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ON SOLUTIONS OF THE SCHRODINGER EQUATION
WITH RADIATION CONDITIONS AT INFINITY:

THE LONG-RANGE CASE

by Y. GATEL & D. YAFAEV

1. Introduction.

In this paper we obtain a complete description of solutions u(x} of
the homogeneous Schrodinger equation with a long-range potential V
(1.1) -An(^) + V{x)u(x) = \u{x), x e R^ A > 0, V = 7,
obeying the natural condition

(1.2) ( ^(x^dx^Cp as p-^oo.
J\x\<p

Our aim is to show that every function u(x) satisfying (1.1) and (1.2)
is asymptotically a sum of incoming and outgoing distorted spherical waves
(1.3) w±(x, A) = |^|-(rf-i)/2^(^\
where the phase y? is a suitably chosen approximate solution of the eikonal
equation
(i.4) Iv^Mp+y^A.
Clearly, for functions w±, estimate (1.2) is fulfilled. Remainders e(x) in our
asymptotic formulas will satisfy the condition

(1.5) lim p-1 { \e{x)\2dx=0,
°̂° J\x\<p

Keywords: Scattering theory - Long-range potentials - Homogeneous Schrodinger
equation - A class of solutions - Scattering matrix.
Math. classification: 35J10 - 35B40.
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which will be denoted as e(x) = Oa^M"^"^72). Of course, condition (1.5)
is satisfied if e(x) = od^l"^"1^/2) in the usual sense.

The main result of our paper can be formulated as follows:

A) For any function a- € L^S^"1), there exist a function a+ €
L^S^1) and a solution u of equation (1.1) with asymptotics (uniform in
A from any compact subinterval of (0, oo))
(1.6)

u{x) =a+(^)w+(:z-,A) -a-^w-^^+Oa^l^l"^"^2), x = x/\x\

9ru(x) = ̂ (a+(;r)w+0r, A) + a-(^)w-(^ A)) + Oav(\x\-^-1^2)^

(1.7) 9r =9/9\x\^

as \x\ —> oo. Moreover one has ||a-(-|| = ||a-||.

B) Every u satisfying (1.1) and (1.2) has the asymptotics (1.6), (1.7)
with some functions a± € L^S^"1).

We emphasize that in the part A) the function a+ and the solution
u are determined uniquely by a_. Of course, the roles of a+ and a_ can
be interchanged here. This implies that the operator S(A) : a- \—> a+
is unitary in L^S^"1). Thus, we establish the one-to-one correspondence
between functions a± € L2^^"1) and solutions of (1.1) satisfying condition
(1.2).

Usually the scattering matrix <?(A) : L^S^-1) -^ L^S^-1) for the
Schrodinger operator H = —A + V is defined in terms of solutions of the
time-dependent equation. Let fl{x^t) = —fl.(x^—t) be a solution (perhaps
approximate) of the time-dependent eikonal equation

(1.8) <9fV<9t-+-|V^|2+V=0.

It can be shown that for any / orthogonal to eigenvectors of H there exist
elements /± such that

(1.9) (e-^m/)(^=^^)(2^)-d/2/±((2t)-lrr)+6±(^t),

where ||e±(',^)|| = o(l) as t —> ±00. Let us write f±{x) as /±(^, \x\). The
operator <?(A) : /-(•, V^A) i-» /+(*, V^A) is known as the scattering matrix.
It turns out that the operators <?(A) and S(A) essentially coincide. Namely,
«S(A) = E(A)T, where T, (To) (a;) = a(—c<;), is the reflection operator on
the sphere. Thus, in the long-range case, our approach provides a way
to construct the scattering matrix in terms of solutions of the stationary
equation (1.1).



ON SOLUTIONS OF THE SCHRODINGER EQUATION 1583

We emphasize that neither relation (1.6) nor (1.9) define the scat-
tering matrix <S(A) uniquely. Indeed, an arbitrary function Q(x^ X) can be
added to ^>(x,\) in definition (1.3) or the function —sgntO^x^x^/^t2))
can be added to n(rr,t) in (1.9). This corresponds to the replacement of
S{\) by e^+WS^e^-W where 6±(A) is multiplication by 9(±^A).

In the short-range case (when ^>(x,\) = \/A|a:| — (d — 3)7r/4), the
results formulated above were proven in [15], where the techniques of [2],
[3] were extensively used.

Our proofs rely heavily on the well-elaborated machinery of long-
range scattering theory (see [5], [12]). More precisely, we need the sharp
form of the limiting absorption principle [I], [8], [10] and the asymptotics
[6], [9] of the function ({H - A d= zO)-1/)^) as \x\ -^ oo.

Let us mention also the recent paper [11] where a result of type A)
(but not of type B)) was obtained in the general context of asymptotically
Euclidean manifolds. In [11] only perturbations of the metrics which corre-
spond to very short-range potentials and only functions a± € C00^'1)
were considered.

