
ANNALES DE L’INSTITUT FOURIER

THOMAS HANSSON
On Hardy spaces in complex ellipsoids
Annales de l’institut Fourier, tome 49, no 5 (1999), p. 1477-1501
<http://www.numdam.org/item?id=AIF_1999__49_5_1477_0>

© Annales de l’institut Fourier, 1999, tous droits réservés.

L’accès aux archives de la revue « Annales de l’institut Fourier »
(http://annalif.ujf-grenoble.fr/) implique l’accord avec les conditions gé-
nérales d’utilisation (http://www.numdam.org/conditions). Toute utilisa-
tion commerciale ou impression systématique est constitutive d’une in-
fraction pénale. Toute copie ou impression de ce fichier doit conte-
nir la présente mention de copyright.

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques

http://www.numdam.org/

http://www.numdam.org/item?id=AIF_1999__49_5_1477_0
http://annalif.ujf-grenoble.fr/
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/


Ann. Inst. Fourier, Grenoble
49, 5 (1999), 1477-1501

ON HARDY SPACES IN COMPLEX ELLIPSOIDS

by Thomas HANSSON

1. Introduction.

A fundamental tool in the study of holomorphic functions of one
complex variable is the Cauchy integral formula. Hence when studying
holomorphic functions in a domain fl. C C71 one wants a suitable generali-
sation of the Cauchy integral. One possible choice is the Szego projection
5', i.e. the L2^^) orthogonal projection on the space of (boundary values
of) holomorphic functions. However, except for a few special domains, the
kernel of S have no explicit expression. Thus to understand the mapping
properties of the Szego operator one has to estimate its kernel. For strictly
pseudoconvex domains such estimates were obtained by Fefferman, [F].

Another, less canonical choice, is to use integral operators generated
by Cauchy-Fantappie forms. In contrast to the Szego operator, these
integral operators have rather explicit kernels. More precisely, if ^ is a
bounded domain in C71 with C^-boundary and q : 90, x Q. is a C^-map that
satisfies (g(^, z), C, — z) -^ 0, for every ^ e Q^l and z € ^, then the operator
H defined by

Hf^-dX f f^^W ,e»
Hfw-\^i) L (9,C-^)" ' '

reproduces holomorphic functions. For example, if Q. is strictly geomet-
rically convex with defining function /?, we can take q(^z) = 9p(Q. To
understand the mapping properties of H^ the main difficulty is to prove

Key words: Hardy spaces — Atomic decomposition — Factorization — Complex ellipsoids.
Math. classification: 32A35 - 42B20.



1478 THOMAS HANSSON

that H is a bounded operator on L2^^). This was proved for strictly
pseudoconvex domains (with some natural choice of q) in [KS].

Recently a lot of work has been done in this area on domains of
finite type. For instance in [NRSW], estimates of the kernel of S have been
obtained for pseudoconvex domains of finite type in C2. Such estimates
have later also been achieved for convex domains of finite type in C77'
([McN], [McNS], [KL]). In these papers the Szego projection has been
defined with respect to the Euclidean surface measure on 90,. However
there is another natural measure on the boundary to consider, as suggested
by the integral defining H , namely the measure represented by the form
('ImV^Qp^QQpY-1. Denote this measure by dS. In strictly pseudoconvex
domains, dS is equivalent to the ordinary surface measure da, but for
domains of finite type it is essentially smaller near Levi-flat points. This
can be compared with the situation in the polydisc, where one usually
consider Hardy spaces with respect to the uniform measure on the torus. It
is the object of this paper to illustrate the advantages of using the weighted
measure dS, when studying for example boundedness properties of H. As
far as we know, this measure has not been considered before in that context.

Nowsetd(C,20 = |(9p(C),C-^|+|(^(^)^-C)|.Then,if^isstrictly
pseudoconvex, it is known that d is a quasimetric on the boundary of the
domain and that dS(^ da) satisfies the doubling condition with respect to
d. Thus ((9f^, dS, d) is a space of homogeneous type (see [C]). Moreover, in
this setting, the operator H can be viewed as a singular integral operator,
and by the Tl-theorem for spaces of homogeneous type it can be proved
to be bounded on L2^^). (See also [Ha] or [KS] for an elementary proof
of this fact.)

The object of this paper is to give a thorough investigation of these
matters for the complex ellipsoids Bp, p = (pi, ...,pn), pj e Z"^, with

n
defining function p(z) = ̂  |^|2^' - 1. B? can be viewed as a model case

j=i
for domains of finite type and has previously been studied in for example
[Rl] and [BC]. We will see that (90,dS,d) is a space of homogeneous
type. Furthermore, in this setting we will be able to prove some important
representation theorems for the Hardy space H1^, dS), following classical
lines.

Let L^OBP) and H^BP), q > 1, be defined with respect to the
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measure dS. Hence an analytic function / in B^ belongs to Hq(BP) if

a \ l / 9
||/||^= sup |/W <oo,

0<r<l ^ /

where Bf = [z C C71, /?(^) < -r} and dSr is the measure on 9B^
represented by the form (27^^)-n<9^ A (QQp)^1. Then our results are as
follows.

THEOREM 1. — The operator H maps L2{9BP) boundedly into
H2^).

Thus denning Hf{zo) for ZQ € QB^ as the limit of Hf{z) when z C BT
approaches ZQ in the normal direction, then H is bounded, considered as
an operator on L2(9BP). Hence in particular H has an adjoint operator,
denoted by ft*, on L2(9BP). Moreover, defining BMO(9BP) in the usual
way (see § 3) in terms of the quasimetric d and surface measure dS^ we also
have

THEOREM 2. — The operators H and Jf* are bounded on
BMO(9BP).

In particular we can regard H*(BMO) as a subspace of BMO.

In the unit ball B it is known that all bounded linear functionals on
H1 can be represented by functions that are holomorphic in B and with
boundary function in BMO (see [FS]). This has also been proved to hold
for all strictly pseudoconvex domains in C71 (see for example [AC]). In Bp

though, we will be content with the following analogous statement.

