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COMMUTATIVITY AND NON-COMMUTATIVITY
OF TOPOLOGICAL SEQUENCE ENTROPY

by F. BALIBREA, J.S. CANOVAS PENA
and V. JIMENEZ LOPEZ

1. Introduction.

At the "Thirty Years after Sarkovskii's Theorem. New Perspectives"
Conference, held in La Manga (Spain) in 1994, S. Kolyada and L\ Snoha
announced that the equality h(f o g) = h(g o f) holds true when f,g are
continuous maps from a compact space X into itself and h{q) denotes the
topological entropy ofq (see [9]). Algebra "teaches" us that the maps fog
and gof are essentially different, so some people in the audience considered
this result to be a rather surprising one.

In second thoughts, however, Kolyada and Snoha's formula is just
natural. Notice that fog and gof are "more or less" topologically conjugate
via the map g (and similarly for gof and fog via /) and then their dynamics
"should" substantially coincide. For instance it is immediate to check that
if x G X is a periodic point of / o g with period k then g(x) is a periodic
point of g o f with the same period, so the periodic structure of / o g and
g o f is exactly the same. Adding to this the well known fact that (when
X = [0,1]) positive topological entropy is equivalent to the existence of
periodic points of period not a power of two, we have just arrived to this
weaker version of Kolyada and Snoha's result: h(f o g) > 0 if and only if
h(gof)>Q.

This paper has been partially supported by the D.G.I.C.Y.T. grant PB95-1004 and the
grants COM-20/96 MAT and PB/2/FS/97 (Fundacion Seneca, Comunidad Autonoma
de Murcia).
-Keywords: Commutativity — Topological sequence entropy.
Math. classification: 58F13 - 26A18 - 54H20.
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Topological sequence entropy is a natural (and useful, see e.g. [5])
extension of topological entropy and one should reasonably expect that
the commutativity property also holds for it. In fact in [2] we gave
an elementary proof of Kolyada and Snoha's result and showed that
^A(f ° 9) == ^A^g ° f) is true if the maps /, g are onto (here hA^q) denotes
the topological sequence entropy of q respect to the sequence A). Hence the
first result of the present paper (Theorem 3.1), showing that if X = [0,1]
then hA(f ° g) = ^A(<7 ° /) is true without any additional restrictions on
the maps / and g , will probably not surprise the reader. However, we will
construct in Section 4 (Theorem 4.5) a compact subset X of the interval
[0,1] and continuous maps f^g : X —^ X such that h^fog) ̂  h^gof) for
the sequence A = (21)^. As a by-product we also show that the formula
^A(/) = hA(f\n^ofn{x)) (a standard one for topological entropy) is true
for any continuous map / if X = [0,1], but does not hold for the space X
and the map / from the counterexample in Section 4 (cf. Theorem 3.6 and
Remark 4.6).

Of course one may wonder whether comparing the dynamics of
compositions f o g and g o f makes any special sense. As a justification
let us remark that in his recent doctoral dissertation [10] A. Linero has
studied some properties of the maps F : [0,1]2 —^ [0,1]2 of the type
F ( x ^ y ) = {f{y\g{x))^ where / and g are continuous maps from the
interval [0,1] into itself. These maps have been long time used in Game
Theory (see e.g. [4]). Although their dynamical nature may seem essentially
"one-dimensional" they pose some interesting non-trivial problems (e.g. the
structure of their o;-limit sets), and could be seen as a "bridge" towards
more complicated two-dimensional dynamics. When studying maps of the
above type the comparison between properties of / o g and g o f arises in
a completely natural way.

2. Basic notation and definitions.

Throughout the paper A = (a^)^i will always denote a (non neces-
sarily strictly) increasing unbounded sequence of positive integers, except
in Section 4 when A = (2')^.

T. N. T. Goodman introduced in [6] the notion of topological sequence
entropy as an extension of the concept of topological entropy. If / : X —> X
is a continuous map on a compact topological space X, A is a sequence and
C is a finite open cover of X we define the topological sequence entropy of
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/ relative to C (respect to the sequence A) as

1 / n \
HA (/,C) = limsup - logAf V f-^C ,

—— ^ VJi )

where /-^ = {/^(C) : C e C}, V^i ̂  = { 0 ̂  : C, e cj and At {V)
U=i J

denotes the minimal possible cardinality of a subcover chosen from P. We
define the topological sequence entropy off (respect to the sequence A) as

hA(f)=SMphA{f,C).
c

When A = (%)^i we get the standard topological entropy introduced by
Adier, Konheim and McAndrew in [1].

