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WEAKLY-EINSTEIN HERMITIAN SURFACES

by V. APOSTOLOV and 0. MUSKAROV

1. Introduction.

A Hermitian surface (M, J, h) is a complex surface (At, J ) endowed
with a J-invariant Riemannian metric h. If the Kahler form F{.^.) = /i(J.,.)
of (M, J, h) is closed we obtain a Kahler surface. The Riemannian metric
h is said to be Einstein if its Ricci tensor Ric is a constant multiple of the
metric, i.e., if Ric == A/i, where the constant 4A is the scalar curvature of h.
Many efforts have been done to study compact Einstein Hermitian surfaces
(which, in general, give examples of non-homogeneous Einstein 4-spaces
[10], [8]). The compact Kahler-Einstein surfaces have been described by
completely resolving the corresponding complex Monge-Ampere equations,
see [33], [3], [25], [28], [26], while the only known example of a compact, 22022-
Kahler^ Einstein Hermitian surface is the Hirzebruch surface Fi ^ CP^CP
with the Page metric [21]. Recently C. LeBrun [19] has proved that the
only other compact complex surfaces that could admit non-Kahler Einstein
Hermitian metrics are CP^CP2 and CP^CP2. It is thus natural to
consider some weaker conditions on the Ricci tensor than the Einstein
one in order to provide more examples of (non-Kahler) Hermitian metrics
still having interesting geometric properties. A possible way to do this is
to consider the two irreducible components of the traceless part of the
Ricci tensor under the action of the unitary group U(2) and to impose as
a condition the vanishing of one of them. This leads to consider Hermitian
surfaces with J-invariant Ricci tensor or with J-anti-invariant traceless

The first-named author is partially supported by a grant of the EPDI/IHES.
Keywords: Hermitian surfaces - Einstein metrics - Locally conformally Kahler metrics
- Hopf surface.
Math. classification: 53C55 - 53C25.



1674 V. APOSTOLOV, 0. MUSKAROV

Ricci tensor. If h is a Kahler metric, the first condition is automatically
satisfied, whereas the second one means that h is Einstein. More generally,
if h is conformal to a Kahler metric g (i.e. h = f~2g for a positive smooth
function / on M), then the above two conditions are equivalent respectively
to the following properties of the Kahler metric g and the conformal factor
/ (see [2] and [15]):

(i) Jgrad^/ is a Killing vector field of g;
f\ir\ n

(ii) 7—2z—— is a self-dual two form, where 7 is the Ricci form of (^, J ) .

For any compact Einstein Hermitian surface (M, J, h) the Riemannian
version of the Goldberg-Sachs theorem [24], [20] combined with the results
of Derdzinski [10] and Boyer [9] imply that h is conformal to a Kahler metric
g^ and the conformal factor / (which in this case satisfies simultaneously
(i) and (ii)) is either a constant (i.e., h is a Kahler-Einstein metric), or
else g has a non-constant, everywhere positive scalar curvature 5, and /
is a constant multiple of s [10]. In the latter situation the condition (i)
means that g is an extremal Kahler metric [10], while (ii) implies that the
anti-canonical bundle of (M, J) is ample [15], [19].

Compact Hermitian surfaces with J-invariant Ricci tensor have been
studied in [2] and it has been proved that if the first Betti number is even,
then the Hermitian metric is still conformally Kahler. The existence of
non-Kahler, Hermitian metrics with J-invariant Ricci tensor on compact
complex surfaces with even first Betti number is then equivalent to the
existence of Kahler metrics admitting non-trivial Killing vector fields with
zeroes.

The purpose of this paper is to study the compact Hermitian surfaces
(M, /i, J) with J-anti-invariant traceless Ricci tensor which, in addition,
are locally conformally Kahler. These surfaces can be characterized by the
property that at any point the Kahler form is an eigenform of the curvature
operator. The (almost) Hermitian manifolds satisfying the latter condition
are known in the literature as (weakly) ^-Einstein manifolds, cf. [29], and
the corresponding eigenfunction (non-constant in general) is usually called
^-scalar curvature. Since on a compact complex surface (M, J) with even
first Betti number every locally conformally Kahler metric h is (globally)
conformal to a Kahler metric g = f'2h [30], the *-Einstein condition on h
is then equivalent to (ii).

As we have already mentioned for Kahler surfaces the Einstein and
*-Einstein conditions coincide while, in general, the *-Einstein condition is
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weaker in view of the Riemannian Goldberg-Sachs theorem. In Section 2 we
present large families of *-Einstein (but non-Einstein) Hermitian structures
on S1 x 53, CP^CP2, CP1 x CP1, and X x V, where X and Y are compact
oriented Riemann surfaces of genus g{X) ^ 2, g(Y) ^ 1. This shows that
the problem for existence of *-Einstein (non-Kahler) Hermitian metrics is
much more tractable than those for Einstein metrics.