THEOREM 3. — The space JT(BMO) operates on ^{B^ in the
sense that the pairing

(/, H^b} = { fWbdS, b e BMO(9BP),
JOB?

has a continuous extension from C1 (BP) n H1 {BP) to ^(BP). Conversely,
any bounded linear functional on H1^?) occurs in this way, and the
operator norm is comparable to the BMO norm of H*b.

Hence Theorem 3 states that (7J1)* ^ H*(BMO). The proof actually
gives that (^1)* ^ 7P(L°°), and thus in particular H^BMO) = H^L°°).

Next we consider the atomic space 7^ on the boundary, where
atoms are defined with respect to the measure dS and quasimetric d.
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More precisely, an atom is a measurable function a on 9BP that is either
identically one or else there is some ball B^{zo) == [z € c^B^d^.^o) < e}
centred at zo ^ 9^ such that
(1.1) suppa C Be{zo),

C-2' ll0"1- i |B^)i
and
(1.3) / a{z)dS(z) = 0,

JBBP

where |Bg(^o)| = / d5'. The atomic space H^QB19) then consists
JB^ZQ)

00

of functions / such that / = ^ A^ (in L1), where \j € C satisfies
j=i

00

^ |A^| < oo and Oj are atoms. The norm ||/||at is defined as the infimum
j=i

00 00

of ^ |Aj| over all representations ̂  AjOj for /. The "real variable" spaces
j=l j=l

H^t and BMO are related by (see [CW])

(1.4) (H\tY ^ BMO, via the pairing (/, b} = ( fbdS for b e BMO.
JQBP

Note that, by (1.4) and Theorem 2, H can be extended to a bounded op-
erator on 1~i\t. Moreover, we define the holomorphic atomic space H^B^
to consist of all functions F such that F = Hf for some / € H^QB^,
with norm ||F||at = mf{||/ | |at; F = Hf, f e H^(9BP)}. Then it is easy
to see that every F € H^ is a H1 -function, but the converse is also true.

THEOREM 4. — Every F € H1^) is in H^B^, and conversely,
with ||F||at~ l l^ l l^ i .

A classical result for the unit disk in C is that every -H^-function can
be factorized as a product of two J:f ̂ functions. This can be shown by first
factorizing out the zeros by means of a Blaschke product and then simply
taking square roots. In higher dimensions there are no analogue of the
Blaschke products available. Nevertheless, using the atomic decomposition
for H1, Coifman, Rochberg and Weiss, [CRW], proved a substitute result
for the ball B in C^. This is generalized in our setting to Bp as follows

THEOREM 5. — For every F € ^(.B^) there are two sequences
{Gj} and {Hj} in H2^) such that

00

F(z)=^G,(z)H,(z), Z € B ^
j=i
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with

^\\G,\\H.\\H,\\H^\\F\\H..

J=l

Note that, by Theorem 4, it is enough to prove that every holomorphic
atom Ha admits such a decomposition. In fact we will prove that Ha =
G,H, where \\G,\\H.\\H,\\H^ <C.

Remarks and notations. — In this paper ^ means < G, where C is
a nonzero constant at most depending on the dimension n and the index
p in Bp, and ~ means both ^ and ^. Moreover, when / is a function
defined in BP and its values over the boundary are to be considered, then
/ is understood to be replaced by its limit function at the boundary (i.e.
/(^o)? ^o ^ 9BP is the limit of f{z) when z 6 Bp approaches ZQ in the
normal direction). In this way, H1 can be considered as a closed subspace
of L1, and ||/||j^i ~ ||/||L1- Also a function in H1 can be approximated
by holomorphic functions that are continuous up to the boundary (i.e. if
/ € H1 then fr -> / in L1, where fr , 0 < r < 1, is defined by fr{z) = f(rz),
z e~BP.)

The paper is organized as follows. — In Section 2 the appropriate
geometry of BP is presented in more detail. In Section 3 we prove the L2-
boundedness of the operator H (Theorem 1) by applying the n-theorem
for spaces of homogeneous type. The boundedness on BMO (Theorem 2)
is also considered. In Section 4 the duality in Theorem 3 is proved. The
principal idea in the proof is due to Fefferman and Stein. Also the atomic
decomposition of H1 (Theorem 4) is proved in this section. It formalizes
the idea that H1 and H^ are equal since they have the same dual space.
Finally in Section 5 we prove the factorization theorem (Theorem 5).

Acknowledgements. — This paper is based on the second half of my
doctorial thesis [Ha] and I wish to express my sincere gratitude to my
advisor Hasse Carlsson for his valuable guidance during the progress of
this work. I would also like to thank Prof. Aline Bonami for suggesting
simplifications in the proof of the factorization theorem.

2. The boundary as a space of homogeneous type.

In this section the appropriate geometry of BP is presented in more
detail. In the integral operator H defined in the introduction, we chose
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n
q = Qp where p(z) = ̂  l^jl2^ — 1- Since the real part of (9p(^),C — ^)

j=i
is, apart from a nonzero smooth factor, the Euclidean distance from z to
the real tangent plane at (^ € 9B? and since Bp is convex this distance is
positive if z G B13'.

Moreover, with this choice of q, the form (2m)~n9p(^) A {QQp^Y-1

represents a positive measure dS on the boundary. Recall that a (2n — 1)-

form a represents the Euclidean surface measure on 9B? if —— A a =
\dp\

n

A dxj A dyj. As we have
j=i
9p(C) A (99pW-1

={n- 1)!̂  ^•IC^-1^- n^l2^"^- A A d^ Ad^
j=i \ fc^j fc^j >

and

^AWA(WC))"-1

|dp(C)l

we see that dS' ~ wda where

= ̂  E ioi2" n^ioi^-^ A ̂  A d-Q,sj i / \ «'sj
j=i j=i j=i

^o-n^ioi2^"1^j=i
Later on we will consider the volume measure dV represented by the form
(27^^)-n(99p)7^. It corresponds naturally to dS, as they (essentially) are
induced by the same Hermitian metric corresponding to the (l,l)-form
i99p (see §4). Note that (27^^)-n(99p)7^ = d((2m)-n9p^) A ((9<9p(C))71-1)
and that dV ~ wdA, where d\ is Lebesgue measure. For further use we
write \U\ = f^ dS when U C 9BP.

