be
a meromorphic 1-form with a simple pole of constant residue 1 along the
diagonal A extending to a neighbourhood of the boundary and without
zeros. K exists by the Stein property of E. Then the singular integral
operator

T^(z) '= ——lim / J^w)A7(w)
zm £^ojs\Be(^)

is a right-inverse for 9 : Z^(E;C) -^ L^E;^). Moreover, for any
/CL^(E;C) it holds

/ = TOf+Hf^ Hf{z) = —— f K ( z ^ w ) ^ f ( w ) .27r^ JQT.
The proofs of these statements run as in the case E = A. This establishes
the claimed decomposition of 2^(E; C).

The rest of this section is devoted to the following result.

PROPOSITION 2.1. — The space Hom^E^M) of holomorphic
maps (p : E —> M of Sobolev class L\ has naturally a structure of complex
Banach manifold. The evaluation map

ev : Hom^E, M) x E —> M, (<^ z) i—> <^(z)

is holomorphic with respect to this complex structure. The tangent space
at some (p € Hom^E, M) can naturally be identified with (^(S, ̂ *TM).

Moreover, with this complex structure, Hom^^S, M) has the follow-
ing "universal property": Let T be a complex space and ^ : T x S -> M be
a holomorphic map inducing a continuous map p : T —> ̂ (S, M). Then p
factors over a unique holomorphic map T -^ Horn^^E, M).

We put "universal property" in quotation marks because Honr^p.A^)
as an infinite dimensional space does not belong to the category of complex
spaces for which the property is tested (we would have to use Douady's
more involved notion of Banach analytic spaces to remedy this).

As a first step we observe that we can build up E inductively starting
from a disk by adding arbitrarily "thin" annuli or pairs of pants. We are
thus basically reduced to the case of arbitrarily thin 1- or 2-connected plane
domains by means of

LEMMA 2.2. — Let E = Ei U E2 with <9Ei n 9^ = 0 and
^ G Hom^E^M). Put Ei2 = Ei n ̂  and ^ = ̂ , ̂  = ̂ \^.
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Assume the proposition is true for Si, Ss and Si2 locally around ^ p \ ^ ^ p ( z
and y?i2 respectively. Then the proposition is true for S locally around (p.

Proof. — Let 0 be an isomorphism of a neighbourhood of (^12 in
Hom^S^M) with a neighbourhood of the origin in (^^(E^; ̂ P^TM)
whose differential at (^12 we assume to be the identity. We consider the
map

2: (^1^2) —— WSJ-WE.J

from a neighbourhood of ((^1,^2) m Hom^Si.M) x Homl'p(S2,M) to
O^^C^^^^TM)- The derivative of this map is nothing but the Cech-
differential on sections of ^TM associated to the covering S = Si U S2.
We claim that the latter is a split submersion. To this end let T1 and
T2 be right-inverses to 0 on ^TM and ^TM as above. For simplicity we
assume the meromorphic 1-forms (on S^ x S^) involved in the definition to
be restrictions of a meromorphic 1-form K on S x S. Note that the pull-
backs of TM are trivial as holomorphic vector bundles, so the definition of
a right-inverse to 9 extends to this case by use of a vector valued analog
with respect to a holomorphic trivialization of ^TM (which we may take
to extend continuously to E). Let 1 = p\ + p2 be a partition of unity
subordinate to S^. A splitting of the Cech-complex is given by

(?^(Si2; ̂ TM) —— (9^(Si; ̂ TM) x 0^(Si; ̂ TM)

v -̂. (p2 • v - Tl(v9p2),-pl' v + T^pi)).

In fact, letting T be the singular integral operator on E belonging to K,
we obtain

p2'v-Tl(v9p2)Jf-pl•v-T'2(v9p^)) = v-T{v9{p^p2)) = v.

In view of the holomorphic implicit function theorem this shows the state-
ment about the structure of complex Banach manifold and the description
of its tangent spaces. The "universal property" is obvious because for any
complex space T a holomorphic map T x S —^ M is equivalent to the giving
of a pair of holomorphic maps T x E^ —> M coinciding on T x Si2. D

Next we treat the case that the map (p is "small" compared to the
modulus of S, as made precise in the following lemma.

LEMMA 2.3. — Let (p € Hom^E.M) and assume there is a
covering Ui of E by finitely many open sets having piecewise smooth
boundary in S and such that (1) there exists a smooth partition of unity
{pi} subordinate to Ui (2) Ui D Uj; D Uk = 0 for any three pairwise different
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indices i, j, k (3) for any i the closure of^(Ui) is contained in a holomorphic
coordinate chart of M. Then the assertions of the proposition hold locally
around (p.

Assumption (1) means that a shrinking of {Ui} is still a covering of
S. This requires the closures of Ui in E to meet in one-dimensional subsets
on <9S.

Proof. — Let 7, : M D Wi -^ C71 denote holomorphic coordinates
on M with cl(^(L^) C Wi. We consider the gluing map

2 : JjHom1^^) —— JjHom1^ n ̂ C"),
i i<j

Wi '——^ (^i °^i\U, -7i °^j\Ui\ •
\ / i j

Clearly, the spaces Hom1'23^, Wi) are open sets in complex Banach spaces
via 7,. As in the previous lemma we want to show that the differential of
5 at (^p\Ui)i is a split submersion. This differential is the map

]̂  o^(u^ ^TM) — n o^(u, n u^; C71), (^ ̂  (D^)(^ - ̂ ).
i Kj

Note that the differential of 7^ is an isomorphism for any i. The requested
splitting can thus be defined by

(D^{vi,))i, —— (^PjVi, -T\Vi,9p,)^.
j

As in the proof of the previous lemma we use a holomorphic trivialization
of ^TM to construct a right-inverse T to 9, the restriction of which to
sections with support in Ui is T'. The verification that this is indeed a
splitting of the differential and the "universal property" run also as above.
We conclude that S'^O) is a chart for Hom^E.M) at (p with tangent
space O^I^^rM) at ^. The universal property is again obvious. D

Proof of Proposition 2.1. — Locally around some (p C Hom^^S, M)
we construct the complex Banach manifold structure in the way already
indicated: Write S as union of open Riemann surfaces S^ with the following
properties:

(1) Each S^ is either a disk, an annulus, or a pair of pants (a two-
connected plane domain).

(2) For any i ̂  j the intersection S, D S^ is a union of (one or two)
annuli.
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(3) Each E^ has a covering by open sets as required by Lemma 2.3
(the same holds then also true for the pairwise intersections). Applying the
two lemmata we obtain the statement of the proposition locally around <^.

It remains to show independence of choices (in particular of the
decomposition E = |j E^) and biholomorphicity of changes of coordinates.
So let V == S-^O), V = (S^-^O) be two such charts with V H V + 0 as
subsets of Hom^^E, M). From the holomorphic evaluation map V x E —>•
M, upon restriction to E^, we obtain maps

V —> Hom^E^M).

These are holomorphic maps of Banach manifolds and compatible on
intersections E^ D Ej. We thus obtain a holomorphic map of Banach
manifolds V —>• V. The same reasoning with V, V exchanged shows that
this map is invertible. D

2.2. Localization of variations of complex structure.

As a further preliminary to the construction of analytic Kuranishi
models we want to show that any deformation q : X —> S of a closed
Riemann surface E = XQ is obtained by changing the complex structure on
arbitrarily small open sets. To see this take a meromorphic function / on (a
neighbourhood of the central fiber of) X exhibiting E as a (say d-sheeted)
branched covering ofP1 with only simple branch points. Then nearby fibers
are also simply branched coverings of P1, and the set of branch points varies
holomorphically with s. Let Ve C P1 be an e- neighbourhood (in any metric
on P1) of the branch locus of E —^ P1. For sufficiently small s the branch
locus of Xg —^ P1 is still contained in Vs. For any such s the map / induces
an isomorphism Xs \ /^(Ve) ^ Ti\ f'1^^). Since we are only interested
in the germ of the deformation we may take e arbitrarily small.

Let A c^ Vj C Ve be a connected component containing the j-th
branch point. Then for e sufficiently small /^(Vj) is the disjoint union of
d — 2 copies of S x A and a two-fold cover of an open set Wj C X over
S x A branched along z = b(s). So the holomorphic function b{s) describes
the variation of the j-th branch point. Now the transformation

/ z - h(s) \
M —— (^l^^J

exhibits a biholomorphism of S x A mapping the branch locus to 5' x {0}.
This shows that Wj is a product S x A.
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Taking into account also deformations of nodes (Zf = {{z,w) e
A x A | zw = t}) we obtain:

LEMMA 2.4. — Let p : X —> S be a deformation of a prestable
curve C. Then, possibly after shrinking S there exists a decomposition

I m
X = Uo U |j U, U U Wj with

i=l j=l

• UQ = S x S, where S is a non-compact Riemann surface

• Ui(s) = Z^s) for some ti e 0(S) with ^(0) = 0

• W^; ^ S x A is a product

• UiC\Ui' =Ui^Wj =WjHW^ =9foranyi,ifJJ/ > 1, i + if, j ^ f;
Uo H U, ̂  S x (A, U A^); UoUWj^Sx A^ for some annuli A^A[, A^.

Moreover, the Ui (i > 0) and Wj can be chosen arbitrarily small. D

The essential point of this decomposition is that all the open sets
together with their intersections are constant in the family. This implies
immediate holomorphic trivializations of Banach bundles of holomorphic
sections to be used below.