2. Preliminaries.

1. Let © = ©(R^) be the Schwartz space of test functions and
L^ = Z^R^) be the Hilbert space of functions / such that

= / (l+\x\2^\f(x)\2dx<oo.
jRdW

Recall definitions of spaces B, J3*, B^ introduced in the context of scattering
theory in [2]. The space B consists of functions / such that the norm

\172 °° / r \172

|/(:r)|2^ +E 2 n / \fW\'dx) <oo.
) ^o\ ^2n<H<2-H /

The space B*, dual to B with respect to L2 == ^(M^), is a Banach space
with one of its equivalent norms given by

1/2
/ r \

^=snp[p-1 / |/(.r)|2^|B- = sup \ p
p>l \ J\x\<pp>l \ J\x\<p )

We denote by (•, •} the corresponding duality symbol. Clearly,

L2 C B C L2^ C L2 C L\^ C B* C L2^, V-y > 1/2.
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The closure B^ of L2 in the norm of B* consists of functions e(x) satisfying
(1.5).

Denote by H2 = H^R^) the Sobolev space and by Hj^ the space of
locally H2 functions; C and c are different positive constants whose precise
values are of no importance. We need the following elementary property of
the space B * .

LEMMA 2.1. — If f C H2^, then

||V/||B-<C7(||/||^+||A/||B-).

Proof. — For any real < € (^(R^), one has the identity

(2.1) / IV/FCcte^-1 [ l/pACcte-Re / A/7C^.
jRd jRd JRd

Indeed, integrating by parts we see that

(2.2) - / A/JC^- f |V/|2C^+ / V//VC^,
jRd J^d J^d

and
/ v/7vc^ =- 1 /v/vc^ - ( I/I'AC^.
jRd jRd J^d

The last equality is equivalent to

(2.3) 2 Re / V/7VC^=- / {f^^dx.
jRd jRd

Combining (2.2) and (2.3), we arrive at (2.1).

Suppose now that (^(x) = 1 for \x\ < 1, ((x) = 0 for \x\ >_ 2 and set
Cp(a0 = C(^/P). Then (2.1) yields

t ^f\2ax/p)dx=2-lp-2 f \f\\^)(x/p)dx-Re [ ^fK(x/p)dx
JRd J^d J^d

and hence

(2.4) f ^f^dx^C ( ( lA/p+l/ l 2)^
J\x\<^p J\x\<2p

with C independent of p ^ 1. D

COROLLARY 2.2. — Let u e H2^ H B* be a solution of equation
(1.1) with a bounded potential V. Then

||Vn||B- <C\\U\\B^.
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In the following assertion the functions w± are denned by formula
(1.3) but the function y? may be arbitrary.

LEMMA 2.3. — Let u € Hĵ  be a solution of equation (1.1)
satisfying, for some a± 6 L^S^"1), conditions (1.6) and (1.7). Then

IKII= IMI.

Proof. — Since Im AmZ = 0 according to (1.1), integration by parts
yields

(2.5) Im / UrUdSr =lm ^uudx = 0.
J\x\=r J\x\<r

Using (1.6), (1.7) and the identity

Im z(a_a4-w-w-(- — a+a-w+w-) == 0,

we see that

Im UrU = Im ?vA(a4-w+ -(- a-w-)(a^.w^- — a-w_) 4- c(x)
(2.6) == v^-^la+p-la-l^+e^),

where
/ \e{x)\dx == o(p), p—> oo.

^l.rl^/9

Inserting (2.6) into (2.5) and integrating over r € (0,p), we obtain that
||a+||2 - ||a-||2 = o(l) and hence |K|| = ||a-||. D

We need also an abstract theorem of H. Hahn (see e.g. [16], chapter 7
§5) which we formulate in terms adapted to our case.

THEOREM 2.4. — Let F : B —^ L<2(Sd~l) be a bounded operator.
Suppose that the adjoint operator F^ : L2(Sd~l) —^ B* has a closed
range R{y). Then an element u € B* belongs to jR(.F*) if (and only
if) (n, /) = 0 for all f from the kernel N{F) of the operator T. Moreover,
R(f) = L^-1) if7V(^*) == {0}.

2. Let us now give precise conditions on the potential V. We always
suppose that

(2.7) V{X)=VL(X)+VS(X)

where the long-range part VL(^) is a C^-function such that

(2.8) I^VL^)! ̂  C(l + M)-6-^', 6 6 (0,1], 0 < H < 3,
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while the short-range part Vs(x) satisfies

(2.9) \Vs(x)\ <C(1+M)-1-6.

Note however that many intermediary results require (2.8) for | a \ < 1 or
|o;| < 2 only.

The Schrodinger operator H = -A + V(x) is of course self-adjoint in
L2^) on the domain H2.

We start with a reformulation of a standard uniqueness result (see
e.g. [12], for a similar assertion) in terms convenient for us.

PROPOSITION 2.5. — Suppose that u C H2^ satisfies (1.1) and
u € B^. Then u = 0. In particular, the operator H does not have positive
eigenvalues.

Omitting the proof, we only note that inequality (2.4) implies the
inclusion 9rU G B^. Hence there exists a sequence Tn —^ oo such that

[ (\QrU\2 + H2)^ -^ 0.
J\X\=Tn

The equality u = 0 is deduced from this relation.