Now set d(C,z) = KC,^) |+K^,C)|, where ^(C,^) = (9p((;)^-z) =

EP.IOI^-^C^O - ^-), and let B,(z) = {C G ^^^C^) < e}
j=i
be the corresponding balls. Then, generalizing the idea from the strictly
pseudoconvex case, we will see that (9BP, dS, d) is a space of homogeneous
type. The distance d have been considered before in for example [BL] and
is in fact equivalent to the quasimetric used by McNeal for convex domains
(see for instance [McN]). Hence for the proofs of Lemmas 1, 2 and 4 below,
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which concern estimates on v and d, we refer to the paper [BL]. Detailed
proofs can also be found in [Ha].

Since clearly d(<^, z) is symmetric and equals zero if and only if ^ = z^
the following lemma shows that d is a quasimetric on the boundary.

LEMMA 1. — For z, C, w e 9BP we have

i) KC^)M^C)I
and

ii) d(C^)$d(C,w)+d(w^).

Remark. — Note that if 2;eBg(^o) and C€B^(zo) = QB^Bce^o),
for (7 sufficiently large, then by Lemma 1 we have d(C, z) ~ d(C, Zo)'

For later purposes we also need estimates ofv(C, 2^) near the boundary.

LEMMA 2. — For z € C^ Jet ^ denote the projection onto QB'9

determined by zj = (1 + p(z))'2^ Zj. Then for ^ e BP we have

i) 1^,0 - p^)l ~ K^OI - p^) - p(C), ifz e BP
and

ii) 1^,01 ~ K^OI +^) -p(C), ifz e (^c.
To see that (92^, d, d5) is a space of homogeneous type it remains to

check the doubling condition |B2e(2;o)| ^ \B^{zo)\. This clearly follows from
the stronger statement |j0g(^o)| ~ e71, that is contained in the following
lemma.

LEMMA 3. — I f z e QBP then

i)J|.(C,.)l<.^(C)~^-

^^OK^B.^O-^1
' J\V{Z

and

in) fw^WB^dV^-^1-

Proof. — The estimate i) is known for the ball. The general case
can be proved by a change of variables Cj —^ C? - To do this we need a
simple connection between v and the ball related v defined by v(^z) =
(CP,^ - ̂ } where ̂  = (^f1,..,^71), i.e. v(^z) = VB^.Z^) where VB is
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the corresponding v for the ball. They are related by

v^z) = v^z) + f^ (p3}^ic,rk^ - Q'-^z)=v (c^)+EEfT)c^^~fe^-c^j^i^^7

. prove that |i;(^,^)| ^ |i;(C,^)| (see [BL]) and henc

I d S ^ < ( d S ^ ^ f doB^)^^.
./KC^)|<c -'1^(0^)1^ ^1^(0,^)1^

j=l fe=2 v K /

Now one can prove that |i)(^, z)\ ̂  |v(^, z)\ (see [BL]) and hence

<

Likewise we get the converse inequality by observing that if we restrict the
integration to ^ G -E^, where Ez = {C ^ 9^, l^gCj — ^g^jl ^ ^ I P j } ' >
then |^(C^)| ;$ v(^z)\ (see [BL]).

By using i) and Lemma 2, the statements ii) and iii) now easily follow.
If we change coordinates (^ —^ (t, ̂ ), where t = —p(C) and C ls ̂ ne projection
of ^ onto 9BP (in the meaning of Lemma 2), then dV(C,) ~ dtdS{C,] and
hence

/" dy(c) ~ / /' d^(c)
^]v(z,<)|<e,C€B'' •/ J\v(z,(,)\+t<e.

= 1 ( 1 dS(Q\ dt ~ 1\€ - t^dt ~ 6"+1.
JO \J\v(z,C)\<e-t ) JO

Similarly iii) is proved. D

Note that i) in Lemma 3 implies that for z 6 9B1' and a > 0 we have
r ^(0 < l

AC,.)>« d(^,z)^ - e"'
where the constant in the inequality depend on a. This is most easily seen
by splitting the integral in dyadic parts. In the same way one can see that
ii) in Lemma 3 implies that for z € QBP and a, f3 > 0 such that [3— a > —1,
we have

(-^o^-^o(2.2) I
JB^

< 00.
IE? K^OI7^1-"

For further use we also need the following smoothness result on v((, z).

LEMMA 4. — With 6 = (2max{p^})-l we have for z, ̂ ,w € QBP

i) |2;(w,0-^C)-^M| ̂ d(w^)6d(z^w)l-^d(w^)l-6d{z^w)6

and

ii) there exists a constant C such that if z^w C J9e(^o) ^"d ^ €
B^(zo) then

KW, C) - v(z^ C)| + KC, w) - ̂ (C, ̂ )| ̂  e^(C, ZQ)1-6.
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Moreover, with 6 as in Lemma 4, we also have the estimate \z — (\ ̂
\v{z, C) - p{z)\\ for z C BP and < € BB^ (see [BL]).

3. Boundedness properties of H .

With ^(€5 ^) and dS as in Section 2 the operator H defined for
f ^^(QBP) by

^-L'^^'
reproduces holomorphic functions that is sufficiently smooth up to the
boundary. In fact, since ^(SP) D ^(BP) is dense in ff1^), we have
Hf = / when / <E ^(BP).

In this section we prove that the operator H is bounded from L2 to
H2. This is done by applying Coifman's generalization of the Tl-theorem
to spaces of homogeneous type. Then we use this I^-boundedness to prove
that H and its adjoint H* are bounded operators on BMO. The proof is
an adaption of the classical argument in [FS] to the non-isotropic geometry
of QBP.