On a compact complex surface (M, J ) the Einstein and *-Einstein
conditions can be also compared by considering the Hilbert functional

J^Scal^dV,
w - r f ^\r l1—'UM ̂ 9} 2

where Seal ((7) denotes the scalar curvature of a Riemannian metric g . It is
well known that the Einstein metrics are the critical points of S acting on
the space of all Riemannian metrics on M, while if S is restricted on the
Hermitian metrics with respect to J, then its critical points are the metrics
with J-anti-invariant traceless Ricci tensor and constant scalar curvature
(cf. [8, ch. 4]). We ask whether there are compact * -Einstein Hermitian
surfaces of constant scalar curvature which are not Einstein7 One of our
objectives here is to show that the answer to this question is yes. We will
accomplish this by explicitly constructing such metrics on the conformally
flat Hopf surfaces which, as it is well-known, do not admit Einstein metrics
at all. According to [9], [23], [13], any such a surface (M, J) admits a unique
(up to homothety) conformally flat Hermitian metric g with parallel Lee
form 0, which is usually called Vaisman metric. Starting from g we construct
a new Hermitian metric

(*) h = g + — — ( 0 0 0 + J 0 ( ^ J 0 ) ^
6\u\

which is *-Einstein, and has constant scalar and *-scalar curvatures (see
Section 4). Moreover, we prove that the metrics h constructed as above can
be in fact characterized by the latter property, i.e., we have the following

THEOREM 1.—Let (M,^,J) be a compact ^-Einstein Hermitian
surface of constant scalar and ^-scalar curvatures. Then either (M, /i, J )
is a Kahler-Einstein surface, or (M, J) is a conformally flat Hopf surface
and h is obtained from the Vaisman metric of(M, J) via (*).

A well known result of Jensen [16] says that any locally homogeneous,
Einstein 4-manifold is locally symmetric. Concerning our weakly Einstein
condition, it follows from Theorem 1 that the only locally homogeneous
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*-Einstein, non-Einstein Hermitian metrics on compact complex surfaces
are those obtained from the Vaisman metrics of the conformally flat Hopf
surfaces via (*).

The main point in the proof of Theorem 1 is to show that either the
metric h is Kahler-Einstein, or (up to homothety) the eigenvalues of its
Ricci tensor are equal to 0,2,1,1. To do this we use suitable estimates
of the T^-norm of the Ricci tensor involving the scalar curvature and
the Z^-norm of the Lee form, obtained as a consequence of the second
Bianchi identity. In the second case it follows from Gauduchon's Plurigenera
theorem [11] that the Kodaira dimension of (M,J) is —oo, i.e., (M, J )
belongs to class V I I of the Kodaira-Enriques classification. The first Betti
number of M is then equal to 1, cf. [5], and a Bochner type argument shows
that the (Riemannian) universal cover of (M, h) is IR x TV, where TV is a
compact Sasakian 3-manifold. Therefore the Hermitian surface (M, /i, J) is
a generalized Hopf surface [31], i.e., the Lee form of (/^, J) is parallel. Now
Theorem 1 follows by the observation that any *-Einstein generalized Hopf
metric is obtained from a conformally flat one via (*) (Section 4, Theorem
2), which amounts to a deformation of the induced Sasakian structure on
N into an Einstein one (see [22], [14]).

As a by-product of the proof of Theorem 1 we show that the
classification of the locally conformally Kahler metrics with parallel Lee
form and constant, non-negative scalar curvature is equivalent to that of
the conformally flat ones given in [9], [23], (Section 4, Remark 3).

Acknowledgements. The first-named author thanks the Institut des
Hautes Etudes Scientifiques and the Centre de Mathematiques de PEcole
Polytechnique for their hospitality. Both authors would like to thank
P. Gauduchon for his attention on this work, and to the referee for valuable
remarks.

2. Examples of compact *-Einstein Hermitian surfaces.

In this section we present a detailed description of a number of
examples of *-Einstein Hermitian metrics which are not Einstein.
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2.1. *-Einstein metrics on S1 x S3 and CP^CP2.