Combining Proposition 2.5 with Lemma 2.3 we also obtain

PROPOSITION 2.6. — Suppose that u € H2^ satisfies (1.1) and for
some a e L^S^-1) (and one of the signs it + " or " - ")

(2.10) u(x) = a{x)w^(x, X) + Oa^M-^-^2),

(2.11) Qru(x) = ±iV\a(x)w±(x, A) + ̂ (M-^-^2)

as |a;| —> oo. Then u = 0.

This assertion shows that a solution u of equation (1.1) satisfying
(1.6) and (1.7) is determined uniquely either by a+ or by a_.

3. Construction of scattering theory relies on the following fundamen-
tal result on the resolvent R(z) = (H — z)~1 of the operator H known as
the limiting absorption principle. Denote by ||-R(^)HB,B* the norm of the
operator R{z) : B —^ B*.

PROPOSITION 2.7. — Under the assumptions (2.7) - (2.9)

(2.12) \\R(z)\\B^ <C, Im^O,
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where the constant C does not depend on z as long as 0 < \Q <, Re z <
Ai < oo. Moreover, for any f,g e B, the function (R(z)f,g) (resp.
the operator-function R(z) : L^ -^ L^y, 7 > 1/2,) is continuous (resp.
continuous in norm) with respect to z up to the cut along [0, oo).

The proof of this result, based on the Mourre estimate, can be found
in [10] (see also [5], for an alternative proof).

COROLLARY 2.8. — Under the assumptions of Proposition 2.7

(2.13) ||V^)|[B,B- <G, Im^O.

Proof. — Let / € B and v = R{z)f e B\ Since Av = (V - z)v - /,
Proposition 2.7 implies that

||A^||B-<c(|M|B-+||/||B-)<Cf||/||B.

Now (2.13) follows from Lemma 2.1. Q

3. Generalized Fourier transforms.

1. We need an approximate solution of the eikonal equation (1.4)
(see e.g. [9]).

LEMMA 3.1. — For any X > 0 there exists a real-valued function
^>(x, A) satisfying the equation

r)(f)
(3.1) 2^/A—.(a;,A)=|V,<&(:c,A)|2+V^)

I I

for | a; | large enough and the estimates

(3.2) \9^{x, A)| ̂  C(l + M)1-'^, H ̂  3, (3 < 2.

Note that all our results, in particular estimate (3.2) as well as all
estimates below, are uniform in A from any compact subinterval of (0,oo).
Estimates (3.2) for (3 > 0 are used in Section 5 for construction of time-
dependent wave operators. Otherwise we need only continuity of ^>{x, A)
with respect to A. Relation (3.1) ensures that

(3.3) ip(x, A) = V\\x\ - ̂ [x, A) - 7r(d - 3)/4

is a solution of equation (1.4) with V replaced by VL for sufficiently large
\x\. In what follows the functions w±(a;, A) are always given by (1.3) where
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^>(x, A) is any function satisfying (3.1) up to a term Oda-l"1"'6), e > 0, as
\x\ —>• oo and estimates (3.2). In fact, one can construct by iterations (see
for example [12]) an explicit function <l>(a;,A) satisfying these conditions
but, in general, this construction requires assumption (2.8) for |a[ > 3.

Let us denote RL{Z) = (-A + VL - z)~1. Our paper relies essentially
on the following result.

THEOREM 3.2. — Let VL satisfy (2.8) and f e 6. Then

(3.4) (J^(A db i0)f)(x) == Tr1/^-1/4^^^, A) + o(\x\-^-^2),

(3.5) (cWA±zO)/)(^) = ±i7^1/2Xl^a^±x)w^\)+o{\x\-^-^/2)^

for some a^ € L2^-1) as \x\ —^ oo.

This result was first proven in [6] for 6 > 1/2 and for a suitably chosen
sequence \Xn\ —)> oo. These technical restrictions have been independently
overcome in [9] and [12].

Relation (3.4) allows us to define the mapping ̂ (A) : © -^ L^S^-1)
by the equality (^(X)f)(x) = a^x). Set v± = RL(X ± i0)f for / € 6 so
that

(-A+VL-A)^=/.

Integrating by parts and using relations (3.4), (3.5), we obtain that

/ (v±f - fv±) dx = (v±Av± - v±Av±) dx
J\x\<r J\x\<r

== / (v^9rV± — V±9rV±) dx
J\x\=r

(3.6) = ±2m f \a^(x)\2 dx + o(l)
Js^-i

and hence, passing to the limit r —^ oo,

(3.7) {RL(\ + z0)/, /) - {^(A - z0)/, /} = 2m f |(^(A)/)(^)|2^.
J^d-l

Proposition 2.7 and relation (3.7) yield

LEMMA 3.3. — The operator ^(A) extends by continuity to a
bounded operator from B into L^S^"1).

The asymptotics (3.4) and (3.5) can now be extended to an arbitrary
/ € B. At the same time, the short-range part of the potential will be
included.
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THEOREM 3.4. — Let V satisfy (2.7) - (2.9) and f € B. Then
(3.8) (R(\ ± z0)/) 0.) = Tr1/^-1/4^^^, A) + ̂ (M-^72),

(3.9) (OrR(\ ± i0)f) (x) = ±^7^1/2Xl^a^±x)w^ A) 4- o^{\x\-^/2)
for some a± e L^S^"1) as \x\ —^ oo.