We begin by recalling the n-theorem. Before we state it, we need
some basic definitions concerning singular integral operators. A nice pre-
sentation of the n-theorem, for a general space of homogeneous type, can
be found in [C, Ch. 6]. Here we just consider the specific space {QBP^ d, d*?),
where (by the C^-manifold structure of QBP) the presentation can be
slightly simplified. A kernel k : QBP x 9BP\{^ = z} -^ C71 is said to be
standard if there exist constants c and 6 > 0 such that for all ^, ̂ , w € 9BP,
with e == d(^, C) > 0 ana d(z, w) < ce, we have

(3.2) I^OI^n,—\Be{z)\
and

'd^w)\6 1
(3.3) |A:(w,C) - A;^,C)| + |A;(C,w) - k(^z)\ $ \«(^ ,C) / \Be(z)\
Then we say that T is a singular integral operator if it is a continuous
linear operator from COO(9BP) to the space of distributions on QB? that is
associated to a standard kernel k in the sense that

(Tf,g}= f [ k^z)f(z)g((:)dS{z)dS(^
JOBP JOBP
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for all /, g € C00 with disjoint supports. The transpose T* of a singular
integral operator T is denned by the relation

(Tf^)=(^Ttg} for all f^g e C°°.

To formulate the n-theorem we also need the notion of weak bound-
edness. For w C 92?^ and ^, e > 0 define A(($, w, e) to be the set of all
(f) € C°° supported in J3g(w) satisfying ||</)||oo ^ 1 and for all C,,z € 9^

1^(0-^l^^^.
Then we say that a singular integral operator T is weakly bounded if there
exist 6 small enough (see [C] for enough requirements) such that for all
w C QBP, e > 0 and </>, r € A(<^ w, e)

|(r^r)|^|^(w)|.
The Tl-theorem can then be stated as follows

PROPOSITION 1. — A singular integral operator T on a space of
homogeneous type is bounded on L2 if and only if it is weakly bounded
andTl.T^ € BMO.

Recall also that any singular integral operator that is bounded on L2

is bounded on Lq for q > 1. For the definition of BMO see (3.7) below.
However, in the proof of Theorem 1 we show that ^1 e L°° and thus (as
HI = 1) it is enough to know that L°° C BMO.

Proof of Theorem 1. — To apply the Tl-theorem to H we first note
that l/v^^z)71 is a standard kernel. By Lemmas 1 and 3 the estimate in
(3.2) is clearly fulfilled. Also making use of Lemma 4, the estimate in (3.3)
follows. For example

, (^ c) - ̂  0) E1 ̂  C)^(w, C)71-1-^
1 1 J=0

v(w, C)71 v{z, C)7 11 v(z, C)M^ C)71

d{z^wYe1-6 (d{z^)\6 1<
r^/- 6-+i v^oy iwr

since if c is sufficiently small then d{z^ ^) ~ d(w, <^) when d(z, w) < cd(z, ̂ ).

Next we need to define H as an operator on QB^\ Let Hf(zo)^ ZQ €
oB1^^ be the limit of Hf{z) when z € Bp approaches ZQ in the normal
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direction. When / € L2 it is not immediately clear that this limit exist.
However, since HI = 1, we have

Hf{z) = / /(c)"^o) ̂ (0 + f^ z ^ Bp.JQB? ^(C^)
and if / is say C1, the integral on the right is easily seen to converge when
z -^ ZQ e QB10, so

(3.4) Hf(z,) = / ^ ' / y dS{C) + /(^o).
JQBP ^(C^o)

This can equally well be taken as definition of Hf when / is a <71-
function. Moreover, it is easy to check that H is a singular integral operator
associated to l/z^,^)71.

To see that H is bounded on L2 it remains to verify the conditions
in Proposition 2. As H reproduces holomorphic functions we have HI =
1 € BMO. Thus we turn our attention directly to H1!. Since v{^z) is
holomorphic in z we have by Stokes' theorem

r 9p(z) A (90p(z)r-1 _ r {QQpW
JQB? ^(C^)" JB? ^(C^)71 '

where B? = {z € C71, p(z) < -r}. Note here that, by (2.2), the right
hand side converges (uniformly in (^ € OB^ when r —^ 1. Then by FubinFs
theorem

(3.5) / H f d S = f /(C)(7 ^-)d^c)•
JQB^ JQBP VB^(C^) /

If / € C00 then ^T/ is continuous on BP, so letting r —» 1 in (3.5) we get

/ f7MdS=f H f d S = ( W/1 ^^-^^(C).
Jaap ^aBp ^BP \ J B p v { Q ^ Z ) )

Hence we must have

(3.6) H^z) = ( dy(o ^ € 9^.
^^ v{z,Q

In particular, by (2.2), we have H1! e L°° C BMO.

Thus it remains to check that H is weakly bounded. This follows from

LEMMA 5. — I f z C QBP then

f dS{QLd^X^C^)"
<1.
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Proof. — Since d(^z) ̂  |'y(<^)| we have

r ds^) ^ r ^(c) ^ r
Jd(C^>e ^(C^)71 - J\v(C^\>e ^(C^)71 A>

d5(C) | ̂  /• ^(C) ^ r dS(Q
ld{^z)>e ^(C. ̂ n | J\v{^z)\>e ^(C. ̂ )n ^|^C^)|>c 1^(C. ̂ )

Here the second integral on the right is clearly bounded. To estimate the
first one we use Stokes5 theorem on the domain {(, G (B^, |v(C,2;)| >
e, p(C) < 1}. Since 9p«) A (QQp^))71-1 /v^.z^ is a closed form where
C, ^ z, and as

9p(C) A (WC))-1

= l
/p(0=i ^(C^)'^r

(by Proposition 1 applied to the domain {p < 1}), we deduce that
^(OA^c))71-1 , r cMOA^c))71-1r ^(c) A (^(C))71-1 ^ ^ />