2.3. Construction of analytic Kuranishi models.

We now want to make the construction of (local) Kuranishi models in
[Sil] holomorphic. At (G,X,(^) e C{M) the construction worked as follows:
Let

( q : C ^ S ^ : S ^ C x s . . . x s C )

be an analytically semiuniversal deformation of (C,x), C = ^"^(O). We
showed in op. cit. that the space of Sobolev maps (with weights at the
nodes) from the Cs = q~l(s) to M

L\(C/S^M) = ]J£?(^;M)
ses'

is a Banach manifold, locally isomorphic to S x V, V C L^(C^ ^*TM) open.
The map (p i—^ B(p is locally a family of differentiable Fredholm maps

Us = ̂ |{.}xv, H : S x V —>E:= 1^(07; ̂ *TM 0 ̂ ).

Choose a linear projection prQ : E —> Q with finite-dimensional kernel and
with prg oDHo surjective. The implicit function theorem with parameter
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s then shows that Z = (prg oH)'1^) is a finite-dimensional manifold near
(0,0) G S x V. Provided (C',x) is stable, a local uniformizer of C(M) is
locally given as zero locus of ^|^, K = H — ?TQ oH = pip oH, pip : E —> F
the projection with kernel Q onto a finite dimensional subspace F C E
with E = F + imDHQ. So F spans the cokernel of DH(). If (C7,x) is not
stable one finally has to choose a slice to the action of Aut°((7, x) on 5' x V.

Instead of making this construction holomorphic in each step we re-
strict to a set of maps in L^{C/S',M) that are already largely holomor-
phic. We take a decomposition of C as provided by Lemma 2.4 applied to
q : C —> S. Without loss of generality we may assume that each irreducible
component of C contains at least one Wj that remains constant under the
deformation, say j 6 { 1 , . . . , m'}. We assume that the closure of the image
of Ui (z > 0) and of Wj under y map into holomorphic coordinate charts

7, : M 3 M, -^ C71, i = 1 , . . . , / + m.

So Mi are open sets in M containing cl(^(L^(0)) respectively cl^(TV^(0))
(for i > I) . Our ambient Banach manifold will be the subset of L^(C/S', M)

m
of maps that are holomorphic on |j Ui U (J Wj. So the flexibility

i^O j=mf-^l

provided by L^-maps survives only on the part of W\,..., Wm' i^ot meeting
S = l/o. The space of such maps can be described as fiber over 0 of a
holomorphic map 5 : B —> B ' of complex Banach manifolds. The domain
B is the fibered product over S of the spaces

5' x Hom^E, M); Hornet/,, M,), i = 1 , . . . , / ;

SxL^W,^ Mi^)J = 1,.... m'; Hom^(W,, M^)J = m'+l, . . . , m,

(we use Proposition 2.1) and B ' will be
I m' m

nHom^Ai U A^C") x JJ ^(A^C") x JJ Hom^A^C").
1=1 J=l J=m/-^-l

Here we wrote Hom^l/^M,) for ]J Hom1^^^),^) that in view of
ses

the identification of holomorphic function spaces on deformation spaces
of nodes given in [Sil], §4.2 is an open set in the product of S with a
complex Banach space via 7^. By the product structure of Wj we also have
atrivializationofHom^p(T^,M^+^) = ]J Hom^W^), M^-). The map

seS

2 is the obvious nonlinear version of the first Cech differential. It sends
(^o,^^-) to

(7z ° ̂  - 7z ° ̂ o^j ° ̂  - 7j ° ̂ o),
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and this is clearly a holomorphic map.

PROPOSITION 2.5. — In a neighbourhood of(C,x,(^), B := S'^O)
is a complex Banach manifold lying smoothly over S.

Proof. — In view of the implicit function theorem we have to show
that the differential DEo is a split submersion, where So is the restriction
of 5 to s = 0. With the natural identification of the tangent space relative
5" of B at (y9 with

I m'

O^(^^TM) X ]^O^(U^^TM) X \[L^W^^TM)

^=1 J=l mx n O^WO^^TM)
j='m'+l

the differential is isomorphic to the linear Cech differential, mapping
{vo, Vi, v^) to (vi -VQ.v^-vo), as element in

I m' mn o^{Ai u A^; ̂ TM) x n L?(A;'; y*rM) x n ^^^(A^ y*rM).
^=1 J=l j^m'+l

To define the splitting let T be a right-inverse to the 9-operator on (R*TM
restricted to C° = (7^, where

I m

C°,:=\JU^s)U IJ W,(s),
i=0 J='m/+l

constructed as singular integral operator via a holomorphic trivialization as
in the last section. Let T1 be the restriction of T to L^(0) (for z = 0 , . . . , I )
and to Wm^i-iW respectively (for % = ^ + l , . . . , Z + m - m'). For brevity
we put JP = id —r1 o 9. For j = 1, . . . , m' we also need a (complex linear)
extension map

^:L?(£/o(o)n^(o);^TM) — L?(^(o);^*rM),
that is, a right-inverse to the corresponding restriction map. The existence
of f^ is a standard fact of Sobolev theory. Finally let pi, p ' be a partition
of unity on C subordinate to our covering. A right inverse to D5o is now
given by sending (w^.w^) to (vo, vi, ̂ ) with

( I m \
VQ = -H° ^ piWi + ^ pjW'. ]

1=1 j=m'-\-l /

Vi =Hi(pQWi} Z = 1 , . . . , Z

^ -^K+^olA^)) j = = l , . . . , m '
^ ^^^—(Po^) J = m / + l , . . . , m .
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The verification that this is indeed a splitting is straightforward (as in
the proofs of the lemmata in the previous section). An application of the
implicit function theorem completes the proof. D

In the sequel we identify (^o^,^) ^ B with the induced L^-map
^ : Cs -^ M that is holomorphic on C^. Choosing a biholomorphism
Zj : A '̂ ^ A for the complement A-7 of clA^ in Wj(0) (j = 1 , . . . , m'), the
(non-linear) (9-equation (^ \—> Q^p can now be viewed as holomorphic map

m/ ^
e:B^n^(A^;C"), (V,o,^,^)^f——7j°^)

. „ \OZj /?==l,...,m/
j=l J j i i

PROPOSITION 2.6. — There is a natural map from the differential
at (C7, x, (p) of Q relative S to

9: L^C^^TM)——L^C^TM^)

inducing isomorphisms of kernels and cokernels. In particular 0 is Fredholm
at (C,x^).

Proof. — Let us write 60 for the restriction of 6 to the central fiber
Bo of B over 0 € S. From the proof of the last proposition the tangent
space of Bo at ^ : Cs —> M can be identified with

V := {v e L?(C;^TM) | v\co e O(C°;^*TM)}.
Thus

DQo: V —— n ^(A^C71), v ̂  (^-(^)) • •
j<m' 3 3

Multiplying the components on the right-hand side by dzj and extending
trivially by zero as section of ^TM ̂  ̂  we obtain a commutative square

y -De^ f] ^(A^C71)
j^m'

(2A) [ ~ [•^ ^

L^^TM) -^ LP(C^^TM^^)

that we claim to induce isomorphisms of kernels and cokernels of the
horizontal arrows. The diagram certainly gives rise to isomorphisms on
the kernels, both being equal to H°{C\^TM)- To prove injectivity on
cokernels let 7 G Y[ L^A^C") and assume that its trivial extension 7

j^m'

can be written as 9v with v C L^(C', ̂ TM)' Then 9v = 0 away from |j A-7

and so v C V.
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As for surjectivity, the soft resolution of O^^TM^) by sheaves
of Sobolev sections (restriction of [Sil], Prop. 4.5 to C°)

0 —— O^{^TM\^) —> C^TM\CO) ̂  C^^TM\C^ —— 0

together with Jf^C0;^*^) = 0 (C° is Stein!) shows the surjectivity of

Q: LW^^-^L^C0^^^^.

So for any 7 e LP(C°', ̂ TM 0 ̂ ) there is a solution to the equation

^o = 7lco-

Let v e £?(C; (^*TM) be an extension of VQ to all of C7. Then 7 - <9v has
support in |j A-7, hence is in the image of the right-hand vertical map of

']<m'
(2.4). This shows surjectivity of (2.4) on cokernels. D

By the proposition, G'^O) is thus given as the fiber of a holomorphic
Fredholm map between complex Banach manifolds, hence has naturally the
structure of a (finite dimensional) complex space.

THEOREM 2.7. — The germs of G-^O) and ofHom.s(C;M) at
(C, x, ( p ) are canonically isomorphic.

Proof. — We have to check the universal property of the hom-functor
for G^O). So let T —> S be a morphism of complex spaces mapping a
distinguished point 0 € T to 0 € S and write CT = Tx^C. To any morphism
^ : CT —> M inducing ^ on the central fiber we claim the existence of a
unique (germ of) morphism A : T -^ G'^O) such that ^ factors over the
evaluation morphism G'^O) Xs C —^ M via A x idc.

