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ON SPHERICAL NILPOTENT ORBITS
AND BEYOND

by Dmitri I. PANYUSHEV

Introduction.

Let 9 be a semisimple Lie algebra and G its adjoint group. The
ground field k is algebraically closed and of characteristic zero. We continue
investigations started in [Pa94], which are primarily concerned with the
complexity of nilpotent G-orbits (conjugacy classes) in Q. Let AT C Q be
the nilpotent cone and 0 C At an orbit. We gave in [Pa94] a formula for
the complexity of nilpotent orbits and proved that 0 is spherical (i.e., of
complexity 0) if and only if ht (0) ^ 3. Here ht (0) is the height of 0,
which can be defined as max{n € N | (ade)71 7^ 0, e € 0}. In this article
we give yet another characterization of spherical nilpotent orbits in terms
of minimal Levi subalgebras intersecting them, see (3.2). This yields a kind
of canonical form for such orbits, see (3.4):

an orbit 0 C M is spherical if and only if it contains a representative which
is a sum of root vectors corresponding to orthogonal simple roots.

Along the way, in Sections 2 and 3, we prove several auxiliary results
about the height and the type of 0. The minimal non-spherical orbits in
the simple Lie algebras are described in Section 4. These are of complexity
1 for SL,N and of complexity 2 for all other simple groups. In Section 5, we
study the complexity of nilpotent orbits for Vinberg's ^-groups. Recall that
associated with a finite order automorphism 6 of 5, one has the periodic

Keywords: Semisimple Lie algebra — Nilpotent orbit — Spherical variety.
Math classification: 14L30 - 14M17 - 17B45.
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grading Q = 9 Sj and the connected reductive group Go acting linearly
j€Zm

on ^i. In this situation we are interested in the complexity of Go-orbits in
J\f r\ 0i. Our main results are:

• a monotonicity result for the complexity of Ge and Goe (e € Xn^i),
see (5.1);

• a formula for the complexity of Goe in terms of a bi-grading of g,
see (5.4);

• in case 0 is of order 2, an almost complete description of spherical
Go-orbits is found, see (5.7).

The situation for ^-groups is not however so simple, as it could have
been: By [Vi76], the irreducible components of Ge H ^i are just Go-orbits.
If 6 is of order 2, these components have the same dimension [KR71]. But
it may happen that these have different complexity, see (5.10). Finally,
Section 6 is a collection of observations and questions related to spherical
nilpotent orbits. In particular, we show that theory of spherical orbits has
some relationship with the index of Borel subalgebras.

As usual, algebraic groups are denoted by capital Roman letters, and
their Lie algebras by the corresponding small Gothic letters. For x C 0, we
write Gx in place of (adG).r.
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also due to D. ShmePkin for questions reviving my interest to the subject
and to the referee for several helpful suggestions. This research was carried
out while I was visiting University of Poitiers and MPI (Bonn). I am
grateful to both institutions for hospitality and support. This research was
supported in part by RFFI Grant No. 98-01-00598.

1. Recollections on nilpotent orbits
and the complexity.

Let Q be a semisimple Lie algebra with a fixed triangular decomposi-
tion Q == u_Qt®u+, A the corresponding root system, and II = { a i , . . . , a?}
the set of simple roots. Let Af C Q be the nilpotent cone. By the Morozov-
Jacobson theorem, any nonzero element e G N can be included in an 5(2-
triple {e,/i,/} (i.e., [e,/] = h, [h,e\ = 2e, [h, f} = -2/). The semisimple
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element h defines the Z-grading in g:

fl-®^),
zeZ

where g(%) = {a- e 0 | [/i,rr] = ix}. It is well known that all
^-triples containing e are Gg-conjugate. Therefore the structure of this
Z-grading does not depend on a particular choice of h.