Let h be a Riemannian metric in four dimensions with an isometric ac-
tion of the group U(2) and suppose that the generic orbit is 3-dimensional.
It is known [27] that if h is Einstein, then (locally) it has the following
diagonal form:

W h = dt2 + g\t)(ai + aj) + f\t)ai

where t is a coordinate transverse to the £/(2)-orbits, g(t) and f{t) are
positive smooth functions, and a,, % = 1,2,3 are the invariant 1-forms on
the sphere S3 satisfying do-i = 0-2 A 0-3 and cyclically. It is also known
(cf. [8, 9.127]) that the only compact example of a non-homogeneous
Einstein metric of the above form is the Page metric on CP^CP2 (or
its Za-quotient). In this subsection we will look more carefully at the
Page construction in order to provide a natural 1-parameter family of
£/(2)-invariant, *-Einstein Hermitian metrics on CP^CP2; the only metric
of constant scalar curvature in this family is the Page metric. We also
construct a homogeneous, *-Einstein Hermitian metric on C2 - {0} ^
R x 53, which can be performed on any conformally flat primary Hopf
surface (diffeomorphic to S1 x S'3), cf. [13, sect. III].

r\

Denote by _ , , X^X^X^ the dual vector fields of ^0-1,0-2,03,

respectively. They satisfy the relations [o,,^] = 0 and [X^X^\ = -^3,
etc. It is known (cf. [7, expose 15]) that the Ricci tensor Ric of the metric
h is diagonal and it is given by

(2) Ricf^^-2^-^
\9t1 9t) g f

Rie ,̂ x!) = Ricf^, xl)=-^,^,(^\±_^
v 9 9 I V 9 ' ff ) g fg \ g ) g2 g^

Ricf^^)=-^+2^-^
^ f f ) f Vff4 f g ) '

r\ -y

Let J be the almost complex structure defined by J— = --3, JX^ = Xo.
at f

It is easily checked that J is integrable and compatible with h. The Lee

form 0 of the Hermitian structure (/i, J ) is then equal to 2 ' + " ) dt, hence
g2

d0 = 0, i.e., (h,J) is locally conformally Kahler. The Hermitian structure
(h, J ) is then *-Einstein iff its traceless Ricci tensor is J-anti-invariant
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(see Lemma 1 below). It follows from (2) that the *-Einstein condition is
equivalent to the following ordinary differential equation for / and g:

m ^(^34-4.
/ ^/ ^ g2

/o

An obvious solution of (3) is g = —f = const. Therefore the product of

the standard metric on R with the Berger metric a{ + aj + -aj on S3 is
a *-Einstein, non-Einstein Hermitian metric on C2 - {0} ̂  R x S3, which
is clearly of constant scalar and *-scalar curvatures (it is, in fact, a locally
homogeneous Hermitian structure). It can be shown that this construction
actually provides *-Einstein Hermitian metrics on any conformally flat
primary Hopf surface, the compact quotient of C2 - {0} by a cyclic group
< 7 >, where 7 : (^1,^2) ^ (o^i^Q^); \a^\ = \a^\ > 1 (cf. [13]). Our
main result, Theorem 1, states that these examples exhaust all compact,
non-Kahler, *-Einstein Hermitian surfaces of constant scalar and ^-scalar
curvatures.

We will resolve (3) also on the compact manifold CP^CP2. Following
[7, expose 15], we first note that a metric h defined on (—a, a) x S'3 by (1)
induces a smooth metric on CP^CP2 iff the corresponding functions / and
g satisfy the following boundary conditions:

/'(-a) = -/'(a) = l,/^(a) = /^(-a) = 0, k^ 0,
(4) g(a) + 0 ̂  g^g^^^a) = g^^^-a) = 0, k ̂  0.

We will look for solutions / and g of (3), such that / = A(-\/l - g2)' where
A is a constant. Let us introduce a new variable x == ^/l — g2 and a new
function z{x) such that x ' = ^/-z(x). Then the equation (3) reduces to

(ft (^r2 -L ^A2^ »
/C\ ~ / / \ \ r» (x ' 0^1 ) / \ ° ^(5) ^(z(x)) - 2-(:^^zw - TT^ = °-

4
The function z(x) = ———-{x2 - 1) is a solution of (5) and the corre-

o-A -r 1
spending homogeneous equation reduces to a hyper-geometric equation of
Gauss, which can be solved explicitly; the even solutions of (5) are given
by

^ - 2 ^2 n.^l±Z(^)
^-^^l)^ ~ l ) ^ c (1-^2). -



WEAKLY-EINSTEIN HERMITIAN SURFACES 1679

A/6A2 + 3 — 1
where C is a constant, k = ———.———, and P(x) = (1 + rc)2^^^ +^
1 - re). To ensure the boundary conditions (4) we need to show that there

^
exist constants Co and XQ e (0,1) such that z(xo) = 0 and z\xo) = —.

1 A

This follows easily provided A > -. Denote by t(x) the increasing function
5

dx( x dx
t^ = / /——7-T' x e (-^O^o),^0 v—^(a;)

and let x(t) be its inverse function defined on the open interval (—a, a),
where a = ^Inn t(x). Put /(^) = AV^O^)), p(^) = v^-^). t ^
(—a, a). Then / and g are solutions of (3) satisfying the boundary conditions
(4). Observe that the Page metric is obtained when A = 1. Moreover,
computing the scalar curvature from (2), we see that it is constant iff A = 1.