First we observe that the morphism ^ from CT to M is equivalent
to the giving of a tuple of S'-morphisms from T to the following spaces:
S x Hom^^M), Hom^(^M,) {i = 1,. . . ,0, Hom^(H^M^) (j =
l , . . . ,m) , such that the composition with the analog S/i of 5 from the
product Bh (W for "holomorphic") of these spaces to

I m

B'k := fjHom1^ UA^C") x ^[jHom^A^C")
i=l j=l
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is the zero morphism. Recall that the term "5'-morphism" means compati-
bility with the morphisms to S that the relevant spaces do possess (includ-
ing T). Now consider the following diagram of complex Banach manifolds:

B, ^ B,

B —> B ^ B'
[e [a ^

m' rn' rn'n^(Aw) — ^Lp{w,^cn) — ^LP(Aff^cn)j=i j=i ^=1
The right-hand horizontal maps are all split submersions, the left-hand
horizontal and upper vertical maps are closed embeddings (the kernels of
the following maps) and the lower vertical maps are given by 9-operators.
What we have just said about families amounts to saying that the fiber over
0 (as ringed space) of the non-linear Fredholm map B^ —^ B'^ represents
the Hom-functor under consideration. Now a morphism to this fiber is
equivalent to a morphism to B which composed with each of the maps
to B ' and to n^lXjW;^) is the zero morphism. So this is nothing
but a morphism to B whose composition with 9 to n^A^C7'1) is zero,
which in turn is the same as a morphism to the fiber of © over 0. All these
morphisms are to be understood in the category of ringed spaces. This
shows the universal property of the horn-functor for Q'^O). D

We do not bother about explicit local analytic Kuranishi models or
analytic rigidification here, because we will never need this. The former can
be easily established by the usual procedure of choosing a finite-dimensional
complex linear subspace in f[ LP(^^Cn) spanning cokerDGo; a holo-

j<m1

morphic rigidification on the other hand can be provided by requiring in-
cidence of additional marked points with local analytic divisors in M as in
Proposition 1.2. Instead we will show in Section 4.1 how to incorporate the
local construction given here in the global construction of [Sil].

3. Limit cones.

3.1. Cone classes.

This section deals with a purely topological question in finite di-
mensions. Let N be a finite dimensional, oriented, topological orbifold
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q : F —> N an orbibundle and s a continuous section of F (2). For any I > 0
let pi : N x R1 -^ N be the projection and let si <E T(N x (R1 \ {0}),^*F)
be denned by

si(x^v) = \v\~1' s(x).

For any v C R1 \ {0} the restriction of the graph I\ of si to N x {v} is
^l-1.^

DEFINITION 3.1. — Let T~^ be the closure ofl\ in p ^ F . The cone
C(s) C F associated to s is defined by

c(s) := r^n(Fx{o}). D

C{s) is independent of I and lies over the zero locus of s:

PROPOSITION 3.2.

1) C(s) = lim Ft.s in the sense of Hausdorff convergence of closed
t—>00

sets (hence C{s) is independent of I )

2) q(C(s)) = Z(s).

Proof.

1) Recall that convergence Ff.s =>^ C(s) means two things:

.c(s)=^( U r^).
to 't>to /

• For any compactum K C F and any neighbourhood U of C(s) C -F
there exists a to with

Tt.s^KcU for any t > to.

Both properties follow easily from the corresponding facts for 1 :̂ Since for
any to > 0 the restriction of the projection Pi : p^F = F x R1 —^ F to
F x B^-i(O) is proper and F is locally compact we have

cî  ( U r,.,) = p,[ci^(r^ n (F x ^-i(o))]
t^to

-p,[r^n(FxB^(o))],

(2) More generally, we may take N to be an oriented, Q-homology manifold and F -^ N
a not necessarily locally trivial cone over S, i.e. F have a continuous, fiber-preserving
action of the multiplicative semigroup R>o that is proper away from the zero section
O ' F ^ N .
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where we indicated with subscripts in which spaces closures are being taken.
The intersection of these sets over all to yields

H^U^5) = fl(r^n(Fx{o})) = c(s).
to t>to

For the second point let K^ U C F be as stated in the hypothesis. Consider
the other projection Qi : FxR1 -^ R1. The restriction ofQi to T^nP^^K)
is proper, and for the fiber over 0 € R1 the following inclusion holds:

T^n(Kx{0})cP^(U).
Then the same inclusion holds for F^ D (K x {v}), v € I^-i(O), for some
to > 0. But this means

Tt.s^KcU ^ft>to.
2) One inclusion follows from 1̂  D Z{s) x (I^\{0}). Conversely, let / € F^
and s (x) ^ 0. Let K be a compact neighbourhood of / in F such that s
has no zeros on q(K). Then

A = {(t,y) G M > o x N \ t ' s { y ) e K}
is compact. Choosing c > 0 with pri(A) C [0,c] we obtain

Ft.s H K = 0 for any t > c.
Hence f^C(s). D

The reason for introducing the factor R1 with I > 1 is the long exact
sequence of homology groups (of the second kind, that is with locally finite
singular chains)

H^i(C(s)) -^ Hn^(r7,) -^ H^(T^ -^ H^,(C(s)).
Provided n + I — 1 > dim C{s) (e.g. I > dimF — n + 1) the groups on the
left and right vanish by the general vanishing theorem of homology, cf. e.g.
[Iv], IX. 1, Prop. 1.6. So the (orbifold!) fundamental class

[r.J = {siUNxR1}
extends uniquely to an (n +1) -dimensional homology class on F^, that will
be conveniently denoted [Fgj (slight abuse of notation). Here we assumed
(without loss of generality) N to be pure n-dimensional and we chose an
orientation of R1 that will finally drop out. We are now in position to define
the limit of [I\J as t tends to oo.

DEFINITION 3.3. — Let 60 e ̂ o}^) be Poincare-dual to {0} C R1

with respect to the chosen orientation. Let Qi : p^F —^ R1 be the projection.
Noticing that C{s) = T^ H ̂ (O) we define

[C(s)} := [r^]nQ^o€^n(GOO). D
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Implicit in the notation is the first statement in

PROPOSITION 3.4. — [C{s)} is independent of I and homologous to
[Ff.s] for any t ̂  0 as class on F.

Proof. — We identify R1 with a linear subspace in R1^. Let rj G
^((R^1) be the corresponding cohomology class with supports. We write
^ for the integral generator of ^^(M^) (previously denoted So). Then

[i\] = [r^JnQ^ ^+1 = nus1^
hence

ra n or^ = ([r^j n Q^rj) n Q^
-[r^jn 0^(77 u^) = [r^jnQ?^1.

And for ^ > 0 the Poincare-dual 6t to {t} C R1 is cohomologous to <^ as
class on R1. Thus

[r^] = [r^JnQ^t = rano^, = [r^]no^ = [^)]
in Hn(F). D

In a holomorphic situation we retrieve the following familiar picture
[Fu], §14.1: Let F be a holomorphic vector bundle over a complex manifold
N , and let Z be the zero locus of a holomorphic section s of F. The
differential of s induces a closed embedding L of the normal bundle NZ\N
of Z in N into F. NZ\N ls ^ne linear fiber space over Z associated to the
conormal sheaf Z/Z2, T the ideal sheaf of Z in TV. The normal cone CZ\N
(the analytic analog of Spec^ e^o^/^4'1) is a closed subspace of N Z \ N '
Thus L{CZ\N) is a closed subcone of F.

PROPOSITION 3.5. — C{s) = i(Cz\N) and [C(s)} = L^[CZ\N} =
[l/(Cz\N)] (where [CZ\N], KCz|7v)] are tn^ fundamental classes of the
correponding complex spaces).

Proof. — Our construction of C(s) and [C{s)} is nothing but (a real
version of) the "deformation to the normal cone", which in this case states
that L(CZ\N) can be obtained as analytic limit of IVs, t G C, \t\ —> oo [Fu],
Rem. 5.1.1. From this the compatibility of the two limits can be easily
deduced. D

It should be clear that the same conclusions hold in the category of
analytic orbifolds, but we will not need this.
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For later reference we also observe here two simple lemmata:

— ^ /G^LEMMA 3.6. — Let q : Fu = U x V —> F\u be a local
uniformizing trivialization of a topological orbibundle F over a local
uniformizing system U = U/G of the base orbifold N , and let s be a
section of F uniformized by sjj '- U —^ F[/. Let b be the generic covering
degree of q. Then

C(s) = q(C(s)), [C(s)} = ^q.[C(s)}.

Proof. — This follows immediately by the corresponding identities
for Ft.s and Yfs' D

3.2. Local decomposition of cone classes.

Returning to GW-theory we will choose in Section 4.1 a morphism
r \ F —> E such that locally there is complex subbundle F1^ C F with
T71 = r\ph (essentially) holomorphically spanning the cokernel of the
linearization ofs= SQ, cf. Proposition 4.2. We obtain two finite-dimensional
oriented orbifolds Z C F and Z11 C F11 as zero loci of s = q^s + r and
gh ^ (q^s + r^ respectively, q : F -^ C{M,p\ qh : Fh -^ C{M,p) the
projections. The tautological sections 5can and 5^n ofg*F and (g^)*F both
have zero locus C{M). The associated cones and cone classes defined in the
last section will be written

C(r) = C(^an) C F|z, [G(r)]

C(rh)=C{s^) cF^|z, [C(^)].

For a decomposition F = F1^ Q F and homology classes a, /? supported on
closed subsets A C jF^, B C F let us write

ae/3 := (axf3)n(qh x 9)*^

for their direct sum, where q^- x q : F^1 x F —^ N x N is the product of the
bundle projections and 6^ 6 H^(N x N) is Poincare-dual to the diagonal
A C N x N.

The object of this section is to show that C(r) is already determined
by C^).

PROPOSITION 3.7. — Let F = F^ C F be a decomposition into
complex orbibundles in such a way that
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• r^ := r\ph is injective and spans the cokernel of the linearization
a relative a local, finite dimensional parameter space along C{M) = Z(s)
and has the regularity properties ofr (cf. [S i l ] , Def. 1.15)

• f := T\F maps to ima along C(M). Then G(r) = C^) C F and
[C(r)}=[C{rh)}(B[F}.

Before turning to the proof three remarks are in order: First, while
s = SQ is not in general globally differentiable, locally it is so relative
to a parameter space S of a semiuniversal deformation of the curve. The
corresponding relative differential is nothing but the linear 9-operator from
L^(C, ̂ TM) to ̂ (C, ̂ TM 0^) (restricted to a complement of the kernel
in case (C7,x) is not stable). Second, it will be crucial that differentiability
properties are imposed only on Th. F will indeed only be constructed as
topological subbundle. And third, the proposition together with Proposi-
tion 3.5 shows that, locally, C{r) is the product of an analytic cone over
C(M), pure-dimensional of dimension equal to expected dimension (index
of relative differential plus dim S minus dimAut(C,x)) plus rkF^, and a
complex vector space of dimension rkF.