Proof. — Choose, for example, the sign "+". Consider first (3.8) for
RL(> + z0)/. Let fn G 6 be such that \\fn - f\\a -^ 0 as n -^ oo. Then

P-^RL^ + z0)/ - a(A)w+^(A)/||^(|,,<^
^P-^II^^A+ZO)^-/,)!!^,!^

^-^-^^(^IIW+^^A)^ - /n)||̂ (|,|<,)

(3.10) +p-V2||^ ̂  ,o)/, - a(A)w+^(A)/,||^(i,,<,),

where a(A) = 7^1/2A-1/4. Clearly, the first term in the right-hand side is
bounded by C||^(A+zO)(/-^)||B* and the second equals c||J^(A)(/-
/n)llL2(§d-i). Thus, both of them are estimated by ||/ - fn\\B according to
Proposition 2.7 and Lemma 3.3. The last term in (3.10) tends to zero for
fixed n and p —^ oo according to (3.4). This yields asymptotics (3.8) for
RL{\ + 10} f and any / e B.

Taking into account the resolvent identity and Proposition 2.7, we see
that

^ (A+zO) /=^(A+zO)^ where g = / - VsR(\ + i0)f € B.
Therefore (3.8) is an immediate consequence of the same relation for
^(A+z0)<7.

The proof of (3.9) can be obtained quite similarly on the basis of (3.5)
and the boundedness of the operator 9rRL(> + iO) : B -» B*. D

We define now the mapping ^±(A) : B —^ L2^"1) by the equality
(3.11) ^±Wf){x)=a^x).
It follows from (3.8) and (3.9) that relation (3.6) holds for some sequence
Tn —> oo which implies the equality

(3.12) {R(\ + z0)/, /) - {R(\ - z0)/, /) = 2m { |(^±(A)/)(:r)|2^.
J^d-l

This gives us

PROPOSITION 3.5. — The operator ^±(A) is bounded from B into
^(S^-1), and its adjoint ^(A) is a bounded operator from L^S^--1) into
B\



1590 Y. GATEL & D. YAFAEV

Note that in the free case V = 0, the operators ^-(A) = ^-(A) ==
*?o(A) where

(3.13) (W)/)(o;) = 2- l/2A<d-2)/4/(A l/2^)

and / is the Fourier transform of /.

2. Our aim is now to derive a convenient representation for the
operator ^(A) on functions a e C00^-1). Let rj € C^R^) be such that
r](x) = 0 in a neighbourhood o fa ;=0 and rj(x) = 1 for large \x\. Obviously,
the functions

(3.14) n±(:r, A) = rj(x)a{±x)w^{x, A)

belong to the space B*. It follows from (3.2) that

(3.15) 9rU±(x, A) = ±^Al/2u±(a;, A) + o^x^-1^2-6).

Set also

(3.16) g±W = (-A + V - A)n±(A) =: G±(A)a.

Straightforward calculations (which can be found for example in [9]) show
that

(3.17) g±{\) € L2^) for 7 < 1/2 4- 6.

Of course, the definition of the operator G±(A) depends on 77, but as we
will see below, this dependence is inessential.

PROPOSITION 3.6. — Let a e C^S^"1) and let n±, g± be given
by (3.14), (3.16). Then (as elements ofB*)

(3.18) ±2%7^1/2Al/4^(A)a = n±(A) - R(X =F ̂ ±(A).

Proof. — We consider only the " 4- " case, proofs being similar. It
suffices to check that for any / 6 B

(3.19) (u+,/) - {g^R(\+iO)f} = ̂ Tr^A^a.^A)/)^-!).

Applying the Green formula to n+ and v = R{\ + %0)/, we see that

/ (n+7 - ̂ +^(A + %0)/) dx= (vAn+ - n+A^J)drr
J|a;|^r J|a;|<r

(3.20) = / (v9rU^.-u+9rv)dSr.
J\x\=r

It follows from Theorem 3.4 that

( (|v-6w+|2+|(9^-^Al/26w+|2)d5^ = o(l), b = Tr1/^-1/4;^)/,
^|a;|=rn
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for some sequence Tn —> oo. Therefore, taking into account (3.14), (3.15),
we obtain, by the Schwarz inequality, that

/ {{v-bw^)9ru+ -^A+(9^+%Al/26w+))d5^ = o(l).
J\x\=r^

Using again (3.14), (3.15), we see now that

/ (v9rU+ - u^Qrv) dS^ = / (<9^+ + i^^u^bw^ dSr^ 4- o(l)
J\X\=Tn J\X\=Tn

= 2^A l/2(a,^2(§d-l)+o(l).
Thus, the right-hand side of (3.20) tends to the right-hand side of (3.19)
as Tn —> oo. Obviously, the left-hand side of (3.20) tends to the left-hand
side of (3.19) as r —> oo. D

COROLLARY 3.7. — For any a <E C00^-1), the function J^(A)a €
H ,̂ H B* and

(3.21) (-A + V - A)^(A)a = 0.