Following E.B. Dynkin, we shall say that h is a characteristic of e.
The orbit Gh contains a unique element /i+ such that h^. e t and a(/i+) ^ 0
for all a € II. The Dynkin diagram of Q equipped with the numerical labels
o;z(/i+), Oi € II, at the corresponding nodes is called the weighted Dynkin
diagram of e. After Dynkin and Kostant, it is known (see e.g. [SpSt]) that

(a)a^+)(E{0,l ,2};

(b) elements e, e' € At are G-conjugate if and only if their charac-
teristics h and /i' are G-conjugate if and only if their weighted Dynkin
diagrams coincide.

We shall need the following standard results on the structure of the
stabilizer Gg C G and the centralizer Qe C Q (see [SpSt, ch. III]).

1.1. PROPOSITION.— (i) The Lie algebra Qe (resp. Q / ) is positively
(resp. negatively) graded; Qe = ® Se(^), where fle(z) = SeHS^), and likewise

i^O
forQf;

(ii) Let L := G(0) be the connected subgroup in G corresponding to
S(0) and K := L^. Then K = Gg D Gf and it is a maximal reductive
subgroup in both Gg and Gf;

(iii) For any i, there are K-stable decompositions:

QW = Qe(z) ® [f^(i + 2)], Q(i) = QfW C [e,fl(z - 2)].

In particular, ad/ : g{i) —^ Q(i - 2) is injective when i ^ 1 and surjective
when i ^ 1;

(iv) (ad/)1 : s(z) —^ S^) ^ one-to-one.

The notation related to the Z-grading associated with a nilpotent
orbit will be used throughout the paper.

1.2. PROPOSITION.—For i even (resp. odd), Q{i) is an orthogonal
(resp. symplectic) K-module. In particular, dimfl(z) is even for i odd.

[- ) K can be disconnected.
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Proof. — For i ^ 0, consider the bilinear form ^ on Q(i) given by
(rc,^/) i—^ ((ad/)^,^), where ( ' ,•) is a G-invariant inner product on Q. By
Proposition l.l(ii),(iv), ^ is nondegenerate and J^-invariant. It follows
from G-invariance of (•, •) that ̂  is symmetric for z even and alternate for
iodd. D

Recall that e or Ge is called

• even whenever Q(z) = 0 for i odd or, equivalently, if all Q^(/I-(-) C
{0,2};

• distinguished, iffle contains no semisimple elements, i.e., K is finite.

For a reductive group jR, we let Bp denote a Borel subgroup of R.
If X is an irreducible IP-variety, then X is called {R-)spherical whenever
Bp has an open orbit in X. The complexity of X relative to R, which is
denoted by c^(X), is equal to the minimal codimension of I?R-orbits in
X. Clearly, CR^X) = cp,o(X), where R° stands for the identity component
oiR.

2. The height of a nilpotent orbit.

DEFINITION. — The integer max{z | g(z) ^ 0} is called the height of
e or the orbit 0 = Ge and is denoted by ht (e) or ht (0).

Since e € s(2), we have ht (e) ^ 2 for any e € At \ {0}. Let A C A+
P

be the highest root, A = ̂  n^. Clearly, we then have
1=1

P
(2.1) ht (e) = A(/i+) = ̂  a,(/i+)n,.

1=1

An immediate consequence of (1.1) is an intrinsic characterization of the
height

(2.2) ht (e) = max{n e N | (ade)" ^ 0}.

For the classical Lie algebras s[(V), 5p(V), and so (V), it is sometimes
more convenient to describe nilpotent orbits by the sizes of blocks in the
Jordan normal form, i.e., in terms of partitions (a i , . . . , a^ ) , where a\ ^

t
a'2 ^ ... ^ Of and ^ a^ = dimV. As is well known, this correspondence is

i=l
one-to-one in case ofs^V). For sa(V) and sp(V), there is a correspondence
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between the nilpotent orbits and partitions satisfying a special condition.
That is, in the symplectic (resp. orthogonal) case, one considers the
partitions whose odd (resp. even) parts occur pairwise. This correspondence
turns out to be a bijection, the only exception being that for so (V) with
dim V = 0 (mod 4), each partition whose all parts are even ("a very even
partition") arises from two 5'0(y)-orbits, see [CM93, 5.1]. Since these two
5'0(y)-orbits form a single 0(V)-orbit, these have the same height and
complexity. In the sequel, we shall identify "classical" nilpotent orbits with
corresponding partitions, keeping in mind this exception.