Proof. — Let Scan be the tautological section of q * F . Consider the
section 6 of q*F x ^ x R - ^ Z x t ^ x R over F x (R1 \ {0}) x (R\ {0})
denned by

0(Z, V,U) := \V ~1 . (^n+^'5can).

This should be viewed as a two-parameter family of sections of q*F
interpolating between (scan)i = \v\~1' 5can (u = 1) and (^n)^O (^ = 0)-
Write 6u for the restriction of 0 to q*F x R1 x {u} and Qp, Qi, Q for
the projections from q*F x R1 x R to the three factors. We denote by
<^ ^ ^o}(RQ and ̂  e ̂ MW the Poincare duals to {0} C R1, {u} C R.
By definition

[C{r)\ = [r,jno^o<
as classes supported on C(r) x {0} x {1} c q^F x {0} x {1}. [rVj is the
unique class extending the fundamental class of the oriented orbifold F^.
In the construction of local uniformizers for Fe we may take u as parameter
in the application of the implicit function theorem, cf. the proof of [Sil],
Thm. 1.21. This shows

[r,J = [r^nc?*^? _ _
as classes supported on F^. Since by Lemma 3.8 below F^ = Fo D Q~l(u)
(the disjoint union of F^ and C(r) x {0} x {n}), we get at u = 1

Ai := [C{r)} x {0} x {1} = [r , ]n(^xQ)*<x^).
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And by the same lemma

An := [To] n (Qi x Q)*(^ x ̂ ), u € R

is a family of classes on C{r) x {0} x R, and these are mutually homologic
because the 6^ are cohomologous classes on R.

Together with F^ H ̂ (O) = ((^(r) C F) x {0} x {0} we obtain

[C(r)} = (O^).Ai = (QF).AO = [^(^©[F].

The set-theoretic part of the claim is also proved in the lemma below. D

We still owe the set-theoretic part of the lemma:

LEMMA 3.8.

1) Te n (<fF x {0} x R) = C7(r) x {0} x R.

2) C(r) = C^) © F (set-theoretically).

Proof. — We will show the inclusions

Te n Q^O) c (C7(^) e F) x {0} x R, c^) e F c G(r).
The lemma will then be finished with C(r) = r^nQ^^O) (hence (2)) and
C^r^) © F = r^ n Q^O), together with the observation that rescaling
(/\ /, v, ̂ ) ̂  (fh, u ' f, v, 1) gives

r, n ((fF x {0} x (R \ {0})) = (C7(T^) © F) x {0} x (R \ {0}).

In view of Proposition 3.2 we have to prove the following: Let ty € M,
Uy 6 M, /i/ € Fx^ be sequences with

(3.5) ^(^) - ̂  • (r^ (/^) - n. • f^ (/,)) = 0

(cf. the definition of 0 together with that of Z C F as zero locus of q*Sg —r)
and

^ —^ 0, ?z^ —^ u, f^ —> f.

As before we use superscript "h" and a bar to denote components in F11

and F respectively and Ty (etc.) to denote the restriction of r to Fy . Any
(/, 0, u) G Te n Q]~\0) is of this form. We claim / h € C^).

To this end we want to work on adapted charts. Recall that at
z = (C7, x, (p), SQ was locally uniformized by

SQ: SxV—>Eo,
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S the parameter space of deformations of the domain of the curve, V C
V[(C\^TM) (an open set in a linear subspace) of finite codimension and
£"0 = ^{C', (R^TM^^) uniformizing £ z ' This map was differentiable relative
S (i.e., for fixed s € S) with relative differential DySg uniformly continuous
at the center (0,0) € S x V. Write a = Dys^O, 0). By the regularity
properties of f^ and since f^ is injective and spans coker a we may change
the trivialization of £ in such a way that F1^ is identified via t^ with its
image C on the central fiber EQ.

Choose a complementary subspace P C V to K := kercr, set
Q = (J(P), and write prg '. EQ —> Q, pr^ : EQ —> C for the projections with
kernel C respectively Q. We can now apply the implicit function theorem
to prg osg : S x K x P —^ Q with parameter space W = S x K. We can
thus change coordinates on 6' x V in such a way that

SQ(w,p) = (p,^(w,p)) € Q x C

r^(fh)=^fh)

^(w,p)(7) = (prQ^(w,p)(7),prc^(w,p)(7))
with K : W x P -^ C differentiable relative W, Dp^(0,0) = 0, DpK
uniformly continuous at (0,0), and pr^r^o) = 0 (^^(c^o) C ima by
hypothesis).

Since the structure map S x V —> C(M',p) is locally proper, it suffices
to prove the claim about the limit on local uniformizers. For readabilities
sake we will drop the hats that usually indicate local uniformizers. Write
x^ = (w^^pv) G W x P, x = (0,0). Equation 3.5 now splits into the two
equations (in Q and C respectively)

Py-tyUv^QT^^fy) =0

l^(Wy,Py) -tyf^ - t^Uy RV C T(^ ̂  ) (/„ ) = 0.

We claim that
fi := (^(w,,o),/,)

has the same limit (/^, /) as fy. From the first equation we see that (ty ^ 0)
ir\ _ _

——^•prQf(o,o)( /) = ^•^(o,o)(/).
^y

By uniform continuity of DpK and because Dp/c(0,0) == 0
1 v

,— /<w^p^)-/<w^0) < PP/^|B^(O) • — —> 0.
l1'^ ^i/

Together with

—^(w^.p^) = /^+^ •prc^(w,,p,)(7^) —^ /^
^
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(which is where the assumption imf C ima comes in) this establishes the
claim and hence the first inclusion, for (f^t^) are in F^.

Turning to the second inclusion C'(T^) Q F C C'(r) we replace F
by a subbundle F ' C F with FQ = FQ and such that r ' = r\p, has the
regularity properties of r. To / h € (^(r^) choose sequences 0 7^ ty —>• 0,
^.=(w.,o) 3 ̂  -^ ̂  with

^(w,,0)-^/^ = 0.

For any f e FQ = FQ we want to find /^ -^ / h with

^-^prQT^^(/)=0

/<w^j^) - t^f^ - t^pTcf^^(f) = 0.

To the first equation we may apply the implicit function theorem with
parameters iy, w^ to conclude unique existence of py —>• 0 for v large from
the solution p = 0, t = 0, w = 0 in the limit v —> oo. The second equation
in turn forces

f^ = T-^^P^-^C^^U)'
^v

Since as above

S^ -fi = -^(w^)-^w,,0)) —— 0
^v

we deduce f^ —> /^ as claimed. D

4. Comparison of algebraic and limit cone.

4.1. Choice of Kuranishi structure.

Let (M,c^) be a Kahler manifold. Recall the construction of [Sil]
applied to {M,UJ) viewed as symplectic manifold with almost complex
structure the integrable one: The space C(M',p) = |j C^^(M;p) of

R,g,k

stable marked complex curves in M of Sobolev class L\ is a Banach
orbifold. The map (C, x, ̂ ) \—> 9(p is a section Sg of the Banach orbibundle
£ with fibers <^(c,x,^) = ^(C'.^TM ̂  ^c)- Local uniformizing systems
at (C, x, y) are of the form S x V with S the base of an analytically
semiuniversal deformation of (C7,x) and V an open subset of a linear
subspace of L^(C'^ ^TM) of codimension equal to dimAut((7, x). In such a
chart SQ is differentiable relative 5', with differential a relative S a family
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of Fredholm operators that is uniformly continuous at (0,0) e S x V.
By spanning the cokernel of a along some compact part of C{M\ say
^R,g,k{M) = C(M) H CR^g^{M\p), by sections of <^*TM 0 f2c supported
away from the singularities of Cf, parallel transport by local trivializations
of S and multiplication with a bump function in a neighbourhood of
CR,g,k(M',p) in C(M;p) we constructed a morphism ("Kuranishi structure")

r ' . F — > S

from a finite rank complex orbibundle F living on a neighbourhood of
^R,g,k{M^p) in C(M;p) with the following properties:

• r has the same differentiability properties as SQ

• r spans the cokernel of the linearization of SQ along Z(sg)^ i.e. for any
(C,x,^)eC(M)

imT(^x,^) + im<7(c',x,^) = ^(c',x,^)-

The section s := q*s — r, q : F —> C{M\p) the bundle projection, is then
a transverse (locally relative S) section of the Banach orbibundle q*8 over
the total space of F. Z = Z(s) C F is thus an oriented, finite-dimensional
orbifold. Let Op ^ H^.^{F} be the Thorn class of F (C(M;p) identified
with the zero section of F). The virtual fundamental class of CR^^(M)
was defined by

G^k '= [Z}^QF.

Note that the restriction of Qp to Z can also be written s^Qq^p, so this
definition is essentially finite dimensional.

To compare with the complex analytic definition of virtual funda-
mental classes, as a first try one might want to make the whole symplectic
construction Banach analytic. This seems to be hard if not impossible. It
is however easy to gain enough analyticity locally to make the comparison
with the analytic treatment given in the first chapter work.