Taking also into account Proposition 3.5 and Corollary 2.2, we deduce
the following result

PROPOSITION 3.8. — For any a € L2^"1), the function ̂ (A)a €
Hj^ D B* and the equation (3.21) is satisfied. The operators A^'^(A) and
<9^ (A), j = 1,... ,d, defined by (3.18) on the set C00^-1) extend by
continuity to bounded operators from L^S^"1) into B*.

Finally, we note that, according again to Proposition 2.7, all objects
introduced here are continuous (in a weak sense) with respect to A. For
example, the function (^±(A)/,a) is continuous in A for all / C B and
a 6 L2^-1).

Representation (3.18) is not new. It occurred already, e.g., in [9] where
it was used for the proof of Theorem 3.2. We have given the proof of
Proposition 3.6 only for the sake of completeness of our exposition.

4. The main result.

1. Now we are able to obtain the spatial asymptotics of functions
(.T^(A)a)Cr). For a e C0^-1), let us set

S+(A)a = Tr^A-^.^^G^Ta,
(4.1) E-(A)a == 7^1/2A-l/4r^-(A)G+(A)a,



1592 Y. GATEL & D. YAFAEV

where T, (Td}(uj) = a(—o;), is the reflection operator on the sphere and
G±(A) is defined by (3.14), (3.16). Recall that, according to (3.17), G±(A) :
C00^-1) -^ L^) for some 7 > 1/2 while ^±(A) : L^^) -^ L2^-1)
for any V > 1/2. Hence S±(A) : G0^-1) -^ L^S^-1) is well defined.
Put /?(A) = -^Tr-1/^-1/4.

PROPOSITION 4.1. — The operators S±(A) extend by continuity to
unitary operators on L^S^"1) and

(4.2) S+(A)=S*_(A), S-(A)=S^(A).

For any a± € L^-1), the functions

u^ = ̂ (A)a+ and u- = ^(A)Ta-

have the foJiowing asymptotics as \x\ —>' oo:
(4.3)

^(a:)=/3(A)(a+(^)w+(^A)-(S-(A)a+)(^-(^A))+o^(|.z;|-^-1)/2),

(^+)(a;) ̂ ^/^(^(a+^w+^.A) + (S-(A)a+)(.r)w-(a;,A))

(4.4) +^(|^-(^-i)/2^

and
(4.5)

^_(^)=^(A)((S+(A)a-)(^)w+(^A)-a-(rF)w-(^A))+o^(|^|-(d- l)/2),

(9^-)(^)=^A l/2/3(A)((S+(A)a_)(^)w+(^A)+a-(^)w-(.z•,A))

(4.6) +^(|^|-(^-D/2).

Proof. — If a± e G0^-1), then (4.3) - (4.6) follow directly from
Theorem 3.4 and Proposition 3.6. By Proposition 3.8, the functions n+ and
u- satisfy equation (1.1). Moreover, relations (4.3), (4.4) and (4.5), (4.6)
play the role of (1.6), (1.7). Therefore isometricity of S_(A) and S+(A)
on the set C00^'1) is a direct consequence of Lemma 2.3 applied to
n+ and u-. Then the boundedness of the operators ^(A), 9r^(\) and
S±(A) allows us (cf. Theorem 3.4) to extend (4.3) - (4.6) to arbitrary
a± e L^S^).

It remains to check relations (4.2) or, in view of the isometricity of
S±(A), the relations

(4.7) S+(A)S-(A) = S_(A)S+(A) = J.
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Recall that by Proposition 2.6 a solution of equation (1.1) satisfying
(1.6), (1.7) is determined uniquely either by a coefficient at w+ or by a
coefficient at w-. Therefore comparing (4.3), (4.4) with (4.5), (4.6) we
see that equality S_(A)a+ = a- (equality a+ = E+(A)a_) implies that
a+ = E+(A)a- (that S-(A)a+ = a-). This yields the first (the second)
equality (4.7). D

Combined together Propositions 3.8 and 4.1 conclude the proof of the
part A) of the main result formulated in Section 1.

2. For the proof of the part B) we need the following properties of
the operator ^(A).

PROPOSITION 4.2. — For any a G L2^'1)

(4.8) lim p-1 / |(^(A)a)(^)|2 dx = (27^)-1A-1/2|K^-^.
p—)>00 JM^P

Proof. — According to (4.3) or (4.5),

47^Al/2p-l / ^Wa^dx = |H|̂ -,) + ||^(A)a||^-,)
J\x\<pa rp \

-2p-lRe ^{\)d)(uj)a(uj)duj \ exp(^2i^(ru;, A)) dr ) + o(l).
d-i Jo )

Integrating with the help of (3.2) by parts, we see that
rp

lim p~1 / exp(=F2^(ro;, A)) dr = 0.
P-^° Jo

Therefore (4.8) follows from isometricity of the operator Sq=(A). D

Combining Propositions 3.5 and 4.2, we obtain

PROPOSITION 4.3. — One has the two-sided estimate

(27^)-l/2A-l/4|H|^-l) ^ ||^(A)a||^ <C||a||^^-i).

Hence the kernel N(^(A)) of the operator f^(\) : L2^-1) -^ B* is
trivial and its range -R^^A)) is closed.

Let us return to equation (1.1).