Remark 1. — The metrics defined by (1) belong to the larger class of
the so-called diagonal Bianchi I X metrics which have S'£7(2)-symmetries
instead of [/(2) ones. These metrics can be written in the form

- - o W2W3 9 WiW3 9 W]W2 9
h = WiW2W3^2 + ——cr? + ———crj + ———cr2

Wi W2 W3

where w^, i = 1,2,3 are positive functions of t. Suppose that such a
metric h is not Einstein, has no U (2) -symmetries, and admits a compatible
complex structure J such that the traceless Ricci tensor of h is J-anti-
invariant. Then it is easily seen that J itself must be S'(7(2)-invariant, and
the existence of such a complex structure is then equivalent to the existence
of a solution to a system of three ODE of second order for the functions
w^, % == 1,2,3. Taking appropriate local solutions of this system we see
that there are germs of Hermitian metrics with J-anti-invariant traceless
Ricci tensor whose self-dual Weyl tensor is non-degenerate. In contrast, the
self-dual Weyl tensor of any Hermitian surface of J-invariant Ricci tensor
is degenerate according to the Riemannian version of the Robinson-Shild
theorem [2]. D

2.2. *-Einstein metrics on products of Riemann surfaces.

Suppose that (M,^,J) is a Kahler surface which is the product
of two compact oriented Riemann surfaces (X,gx) and (Y,^y). If the
corresponding Gauss curvatures sx and SY are both constant, an argument
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from [1, pp. 3059] shows that the conformal class of (7 contains a *-Einstein
metric iff g itself is Einstein (i.e. iff sx = 5y).

In this subsection we consider the general case when gx and gy are
arbitrary metrics on X and V, respectively. Let gx = ^Qx-i where gx is
a metric of constant Gauss curvature, and ip is a (non-constant) smooth
function on X. We will show that for M = CP1 x CP1 and M = X x V,
where X and Y are Riemann surfaces of genus g(X) > 2, ^(""K) ^ 1,
there always exists a conformal metric /i = e~2^g on (M,J), which is *-
Einstein, but non-Einstein, provided that gy is taken to be of constant
Gauss curvature. Indeed, if (f) depends on X only, then the *-Einstein
equation for the metric h reads as (see (ii))

(6) A^+^^ye^,

where A is the Laplacian of g x , ^ is the function

^ = -2A^ + 2gx(d(/), d(/)) -h sx,

and sx denotes the constant Gauss curvature of gx- It follows from (6)
that SY must be a constant, say a. Set

Vol^x^o- / ^dV-^ = 47rx(X) + 2 /' gx{d^d^dV-^^
J x J x

where ^(X) is the Euler characteristic of X. Substituting rj = '0+7, with 7
determined by the conditions A7 = /-A—/^) ̂ d fy 7^^x = ^? ^ne equation
(6) takes the form

(7) e-^Ayy+^o) = ae~^.

So, any function (f) on X such that (7) has a smooth solution 77 determines
a Kahler metric g on X x Y with h = e~2^g being *-Einstein. The equation
(7) presents fairly in the literature in connection with the problem of
existence of Riemannian metrics with prescribed Gauss curvature, see for
example [4, ch. 5] and the references included there. In particular, it is
known that in the cases /^o < 0,a < 0 and fiQ = a = 0 the equation
(7) has a smooth solution on any compact Riemann surface (see [4, 5.9]),
while if IIQ ^ 0,a > 0 it may not admit any solution [17]. Notice that if
\{X) < 0, then the condition p,o ^ 0 can be always satisfied by rescaling
(j) if necessary. Thus, for any such a function (f) (in the case \{X) < 0 and
\(Y) ^ 0) we find a *-Einstein (non-Einstein) metric on M = X x Y. The
equation (7) can be also solved for X = S'2, Y = S2 by taking (f) to be
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invariant under the antipodal map of S2 and then considering (7) on RP2

(see [4, Theorem 5.10]).

3. Second Bianchi identity
for *-Einstein Hermitian surfaces.

Let (M, h) be a 4-dimensional oriented Riemannian manifold. We
denote by A2M = A^~M ®A~M the bundle of 2-forms on M, where A'^M,
resp. A~M, is the bundle of self-dual, resp. anti-self-dual, 2-forms, i.e.,
the eigen-sub-bundle with respect to the eigenvalue +1, resp. -1, of the
Hodge operator * acting as an involution on A2M. We will freely identify
vectors and covectors via the metric h and, accordingly, a 2-form (f) with the
corresponding skew-symmetric endomorphism of the tangent bundle TM
by putting h((f)(X), Y) = 0(X, Y) for any vector fields X, Y.