At holomorphic (C, x, ^p) let 6 : B -^ ]"[ ^(A-7; C") be a holomor-
j^m'

phic Kuranishi model as constructed in Section 2.3. Let TT : F := B XsC be
the universal curve over B and <I> : F —^ M be the evaluation map (generally
we will use the accent "for objects on 13). We will write UQ C F for the union
of the open sets formerly denoted S, Ui and Wj for j > m', and Ui for H^,
i = 1, . . . , m'. So {Ui} is an open covering of F that is Stein relative B. Let
T be the tangent bundle of B relative S and £ := B x [J L^A^'; C71). The

3<m'
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former has fiber L\(C'',^TM) H O^(U^^TM) at (C^x7^) e B while
the latter should be viewed as a version of the Banach bundle £ [ C(M;p)
on B. Note that while T and 8 parametrize non-holomorphic objects they
are holomorphic Banach bundles over B. The Fredholm map 9 exhibiting
Hom.s'(C, M) as fiber over 0 can now be viewed as holomorphic section of S.

Similarly, while the evaluation map is not holomorphic (along the
fibers of TI-) ^*TM is a holomorphic vector bundle over F, local holomorphic
trivializations being given by pull-back of a frame of local holomorphic
vector fields on M.

While UQ might now have singularities a straightforward modification
of the arguments in [Sil], §4.2 shows that the spaces of relative holomorphic
Cech cochains ̂ ^TM are still holomorphic Banach bundles over B (and
the same holds true by replacing <1>*T by any finite rank holomorphic
vector bundle over F). Recall also from op.cit. that (the restrictions to
B C C(M;p)) of the tangent bundle of C{M;p) relative S and the Banach
bundle 8 can be written

T = 7T^*7M, E = WTM^C^/B)'

We will also need to extend the holomorphic bundles G and H from
Section 1.2 to B. The sheaf of sections of H was J^T^A/', where Af =
7r*7r,(^*TM0/^)<g)/:0-^ £= c^i +.. .+Xk)^^n^3, fits into an exact
sequence of locally free sheaves

0 —>JC -^Af ̂  ^TM —> 0.

Now ^*TM and C extend naturally holomorphically to F and so do At and
/C and the above sequence. Let J\f and /C denote these extensions. We thus
obtain a commutative diagram of holomorphic Banach bundles over B with
exact rows and columns

0 0

1 1
0 -^ nW,C ̂  ^A/- ̂  T^^TM -^ 0

1 1 1

(4.6) o —— n^JC -^ TrW -^ TT^^^M -. 0

^i [qH

^ fl'TI-.K „

0 0
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where we define G and H as cokernels of the first two columns. These are
holomorphic extensions of G and H to a neighbourhood of (G, x, (p) in 0.

Recall that we called a commutative square of Banach bundles
E -^ G

F -^ H
a quasi-isomorphism (between a and /3, and between 7 and 6) iff the
sequence

O ^ E ^ F ^ G ^ H - ^ O
is exact [Sil], Def. 4.8. Equivalently, (a,/?) induces fiberwise isomorphisms
between kernels and cokernels of 7 and 6 (or the other way around). In
op.cit. we also required this sequence to be split in the case of which
the square is not only cartesian (E ^ F Q)n G) but also cocartesian
(H ^ (F (B G ) / E ^ as Banach bundles!). All our quasi-isomorphisms will
in fact be split but since we will never need this property we will not verify
it.

Now a diagram like (4.6) above always induces a quasi-isomorphism
between [G —^ H] and [ T T ' ^ ^ T M —> TT^^TM] (unique up to homotopy)
locally as follows: Let rj and 0 be (local) holomorphic right-inverses to q^
and q^. Then

q^eoR^iT^-^ 077) = 0,
so the term in the bracket lifts (uniquely) to a map

C : G — TT^A/-.
Define

aW := t/°)oC, a<1) := ^o0.

Recall also the morphisms [Sil], §4.3
TT^^TM —— T, (v,) —— Y^piVi

i

TT^^TM — £, (vij) — ^Evij-9pi.
i j

Here pi is a partition of unity subordinate to L^, so these maps indeed
factor over the inclusions T '—> T and 8 ^-> £.

LEMMA 4.1. — The squares in the following diagram are quasi-
isomorphisms:

^,(0) //^ ^ /o(O)
r^ OL ^.{{J)^*/^r' r j n^ nTG ——^ Tri <P IM ——> 1 ——> 1

1 1 1 I"'•4^ s/ ^ 4 ^

H Q(l) .^(l)&*/r /3(1) ^ f^n ——> 7T* ^ IM ——> ^ ——^ ^
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Proof. — The claim for the first square follows from chasing Dia-
gram 4.6. That the last square induces isomorphisms on kernels and coker-
nels of the vertical maps has been proven in Proposition 2.6. The compo-
sition of the right two squares is a quasi-isomorphism essentially by [Sil],
Cor. 4.11, observing that there is a (family of) right-inverses T to the 9-
operator on Uo (cf. Section 2.1). This shows that also the middle square is
a quasi-isomorphism. D

Notice that F extends naturally as finite rank orbibundle to a
neighbourhood ofCR^fc(M) in C(M',p). In fact, the finite rank orbibundle
in [Sil], §6.4 was a direct sum of bundles of this form. Locally we may
thus take for r an extension of (3^ oa^ to a local uniformizing system of
C(M;p), multiplied by a bump function, as specified in [Sil], §6.5.

PROPOSITION 4.2. — For any R € H^(M\T), g,k > 0, the
Kuranishi structure r : F —^ £ for SQ may be chosen in such a way that

i
• F = @ Fy with each Fy restricting to the orbibundle H along Z

i/=i
• for any (<7,x,(^) € CR^^(M) there exists an open neighbourhood

U C C(M;p) and a v with Ty = r\p^ an extension of f3^ oa^. In particular,

Z^ := Z{q^SQ+Tv) C F^

is a complex orbifold at ((7, x, ^p).

Proof. — Z^ is the set of pairs ((C7,x, (/?),/ € F^,(c,x,^)) obeying

^ = ^(f)'

By construction, r^ has support away from UQ. So (p is holomorphic on Uo(s)
and the above equation can actually be viewed on a local uniformizer as
map

o - f : B x F o — ]̂ [ ^(A.C"),
j^m'

B a complex Banach manifold of the form given in Section 2.3. This map is
holomorphic with differential relative 5' an epimorphism with finite dimen-
sional kernel. An application of the holomorphic implicit function theorem
with parameter space S shows that Zy is locally uniformized by a complex
manifold. If ((7, x) is not stable we also have to take the quotient by the
germ of the action ofAut°((7, x). In [Sil], §5.3 this has been achieved by im-
posing an averaged version (involving integrals over bump functions in M)
of the rigidification procedure given in Proposition 1.2. The reason was that
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transversality is not on open condition in L^-spaces over two-dimensional
domains. On the subspace B C S x L\(C\ ̂ TM) we can however use
rigidification by incidence conditions with local transversal divisors as in
Proposition 1.2, as long as the intersection is on the holomorphic part of y?.
The proof that this is in fact a quotient is a simple application of the im-
plicit function theorem, parallel to the discussion in [Sil], §5.3. Obviously,
this slice by incidence with transversal divisors is holomorphic, hence a
complex manifold. And the unrigidified Z(q^Sg + T y ) is just a product of
the slice and an open set in C^, I = dimAut((7,x). D

4.2. Reduction to local, holomorphic situation.

From the Kuranishi structure r : F —^ 8 (Proposition 4.2) we obtain
a cone (7^ C F supporting a class [(7^] of dimension d + rkF as cone and
class associated to the tautological section of q^F\^, d = d(M,R,g,k) the
expected dimension of C^g^(M), q : F —^ C(M',p) the bundle projection,
Z = Z{q*s + r). Recall that the restriction of F to Z decomposes into a
direct sum of copies of H. We define

^: H-——F\z
to be the diagonal embedding. Let OF/H De the Thorn class of the
orbibundle F / p . ( H ) . Pulling back to F yields a class 6 € H^F~rkH{F\z)'
Then [C^] n6 G Hd+rkH^C1' ^ H ) is the intersection of [C11} with H. The
comparison theorem will readily follow from

PROPOSITION 4.3. — C11 = C1' H H , [C11} = [C1'} H 6 in
Ha^H^nH).

The proof of this proposition occupies the rest of this chapter.
Notice that since C11 is a complex space of pure dimension d -h rkl^, the
homological statement concerns classes of top dimension and can thus be
checked locally together with the set-theoretic part of the claim.

By Lemma 3.6 and the definition of C11 it suffices to check the
claims of the proposition on the level of local uniformizers. Since the
local uniformizers in the complex analytic (Proposition 1.2) and in the
complex Banach manifold treatment (Proposition 4.2) can be obtained
by incidence conditions with the same set of divisors H ^ , . . . , Hi, and all
objects are just trivial products of the restriction to the slice with an l-
dimensional smooth space, it even suffices to work on unrigidified charts.
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For ((7, x, </?) e CR^fc(M) let r^ be as in Proposition 4.2. As usual we mark
liftings to the local uniformizing systems under study by a hat and with
subscript 0 the restriction to the center of a local uniformizing system.

LEMMA 4.4. — Possibly after shrinking U to a smaller neighbour-
hood of ((7, x, (p) there exists a topological decomposition

F = F^Fy

with r(F) Cima and such that

^ = Pe5\ [c^ = [F]e[c^],
where Ch, [C^] are the cone and cone class obtained from Ty.

Proof. — By invoking Proposition 3.7 we just have to define F. By
the Fredholm property of a = 9 and since f spans the cokernel of a the
family (over S) of linear maps

S x (Po C £?(G; ̂ TM)) —— LP(C^ ̂ TM), (5, /, v) —— f^(/) - 9v

consists of split epimorphisms. An application of the implicit function
theorem thus shows that Tr := F (B-^ T is a topological vector bundle
on U of rank rk F + d. It fits into a quasi-isomorphism

T. —> T

F -^-> E

Therefore ^(Fy) is a linear subspace of T^o of dimension rkF^ + d. Let
P C Tr be a subbundle restricting to a complementary subspace to p ^ 1 {F^)
in TT-Q. Then, possibly after going over to a smaller local uniformizing
system, we may set F := p(P). D

LEMMA 4.5. — With the identification H = Fy it holds

/r^) = c^, [c^]ne = [c^.