If (X, d) is a compact metric space then there is a useful equivalent
definition of topological sequence entropy, also introduced by Goodman in
[6]. Let / : X —> X be a continuous map, let A be a sequence, let Y be
a subset of X and set e > 0. We say that a set E C Y is (A,n,e,Y,/)-
separated (by f) if for any x,y e £', x -^ y , there exists k e {1,2, ...,n}
such that d{f^{x),f^{y)) > e. Denote by 5n(A,e,y,/) the biggest
cardinality of any (A, n, e, V, ̂ -separated set in V. Define

s (A, e, V, ̂ ) = lim sup - log Sn (A, e, V, ̂ ).
n—>oo 1^

Now we define the topological sequence entropy of f on the set Y (respect
to the sequence A) as

/iA(^n=Hn^(A,e,y,p).

It turns out that HA (9) = HA^O^X).

As usual, Z will stand for the set of integer numbers, while if Z C Z
then Zn (resp. Z°°) will denote the set of finite sequences of length n
(resp. infinite sequences) of elements from Z. If 0 e Z71 or a € Z°° then
we will often describe them through their components as (0i,^2, • • • ,^n)
or (a^)^i, respectively. The shift map a : Z°° -^ Z°° is defined by
^((^)z^i) = (^+i)z^r If / : X ^ X is a map and V C X then /|y
will denote the restriction of / to Y. The cardinality of a set P will be
denoted by CardP. |J| will be the length of an interval J.
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3. The interval case.

The main goal of this section to prove the following

THEOREM 3.1.— Let f,g : [0,1] -^ [0,1] be continuous maps. Then
^A(f ° 9) = hA(g o /) for any sequence A.

Let us begin with three general results. The first and second one
were essentially proved in [2]; for completeness we give here their proof.
Notice that the statement of Proposition 3.2 makes sense because since X
is Hausdorff the spaces Q (/ ° 9YW a^ D (9 ° fYW are compact.

n^O n^O

PROPOSITION 3.2.—Let X be a compact Hausdorff space and
let f^g : X —> X be continuous maps. Suppose that /IA(/ ° 9) =
^A ((/°^)ln^o(/o^)-(x)) andhA(gof) = HA ((g o /)|n^o(<7o/)-(x)) for any
sequence A. Then hA(f o g) = hA^g o /) for any sequence A. In particular,
iff and g are onto then /IA(/ ° g) = h,A(g o /) for any sequence A.

Proof.—Put A = (a^)^i and let V be a finite open cover of
-̂ o = D (/ ° p)^^)- Since (/ o g)\xo is surjective we have

n^o

/lA+l((/0^)|^,P)

1 / n \
=limsup-logA/- V^0^!^)"'1-^

^-oo n \^i /
1 / / ^ \ \

=limsup-log^ ((/o^)|^)-1 ^((/o^l^)-0-?
n-.oo n ^ ^^ yy

\ ( n \
=limsup-logA^ (^((fog)^)-^]

n-00 n \ili )
=hA((fog)\^V)^

where A + 1 := (a, + l)^i. Therefore

^A((/o^)|^)=^^((/o^)|^)

and

^(fog) =hA-{-i(fog).
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On the other hand, if C is a finite open cover of X then

1 / n \
/iA+i(/o^C) = limsup - logA/" \/(f o g^-^O)

n-00 n \i=i )

1 ( ( n \\
= limsup - logAf g-1 \/\g o f)-^^-1^

n-00 n \ \i=i ) )

1 / n \
^ limsup - log./v- [\l(g o f)-^^-1^

n-00 n \ili )
=hA{gof,rlC)
^ hA^gQ f)

and then

hA(fog) =^A-n(/o^)

=supftA+i(/o^,C)
c

^ ^A(^°/).

By a similar argument we obtain the reverse inequality. This finishes
the proof. Q

PROPOSITION 3.3. — Let (X, d) be a compact metric space and let
f : X —^ X be a continuous map. Let Y C X and set e > 0. Then

s (A, e, V, /) ^ s (^ (A), e, V, /) ^ 5(A, 2e, V, /)

for any k and any sequence A. In particular A-A(/) = ^(A^/) for any k
and any sequence A.

Proof.—Let A = (oz)^i a sequence, fix n and A; and let En,
Fk and Z^+fc respectively denote a (^ (A) ,n,e,Y, /) -separated set, an
(A, k, e, V, /)-separated set and an (A, n + k, 2e, V, /)-separated set (all of
them of the biggest possible cardinality).