J\v(C,z}\>e V^ZY j^|^(C^)|>c ^(C^)71 7|^(C^)|=e,Ce(BP)^ '^(C^)71

When integrating with respect to ^ such that |z;(^,^)| = e, we can write
l/^?(C,z)n = v(^z) /e271. Thus if we use Stokes' theorem again, now on
the domain {< € (B^)0, KC^)1 < e}, we get

r 9p(0 A (^(Q)71-1

^(C^)|=e,ce(BP)- ^(C^)71

= ̂  / z^C^'^C) A (99p(C))71-1

^ JKc,o|=e,ce(B^

= -^ / ^c^)71^^) A (aw)'"1
^n 7|^(C^)|<e

+ -^ / ^C^C^)71 A 9p(C) A (^P(C))71-
^ JKC^)|<e,ce(BP)c

n-l

+ -^ /l ^^'(^(C))71.e 7|^;(<:,^l<c,ce(BP)<:C2n ^(c^Kc^e^P)-

Since l^^'z)71 A 9p(Q A (^(C))71-1! ^ ^(C^)!71-1^) we conclude
that

^^ < 1 { ,,^r ds(() ^ ]_ f
J\v((,z)\>e ^(C^)" ~ e" /.(C,.)|«

+—r/ dy(C)+-/ ^(0-e ' Jl^»(c,^)|<e,ce(BP)': e ^|t>(c,^)|<e,Ce(BP)<:

Hence, by i) and iii) in Lemma 3, we are done. D

Remark. — In a similar way one can prove that
r d5(o/ <1.
dO^x^'O"
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To see that H is weakly bounded is now easy. If (f) e A{6, w, e) and C
is sufficiently large then

H^z) = f ^-t^W)
^(C,w)$C( ^(C,-Z)" ' '

+^)fl- /
\ ^('"'l1-^.^5'0

By Lemma 5 the second term on the right is uniformly bounded, and for
the first one we have

L,<c.W^H ,̂̂ -<<'̂ -,
so \\H(j){z)\\^ ^ 1 for all 0 e A(6, w, e). Hence if also r G A{6, w, e) then

\{H^r)\ ̂  f \r\dS = f \r\dS < |(^(w))|.
JOB? ^d(C,w)<e

Thus by the Tl-theorem it follows that H, defined on the boundary by (3.4)
for C^-functions, can be extended to a bounded operator on L2. Then to
see that H (as defined in BP by (3.1)) takes L2 boundedly into H2 is easy.
For / e L2 take a sequence of functions fn C C^(BP) such that fn -^ f in
L2. Then

I _ \ H f ^ d S < [ \ H f ^ d S ^ [ \f^dS^
JQB^ JQBP JQBP

and hence letting n -^ oo we get / ^Hf^dS ^ f ^dS for all r > 0.
JQB^ JQBP

Thus ||^7||^2 ^ ||/||^2 and Theorem 1 is proved. D

Now for f e C1 consider Hf(z) as defined on the boundary by
taking limits from the interior. For functions F in H2 this limit exist
almost everywhere and we have ||F||^2 ~ ||F||L2. Hence we conclude by
Theorem 1 that Hf{z\ z e QBP, can be defined in this way for all L2-
functions. Moreover, this limit operator is bounded on L2. In fact it is the
same operator as the extended operator given by the Tl-theorem (since
they coincide on smooth functions). Then, as an operator on L2, it has
an adjoint operator which we denote by H * . Note that H * is a singular
integral operator associated to the standard kernel 1/^(^,0 n.

Before we turn to the proof of Theorem 2 we recall the definition of
BMO. The space BMO(9BP) consists of those b € L^QBP) such that the
norm
(3.7)

r6""0 = snw w^ L^,w ~ ̂ ^+ L mmz)
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is finite, where bp^zo) ls tne niean value of b on B^(zo). Recall also that by
the John-Nirenberg inequality for BMO-functions we have

^ W^)\/B . I^-^^W^ WMO. 9>1.

Proof of Theorem 2. — The idea in the proof of Theorem 2 is
standard and in fact the same as in the original paper by Fefferman and
Stein on Hardy Spaces ([FS]). Hence some details below are left for the
reader. To prove that H is bounded on BMO let b € BMO and fix a
ball Be with center in ZQ € QB'P. Then write b = &i T- b^ + ^3 where
^1 == ^Bc,(^)^2 = (^ - &l)XBce(^o) and ^3 = (b - 6i)(l - XBc^o))- Here

XBce(zo) ls ^ne characteristic function for Bce(^o) and (7 is a sufficiently
large constant (depending on the constant in the triangle inequality for d).
As Hb\ = &i is constant we have

—— / \Hb,(z)-(Hb,)BMS(z)=0.W J B ,
Moreover, since H is bounded on I/2, we have by Jensen's inequality and
(3.8)

. 2 / i r \ 2
f——T / \Hb^-{Hb^)B.\dS\ <, (—— I \Hb^
M^eljB, / M^el^B, ^

^T^T/1 l^2!2^^^/ l^l2^l^el JaBP l-^el J9BPl^el YaBP

= — — 7 / |fr-6B,J2^^
l^cl 7 Be.

ScJ ao ~ II^II^MO-

Finally by Lemma 4 we have

—— I \Hb^z)-{Hb3)B.\dS(z)
I-"(I ./B.1 wL {L (L ̂  - ̂  i^0'^^)d5(w)) ̂ ^^

; f^ e^d(C,-^o)l-^(C,-^o)n+l|^(C)|d5(C) ̂  e6 ̂  ^^^'^(C)

, ||fr||BMO

where ^ = (2max{pj})~1. The last inequality can be seen by splitting the
integral in dyadic parts (compare for instance [FS]).

To see that ||.H"&||z,i ^ H&HBMO write instead b = bgav + (b - 655?).
Then \\Hb9BP\\L^ = \\baBp\\^ $ ML^ ^ MBMO and the term H(b -



ON HARDY SPACES IN COMPLEX ELLIPSOIDS 1491

baa?) can be estimated as Hb^ above. This proves that H is bounded on
BMO,

In the same way we can prove that H* is bounded on BMO^ with
some extra effort on the term H*b\. Although H*l is not identically 1,
one can easily see by Lemma 4 that it is Holder continuous of order 6
(recall the explicit expression (3.6) for H^l). Moreover one can show that

\bi I $ log-II^II^MO (see for example [FS]) and hence

—— / |^*6i (z)-(H^)BMS(z)
l^el J B ,

<-^[ I \H^(z)-H^)\dS^dS(z)
l^el JB, JB,

^ \bl\ • ̂  ̂  IHlBMO^logj ̂  IHlBMO.