Proof. — Consider the family of morphisms

(it = (^ id , . . .^ id , id^- id , . . .^ - id) : H—> F = e\Fx

with "id" at the z^-th entry. By the previous lemma the claim holds with
(iQ replacing jl. Since p,t is a proper homotopy between fio and JJL = fi\ we
just have to show

^\c^ = ̂
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for any t. To verify this on the fiber over some z G U let R1^ C F^^ map
isomorphically to R := cokercrg. Another application of Proposition 3.7
with a larger complementary space -F shows

c^n^ = q-^c^^
for some cone C1^ C R where q : R1^ —^ R is the quotient map. Letting
q11 : Hz —> R11 be the cokernel of Gz —'• Hz and fit '' ^H —> R be the map
induced by /^, we obtain

^-1(6F) = (^r1^-1^).
But fit = \t • fio for some \t € R>o, for the maps from R11 to coker(<9 :
Tz —^ £z) induced by any of the r^ all coincide. Hence

^(C^ = (^r1^-1^) = Ao-1^) = .̂ n

To prove Proposition 4.3 it remains to compare C^ and C11, which
will be the concern of the next section.

4.3. Comparison of holomorphic normal spaces.

We consider the following situation: Let q : C —> S be a prestable curve
over a smooth parameter space S (this will be applied to an analytically
semiuniversal deformation of ((7,x)), Z = Hom^(C,M) with universal
curve and universal morphism

TT : r —> z, <s>: r -> M.
We embed Z into a complex manifold Z as in Proposition 4.2 (where
the present Z is denoted Z y ) . Explicitely, possibly after shrinking 5, we
work on the complex Banach orbifold B of L^-maps from fibers Cs of q
to M, holomorphic away from a union of small disks |j A-7, as constructed
in Section 2.3. According to Theorem 2.7, Z is the fiber over 0 of the
holomorphic Fredholm map

e: B-^ n ^(A^C")-^ v"(^y
j<m'

in appropriate holomorphic coordinates on M and Ui. Z on the other hand
is obtained from a holomorphic morphism r : B x C7' —>• <?', spanning the
cokernel of G at any z (E Z\ as fiber over 0 of

9: B x C " — — < ? ' , (^a)——r^(a)+G(^).
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Let TT : r —> Z be the universal curve over Z (this is holomorphic) and
<!> : r —> M the (usually non-holomorphic) evaluation map. The maps
defined so far fit into the following diagram:

r ^ r —^ M'[ [•4- 4.
Z ^ Z

Z can also be viewed as zero locus of the tautological section Scan of
the (trivial) bundle F = Z x C7' [ Z C B x C7' (in the notation of
Proposition 4.2, F corresponds to q^Fy^ q^ '. Zy —> B the projection);
or, using the given trivialization, as fiber over 0 of the projection

pr2 : Z C B x ̂  —> e\

To such a description belongs a global normal space for Z as follows: let
y =. O(F^). Evaluation at Scan yields an epimorphism

F —> 1

to the ideal sheaf of Z in Z. We define ip~1 to be the composition with the
map 1 —> TIT2 to the conormal sheaf. Put for '0° the identity morphism
on ^z/s\z ^d d : T/T2 —> ^z/s\z ^ne differential. Then

^•: ^do^l^|5l^] — [I/I2 d-^z/slz}=^C^s

is a global normal space for Z relative S. The corresponding cone C(i^9) C
F is by definition the image of the normal cone C^^ of Z in Z under the
embedding N^ c—^ F. By Proposition 3.5

C(^) = C(Scan), W)} = [G(Scan)L

set-theoretically and in homology respectively. Note that in the notation of
the previous section C7(scan) and [C(scan)] ^e (non-rigidified versions of)
C^ and [C^].

On the other hand we have the global normal space

^ : [H -. Q\ — C^s

constructed from TT, <1> (Section 1.2). By construction H = F and C^*) is
the non-rigidified version of C11\ To prove Proposition 4.3 (non-rigidified)
we have to show C{^p9) = C^*). Since global normal spaces depend only
on the (ray of) map induced in cohomology [Si2], Thm. 3.3 this will follow
from
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LEMMA 4.6. — Locally, there exists an invertible holomorphic
function \ and an isomorphism

A - : \U^Q\ — [T^n^]
with A-1 = id and H1^ o A*) = ^ . H^^), i = -1,0.

The proof will occupy the rest of this section. The maps in the lemma
fit into the following diagram, which is claimed to commute in cohomology
up to multiplication by \:

[H -^ ^ z / s z]

\^
x9] [Z/Z^^lz]

/^
[H^G]

DEFINITION OF A*. — To define A° we observe that since Z is
solution to the equation 9(p = r^(G,x,^)(/i) the tangent bundle T^,g is
canonically isomorphic to H ®^ T. By Lemma 4.1, this fibered product
is in turn canonically isomorphic to G. We define A° as the dual of the
composition

Tz/s\z ^ H ^ ^ T c± G.

It is clear from the construction that X* : [H —^ G] —» [H —>• ^ z / s \ z ] ls a

commutative square.

REPLACING [H -^ G} BY A CECH COMPLEX. — To begin with we
simplify the problem by dropping a common part from the definition of
A* and (p9 as follows. First note that [H -> Q\ represents [RTT^TM^ in
the derived sense. Derived objects such as [R^^TM^ are unique up to
unique isomorphism in the derived category and the existence of such an
isomorphism is what we mean by "represent". But the last steps in the
construction of (p* consisted of the composition of this isomorphism with
duality

[ H ^ G ] ^ [RTT^TM^ ^ RTT^^M^^).
so we may as well drop this composition and work with RTT^^^^IM ̂  ^)
directly. The latter in turn can be represented by the Cech complex

[Tr^O^M ̂ ) ̂  Tr^cT^M 0^)],

and this gives an explicit identification of the cohomology of H —> G with
^7T*(^*^M0^), 1 =0 ,1 .
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Similarly we may factor X9 over the morphism of complexes of
holomorphic Banach bundles representing relative duality (Proposition 5.4)

Tr^^M^-^TT^rMr (^^((^^EJr/z f^4^)(^) A<9^)
v i,J v / /

1 1
Tr^^M ̂ ——(^^TM^ (a.,) ̂  ((^) ̂  ̂ f• c,ij(^^} A9p,V

' 1, '̂ \ / /

In fact, this duality morphism is the composition of the (topological) dual
of

[/3(°),/?(1)]: [Tr^TM-Tr^TM] —— [f ̂  f]

from Lemma 4.1 (restricted to Z) and

Tr^^M 00;) —— (£y (a,) —— (7 ̂  E /r/z Pi^ A ̂ )
v I /

1 1
^(^M^) —— (T^ (a^-)——^^EJr/z^^)7^^) '

v ^j /

To verify this one needs a little computation. The composition of the two
upper horizontal arrows applied to a local holomorphic section (o^) of
Ti-i \^>*fl,M ^ ^) and evaluated at a section (vjk) of TT^ ^TM leads to
the fiber integral

o^L / Pi^(vjk9pj}.
2^kJ^/z

This indeed agrees with the upper horizontal arrow of the duality morphism
by noting that a partial integration computation shows

/ ai(vij9pi) = 2 / piai(vij9pi.
Jr/z J

Similarly for the lower horizontal arrows.

We may therefore draw a commutative diagram

H^—(T^WM^—— ^(^M^) — (f^ — H^1 1 i i i
(47) G''——^''W]'1'•TM•IV^- vmi.•l'•{tMlSw} —— (T)" ^T|^z

1 __ 1

R^^SiM^^) Ho<^ ^Z/S
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The first three squares are compatible with the dual of \G —^ H] —» \T —^
^ I- J L

£}. It thus suffices to prove the claim with A* replaced by the composition
of the right-hand squares in Diagram 4.7.

COMPUTATION OF H°(^ o A*) = H0^). — To describe H0^)
we now follow the bold printed part of the diagram. Let (a,,) e
TT^ (^>*^M ^ ^) be a holomorphic family of Cech cochains representing
a local holomorphic section a of .R1^^*^ ^ ^). The associated local
holomorphic section of (T)^ is

(4.8) L^^TM^O^TM^) = f(c,^) 3 v ̂  Y f a^v^Qp,.
t^r/z

The restriction of this section to Z c B is H°(\*)(a).

COMPARISON WITH H°(y*). — On the zeroth cohomology y>* is
described by the following diagram:

Tri^^M®^) —————> TT^^r/C®^) ——^ ^(TT^z/S®^)

, ^ 1R'Tr^y^M^^) ^ l z / s
The first horizontal arrow is by pull-back with <I>* : ̂ *^M -^ ^r composed
with the quotient f^r —> ^r/c\ the second horizontal arrow is by the
isomorphism ^r/c ^ 7r*^z/5; and the right-hand vertical arrow is by
projection formula composed with the trace morphism T^Tr^ ^ Oz'
Explicitely, the map is (up to multiplication by an invertible holomorphic
function \ that we suppress here and in the sequel)

(4.9) (^)^^/>(^*^.)A^,
i j J

interpreted as section of ^ z / s (that is, ^* taken as pull-back of differential
forms). Again we used the explicit version of relative duality given in
Proposition 5.4.

LEMMA 4.7. — H°{^9) = H°(\9).