Use the maximality of En to associate to each x € Ln^k a point
^ C ̂  satisfying ^/^(rr),/01^)) ^ e for i = A; + l,...,n + k. Notice
that there are at most CardF^ points a; from Ln+k associated to the same
point y e En', otherwise (because of the maximality ofF^) we could find two
such points (let us call them a-i and x^) verifying c^/"1 (a:i), f^ (x-z)) < e for
any 1 ̂  i ̂  fc. Since additionally ^/^(a-i),/01^)) ^ ^(/^(^i),/01 (?/))+
d(fai{x2), /a^(2/)) ^ 2e for any A;+l ^ i ̂  n-\-k, we arrive to a contradiction
because both x\ and x^ belong to Ln^k-
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Then we have

s (A, 2e, V, /) = lim sup ——, log Card Ln^-k
n—>oo Tl ~}~ K

^ lim sup ——, log(Card£nCardFfc)
n—>oo Tt ~r~ h

= lim sup — log CardEyi
n—>oo n

=^(A),6,y,/).
On the other hand, since any (cr^ (A), n, e, V, /)-separated set is obviously
an (A, n + A;, e, V, /)-separated set we get

5 (A, e, V, /) = lim sup —— log s^+fc (A, e, V, /)
n—^oo 72 ~r rC

^ lim sup - log Sn (ak (A), e, V, /)
n—+oo ^

^^(^(A)^,^/),

which finishes the proof. D

PROPOSITION 3.4. — Let (X, d) be a compact metric space and let
f : X —^ X be a continuous map. Suppose that there is a positive integer
no such that Q FW = /^(X). Then ̂ (/) = HA (f In^/^x)) for any

n^O
sequence A.

Proof.— Let e > 0 and let A = (a^)^i. Since A is increasing and
unbounded, there exists a positive integer ko such that / ^ ( x ) G /^(X)
for all x € X and i > ko.

Let E be a (cr^A), n, e, X, /)-separated set. Since f\fno(x) ls surjec-
tive, for every x e X there exists y^ e /^(X) such that f^^x) = f^^yx)
ifi>ko. Define F = {y^ : x e E}. Since E is separated by /, F and E has
the same cardinality and F is a (o-^0 (A), n, e, /no (X), /)-separated set. This
clearly implies ^o-fco(A)(/) ^ ^^(A^/l.T^x))- Since the reverse inequality
is obvious it follows that ^-^(A^/) = ^^(A^/I/^X))- To conclude the
proof it suffices to apply Proposition 3.3. D

Now we restrict ourselves to maps on the interval [0,1]. According
to Proposition 3.2, in order to prove Theorem 3.1 we just need to show
that the topological sequence entropy of any map / and the topological
sequence entropy of its restriction to the set F| /"([0,1]) are always the

n^osame.
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First we prove an auxiliary lemma. In what follows we mean
[a, a] ={a}.

LEMMA 3.5. — Let f : [0,1] —->• [0,1] a continuous map, write

ft /"([(U]) = [a^] and suppose that /"([O,!]) ^ [a, b] for any n. Let
n=0
J^~ and 1^ be the (possibly empty) right and left-side components of
^([p, 1]) \ [a, 6]. Then one of the following possibilities occurs:

(a) there exists no such that 1^ = 0 and f(b) = h\

(b) there exists no such that 1^=0 and f(o) = a;

(c) 1^ 1=. 0 and 1^ ^ 0 for all n and /({a, b}) C {a, b}.

Proof. — Suppose that there exists no with 1^ = 0 but f(b) -^ b.
Since /([a, b} U 1^) == [a, b] U Jy^ for any n ^ no? the uniform continuity
of / implies f(I^) C [a,&] if n is large enough. On the other hand
/([a, b]) = [a, b] so we have in fact /([a, 6] U J^~) = [a, 6]. Hence ^y^_i == 0 is
n is large enough, a contradiction. The case (b) is analogous to this one.

Now suppose that 1^ 7^ 0 and 7^~ 7^ 0 for all n and for example
/(a) € (a, 6). If n is sufficiently large then f(In) C [a, &] and [a, b] (f. f(I^).
Further, since f{I^ U [a, b] Ul^) = 1^ U [a, b} UZ^+i, /(J^) must intersect
J^i and then /(J^) C 1^ U [a, &]. Hence f(I^ U [a, 6] U^) C ^+1 U [a, b]
and -^_i == 0, a contradiction. D

Finally:

THEOREM 3.6. — Let f : [0,1] —> [0,1] be a continuous map. Then
M/) = hA (f In^o.^ao,!])) ̂  ̂ 7 sequence A.