Let us give simple formulas for the height of nilpotent orbits in the
classical Lie algebras.

2.3. THEOREM.—Let 0 = (a i , . . . , a^) be a nilpotent orbit in a
classical Lie algebra Q (a\ ^ 02 ^ ... ^ Of).

1. If Q = sl(V) or sy(V), then ht (0) = 2(ai - 1);

^ifs^^n^ht^^f0^02-2- if a^al-l
[^ zai — 4, IT 02 ^ CL\ — 2..

In particular, either ht (0) is even or ht (0) =3 (mod 4).

Proof. — Let a C Q be a simple 3-dimensional subalgebra containing
e € 0. Denote by R{n} a simple a-module of dimension n -\-1. Considering
0 as an a-module, say Q = ®J?(n^), one sees that ht(e) = max{r^}. On

i

the other hand, V = © R(ai — 1) as a-module. The relationship between
z==l

V and the adjoint representation is well known:

rv0y*ei for si(y)
Q = ^ S^V for sp(V)

[^V for so{V).

Combining these relations with the Clebsch-Gordan formula R(n) 0
R(m} = R(n -h m) (B R{n — 1) 0 R(m — 1) and with the decomposition
of S2R{ni) and A2^?^), one easily detects the biggest a-submodule in Q.
Whence the formulas for the height. In the orthogonal case, the constraint
on parity must be satisfied. That is, the equality 03 = CL\ — 1 is only possible,
if ai is odd. D

Remark. — The above relationship between the adjoint and the sim-
plest representations of classical algebras was used in [E185] for obtaining
a quick classification of distinguished nilpotent orbits.
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The orbits with odd height, in all simple Lie algebras, are not
numerous and my feeling is that these ought to have some interesting
properties. The following is a simple observation for them:

2.4. PROPOSITION. — Suppose ht (e) is odd. Then the weighted
Dynkin diagram ofe contains no 2's.

Proof.— By (2.3), such elements e do not exist in sl{V) and sp(V).
For so(y), we must then have 03 = a\ — 1. Then a formula for the
weighted Dynkin diagram (see [SpSt, 2.32] or [CM93, 5.3]) shows that
Oi(h^) C {0,1}. In the exceptional cases, one can consult Dynkin's tables
[Dy52, Tables 16-20] of the weighted Dynkin diagrams (see also [E175] or
[CM93, ch. 8]). D

The Z-gradings associated with -s^-triples form only a small part
among all possible Z-gradings. Many interesting features of the former were
described in [Ka80]. The following assertion concerns the same subject.

2.5. PROPOSITION.—Suppose that 0(2n) = 0 for the ^-grading
associated with a nilpotent element e. Then ht (e) ^ 2n — 1.

Proof. — It suffices to prove that Q(2n + 1) = 0. Assume not. Then
fl(2n — 1) -^ 0 as well. The space fl(2n +1) is a sum of root spaces. Because
each positive root is a sum of simple roots and 0(2n) = 0, to reach g(2n+1)
from 0(2n — 1), we must have a root vector e^ C fl(2) for some o^ € II.
Thus, the weighted Dynkin diagram must contain a label "2". Then (2.4)
says that ht (e) is even, which is not the case, if fl(2n + 1) 7^ O. D

A relationship between the complexity and the height of nilpotent
orbits is given by the following theorem proved in [Pa94]:

2.6. THEOREM. — A nilpotent orbit Ge is spherical if and only if
ht (e) ^3. D

3. The type of a nilpotent orbit and sphericity.

In this section we characterize the spherical nilpotent orbits in terms
of minimal Levi subalgebras intersecting them. For any e € jV, there exists
a unique, up to conjugation, minimal Levi subalgebra 3 intersecting Ge
and, moreover, the orbit Ze C 3' := [3,3] is distinguished. This fact is
usually attributed to Bala and Carter [BC76]. Not everybody has observed
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that a much more general assertion, in the context of graded Lie algebras,
has independently been proved by E.B. Vinberg (see [Vi75] and [Vi79]).
The construction itself is quite simple. Let I) be a Cartan subalgebra in
6 = ^e(O). Then the centralizer 3 := 3g(b) is the desired Levi subalgebra.
Put q := ̂ W. Obviously, the elements e, /i, and / lie in 5 and hence in q.
We also have 3 = 0 3(z) and q = ® q(z).

i6Z ^eZ

3.1. LEMMA. — 1. q(z) = 5(z) for z 7^ 0;

2. q(z) = 0 whenever i is odd.