The terms H^b^ and H^b^ are treated as the corresponding ones for ft,
and it follows that also H* is bounded on BMO. D

4. Duality and atomic decomposition of H1.

In this section we prove Theorem 3 and Theorem 4. In the proof
of Theorem 3 we need a version of Green's identity with respect to the
non-isotropic structure of Bp. For this reason we begin by considering
the Hermitian metric corresponding to the (1,1)—form uj = i99p, where

n
p^z) = ^ l^jl2^ — 1 (A general presentation of Hermitian metrics can be

j=i
found in [R2, Ch.3]). That is, for (l,0)-forms u and ^, we define the inner
product by

^n . _ a;71"1

(u^v)^— = iu A v A
^^n\ -———— (n-l)\-

This is extended to all 1-forms by setting (n, v}^ = {u, v}^, (n, v)^ = 0 and
{u^v}^ = 0. It should be noted that (•,'}a/ degenerates at points z € C72

where 2;j = 0 for some j such that pj ^ 1. Since

^/n\ = r n pil^i2^-^ A d^A ̂
and

a/1-1/^ - 1)! = r-1 ̂  II^I^I2^"^ A d^ A d^
j=l \fc^ k^j ^
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we have
n nn n / \

(u, ̂  /\ dzfc A d^ = u A ^ A ̂  ^ /\ d^ A d^ ,
fe=i j=i V^i^i ^j /

(u, ̂  /\ dzk A c^fc = ̂  A v A V
fe=i j=i V^' " / ̂

for (1,0)—forms u and ZL In particular

^ 1 \9f\1IW.)£=E^,^-O|^
Thus, if we set ej = pj\Zj\pj~ldzj, then {e^ ej}^^ is an orthonormal basis
for the set of all I—forms, in the metric (•, -)^. The metric (•, -)^ induces a
volume measure, denoted by dV^, and a surface measure, denoted by dS^.

n

The volume measure dV^ is represented by A iej A ej = Ct^/n!, and a
j=i

(2n — l)-form a represents dS^ if {dp/\dp\^) A a = ̂ n /n\. Since on QBP
n 21 l2(2p,-l) n

1^ =2|9^ =2^ ̂ 1 ^ =2 |̂.,|̂  =2,
J=l ^1 Jl J=l

we see that, up to a constant, dS^ coincides with the measure dS,
represented by the form (clm)~n9p^(Q9p}n~l (see § 2). Note also that dV^
only differs by a constant from the measure dV, represented by the form
(27^^)-rl(<9(9p(C))n (see § 2). Next we calculate the Laplacian A^ = d*d,
where d* is the adjoint of d with respect to the metric (•, -)^. On every test
function (^, with compact support in BP, we have by Stokes' theorem

f d ^ d f ' ^ d V ^ = ( {df^d^)^dV^= f i{9-9)f A d ^ A un .
J B P J B P J B P (n ~ 1 ) '

° /̂ ("-'"^(Ei,= /„ (g ,̂ -T; ̂ )w-
Hence

A ^ V- -2 ^f
^PW^-^Q^

and Green's identity with respect to the metric (•, -)^ is valid, i.e.

(4.1) / (f^g - g^f)dV^ = f (g^ - f09} dS^
JBP JQBP \ on dnj

where 9f/0n = {df^dp/\dp\^)^. As the metric degenerates, and the Lapla-
cian has singularities, at points z € C7'1 where zj = 0 for some j such that
pj ^ 1, one could be worried about the validity of (4.1). However there
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is no singularity in ^hdV^ and (Qh/9n)dS^, if h is sufficiently smooth.
Hence (4.1) can be obtained, for instance by first deriving Green's identity
with respect to the metric which corresponds to iQ9{p^epB), where pp is
the defining function for the ball, and taking limits as e —> 0.

Before we proceed with the proof of Theorem 3 we also need a
result on Carleson measures. We say that ^ is a Carleson measure on
BP if p.(Qe(zo)) $ \B,{zo)\ for all e > 0 and ZQ e QBP, where Q,(zo) =
{z e B10 , \v(zo,z)\ < e}. Such measures satisfy the Carleson-Hormander
inequality.

LEMMA 6. — Ifq>l then

I l/l9^ ̂  / WS
J BP JQBP

for all plurisubharmonic functions f such that sup / \f\qdSr < oo.
0<r<l JQB^

Proof of Lemma 6. — The Carleson-Hormander inequality is known
for the ball B = ̂ 15-'1) (see [H]), and the general case can be obtained
by the change of variables z -^ Z9 (i.e. Zj -^ ^J, j = l,...,n). In
fact, if p, is a Carleson measure on Bp then the measure /^, defined by
W) = /^({^ ^ C71, ̂  € U}) is a Carleson measure on B (this follows
from results obtained in § 2). Moreover, if / is a plurisubharmonic function
on B^, then f(w) == ^ \f{z}\ defines a plurisubharmonic function on B.

ZP=W

Hence, by the Carleson Hormander inequality in the ball, we get

( \f(z)\^d^z) < f \f(zP)Wz) = f \f(z)Wz)
J BP J BP JB

^ [ \f(z)Wz)^ f \fWdS{z)^[ \f(z)^dS{z).
JQB JQBP JQBP

D

If we require / to be holomorphic, and hence log|/| is plurisubhar-
monic, the inequality in Lemma 6 is satisfied also for q <^ 1. In particular
the inequality is satisfied with q = 1 and / e H1, which is needed in the
following proof.

Proof of Theorem 3. — The main difficulty in proving the duality
(H^ ^ H^BMO) is to obtain the estimate

(4.2) / fbdS
JQBP ^\\f\\m\\b\\BMO.
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for / 6 ^(BP) n H^BP) and b C BMO. From (4.2) it follows that
every ^MO-function, defined as a functional on ^(BP) H H1^) by

(/, b) = \ fbdS, can be extended to a continuous linear functional on
JQBP

H1. Conversely, any functional on H1 is given by some u € L°° and hence
also by TPn, since ( fudS = [ HfudS = \ fWudS if / € H1.