Proof.— If n /"([0,1]) = {a} then all trajectories (./^(a;))^ tend

n^O
to a; applying [5] we get /^A(/) = 0 for any A and the proof is finished.
Hence we can assume that [a, b] = Q /"([0,1]) is a non-degenerate interval.

n^O
In view of Proposition 3.4, we can also assume that [a, b} is strictly included
in ./^([0,1]) for any n. From now on we keep the notation from Lemma 3.5
and assume that we are in case (c) there with /(a) = a, f(V) = b, in the
other cases one can argue in a similar fashion.

Let A = (a^)^i be a fixed arbitrary sequence and take e > 0.
Since /(a) = a and f(b) == b there must exist a number no such that
max{|j^|, |J,-J} < 6/2, f(I^) C J^UM and /(J^) C ^+iU[a,6].
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Now we construct a partition of the set [0, a] \ 1^ into intervals
PI,...,PA; of length smaller than e/2 just taking care that each of them
belongs to some interval J^"\J^_i, 0 ^ i ̂  no-1. Notice that Pr^[frn(Pr) =
0 for any m ^ 1 and any r because f{In) C 1^ U [a, b] U 1^ for any
n ^ 0. We can similarly construct a partition of [b, 1] \ 1^ into intervals
Mi, ...,Mi of length smaller than e/2 so that Mg Ft /^Mg) = 0 for any
m ^ 1 and any s.

Fix now m ^ 1. We intend to compare the numbers Sm (A, e, [0,1], /)
and 5yn(A, e/2, [a, &],/). To do this our first step will be to assign to each x ^
[a, b] a code a{x) = (Bi, ̂ 2,..., B^^\ where r(a:) is the largest number
i in the set {0,1, ...,m} with the property / ^ ( x ) f. [a,b]. (In particular
r(x) = 0 means that /^(x) e [a,&] for any i, so a point re may possibly
have an "empty" code.) Namely, B, € {Pi, ....P^.Mi, ...,Mz,J^,J^} is
such that / ^ ( x ) C i^ for any 1 ̂  z ^ r(rr). Notice that
(1)

if a(x) = a(y) then { / ^ ( x ) - /^(y^ < e/2 for any 1 ̂  i ̂  r(.r) = r(2/).

We claim that if A is the set of possible codes for points from
[0,1] \ [a, b] then

(2) Card A ^ 1-^ m2k^l+l

(indeed this bound can be easily improved but we will not need it). Since
there is just one "empty" code it suffices to check that the number of
codes of a given length 1 < r ^ m is at most 2/i;+^+l. This is easy to do
because due to the way we have chosen no ^d constructed our partitions
above each of such codes must begin with a sequence of elements from
{PI, ..., Pfc, Mi,..., Mi} (with each of these elements appearing at most once
in the sequence) and finish with a string either of the type 1^, 1^,..., 1^
or of the type 1^, 1^,..., 1^. This amounts to a possible number of at
most

^(^^('D—a:;)]—
different codes.

For any a G A let Z(a) denote the set of points from [0,1] \ [a, b]
having code a. We next prove that

(3) Sm(A, e, Z(a), /) ^ 5^(A, e/2, [a, &], /).
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If the length of a is m then the statement is obvious: if a; € Z(a) then
{.r} is an (A,m,e,Z(a),/)-separated set with maximal cardinality by (1)
so s^(A,e,Z(a),/) == 1.

Assume now that a has length r < m, let E be a fixed (A, m, e/2,
[a,6],/)-separated set with maximal cardinality and let F be an (A,m,e,
Z(a),/)-separated set. We need to show that F has less cardinality than
E. We will do this by associating to any point x 6 F a point 2:3; 6 E so
that ̂  ^ z^ if a;i 7^ 2:2. Namely, since f\[a,b} ^s surjective for any x E F
there exists y^ € [a, b] such that f^^^x) = /"^(^/a;); since ̂  is maximal,
for this ^ there exists Zx € £' such that l/^^/a;) — /^(^a;)! < e/2 for
1 ̂  i ̂  m.