Proof. — 1. Since 3 contains /i, the centre of 3 is contained in 0(0)ri3 =
3(0).

2. Obviously, q(0)g = qe(0) = 0, i.e., e is distinguished in q. By a result
of Bala-Carter [BC76] and Vinberg [Vi79], any distinguished nilpotent
element is even^. D

The Cartan label of the semisimple subalgebra q C Q is called the
type of Ge. Indication of the type forms a part of the notation for the
nilpotent orbits in the exceptional Lie algebras used in [BC76]^. In case
of two root lengths, if a simple component of q involves only short roots,
then one places tilde over its Cartan label. The type does not determine
the orbit uniquely. For instance, if e is distinguished in ^, then 1) = {0} and
q = g. In order to distinguish different distinguished orbits and different
conjugacy classes of Levi subalgebras, the Cartan label is accompanied by
additional symbols, see [BC76] or [CM93, 8.4] for more details.

The notion of type applies to the classical Lie algebras as well and it
is worth to write down explicit formulas for the type of a nilpotent orbit
in this case. The partitions corresponding to the distinguished orbits was
pointed out in [Vi75], but the general formulas, though being known to
experts, seem not to be in print.

Let 0 == (a i , . . . , cif) be a 'classical' nilpotent orbit.

For SL(V): By the theory of Jordan normal form, we have q =
Aai-l + . . .+AO(- I .

For Sp(V): If all the a^s are distinct and even, then e is distinguished
and q = Cn, where n = (dimV)/2. In general, each pair of equal parts

^2) Both proofs were case-by-case. An elegant a priori proof was found by Jantzen,
see [Ka80, Note added in proof],

{ ) Actually, this is a truncation of the data that were already used by E.B. Dynkin
in [Dy52].
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(equal Jordan blocks) ai = a^+i gives rise to a summand A^_i. After
deleting all equal pairs, we obtain a partition with distinct even parts.
This little partition determines the last summand in q, a smaller symplectic
algebra. Because there are two root lengths, one has to distinguish between
AI and Ai. The answer is that Ai occurs if and only if one obtains at the
very end the partition (2). That is, formally Ci = Ai.

For SO(V): The procedure is similar. Each pair of equal Jordan blocks
gives rise to a summand Aa,-i in q. After deleting all equal pairs, we obtain
a partition with distinct odd parts. This partition determines the last
summand in q, a smaller orthogonal algebra. We have again to distinguish
between Ai and Ai. The answer is that Ai occurs if and only if one obtains
at the very end the partition (3). That is, formally Bi = Ai.

Modulo the description of distinguished orbits, the proof immediately
amounts to the claim that the orbit (s) corresponding to the partition (n, n)
is of type An-i in so^n and of type An-i in sp^.

Examples. 1.0= (4,4,4,3,3,1,1) € sp^ Then q = As + A.2 + C^

2.0= (3,3,3,2,2,2,2) e 5017. Then q = A2 + 2Ai + Ai.

3.2. THEOREM.—Let e e At \ {0}. The following conditions are
equivalent:

1. ht(e) ^3;

2. fl(4) = 0;

3. the type of Ge is rAi + ZAi;

4. there exist pairwise orthogonal simple roots f3\,..., f3f such that Ge
t

contains an element of the form ̂  e^, where ei G 0^ \ {0}. (Then t = r +1
i=l

and there are r long and I short roots among the f3i ' s . )

Proof. — 1=^2 - Obvious.