Considering the Riemannian curvature tensor I? as a symmetric
endomorphism of K^M we have the following 5'0(4)-splitting:

R = —Id + Rico + W^ + W~,

where s is the scalar curvature, Rico is the the Kulkarni-Nomizu extension
of the traceless Ricci tensor Rico to an endomorphism of A2M anti-
commuting with *, and W± = —(W d= * o W) are respectively the self-
dual and anti-self-dual parts of the Weyl tensor W. The self-dual Weyl
tensor W^ is viewed as a section of the bundle Syn^A'^M) of symmetric,
traceless endomorphisms of A~^M (also considered as a sub-bundle of the
tensor product A~^M (g) A^M). Then, the codifferential 6W^ of W^ is a
section of the rank 8 real vector bundle V = Ker (tr : A1M(8)A+M ̂  A1^^),
where tr is defined by tr(a (E) 4>) = 0(o0 on decomposed elements.

Let C be the Cotton-York tensor of (M, /i), defined by

Cx^z = \{Dz (^h + Rico) (V, X) - Dy (^h + Rico) (Z, X)].

(Here and henceforth D denotes the Levi-Civita connection of h). Then the
second Bianchi identity reads as C = 6W, where 6W is the codifferential
of W. In particular, we have

(8) C^ = 6W~^,

where C^~ denotes the self-dual part of (7.
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Let (M, h, J ) be a Hermitian surface, which means a 4-dimensional,
oriented Riemannian manifold (M, h) endowed with a compatible complex
structure J — i.e., J is h-orthogonal (h(JX, JY) = h(X, Y)) and positive
(the orientation induced by J coincides with the chosen orientation of M).
We denote by F the corresponding Kahler form defined by F{X,Y) =
h(JX,Y).

The action of J extends to the cotangent bundle T*M by putting
(Ja)(X) = -a(JX), so as to be compatible with the Riemannian duality
between TM and T*M. This action further extends to an involution on
A^M by putting (J(f))(X, Y) = (f){JX, JY), which in turn gives rise to the
following orthogonal splitting of A~^M:

P^M = R.F C A^-M,

where A^M denotes the bundle of J-anti-invariant real 2-forms.

We denote by

- 6, the Lee form of (h, J ) defined by dF = 0 A F or, equivalently,
0 = J 6 F ' ,

- <1> = (c^)+, the self-dual part of d6\ it is easily checked that the inner
product of d0 and F vanishes identically, so that <1> is actually a section
of A^-M;

- ^ = —J o (c^)+, again a section of A^"M;

- ^, the conformal scalar curvature, defined by K, = S/^W'^F),.^); it
is well known that K is the scalar curvature with respect to h of the
canonical Weyl structure associated to the Hermitian structure (/i, J),
see [32], [12]. The conformal scalar curvature is conformally covariant
of weight -2, and it is related to the Riemannian scalar curvature s
by (see e.g\ [12])

(9) /.=5-|(2^+|0|2);

- 5*, the ^-scalar curvature, defined by 5* = 2/i(J?(F),F); it is easily
seen that s* = ^ (2/^ + s) and hence the equality (9) can be rewritten
as

(9)' 5 -5* =2^+|(9|2.

The self-dual Weyl tensor W^~ splits under the action of unitary group
U(2) (induced by J ) into two pieces W^~ and W}, defined as follows [29],



WEAKLY-EINSTEIN HERMITIAN SURFACES 1683

[2, Lemma 1]:

^4^-^Id;

(10) W^ ^-^^F+F^ ^).

Furthermore, we have that the following conditions are equivalent [2,
Lemma 2]:

(i) W} = 0;

(ii) <D = (de)+ = 0;

(iii) the spectrum of W^ is degenerate;

(iv) F is an eigenform of W~^~.

If M is compact, each of the above conditions is equivalent to d6 = 0,
i.e., h being locally conformally Kahler metric, globally conformally Kahler
if, in addition, the first Betti number 61 (M) is even [30].

The vector bundle V splits as V = V^ C V~ [2], where:

V^ is identified with the (real) cotangent bundle T*M by

^ 4

a € T*M ̂  A = Ja 0 F - - V e, 0 (a A e, - Ja A Je,),
-z=l

(11) A e ̂ + i-̂  a = -^J < A,F >,
^

where < A, F > denotes the 1-form defined by X \-> (Ax, F);

V~ is identified with the real rank 4 vector bundle underlying the
complex rank 2 vector bundle A^M (g) KM'

We denote by (^TV4")"^, resp. (<W+)~, the component of<W+ on V+,
resp. V". Then the corresponding 1-form a of (SW^)^ via (11) is given by
[2]

(12) a=-lJ^(0)+lJ69-lK0--dK.
o 4 o 12

Moreover, according to [2, Theorem 1] we have that (6W~^~)~ ^ 0 iff
W^ = 0.