Indeed suppose that z := z^ = Zx2 ^OT some x\^x^ € -F. Notice
that \fai(xl) - /^(^l < e/2 and l/01^) - /^(Ol < e/2 (and hence
\fa^(x^ - /"'(a^)! < e) for any r < i ^ m; on the other hand l/^^i) -
/^(rca)! < e/2 < e for any 1 ̂  i ^ r by (1). Since F is separated this is
impossible unless x\ = x^..

We are finally ready to compare Sm (A,c, [0,1],/) and Syn(A,e/2,
[a, &],/). By (2) and (3),

Sm (A, e, [0, l],/)^ Sm(A, e, (a, ̂ ], /) -h ̂  5^(A, e, Z(a), /)
a€A

^ 5^ (A, e/2, [a, &],/)+ CardA^^ (A, e/2, [a, 6], /)

= (2 + m^^) ̂ (A, e/2, M,/).

Since the numbers k and Z only depend on e, we conclude s (A, e, [0,1], /) <
5(A,e/2, [a,&],/) for any e and hence /L4(/) ^ ^A (/|[a,&]) • Since the
converse inequality is obvious, the proof is finished. D

4. The general case.

This section is devoted to construct a counterexample for the commu-
tativity formula in the setting of an appropiate compact metric space. To do
this we will need some information concerning so-called weakly unimodal
maps of type 2°°.

Let / : [0,1] —> [0,1] be a continuous map. We say that / is weakly
unimodal if /(O) = /(I) = 0, it is non-constant and there is c € (0,1)
such that /|(o,c) ^d /l(c,i) are (non necessarily strictly) monotone. Recall
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that a point x C [0,1] is said to be periodic (for f) if there exists a positive
integer n such that ^(x) = x. The smallest integer satisfying this condition
is called the period of x. The map / is said to be type 2°° if it has periodic
points of period 2n for any n ^ 0 but no other periods.

Weakly unimodal maps of type 2°° (briefly, w-maps) were extensively
studied in [8]. For these maps a kind of "symbolic dynamics" was introduced
which could be seen as an extension of a standard tool in one-dimensional
dynamics, "the adding machine" [7] (in our case we could better speak of a
"substracting machine" as we will see later). Namely, in [8] was showed that
for any w-map / it is possible construct a family {^a(/)}aeZ°° (or simply
{^a}aeZ00 once there is no ambiguity on /) of pairwise disjoint (possibly
degenerate) compact subintervals of [0,1] satisfying the key properties (Pl)-
(P4) described below. As always when symbolic dynamics is concerned we
hope to associate to any point a code (in this case, if a; € Ka then its
code is a) so that we can deduce some valuable information about the
dynamical behavior of the point from the combinatorial structure of its
code. Although properties (P1)-(P4) comprise all the information we will
need later, let us also remark for the sake of completeness that (J Ka

aeZ00

turns out to be strictly included in [0,1] so not every point has a code.
Hovewer (as shown in [8]), points without a code are not significant from
a dynamical point of view: they are attracted by periodic orbits.

In what follows we denote 0 = (0,0, . . . , 0, . . . ) and 1 = (1,1,..., 1,...),
while if a C Z00 then a\n 6 Z71 is defined by a\n ==• (0:1,02,..., o^n).

The above-mentioned properties are the following:
(PI) The interval KQ contains all absolute maxima of /.
(P2) Define in Z°° the following total ordering: if a,/3 € Z°°, a ^ {3

and k is the first integer such that o.k 7^ 0k then a < (3 if
either Card{l ^ i < k : o.i ^ 0} is even and Ok < 0k or
Card{l ^ i < k : (9, ^ 0} is odd and f3k < Ok- Then a < (3 if
and only if Ka < Kp (that is, x < y for all x € Ka, y € K^).

(P3) Let a € Z°°, a ^ 0, and let k be the first integer such that
Ok 1=- 0. Define (3 e Z00 by ft = 1 for 1 ^ i ^ k - 1,
0k = 1 - \ak\ and 0i = ai for i > k Then f{Ka) = Kp. Also
f(Ko)cK^

(P4) For any n and 0 € Z71, let Ke{f) (or just Ke) be the least interval
including all intervals K^ a C Z°°, such that a\n = 0. Let a C Z°°.

Then^= Q K^.
n=l
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Additionally, for any fixed n you can easily check that the intervals
KQ, 0 € Z77', are open and pairwise disjoint and (after replacing oo by n,
0 by (0,0, . . . , 5) and 1 by (1,1,..., ?)) they also satisfy (P1)-(P3). For
instance we have

and

while

^(0,3,1,-1,7,0) < ^(0,3,1, -1,7,1)

^(0,3,1, -1,0,1) < ^(0,3,1,-1,0,0) ?