Proof. — We evaluate .^((^(a) at a local holomorphic section v
of T. Since supp 9 pi C |j A-7 we may restrict attention to a with only

3<_m'

non-zero component a^. With local holomorphic coordinates t on A, s on
S and w^ on M we may write

Q^ = ]C ̂ (^ ̂  ^p)dw^ (^dt, v = ̂  ̂ , 5, (^)<9^
/^ AA
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for the relevant local parts. We obtain

H°(^)(a)(v) = ( [ ^a,, A Qp,} (v)
v Jr/z /

= / Y.a^t^^)^(t,s^)dt^9pi
JA ,,/A ^

- / ^(aij(v)0pi
JA

=HO{\9){a){v). D

COMPUTATION OF H-1^9 o A*) = H~1^9). — For holomorphic
sections of H^ coming from (£y (cf. Diagram 4.7), pairing with the
tautological section of H is nothing but pairing with the section SQ of
£. Given a local holomorphic section a of TT^^^M ̂ u) let (o^) be a local
holomorphic section of Tr^0^*^^ ^ ^) extending a|^. Then as map to
the ideal sheaf I of Z in Z,

^-^(a) = ̂  L.a,(̂ ) = (B 3 {s^) - ̂  / P^(9^)\ .
, ^ v ^ Jr/z ^z

The induced section of Z/Z2 depends only on a, not on the choice of
extension (o^).

COMPUTATION OF H-1^9). — This step is a little harder and
the most interesting part of the proof. It will show that the 0-operator
naturally turns up by an integration by parts. Recall that ^ was defined
in Section 1.2 by RTT^{. (g) c<;) of

(4.10) L^C^ ^c^c^L^^/s'

All this is compatible with truncation r^_i. Let T C 0^ and J C Op be the
ideal sheaves defining Z C Z and F C F respectively. The following parts
of the truncation of the previous sequence of complexes are immediate:

L^C*^ = [<I>*^M] (one term in degree zero)
r>_i^ = [ J / J 2 -. ̂ |r] ̂  T^_i/:^ = [ J / J 2 -> ̂ |r]

^-1^/5 = PA2 ̂ z/^1
T^iLTr*/:^ = [7r*(Z/Z2) -. ̂ ^^^] = [J/J2 -. ̂ |r],

the last line by flatness of TT. To work out L<I>* we decompose $ as a closed
embedding into a smooth space followed by a projection

^ : F °̂ 1 F x M -p-^ M.
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Let J be the ideal sheaf of F in F x M. Writing r>-i/^ = [J / J2 -^
^rxMirL

r>-iL^*: [0^$*^] —— [JyJ^^rlre^^M]

is nothing but the inclusion on the degree zero term. To go further we need
the explicit quasi-isomorphism between the two representations of r>_i/^
obtained from the embeddings into F and F x M respectively: It is given
by the natural inclusion

[W'-^rlr] — [W'-^rlrC^M].

The truncation of sequence (4.10) can thus explicitely be written

0 ——— J / J 2 ——— JU2 = J / J 2 ^ 7T*(Z/Z2)

1 1 1 1
<^*^M —> ^ p r € ^ * ^ M ^— ^rlr —^ ^r/Jr ^ ^(^z/s\z)

To write down J?TT^(. 0 cc;) of this diagram we abbreviate

Ev := ̂ M, J := J / J \ J := J / J \

and, for a sheaf F on F

^) :=^)(^^).

We also omit restrictions to F. For example,

(^CEv)^) = ^((^p/Jre^^M)^).

A minor technical point arises when T is not locally free. Then T^ is not
a holomorphic Banach bundle over Z. Rather there will be a holomorphic
Banach bundle E and a closed (ringed) subspace F^ C E given by finitely
many holomorphic functions that are linear in the fiber directions (i.e. F^
is a Banach version of a linear fiber space over Z in complex analysis), and
T^ is the sheaf of germs of holomorphic morphisms to the trivial fiber
space Z x C. For our purposes the knowledge of what a (holomorphic)
section of T^ is together with the fact that kernel and cokernel of the
Cech differential F^ —^ T^ are the coherent sheaves TT^ (^ 0 uj} and
P^^^T 0 cj) will suffice.

With these conventions the truncation of J?TT^(- 0 uj) applied to
sequence (4.10) is

(Ev)(o)^((^eEv)(o)e^l))/j(o)^(^©J(l^ z/j21 1 i i
(Ev)O^ (Slr/c®E»)<" ^ S-î  ^{ts,sz
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Here JW, J^ map to (^p^ e Ev/°) and to ^w respectively by the
Kahler differentials

d: J/J2 —> ^rxMr^rlr©^M, d : J / J 2 -^ ^|r,

while the maps to JW and J^ are by Cech differentials. Similarly for
the maps on Cech 1-cycles, but with one negative sign. The two horizontal
maps on the right are induced by the projection formula composed with
the trace morphism J^TT^ ^ Oz (Lemma 5.3).

Now let us chase some a G TT^^^M 0^) through the upper horizon-
tal sequence. Let a, = a|^. We claim that ((OCa,),0) e ((f2p^)(°) eJW)
lies in ^w e J^ modulo J^. From the exact sequence

0 —— J / J 2 —— W2 —— ^*^M —— 0

we obtain
0 —— jW ^ jW d^ EV^) __ 0.

There thus exists a local holomorphic section (^) of (JV^ with

dM9i = -o^i.

But then, if U, H Uj / 0 (i.e. z = 0 or j = 0)

dM^SIi-Qlj) = ai-aj = 0,

as section of Ev. So the local section (^ - ̂ ) of J^ actually comes from
a section g^ of J^. Therefore, ((0 C a^.O) lifts modulo JW to the local
section

(d^gi.gij)

of ^(0) C J^\ This maps to Z/Z2 by fiber integrationr/c

(4-ii) iE/ ^A^-2 ^ ^r/z

In view of the form of H~l(1p*) discussed above it remains to be shown:

LEMMA 4.8. — As local section of I/I2 this integral equals

Z 3 z ̂  ̂  [ pi6ti{9^),
i ^r,

where _(d,) extends (a,) as section of n^<b*fl,M ® UJ), and we wrote
Vz ••= ^\T/Z-
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Proof. — (id, $) : r —> r x M is a (usually non-holomorphic)
extension of the closed embedding F ̂  F x M. The functions (id,^)*^
will therefore not in general be holomorphic. But the fiber integrals

(4.12) z ̂  1^ ( (id^)*(^-^)A^ = ̂  ( (id^yg^Qp,
^ ^ Jr/z i Jr/z

will be local holomorphic functions on Z as one easily sees in local
coordinates. Since gi — gj induces the holomorphic section gij of J^ the
fact that 9 pi = —9pj on Ui 0 Uj shows that this holomorphic function
induces the Section (4.11) ofZ/Z2.

On the other hand, partial integration applied to (4.12) results in

-Y,l pzQWYgz - -E / P^Mgz^).i ^ . i •7r-
Here we wrote ^pz = ^Ir and (IM to denote the composition

OFXM -^^rxM^^^^M——P^M.

Putting Oi := —dM9i with dM9i viewed as holomorphic section of
TT^ (^*^M ̂  ^) finishes the proof. D

5. Relative duality.

A (say algebraic) family of prestable curves TT : X —> S is Gorenstein:
It has an invertible relative dualizing sheaf ^ x / s - For any coherent sheaf
T on X the theory of duality in derived categories developed in [Ha] then
takes the following form. (We basically adopt the terminology of loc.cit.
except that we drop any underlining and we write Ext for R Horn.) It
provides a trace isomorphism

(5.13) tr^ : RTT^x/sW ^ R^^x/s —> Os
and a Yoneda morphism (our notation)

(5.14) R^Extx{f^x/s) —^ Exts^R^.RTT^x/s)-
Composing we obtain the duality morphism

(5.15) R7r^Extx(^^x/s) —> Ext^TT^ Os) = {RTF^Y ,

and the content of the duality theorem is that this is an isomorphism.

The morphisms are in D^{S), the derived category of complexes of
C^-modules bounded below and with coherent cohomology. Sheaves are
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identified with complexes concentrated in degree 0. For applicability of
these statements in the Gorenstein rather than the smooth case see the
remark at the beginning of [Ha], VII.4. A useful reference for all this is also
[Lp]. We will not use duality theory for complex spaces, involving Frechet
sheaves [RaRuVe].

The purpose of this chapter is to (a) make the transition from
algebraic sheaves to associated analytic sheaves (GAGA) and (b) to give
an explicit formulation of duality in terms of (analytic) Cech cochains and
fiber integrals, at least locally analytically over 5'.

Let us first comment on a subtlety that may be a source of confusion:
In our application it is crucial that all morphisms are unique up to
unique isomorphism (in the derived sense, algebraically or analytically).
Explicitely, this means that whenever we choose two representatives of any
of the objects (such as RTT^^F) in terms of complexes of C^c-modules there
is a (sequence of) quasi-isomorphism(s) between them that is unique up to
homotopy. The same is true for morphisms. In particular the maps induced
in cohomology are indeed unique up to unique isomorphism. In view of [Si2],
Thm. 3.3, this is enough to assure that the associated (analytic or algebraic)
cones are unique up to unique isomorphism and hence are compatible with
changes of local uniformizing systems.

Our plan is (1) to express the Yoneda morphism in terms of algebraic
Cech-cochains (2) to go over to analytic sheaves and to admit refinements
of the covering, and finally (3) to give the trace isomorphism (5.13) analyt-
ically. We do not indicate in our notation if we are working algebraically or
analytically. For example, X will denote either the scheme or its associated
analytic space, but the meaning will always be clear from the context.