JQBP JQBP JOB?
Moreover, if (/, H*u) = 0 for all / 6 H1^ then we must have H*u = 0, since
taking / == HH^u we get 0 = (HH^u, H^u) = { H " u , H " u ) = \\H"u\\^.
Thus the representation is unique, and by the open mapping theorem it
follows that ||^*^HBMO ~ \\H*u\\^niy.

To prove (4.2) we will use the representation f(z) = Hf{z) which has
no (simple) meaning when z € QB1^. Therefore, instead we prove that

/. fbdS ^\\f\\H^\\b\\BMO.
QB^

for all r > 0, where Bf = {z e C71, p(z) < -r}. Here b is extended from
QBP to a function defined on BP by letting b be constant in the normal
direction near the boundary. From this then (4.2) immediately follows.

By Lemma 2 we can define, for z € B10',

H^^f ^(O^O .y^(^c)-^))71

Then H^b € C^CBP), and by FubinPs theorem

f fbdS= ( HfbdS= { f'H^bdS.
JQB^ JQB^ JQBP

In what follows we write H*b instead of H^b and leave it for the reader to
examine the independence of r in the estimates. By Stokes5 theorem we get

f fWbQp A {QQpY-1 = ( Tr^Qf A Op A (QQp)71-1

JOB? JBP
+ / * f 9Wb^9p/\{99p)n~l

JBP

- ( fWb {99?^ = h + h + h.
J B P

Here I\ can be regarded as the main term. Another application of Stokes'
theorem gives

Ji= / p9JFb/\9f ^{99p)n~l.
J B P

To estimate this integral we need
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LEMMA 7. — With f and b as above we have

i) / -PWM^dV ^ [ \f\^dS
JBP JQBP

ii) -p\9H*b\^ is a Carleson measure with norm less than ||&||2,^
II II D Wl (J *

Before we turn to the proof of Lemma 7 we complete the proof of
Theorem 3. By Lemma 7, Schwarz5 inequality and the Carleson-Hormander
inequality for functions in H1 we have

f p9I^;b^Qf^{99p)n-l ^ [ -p\9H^U9f\^dV
J BP J BP

<
<-s^ (/.-

1/2

p\9H*b\^f\dV a.-^vBP \}\

1/2

^\\b\\BMO\\f\\H^

The estimate of 1^ and ^3 is easier. By writing
n Pj

'o-^-^EC^+EEft')^^-^-^v[z^)-p(z)
J=l j=l k=2

we see, by the comment after Lemma 4, that
7=1 .-1 t.-9 V K /

(4.3) o
^-(^O-P(^) \^\z^\z -C|^ \z^ \v^ (:)-p(z)\6.

Hence & -> (-p(^))l-<$/2|9^&(2;)| is an operator with more than in-
tegrable kernel, and thus it can easily be seen to take BMO bound-
ediy into L°°. In particular \9JFb(z)\dV is a Carleson measure with
norm less than H&HBMO and by the Carleson-Hormander inequality it fol-
lows that |J2| ^ 11/H^i H^UBMO. Similarly ^3 is estimated, by using that
(-P^))^*^)) ;$ \\b\\BMO. D

Proof of Lemma 7.— Set (f) = jlog|/|2. Green's identity (with
respect to the metric (•, -)^) yields

f (pA^ - e^^p) dV^ = I e^dS^
JBP JQBP on

Here A^ = e^A^ - 2\9^e^ and Op/On = ̂ 2. Thus, since ^p and
A^ both are negative, we have

/ -pW^dV^ ̂  ( e^dS^
JBP JQBP
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Hence i) in Lemma 7 follows, as 90 = q9f/2f.

Finally, to prove ii) we have to show that

I -P\9H^dV ^\\b\\^Mo\BeM
JQeW

for every ZQ e 9^ and 6 > 0. As in the proof of Theorem 2 write
b = 61 + &2 + 63, where 61 = 65^0)^2 = (6 - &i)XBc^o) and ^ =
(6 - 6i)(l - ;<B^(^)). Then we extend 61,62 and 63 to functions defined
on BP in the same way as 6. Since dS also can be represented by the
form -(2m)-nQp^{9Qp}n-l, and since 9^v(z,(,) - p(z)) = 0, we have by
Stokes5 theorem

H-Kz} = (-^-Y f -^(0 A (^(C))"-1

\2m} JQB^ (v(z,<;)-p(z))n

_ / 1 Y [ (^(C))"
-) /^ JB^i/ JB? (v(z, C) - p(z))n'

Since \(a/9z,)(v(z,<;) - p(z))\ ^ \z^-1 and -p(z) ̂  \v(z,^) - p(z)\ we
have by (2.2)

o(z) 9 H ^ ( ^ < ( ( W9zj)(~v(z^)~p(r))dV((;)\2-p^^Hl(z) -^ K^)-p(.)|»^ )9^ '\ ~VB? K2,c)-p(0|»+V2
^l^l2^-^.

Thus
/' -p|9ff*fri|^V^|6i|2 / dV

JQ^(zo) JQ^zo)

$ ll&ll'BMO^^og^l/e) ̂  Hfcll^Mol^^o)!.
Furthermore, by repeated use of Stokes' theorem, we have

I -p\9H*h\ldV
JQ,(za}IQ,(zo}

<, f -p\9H*b2\2,dV = I -pi9H*b2/\9^{^b2/\(99p)n~l

JBP J BP

= f -^H*b^QH^f\Qpf\{99p)n-'i
J BP

+ [ -piH''b'299~^H)2/\(99p)n-l

JB?