/(^(7,0,0,1,2,0)) == -^(-6,0,0,1,2,0)

and

/(^(0,0,0,1,6,0)) = ^(1,1,1,0,6,0)-

In general, notice that if / maps KQ over K^, 6, i9 € Z7'1, then ̂  l- '̂"1 =
i==l

/ n \
^ |(9,|21-1 - 1 (except in the case 0 = (0,0,. . . ,0), ^ = (1,1,..., 1)).

\i=l }
This is the reason why we used the expression "substracting machine" be-
fore. Observe also that if (9 e {-l .O.^andweput^l := (|(9i|, l ^ l , . . . , |(9n|)
then ^(Ke) C K\e\\ in particular /2 n(Ke) C Ke if 0 € {0,1}71.

The simple lemma below provides a last property of w-maps that will
be used later. If a € Z°° then K^(f) and K ^ ( f ) (or simply JT, and
jTj ) will denote the left and right-side components of K^(f) \ Ka(f).

LEMMA 4.1. — Let f be a w-map and let e > 0. Let Ag = {a € Z°° :
|jfa| ^ e}. Then there exists a number n^ such that for any n ^ Ug:

(a) if a € A, then max{|^J, |JT^|} < 6;

(b) if e € Z" and a|^ ^ (9 for any a € A^ then \Ke\ < e.

Proof.— Let a e Z°°. Since (^a|J^=i decreases to K^ by (P4), if
n is large enough then max^A^, |, \ K , |} < e. In particular, since Ag is
finite we have max{|A'^,|, \ K . \} < e for all a e Ag and all sufficient
large n.

To finish the proof it then suffices to show that if n is large enough
then \Ke\ < e for any 0 € Z71 with the property a \n -^ 0 for all a 6 Ac.

Suppose the contrary. Then there are a strictly increasing sequence
(n^)J^i and sequences 63 e Z^ such that \KQJ\ ^ e and a\j -^ 6^ for any
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a e Ag. Let Xj be the midpoint of KQJ . It is clearly not restrictive to assume
that {xj)^ converges to some x and \Xj - x\ < e/2 for any j. Since for
any fixed n all intervals KQ, 6 e Z71, are pairwise disjoint, this means that
each pair KQ] and K^j+i has non-empty intersection, which clearly implies
Kffj+i C KQJ for any j and hence the existence of an a € Z°° with a\n = O3

for any j. Due to the definition of the intervals K Q J , a cannot belong to
00 00

Ae. However, Ka = n K^ = Fl ̂  so |̂ | ̂  e, a contradiction. D
n==l j==l

Let us finish our preparatory work with some additional notation. In
the rest of this section, A will always denote the sequence (21)^ and /
will denote a fixed w-map with the additional property that if a e Z°° then
Ka(f) is non-degenerate if and only if there is an n ̂  0 such that ^(a) = 0
(recall that a denotes the shift map; cr° is of course the identity map). An
example of such a map is constructed in [8]; it is possible to show that the
stunted tent map f(x) = max{l - \2x - 1|,/4 (/^ w 0.8249...) from [11] is
also a w-map with this property. If 6 e Z71 and ^ e J^ (with m ^ oo) then
0 * i9 e Z714"771 (where n + oo means oo) will denote the sequence A defined
by \i = 6i if 1 ̂  i ^ m and \i = ^_yi for any i > m. In particular we
will consistently denote 2 * {-1,0,1}00 = {2 * a : a G {-1,0,1}00} and so
on (here of course "2" denotes the one-component vector "(2)55). BdZ, C1Z
and IntZ will respectively denote the boundary, the closure and interior
ofZ.

We are now ready to construct our promised counterexample. First
we have to choose our space X. We write

Xi = J BdK^
ae{-i,o,i}°°

and

X2 = J BdK^
ae2*{-l,0,l}00

and define X = X\ U Xs. Let us emphasize that BdJ^ consists of both
endpoints of Ka if it is non-degenerate and of its only point if it is
degenerate.

Next we need two appropriate maps f^g : X —>• X. The first one is
the restriction of the above-mentioned w-map / to the set X. The map g
is defined by fixing arbitrarily a point XQ e X and putting g(x) = f{x) if
x C Xi and g(x) = XQ if x e X^. The following lemma shows that at least
the above choices make sense.
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LEMMA 4.2. — Both X\ and X^ (and hence X) are compact sets and
both f : X —>• X and g : X —> X are well denned continuous maps.