LEMMA 4.4. — Let u C H^ D B* be a solution of (1.1). Then
(u, f) = 0 for any f C B such that F±(\)f = 0.
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Proof. — By Corollary 2.2, 9rU € B* and hence

(4.9) { (K^l2^-!^^)!2)^^^ p > i .
J\x\^p

If f e B and ^±(A)/ = 0 then, according to Theorem 3.4, the function
v± = R(\ =b i0)f satisfies the condition

(4.10) / (\v±(x)\2 + \9rv±(x)\2) dx = o(p)
J\x\<p

as p —> oo. By the Schwarz inequality, it follows from (4.9) and (4.10) that

y (v^QrU - u9rV±)dx = o(p).
J\x\^p

Consequently, there exists a sequence rn —> oo such that

lim / (v±9rU - u9rV±)dSr^ = 0.
|;^:;|=:=rn

Now integrating by parts and taking into account equation (1.1) for u, we
find that

<n, / )= lim / n(-A + V - X)v^ dxr^oo7|^|^
= lim / (v±9rU - u9rV±)dSr = 0.

r'7^-'OOJ|a;|=r,

D

It follows from Proposition 4.3 that Theorem 2.4 can be applied to
the operator ^±(A). Therefore, by Lemma 4.4, every solution u € Hj^HB*
of equation (1.1) belongs to the range of ^(A). Taking also into account
Proposition 3.8, we obtain a description of solutions of equation (1.1) in
terms of the operator ^(A).

PROPOSITION 4.5. — For u e HJ^DB* to be a solution of equation
(1.1), it is necessary and sufficient that u € ^(.^(A)).

According to Proposition 4.1, Proposition 4.5 leads immediately to
the part B) of our main result. Let us reformulate both parts adding
informations contained in Propositions 2.6, 4.2 and 4.3. Note that functions
a± and u in this formulation are related by the equalities

u{x) = 2^7^1/2Al/4(^(A)a+)(^), u(x) = 2^7^1/2Al/4(^(A)ra-)(a;).

THEOREM 4.6. — Let assumptions (2.7) - (2.9) hold and let
w±(a;, A) be given by (1.3) where ^(x, A) is some function satisfying (3.1)
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up to a term O^x^-6), e > 0, as \x\ —^ oo and estimates (3.2). For
any a_ e L2^-1), there exist a function a+ e L^S^-1) and a solution
u e ^oc n B* of equation (1.1) with asymptotics (1.6), (1.7) as \x\ -> oo.
The function a+ and. the solution u are determined uniquely by a-. More-
over, ||a-|| = ||a+[[ and the roles ofa+ and a- in this formulation can be
interchanged.

Conversely, any u e Hj^ D 5* satisfying equation (1.1) has the
asymptotics (1.6), (1.7) as \x\ —> oo for some functions a± e L2(Sd~l).
Furthermore,

IHIa-<C'||a±||^2(§d-i) and lim p~1 / K^)|2^ = 2||a±||^§d-i).
^00 -'M<p v /

Set <?(A) = E+(A)T. By Proposition 4.1, this operator known as the
scattering matrix is unitary on L^S^"1) and «?*(A) = TS-(A). As an easy
consequence of Theorem 4.6, we obtain

PROPOSITION 4.7. — Jn order that the equation (1.1) have a solu-
tion u with asymptotics (1.1) where a± e L^S^"1), it is necessary and
sufficient that a+ = S{\)Ta- or a- = T<S*(A)a+.

COROLLARY 4.8. — Ifu satisfies equation (1.1) and condition (2.10)
for some a e L^S^"1) (and one of the signs " + " or " - "), then u = 0.

Since condition (2.11) is not assumed here, Corollary 4.8 improves
Proposition 2.6.

The following result shows that the scattering matrix "relates" the
operators ^+(A) and ^'-(A).

PROPOSITION 4.9. — For any / C B,

(4.11) ^+(A)/=5(A)^-(A)/.

Proof. — By Proposition 3.8 for any a € L2^"1), the function

u(x) = (^(\)a)(x) - (^(A)<S*(A)a)(^)

satisfies equation (1.1). Moreover, by Proposition 4.1,

u(x) = Oa^x^-^/2) as H ̂  oo.

Therefore Corollary 4.8 implies that u = 0 or, equivalently, that ^jl(A) =
^(A)<?*(A). D
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On the set C^S^"1), the scattering matrix can be expressed in terms
of the operators G±(A) denned by (3.14), (3.16). Indeed, it follows from
(4.1) that

S{\)a = Tr^A-^J^G^a, <?*(A)a = Tr^X-^.WG^X)^

which coincides with the representation for the scattering matrix obtained
in [13]. The first of these equalities shows that, for any a, b € C^S^"1),

(<S(A)a,6) = 7^1/2A- l/4(G_(A)a,^(A)6}

= -^-^-^(^-(^a.^A) - R(\ - iO)G+(\)b}.

Since G-(A)a and G+(A)6 are continuous functions of A in L2^) for some
7 > 1/2 and ZA+(A) is continuous in L2.^, for any 7' > 1/2, the continuity
of (<?(A)a,6) with respect to A follows from Proposition 2.7. Taking into
account that the operators <S(A) and <?*(A) are isometric, we obtain

PROPOSITION 4.10. — The operators <?(A) and <?*(A) are strongly
continuous functions of A.