= f ^H^b29H*b2/\9p/\(99p)n-l+ f i^b^^p)"
JBP JBP

+ I i\H*b2\29p A (99p)n~l + f -pi9H*bz A 9Wb^ A {QQp^-1

JQBP JBP

+ I iH*bt9H^ A 9p A (^p)"-1 = Ji + J^ + Jy + J^ + Jg.
J a"
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By (3.8) and the boundedness of ft*, considered as an operator on L^AE^),
we have

W^ I {^dS^M^^B^.
JQBP

The integrals J\, Ja 5 ^4 and J5 are easier and can be estimated in a similar
fashion. For example, by (4.3), we see that

( ^1-^/21 9 ff^)l < \z-^ [ MC)I^(C)^^ \•Qz'H b2(z){ ̂  N L? 1^,0 - pw-6'2
and hence by (2.2),

w< t ———(I l^«)l^(e) \\y^1 " - J B . (-^))1-6 [JaB? \v(z^)-p(z)^) dvw

^ L, '62(c)'2 {L ̂ w-^tpw-6'2)w

$ I MOWC) ̂  ||&||^Mo|5.(^)|.
^9B?

Finally to estimate the contribution from 63 we observe that if
z £ Qe^o) then, as in the proof of Theorem 2, we have

I 9 TT-h (.}\ < 1. l^-1 [ 1^(0 - feBcJ^(C) < , ,.,-llHlBMO\-^-HW\^\ y ^i^^)_^)i^i~i^i ^—
^ JB^(zo

Hence

/' -p|9ff*b3|^^ ̂  ̂ ^IQ^^O)! ̂  II&II'BMOI^^O)!.
JQ.(zo) €
/ -p\9H^dV^&
JQe{^) e

This concludes the proof of Lemma 7, and hence also of Theorem 3. D

Using (1.4) and (4.2) we can now easily prove Theorem 4.

Proof of Theorem 4. — We need to prove that H^ = H1 with
equivalent norms. To see that H^ can be continuously embedded in H1

amounts to prove that H takes H^ boundedly into H1. Since

r ( \ r
/ H ^ X,a, } dS<^\\,\ \Ha, \dS^
JB? \ J f ^ JOB?

this follows from

LEMMA 8. — HJfall^i ^ 1 for all atoms a.
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Proof. — Ifsuppa C Be(zy) and z ^ Bce(zo) where C is sufficiently
large, then by Lemma 4 and (1.1)-(1.3)

o(C)\Ha(z)\ = {
\J9

<

[ o(c) dS(C}L.^c,.)"^0

f ( 1.L/̂ )" z^o^)"^^
/• Z;(^)"-V(C^)" ̂ wo^

.Uo) ^(C,̂ M^)" a(c)d5(c)

/• l^o'^-^'^Lrnirfwi-
AM,O) ^C,^1 l^0'^0-^)"^

^„/</-^/7C//-^

. ^
Thus by (2.1)

{ \Ha(z)\dS{z)^e6 ( ——^——^1.
J B 0 (zo} JB^Azo} a^o^r'

dS(z)
JB^{zo) ^B^{zo) ^ZQ,Z)

Since Jf is bounded on L2 we also have
/ \ l / 2 /

( \Ha{z)\dS(z)^[f dS(z)) [ ( \\Ha(z)\2dS{z)\
JBC.{ZO) \JBce(zo) ) \JBceW

^(Cer^f I Hz^dS^)} ^1.
/ B , ( z o )

1/2

D

The hard part in Theorem 4 is to see that H1 C H^. Thus consider
/ G H1. Since / = Hf it is enough to prove that /, as a function on the
boundary, belongs to "H^ and that ||/||at $ ||/||u1- To see this, take an
approximating sequence fn € C1 (BP) H H1 (J^) such that ||/-/n||^i —> 0.
Since /n e ^(QB^ we have /^ e U\^ and hence by (4.2) and the duality
(1.4) we get

ll/n fnbdS hS||/n||^.JQIsup
\\b\\BMO^\JQBP I

It follows (by applying this inequality to fn ~ fm) that fn is a Cauchy
sequence in 7-^, and since H\^ is a Banach space, fn converges to some
g € 7^. As /n —> f in L1 and fn —> g in L1 (7^ is continuously embedded
in I/1) we must have / = ^ and by above ||/||at ^ l l / l l^ 1 - This completes
the proof of Theorem 4. D
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5. The factorization theorem.

In this section we prove Theorem 5. If F e H1, then by Theorem 4 we
have F = ^A^a^, where ̂  \\k\ ~ ||̂ ||̂ i and a^ are atoms. Therefore

k k
it suffices to prove the factorization for holomorphic atoms. This in turn
follows from the Z^-boundedness and the existence of a good support
function.

Suppose that a is an atom with support in B^(zo). Then set G(z) =
(v(zo,z)+e)aHa(z) and H(z) = (v(zo , z ) +6)-°' , where a is to be specified
below. Note that (v(zo,z) + e)- is analytic in z € ^p even if a is not an
integer, because Rev(zo,z) > 0. We have Ha = G ' H, so we are done if
we can prove that ||G||^2||Jf[[^2 ^ 1. In fact we show that if a is between
n/2 and n/2 + 6 (here 6 is the same as in Lemma 4) then

(5.2) IIGH^^-t

and

(5.3) 11^1^ ^c-^t.

The estimate (5.3) is easy. We have

L.> K^F Î̂ I--2-.
and by (2.1)

/ ds^ < f _dsiz)__<,n-2a
JB^) K^o, z) 4- 612- - JB^) d(zo, ̂ )2a ~

since a > ^. To verify (5.2) recall that, from the proof of Lemma 8, we
have

l^^c^o^ î %(.o),

where (7 is a large constant depending on the constant in the triangle
inequality for d (see remark after Lemma 1). Hence by (2.1)

/ \v(zo,z)+€\2a\Ha(z)\2dS(z)
^e^o)

< e26 [ ds(z) < ̂ -n

^ JB^W d(z^z)^6-a) -6 '

since a < n/2 + 8. On the other hand, since H is bounded on L2 we have
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f \v(zo,z) -^h\20i\Ha(z)\'2dS{z) ̂  ^OL ( {Ha^dS^z)
JBce(^o) JBce(zo)

^ [ KOl^O^c20-71,
JB^zo)

which proves (5.2). D
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