Let Vi be an affine open cover of X. Then (the complex associated
to) a coherent sheaf Q on X is quasi-isomorphic to the complex of Cech-
sheaves [^(0) —^ ^(1)]. Recall that for any open U C X the space of sections
of Q^ over U is ]\Q{Vi H £7), and similarly for Q^\ The corresponding

i

Cech cochains relative TT are then just T T ^ ' G := TT^Q^ . Since the sheaves
Q^ are TT*-acyclic we can represent RTT^G by [^Q —> TT^G].

We claim that if Q is locally free then (possibly after shrinking S)
we can choose Vi in such a way that TT^G are projective (i.e., locally free)
(^-modules. To this end we factor X —^ S into a finite flat morphism
K : X -^ S x P1 and the projection S x P1 -^ P1. This is always possible
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after shrinking S. We put VQ :== S x (P1 \ {oo}), Yi := S x (P1 \ {0}) and
V^ = ̂ -l(y^). Denote the projections Vy —^ S by p y . Now /^<? is locally
free by flatness of K,. Writing 5' == Spec A, Vy = SpecA[T] this means that
the A [T]-module M associated to ^^G\y^ ls projective. Equivalent ly, it is
a direct summand of a free A[T]-module. Viewed as an A-module, A[T]
being a free A-module, M is a direct summand of a free A-module, hence
projective. But the A-module M is just the module associated to pv^^Q^
so this shows projectivity of Trie Q. A similar argument with A[T] replaced
by the ring of Laurent series A|T](T^ establishes the claim for TT^ Q.

We now restrict to locally free sheaves T (slightly easier and
sufficient for our purposes). By the digression we can then represent
}^xts(R^'*^^R^'^x/s) by Hom^Trxe^.Tr* €<;*). Written out this complex
takes the form

Hom^ ([TT^ - ̂ ^ [Ax/5 - ̂ ^x/s})

= [^oms(7^w^^w^/s)xKoms{7^wy^w^s)

-^ Hom^TT .̂F, Tr^c^c/.sOJ •

LEMMA 5.1. — The Yoneda morphism
RTF^ ( S ) ^ x / s ] -^ Exts{R^,R^^x/s)

can be represented by the pair of morphisms ((^°, (p1) with

y0 : ̂ \^^x/s) -^ Hom(7^w^7^w^/5) X Hom(7^a)^7^a)^/5)

(^)i ̂  ((A)z ̂  (^(A))., (^-)^.^ ((^i^-)^)) )

and
^ : Tr^^^^x/s) —— Hom^^Tr^x/^)

(a^——((A).-(^•(A^))J.

Proof. — The Yoneda morphism is defined in [Ha], II.5.5. The recipe
is to first represent T and u ^ x / s by a T^-acyclic resolution T9 and by
an injective resolution uj9 respectively. Then Hom^.F*,^*) represents
Extjcd^], [c^]) and consists offlasque sheaves. Thus RTT^ Extx([^7], M) can
be represented by TT^ Hom^^*, €<;*). Similarly, Ext.s'^Tr^.^L -K^M) is
represented by Ext^Tr^.T^.Tr^Ct;*). With these representatives the Yoneda
morphism is simply the composition of natural morphisms

TT^Hom^^,^) —> Hom^TT^.Tr^')—> Ext5(7^^•,7^^e).



ALGEBRAIC AND SYMPLECTIC GROMOV-WITTEN INVARIANTS 1791

For ^F9 we may take the Cech complex J7^ -^ .^l\ And for our special
choice of affine covering the second arrow becomes an isomorphism and is
thus understood. We claim that we may take for u* the Cech resolution
c</°^ —> a/^ as well, instead of an injective one. In fact, Hom^ (.F^, cc/^)
consists of a direct sum of coherent sheaves supported on affine sets and
is thus 7r>,-acyclic. By injectivity of uj9 there exists a map of complexes
[^(y) —f a/^] —^ uj*. This map induces a commutative diagram of complexes

TT. Hom^([^(°) -^ ^-(1)], [o/°) -^ ̂ (^D-^Hom^^0^ -. ̂ ^ [^^ -. TT;^])

1 1
7r. Hom^([^°) -> J^1)], [a;0 -^ a;1) —. Horn^TT^ ̂  -> ^1)^-], [7r^° -^ Tr.cx;1])

in which the vertical morphisms are quasi-isomorphisms. End proof of
claim.

It remains to replace the resolution Hom^.T7*,^*) of Hom^^,^)
by its Cech resolution Homj^^',^)^ —> Hom^(^:',c^)^l^. Explicitely, we
have the following quasi-isomorphism:

0 —> Hom(^) —-> Hon/0^,^) dH^ Hom^^^,^)

^l 1^ 1"
Hom(^°),^(°))

0 —. Hom(^,^) —> C ^ Hom(^°),a;(1))
Hom^1),^^))

The maps are ^(a; 6) = d^ o a — b o djr,

F : (^). —— ((/.). - (^(A)).; {fi,)i, - ((^^)(^-))

^ ^ (<^ — ((/.). - ̂ (^y^)^)'
and d^om, d^, dy are Cech differentials. Composing these maps with the
natural map to Hom^Tr^.T^.Tr^*) from above gives the stated result. D

For the next step (2) we view X —> S as a morphism of complex
spaces. The analytic sheaves associated to the algebraic sheaves TT^ (^rv (8)
^ x / s ) e^c- are given by pull-back under the morphism of ringed spaces
from the complex space (S^O^aii) underlying S to the scheme (S^Os)-
This amounts to going over to analytic topology and tensoring with the
structure sheaf of S^ over the pull-back of Os' The effect is that one
considers analytic Cech cochains that are algebraic along the fibers of TT.
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Since T was supposed to be locally free the dualization of a sequence
analogous to (1.2) provides a short exact sequence of algebraic sheaves on X
(5.16) 0 —— T —— Q —— H —— 0

with J^TT^ = R^-K^t-i = 0. Taking the associated 7^-acyclic resolution
by (algebraic) Cech sheaves 0 -^ T -> ̂  -^ ^(1) -> 0 etc. and pushing
forward by TT yields a diagram of a form (dual to) Diagram 4.6. An argument
similar to the one given there produces a quasi-isomorphism (of quasi-
coherent, algebraic sheaves)

(5.17) [^G-.^n] —. [T^^TT^].

For any point s e 5' we now choose a Stein refinement {Ui} of the
affine covering {Vi} of the form given in Section 2.3 (we assume that the
point 0, oo e P1 ahev been chosen suitably). Possibly by enlarging the index
set for {Vi} we may assume that {[/,} is indeed a shrinking of {V,} (in the
Hausdorff-topology). Now the analytic sheaves J^" etc. associated to T\ Q
and U and the covering {£/,} give rise to a similar quasi-isomorphism (of
Os^ -modules)
(5.18) [TT,^ -^ ̂ an] ——— [ ĵran ̂  ̂ l)^an^

We then obtain a restriction map from Tr^jF^ C^an to the corresponding
Os^ -module of analytic Cech cochains associated to {£/,}. Since TT is a
projective morphism, by Chows lemma sections of an analytic sheaf C over
Tr"1^) are fiberwise algebraic. In other words, TT^G (g) C^an ^ TT^^ and
similarly for H. Compatibility of (5.18) with (5.17) tensored by C^an and
the restriction map now shows the required GAGA statement (just in this
lemma we use for clarity the notation TT^^" to denote relative bounded
Cech cochains with respect to {Ui} as opposed to TT^ for fiberwise algebraic
Cech cochains with respect to {Vi}):

LEMMA 5.2. — The restriction morphism

[^^ 0 C^an -. Tr^^ 0 OS^} ———— [^^^ -^ ̂ ^^}

is a quasi-isomorphism. Q

As last ingredient (3) we give an analytic trace isomorphism. Let pi
be a partition of unity subordinate to Ui.

LEMMA 5.3. — The map

^'•^^x/s —— Os^ (ai,)i, —— Y^f a,, A op,
z.i ^/s
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induces an isomorphism ^TT^X/S c± ^s'

Proof. — The map <1> vanishes on the image of ^ ' u ^ x / s under the
Cech differential and thus induces the claimed map on the first cohomology.
By duality on the fibers Xs of TT it holds ^(Xs, ̂ xj = H°(Xs, OxJ = C
since Xs (being prestable) is reduced and connected. Naturality of relative
dualizing sheaves shows <^x, = ̂ x / s \ x ^ ' Tne "^P 7r being flat, Grauert's
base change theorem thus implies that R^^^x/s ls locally free of rank one
with fibers

^TT^x/S/^s^^^X/S ^ ^(Xs^X^-

It thus suffices to find, for any prestable curve (7, a 1-cocycle with values
in ujc with non-vanishing value under the integral defining <I>. And indeed,
any Uij C C being an annulus A \ Ao (where we assume Uz meet the inner
boundary <9Aa) we may put o^j == z~~ldz with z the linear coordinate on
A. Then using integration by parts and pi\Q^ = 0, pi\9Aa = 1 we obtain

/ o.ij/\opi = / z~ldz^9pi == / z'^dz = 2m ^ 0. D
JC ^A\Aa JQ^a

Notice that an isomorphism ^TT^X/S ^ ^s is unique up to multipli-
cation by an invertible holomorphic function. Thus the isomorphism given
here differs from the analytification of the algebraic trace isomorphism only
by such multiplication.

To complete the explicit (analytic) description of algebraic relative
duality we just have to compose the trace isomorphism with the Yoneda
pairing.

PROPOSITION 5.4. — The algebraic duality morphism (5.15) is
locally analytically given by

^°\^ 0 c^)-^1^ (^)—— ((^) - X • E Jr/z f^) (^-) A ̂ )
v i,J v / /

1 1
^W(^0^g)-.(^^ (a.,)^ ((A)-X-EJr/z^C^)^)

i,J \ / /

for some invertible holomorphic function \ on S. D
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