3. Here we formulate a corollary of our considerations for the non-
homogeneous Schrodinger equation.

PROPOSITION 4.11. — For any a (E L^S^-1), there exist (but of
course not unique) functions /± e B and u^ e H2^ with asymptotics
(2.10), (2.11) satisfying the equation

(4.12) -An± 4- Vu± = Au± + /±.

Proof. — According to the last statement of Theorem 2.4, it follows
from Proposition 4.3 that R(^±(\)) = L^S^-1). Therefore there exist
functions /± e B such that ^+(A)/+ = a or F-(\)f- = Ta. Clearly,
functions n± = R(\ ± z0)/± satisfy (4.12) and have asymptotics (2.10),
(2.11) by virtue of Theorem 3.4. D

5. Time-dependent scattering matrix.

Our goal here is to show that the scattering matrix 5(A) constructed
in Section 4 coincides with the time-dependent one. To that end we need
to introduce modified time-dependent wave operators and to express them
in terms of the operators ^±(A).
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1. We start with a standard expansion theorem in eigenfunctions
of the operator H. Let E{-) be the spectral projection of H and let
n == .^(R+.L^-1)) be the Hilbert space of L2^-1)- valued square
integrable functions on R+ with the Lebesgue measure. Recall that the
operator ^±(A) : B -. L2^-1) was defined by equalities (3.8) and (3.11).
Now we introduce the mapping F± : B —> H by the formula

(5.1) (^±/)(A)=^±(AV.

Integrating (3.12) over R^- and using the spectral theorem, we find that

ii^/n2 = f ° ° ii^(A)/ni^-i) d\ = y°° w^^
= ||P/||2, P =£;((), oo),

for any f C B. Hence the operator F± extends by continuity to a bounded
operator on the entire space H. This operator is isometric on the absolutely
continuous subspace H^ = PH of the operator H and vanishes on its
orthogonal complement, i.e.,

(5.2) F^F± = P.

Denote by A multiplication by the independent variable A in the space
H and by E^(X) its spectral projection acting as multiplication by the
characteristic function of the Borel set X D IR-|- . To check the intertwining
property

(5.3) F±£(X)=EA(X)F±,

it suffices to show that (F^Hf, g) = (F±/, Ag) for / e © and g(\) = v(\)a,
where v G C'o<)(R+) and a C ^(S^"1). By definition (5.1), this is equivalent
to equality

/»00 /»00

/ {Hf^i(\)a}v(\)d\= \ A(/,^(A)aMA)dA,
Jo Jo

which is a direct consequence of Proposition 3.8.

Let us finally show that R{F±) = H.

LEMMA 5.1. — The operator (5.1) satisfies

(5.4) F^Fi = J.

Proof. — According to (5.2), (5.3), for any / G U, g € U and any
X C R + ,

(5.5) (EA(X)F±F^, F±/) = (E^X)g^ F±/).
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If / € B and h = F^F^g, then relation (5.5) can be rewritten as

/ WA),^±(A)/)^-i)dA= ( (gW^±Wf)^-^d\.
Jx Jx

Since / G B and X C R are arbitrary, this implies that

^(A)(4\)-^(A))=0

for almost all A G M+. By Proposition 4.3, the kernel of ^(A) is trivial
and hence /i(A) == g{\) for almost all A € R+. Therefore F^F^g = g. D

Let us summarize the results obtained.

THEOREM 5.2. — For every f e B the function ^±(A)/ belongs
to the space 7~i. The operator F^ : 7Y —> 'H denned by (5.1) extends
by continuity to a bounded operator on the entire space Ti and satisfies
relations (5.2), (5.3) and (5.4).

Similarly to the short-range case [15], Theorem 5.2 can be reformu-
lated in terms of solutions of equation (1.1) with asymptotics (1.6), (1.7)
at infinity but we shall not dwell upon it here.

2. To find the asymptotics of e~^Htf as t —>• =boo, we proceed from
Theorem 5.2. Choose /(A) = v{X)a where a € C00^-1) and v € C^OT^).
The set of linear combinations of such / is dense in 7i^ so that the set of
linear combinations of / = F^f is dense in H^. It follows from (5.3) that

/»00

(5.6) e-^/= / e-^.F^a^A^A.
Jo

Recall that the function ^:'^(A)a satisfies (3.18) and as shown in [7] the
contribution to (5.6) of the term R{\ =p ^0)^±(A) disappears in the limit
t —)• ±00. Taking into account that the function n±(rf, A) is given by (3.14)
we obtain

LEMMA 5.3. — Set w(A) = A-^/4^) and
/*00

(5.7) I±(x,t)= / e-^^'^A^A.
Jo

Then

(5.8) (e-^/)(.r) = ̂ 2-17^-l/2|rc|-^-l)/2^)a(^)J±(r^,t) + 6±(^),

where ||e±(',^)|| = o(l) as t —> ±00.