Proof. — To begin with, note that

/ °° \^-(n u ^^ u IntKa
^r^l^-lAl}71 / ae{-l,0,l}00

by (P2) and (P4). Hence X\ is compact. The compactness of X^ can be
similarly proved.

On the other hand recall that if 0 7^ a € {-1,0,1}00 U 2 * {-1,0,1}00

then / carries the interval K^ onto K^ with f3 denned as in (P3) (and hence
belonging to {—1,0,1}00). Further / is monotone on Ka because of (PI)
so it maps the endpoints of Ka onto the endpoints of K^. Similarly, since
K\ is degenerate both endpoints of KQ are mapped onto its only point.
The conclusion is that f(X) C X\ and g(X) C X\ U {xo} so both maps
/ ,<7 : X —> X are well defined (and are clearly continuous). Notice that the
definition of g poses no additional problems since X\ and X^ are disjoint
compact sets. D

Since f(X) C X\ the map /|xi : X^ —^ X-^ is also well defined. In
fact we have the following

LEMMA 4.3.— With the notation above, /u(/|xi) = 0.

Proof. — Let e > 0 and take Ug as in Lemma 4.1 (for /). Since K^ is
non-degenerate if and only if a71 (a) = 0 for some n we can assume without
loss of generality that n^ is large enough so that if Ag is defined as in
Lemma 4.1 that a € Ag implies a716 (a) = 0.

We intend to show that

(4) ^(A^.^nXi,/)^

for any 0 € {—1,0,1}^. In fact, according to Lemma 3.3 this would
give s{A,2e,Ke HXi , / ) = 0 for any 0 e {-1,0,1}^. Moreover, since
X\ C U^-101}7^ ^9 we coma reason as in Theorem 7.5 from [13] to
deduce

5(A,2e ,Xl , / )^max{5(A,2e ,^nXl , / ) :^e{- l ,0 , l} n £ }

and hence get s (A, 2e, Xi, /) = 0. Since e was arbitrarily chosen, this would
imply the lemma.
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Let 0 € {-1,0, 1} .̂ Recall that property (P3) implies that /2m (Ke) C
K\Q\ for any m ^ rig. If \0\ ^ a\n^ for any a € Ac then |.K'^|| < e by
Lemma 4.1 so any (a716 (A), n, 6, ̂  H Xi,/)-separated set must consist of
exactly one point; this gives (4).

Now assume that there is a (fixed) a e Ag such that \0\ = a\n^ Let
n ^ 1 and let E be a (a^ (A), n, e, 7<<9 H X\, /)-separated set. We will show
that CardJ^ ^ 2n + 1. This obviously implies (4).

Put q = /2n€ and write L := C\K^ and R := C\K^ (cf.
Lemma 4.1). Since /"^(Xi) H Intjf^ = 0 for'any m, we can associate
to each point x € Ke H Xi a code c(a;) = (Gi, C 2 , . . . , Cn) of L's and J?'s
given by Ci = L or Ci = R according to whether q^x) e L or q'1^) € J?,
1 < i ^ n. Since both L and J? have length less than e by Lemma 4.1, it
turns out that if two different points x ^ y belong to E then c(x) -^ c(y}.
Hence we just need to show that the number of possible codes for points
from Ke H Xi cannot exceed 2n + 1.

We will for example assume that |0| has an even number of zeros (the
other case is analogous). Hence property (P2) implies that if (0 ,0 , . . . , 0) ^
i9 C {0,1}71 and i is the first number j for which i?^ == 1 then we have
K\Q\^ C L (resp. K\Q\^ C R) if i is even (resp. odd).

Let x G KQ H Xi. We must consider several possibilities. If a: e
^(_i) U Ke^i then q{x) € K^Q and 921^) ^ ^|0|*i by (P3). Hence
c(x) = (R,R,...,R) by force. If a; € ^(o,-i) U ^(0,1) then g2(a;) C
-^|*(o,o) but g21^) e ^|0|^(o,i) for any % > 1 again by (P3), so
c(x) = (<7,L,L,. . . ,L) (here "C" indistinctly means L or R). In gen-
eral, if x e K i U K , , 1 ^ i ^ n, it is rutinary to

0*(0,...,0,-1) 0*(0,...,0,1)
i-l

check that c(.r) = (L, J?, L, ^? , . . . , (7 , L, L , . . . , L) if i is even and c(a-) =
i-i

(L, J?, L, 7?, . . . , C ,R,R,...,K) if % is odd. Finally, if a; € 
|̂6>|*(0,0,...,0)

then c(a:) = (L, R, L, I?,. . . . (7).