The traceless Ricci tensor Rico decomposes into the sum of two U(2)-
irreducible components, its J-invariant and J-anti-invariant part. It is
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known (cf. [32]) that the J-anti-invariant part Ric^1 of the traceless Ricci
tensor of a Hermitian surface (M, h, J ) is given by

Ric^^Y) = -^DxO)(Y) + (Dy0)(X) - {Djx0)(JY)

(13) - (DJYO)(JX) + 0(X)0(Y) - 6(JX)0(JY)).

A Hermitian surface (M, h, J ) is called *-Einstein if its Kahler form is
an eigenform of the curvature operator. One can easily see (cf. [15, Lemma
3.2] or [1, Lemma 4.2]) that the *-Einstein condition can be expressed in
terms of the (7(2)-decomposition of the curvature operator as follows:

LEMMA 1.—A Hermitian surface is ^-Einstein if and only if its
traceless Ricci tensor is J-anti-invariant and the spectrum of the self-dual
Weyl tensor is degenerate. In particular, any compact ^-Einstein Hermitian
surface is locally conformally Kahler, globally conformally Kahler iff the
first Betti number is even.

Suppose from now on that (M, h, J) is a *-Einstein Hermitian surface.
As a consequence of Lemma 1 we have (<W+)~ = 0 (cf. [2]), and then the
"half" second Bianchi identity (8) simply reduces to

(14) a——I^C^F:^

Using the fact that Rico is J-anti-invariant, the Ricci identity ^(Rico) =
ds

-—, and the integrability condition DjxJ = J ( D x J ) for J, we compute

-. 4
<C,F>x=-,^^(-/z+Rico)(J^,X)

2 z==l lz

=^(JX)+J(^Rico)(JX)
^ 4

+ 2 ^{Rico((^<7)(^),X) - Rico(^, (D^J)(X))}
1=1

= ^ds(JX) - ̂ ds(JX) + JRico(0, JX)

=-^ds(JX)+^R[co(e,JX),

which, together with (12) and (14), eventually gives the following
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LEMMA 2. — For any ^-Einstein Hermitian surface the following iden-
tity holds:

(15) ds*+^9=2Rico((9).

Furthermore, we compute

4

^(RicoW) = -]^((Dj^Rico)(^,0) -Rico(I^,^))
%=i

= (<5Rico)((9) - /i(Rico,P<9).

d5
Now, by the Ricci identity ^(Rico) = — — , the equality (13), and Lemma
2, we infer

^(Rico(0)) = -^ + JRico(0,0) + |Rico|2

=^*_,)(0)+^|0|2+|R^o|2.

Taking the codifferential to both sides in (15) we finally reach the following
expression for the square-norm of Rico:

LEMMA 3. — For any ^-Einstein Hermitian surface the square-norm
of Rico is given by

(16) 4|Rico|2 = 2A5* + d{2s - 45*)((9) + i^{266 - |(9|2).

Remark 2. — One can obtain similar formulas under the only hypoth-
esis that the traceless Ricci tensor of (M, h^ J ) is J- anti-invariant. In this
case we get

(15)' d5* + i^O + <S>(0) - 26<S> = 2Rico(<9);

and

(16)' 4|Rico|2 = 2|^>|2 + 2A5* + d(2s + 45*)((9) + ^266 - |(9|2).

D

If M is compact, we denote by c^ the first Chern number of (M, J).
Then we have
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COROLLARY 1.—Let (M,/i,J) be a compact ^-Einstein Hermitian
surface. Then the following integral formulas hold:

(17) 4 / |Rico|2 = f (S-ST - s^dV^
J M J M z

t18' -^ ,/>•''-^W

Proof. — The first formula is obtained by integrating (16) and using
(9)'. To obtain (18) we apply the well known Chern-Weil formula

(19) c2,={2x+3a=^jl 2|W+|2+^-||Rico|2dy,

where \ and a are the Euler characteristic and the signature of M. The
square-norm of W^~ of a Hermitian surface can be easily computed by (10)

2^2
(see also [9]): 16|TV+|2 = —— + 4|^|2. Substituting (17) and the latter

0
expression for [TV4'!2 in (19), we get (18). D

4. *-Einstein generalized Hopf surfaces.

In this section we consider compact (non-Kahler) Hermitian surfaces
with odd first Betti number whose Lee form 6 is parallel with respect to
the Levi-Civita connection D. These are usually called Generalized Hopf
surfaces', examples are the conformally flat Hopf surfaces with the Vaisman
metric [9], [23], [31]. More generally, any principle flat ^-bundle over
a Sasakian 3-manifold admits a canonical structure of generalized Hopf
surface [31]. The complete classification of the compact Generalized Hopf
surfaces has been recently obtained in [6].