It remains to find the asymptotics of integral (5.7). Suppose that
v{\) = 0 for A < p, and A > v. If \x\ < a\t\ or \x\ > (3\t\ for sufficiently
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small a = a{^v) and sufficiently large /3 = /3(/^), then integrating by
parts we find that

/*00

I±(x^t) = -if e-^At±^^A)^((^2-lA-l/2|^|±^(^A))-lw(A))^

In view of (3.2), this yields the estimate

\I±{x^\<C(\x\^\t\)-\
Therefore function (5.8) satisfies

(5.9) lim ( [ |(6-^m/)(rr)|2^+ / {(e-^f^dx} = 0.
1*1-^ V|a;|^a|t| ^M^/3|t| /

In the region

(5.10) a\t\ ̂  \x\ ̂  f3\t\

the asymptotics of integral (5.7) is determined by stationary points As =
\s(x^t) where Ag is the solution of equation

(5.11) -^±(^(^A,)=O,
or according to (3.3)

(5.12) \y = (2\t\)-l\x\ - ir^^A^/2.
Using again estimate (3.2) and the method of successive approximations
we obtain

LEMMA 5.4. — Let x satisfy (5.10) for some positive a and f3. Then
for sufficiently large \t\, equation (5.12) has a unique solution \s = \s(x, t)
and

(5.13) Ay^^l^M+O^).

Set

(5.14) ^A^-A+l^r^A).

Applying now to integral (5.7) the stationary phase method (see e.g. [4])
we obtain, under the assumptions of Lemma 5.4, that
(5.15)
I^t) = (27^)l/2|t|-l/2|^|-l/2e^±^n^w(A,(^,^))+0(|<|-l),

where
^ == -0(^, \s{x, t),t), -0AA = ̂ \\{X, \s{x, t),t).

Note that, by virtue of (5.13), w(\s(x,t)) can be replaced in (5.15) by
w^t)"2!^]2) with an error term tending to zero in L^ over the spherical
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layer (5.10). Furthermore, differentiating (5.14) and taking into account
(5.13), we find that

^(^A,,t) = -(4|^|)-l|^|A73/2-|t|-l$^(^A,) = ̂ l-^p+Od^).

In particular, sgn^\\ = -1. Set
(5.16)
f^, t) = t^(x, \,{x, t)) ± 7r(d - 3)/4 = -X,t ± \y\x\ qp ̂ , A,), ±t > 0.

Then, according to (5.13),

(5.17) ^M^r^+O^I1-6).

Plugging these expressions into (5.15) and then into (5.8) and taking into
account (5.9), we obtain

LEMMA 5.5. — Let /(A) = v(\)a where a e C00^-1) and v e
(^(R^, Jet the function ^{x,t) be defined by equations (5.12), (5.16)
and let f = F^f. Then

(e-^V)(r^)=2V2(2^t)-d/V^'t)|(2t)-la•|-(d-2)/^((4t2)-l|^|2)^^^^
(5.18) +6±(^,t)

where ||e±(-,t)|| = o(l) ast—> ±00.

3. Recall that the operators ^b(A) were defined by (3.13) and set
W)(A) = ^o(A)/ (cf. (5.1)). The operator Fo : U -> U is of course
unitary and

(^/)(0=21/2|$|-(d-2)/2^,(|^|2)o(0 if /(A)=z,(A)o.

Let us introduce a family of unitary operators by the equality

(5.19) W)f)(x) = e^^^(2zt)-d/2/((2t)-l^).

Then (5.18) can be rewritten as

(5.20) ^lini^ ||e-^/ - Uo{t)F^F±f\\ = 0.

Since both operators e~'l'Ht and Uo(t) are unitary, this relation extends to
all / e 1-i^. Taking additionally into account Theorem 5.2, we obtain

THEOREM 5.6. — Let ^(x,t) be defined by equations (5.12), (5.16)
and Uo{t) - by (5.19). Then the strong limits

(5.21) W±=s- lim e^UoW
t—»'±00

exist and W± = F^FQ. In particular, the wave operators W^ are complete,
thatisR(W±) =U^\
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Wave operators (5.21) with Uo(t) defined by (5.19) were introduced
in [14]. However the phase function fl,(x,t) was defined in [14] as an
approximate solution of eikonal equation (1.8) satisfying condition (5.17)
in any region (5.10). Of course both functions fl. coincide. To check it, we
shall show that function (5.16) satisfies equation (1.8) (with V replaced by
VL). Indeed, it follows from (5.11) that

"t = -\s - t9\s/9t ± <px(x, \s)9\s/9t = -A,
and

^x, = -t9\s/9xi ± ̂  (x, \s) ± <^(^ \s)9\sl9xi = ±^ (x, \s)

so that

"t(^) + |V^,t)|2 = -\s{x^t) + |(V^)(^A,(^t))|2.

Therefore (1.8) is an immediate consequence of equation (1.4) (with V
replaced by VL).

4. It follows from Theorem 5.6 that the time-dependent scattering
operator S = W^.TV_ satisfies the equality

S=F^F^FlFo.

Of course it commutes with the operator HQ . Taking into account equality
(4.11) we obtain

PROPOSITION 5.7. — The operator FoSF^ acts in the space H as
multiplication by S (A) : L2^-1) -^ L2^-1).

Thus, the time-dependent scattering matrix coincides with the sta-
tionary one, constructed in Section 4.
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