Since

n

J^ n Xi c K n u [ J (K i UK , V
|(9|*(0,0,...,0) ^ \ 6>*(0,...,0,-1) 0*(0,...,0,l)>'

there are at most 2n + 1 different codes as claimed. D

LEMMA 4.4.— With the notation above, /IA(/) = log 2.
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Proof.— We first show that /IA(/) ^ log 2. To do this it suffices to
find an (A, n, e, X, /)-separated set E of cardinality 2" for any fixed n ^ 1
and c < \KQ\.

This is easy. Let E be a set containing exactly one point x = XQ €
^ n X for any 0 e 2 * {-1,1}71, and let XQ, x^ be two different points
from E. Let i be the last number 1 ̂  j ^ n with the property 0j = '{} j .
Since /2l^) C ^(o,...,oA+i,-A.+i) and /2t^) ^ ^(o,.,OA+i,...A^i) the

interval Jfo ll^ between f21 (xe) and f21 (x^} and then l/21^)—/21^)! >
e. Hence E is an (A, n, e, X, /)-separated set.

To get the inequality ^A(/) ^ log 2 we must essentially repeat the
proof of Lemma 4.3. Now the role of the set {—l.O,!}^ is played by
{-1,0,1}^ U 2 * {-1,0,1}'16"1, when we extend the definition of \0\ for
any 0 e 2*{-1,0,1}716-1 by writing \0\ := (0, |^|,. • . , |^rJ|. Instead of (4)
we must show now that

s(ane(A)^^Ke^x^f)^\ogt2

for any 6 € {-1,0,1}^ U 2 * {-1,0,1}716-1. This finally amounts to show
that if 0 is any of such sequences with the additional property that there is
an a € Ag with \0\ = a\n^ and E is a (ane(A),n^€,K0 H Xi,/)-separated
set for some n ^ 1, then Card E ^ 271. Once we introduce the corresponding
codes c(x) we are done because trivially the number of possible sequences
of L's and J?'s of length n cannot exceed 271. D

We are ready to obtain the main result of this section:

THEOREM 4.5. — Let A = (2')^i, X and f,g : X -^ X be defined as
above. Then 0 = hA^f o g) < hA^g o /) = log 2.

Proof. — Notice that the / o g is constant outside Xi. It is then easy
to check that hA(fog) = /iA((/°^)|xi). Moreover, {fog)\^ = f'2\^ and
then M(/°^)lxJ = WlxJ = ̂ (/IxJ = ̂ (A)(/|xJ = ̂ (/|xJ
by Proposition 3.3. Thus /IA(/ ° 9) =0 by Lemma 4.4.

On the other hand we clearly have g o f = /2. By Proposition 3.3
again, ^A(/2) == ^A(/)- Therefore HA^Q ° f) = log 2 by Lemma 4.4. D

Remark 4.6. — Recall that f(X) C Xi so D ^(X) C Xi. Therefore
n=0

we get ^(/In^o.f^x)) = 0 by Lemma 4.3 while /u(/) = log 2 by
Lemma 4.4. Hence the equality h^f) = ^A(/|n°°, /n(x)) is not generally
true (compare with Theorem 3.6).
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Let A be a sequence, let X be a compact space and let / : X —^ X
be a continuous map. If 0(/) denotes the set of nonwandering points of /

00

then ^(/) C H /n(X) as is well known, so the above example implies in
n=o

particular that the formula ^A(/) == ^A(/|^(n) does not necessarily hold.
This fact was first pointed out by Szlenk in [12]; our counterexample is
completely different to his and somewhat simpler. In fact the equality need
not be true even in the case X = [0,1]: if / is the w-map from Section 4
then it is possible to show that h^f) = log 2 while ^A(/|^(n) = 0 (with
of course A = (21)^) [3].

Remark 4.7. — It seems that the commutativity formula for topolog-
ical sequence entropy is essentially a one-dimensional phenomenon, the key
being Lemma 3.5. In fact it can be analogously proved for circle maps, and
we feel that it should even work for graph maps. On the other hand we
conjecture that it is not necessarily true for maps of the square [0,1]2.
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