Our aim here is to show that the classification of *-Einstein general-
ized Hopf surfaces is in fact equivalent to that of the conformally flat ones.
We begin with the following

LEMMA 4. — A generalized Hopf surface (M, ̂ , J) is ^-Einstein if and
only if its ^-scalar curvature identically vanishes.

Proof. — It follows from (13) that for every generalized Hopf surface
the J-anti-invariant part of the Ricci tensor Ric is given by

(20) Ric(X, Y) - Ric(JX, JY) = -^(X^Y) - 0(JX)0(JY)).
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Since 0 is parallel, Ric((9) = 0, and it follows from (20) that Ric(J(9) =
|n|2

——.7^ — i.e., two of the eigenvalues of the Ricci tensor are equal to 0 and

—— = —-— (see (9)'). The identity (20) also shows that for any vector
z z

field X which is orthogonal to {span(^, JO)} we have Ric(JX) = JoRic(X);
it thus follows that the other two eigenvalues of Ric coincide being equal

s I s*
to —-—. As the metric g is locally conformally Kahler it is *-Einstein iff
the traceless Ricci tensor Rico is J-anti-invariant (Lemma 1), i.e., iff the
spectrum of Rico at any point is of the form (a, -a,&, -b). The latter is
clearly equivalent to s* ^ 0. D

Given a generalized Hopf surface (M, ̂ , J ) we associate a natural 1-
parameter family of generalized Hopf metrics ^ as follows: For any real
number t < - we put

Zi

(21) g t = g - — { e ^ e + J 6 ^ j e ) .

It is easily checked that the Levi-Civita connection Dt of ^ is given by

D^Y = DxY + ——[20(JX)0(JY)0 + (0W0(JY)

(22) + 0(JX)0(Y))J0} - t[0(JX)JY + 0(JY)JX\.

Then the Lee form 6t of (^, J) is equal to (1 — 21)6. Using (22) we obtain
that Ot is parallel with respect to D1. By a direct computation we get for
the Ricci tensor of ^:

Ric* = Ric + t^g - 0 0 0 - J0 (g) J0) + 2t(t - 1)J0 0 J(9,

hence, the scalar and *-scalar curvatures Sf and s^ are given by

(23) St=s+t\0\2, 5,*=5*+3^|2.

Now we are ready to prove the following

THEOREM 2. — Let (M, ̂ , J ) be a generalized Hopf surface. Then g is
^-Einstein metric if and only if the metric g\. defined by (21) is conformally
flat.

Proof. — According to Lemma 4, g is *-Einstein iff 5* = 0, or
equivalently, iff s = \0\2 (see (9)'). By (23) we have that the, conformal

scalar curvature ̂  = ———* of (^, J) is equal to -(8t-1)|0|2; it vanishes
2i L
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for t = . . Since the metric g ^ is locally conformally Kahler, it follows from
(10) that the self-dual Weyl tensor vanishes. Consider the (almost) complex
structure J on M, defined on span(0, JO) to be equal to J and on the
orthogonal complement of span(^, JO) to be equal to —J. It is easily seen
that (M, g , J) is a generalized Hopf surface and J is compatible with the
inverse orientation of M. Moreover, the corresponding Lee form 0 is equal
to 0, hence the *-scalar curvature of (<y, J) vanishes. Since the corresponding
1-parameter family of inverse oriented generalized Hopf structures is (^ 3)^
we conclude as above that the anti-self-dual Weyl tensor of g i vanishes as
well, i.e., ^i is conformally flat.

Conversely, starting from a conformally flat generalized Hopf surface
(M,^,J), we have by (10) that the conformal curvature K vanishes, i.e.,

3
s == ^|(9|2 according to (9). Then it follows from (9)', (23) and Lemma 4
that the metric g * = g__ i is *-Einstein. D

6

Remark 3. — The Hermitian scalar curvature u of a Hermitian surface
(M, /i, J ) is by definition the trace of the Ricci form of the Hermitian
connection of (fa,J). It is known (see [12]) that u is related to the scalar
and *-scalar curvatures of (/i, J) by

-^M2.
By (23) we see that the metrics gt have the same Hermitian scalar
curvature. Hence, the same reasoning as in the proof of Theorem 2 shows
that a generalized Hopf surface (M, ̂ , J) has constant positive Hermitian
scalar curvature iff the family g^^i < . contains a conformally flat metric.

z
In particular, any generalized Hopf metric with constant non-negative

3 1scalar curvature has the form ^ , — - ^ ^ < ^ , where g is a conformally
flat generalized Hopf metric. D

5. Proof of Theorem 1.

Let (M, A, J) be a compact *-Einstein Hermitian surface of constant
scalar and *-scalar curvatures s and s*. By Lemma 2 we obtain Rico(^) =
K K
—0. Since Rico is J-anti-invariant, we get Rico(J^) = ——JO. Thus, at any



WEAKLY-EINSTEIN HERMITIAN SURFACES 1689

point where 0 does not vanish, we have

.^. , 9 . 44|Rico|2 > .^(Rico(0,0)2+Rico(J0,J0)2)

(24) =J(,-302,

and therefore

4|Rico|2 ^ J(s - s*)(s - 3s*) + s*(s* - s) + 2(s*)2

^(s-^Ks-Ss^+s^-s).
^

On the other hand, if 0 vanishes in a neighbourhood of a point x € M,
then according to (9)' and (16), we have at x:

4|Rico|2 = ^(s - s*)(s - 3s*) + s*(s* - s) = 0.

It thus follows that (25) holds everywhere on M. Integrating (25) over M
we get

( 4|Rico|2dy^ f l(s-s^{s-3s^+s^s^-s)dV
JM JM 2

(26) = / ^{s-s^s-^-s^efdV
JM 2

(here we made use of (9)' and the fact that s* is constant). Notice that
equality in (26) (resp. in (24)) is achieved iff s* = 0, and (at any point

( Q Q \

where 0 is non-zero) the spectrum of Rico is equal to — -, -, 0,0). Now,
it follows from Corollary 1,(17) that

// s^e^dv^o,
JM

which shows that either 0 = 0 , — i.e., (fa, J ) is Kahler —, or else s* ^ 0.

Suppose (/i, J ) is non-Kahler. If s* > 0, then by Corollary 1, (18) we
get c2 > 0. According to the classification of compact complex surfaces (cf.
[5]) the latter situation occurs only for complex surfaces of Kahler type,
i.e., &i(M) is even. Thus h is conformal to a Kahler metric g = f^h (see
Lemma 1). Since for a Kahler surface the scalar and the *-scalar curvatures
coincide, we obtain that the conformal factor / satisfies

4A/+(s-s*)/=0,
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where A denotes the Laplacian of g (cf. [8, 1.161]). It follows from the
maximum principle that s — s* = 0, which contradicts (9)'.

Consider now the case s* = 0. It follows from (9)' that s is a positive
constant. In particular, 6 does not vanish on an open dense subset of M. As
we have already mentioned, the equality in (25) implies that the Ricci tensor

( o o c \
Ric has eigenvalues 0,-,-,-) at any point where 0 does not vanish,
hence the Ricci tensor is non-negatively denned everywhere on M. Since
the scalar curvature of (M, /i, J ) is positive, the Hermitian scalar curvature
is also positive (cf. [1, Lemma 3.3]), hence all plurigenera of (M, J ) vanish
by [11, Plurigenera Theorem]. The same reasoning as in the case 5* > 0
shows that M is not of Kahler type. Thus, (M, J) is in class V I I of the
Kodaira-Enriques classification; in particular 61 (M) = 1 (cf. [5]). Denote
by ^ a non-zero harmonic 1-form with respect to h. It follows from the
Bochner formula that $ is parallel and Ric(^) = 0 at any point of M. The

latter condition implies that 0 == /^, where / = h^6, T~\' It also follows

that Ric(J$) = ^J^, and Ric(X) = ^X, VX e {span(^, J^ holds on
2t 4

the dense subset of M where 0 ^ 0 , hence, everywhere on M. Moreover,
we have that J^ is a Killing vector field of constant length. Indeed, since $
is parallel and 6 = /^, we get

f(Dx(J^)(Y) + Dy(J^(X)) = 0{(DxJ)(Y) + (DyJ)(X)) = 0

(for the latter equality we made use of the well known formula D^F ==
-(X A J6 + J X A (9), cf. [18].) The universal cover M of (M, h) then splits
as M = R x N , where N is a compact Riemannian 3-manifold whose Ricci

( s s s\
tensor has eigenvalues ., -, -). Rescaling the metric h and the vector
field $ if necessary, we may assume that 5 = 4 and \J^\ = 1, i.e., J^ is a
unit Killing vector field on N such that ^^(J^, X) = J"$AX, for any vector
field X on N. Hence J^ determines a Sasakian structure on N , since N is
3-dimensional. It follows from [31] that the Lee form of (h, J ) is parallel,
i.e., (M, /i, J ) is a generalized Hopf surface. Now applying Theorem 2 and
the classification of compact conformally flat Hermitian surfaces [9], [23]
we complete the proof of Theorem 1.
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