2=^3. It follows from the definition of q and (3.1) that q = q(—2) 0
q(0) C q(2), e e q(2), and h e q(0). Since qe(0) = {0}, we have dimq(O) =
dimq(2). On the other hand, q(2) is a spherical Q(0)-module by [Pa94,
3.2]. Hence Q(0) is a torus. Clearly, a semisimple Lie algebra having such
a grading is just a sum of several 3-dimensional simple algebras.

3<=>4. This follows at once from the definition of the type.

4=^1. Consider the Levi subalgebra f corresponding to the roots
/?!,..., /3t and the corresponding connected subgroup F C G. We may
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t
assume that e = ^ ei and a = (e, h, f) is embedded diagonally in

1=1
f c^ (s^)*- Take the unique F-stable decomposition Q = f (Bm and consider
an arbitrary irreducible .F-submodule V C m. I claim that F has finitely
many orbits in V. Indeed, as jF is a Levi subgroup of (5, there is a Z23"*-
grading of Q whose 'zero'-part is f. (Recall that p = rk^.) The ^-module
V is contained in some homogeneous subspace of this polygrading (it will
actually be equal to some homogeneous subspace, but we do not need this
fact). Now, finiteness follows by famous Vinberg's lemma, see [Vi76, Lemma
in §2]. Let s be the number of simple factors of F acting non-trivially on V.
Then V ^ -R(di)(g).. .0J?(dg), where all dz ^ 1. Since F has a dense orbit in
V.wehavedim^I^xk*) ^ dim V, i.e. 35+1 ^ (di+1)... (ds-t-1) ^ 2s.
This inequality has exactly three solutions:

5=3, d\ = c?2 = d^ = 1;

5 = 2 , d i ^ 2 , c ? 2 = l ;
5=1, di ^ 3.

In each case we have ̂  di < 3. Together with the Clebsch-Gordan formula,
i

this shows that the biggest irreducible a-module that can occur in V is -R(3).
Since f|n ^ tR(2) + (p — ^)J?(0), the same is true for the whole Lie algebra
g. But, this means precisely that ht (e) < 3. D

Equivalence of conditions (1) and (2) is a particular case of Proposi-
tion 2.5. But the last proof does not appeal to case-by-case considerations
as in 2.4.

3.3. COROLLARY (of the proof). — For any p, € A, let {a^,..., a^ } C
II be a set ofpairwise orthogonal roots such that (a^., fi) 7^ 0, j = 1 , . . . , 5.
Then 5 ^ 3 (even s ^ 2, if an addition /z is long and one of the a^ 's is
short).

Proof.— Replacing fi by a suitable root // = {i + ̂ ^jO^i^ one can
3

achieve that (o^.,//) > 0 for all j. Then // is the highest weight of an
irreducible (^Ls^-submodule V of Q. Since all copies of SL^ act non-
trivially on y, the proof of 4=>1 shows that s ^ 3 (even s ^ 2, if d\ ^ 2).

D

Remarks.— 1. In case /^ G II, we obtain the well-known assertion
that the number of other simple roots that are not orthogonal to ^ is at
most 3. That is, we have given an invariant-theoretic proof of it.
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2. If we drop the assumption that the a^.'s are pairwise orthogonal,
then it is easy to give an example with s = 5 (at least).

Combining (2.6) and (3.2) yields a kind of "normal form" for spherical
nilpotent orbits:

3.4. THEOREM. — Suppose e € At. Then the orbit Ge is spherical if
t

and only if it contains an element of the form ^ e^, where e^ C Q^ and
i=l

/?i , . . . , f3f ^re pairwise orthogonal simple roots. D

Obviously, this normal form is not unique in general. For instance, if
Ge is the orbit of highest weight vectors, then t = 1 and f3\ can be any
long simple root.

Examples.—1. The spherical nilpotent orbits in sp^ are Oi =

(22, l2?-2^4) (0 ^ i ̂  p}. Then the type ofO, is ( IA1^ 1H = 2^
t ZAi +Ai, if i =21+1.

In particular for i = p = 21 + 1, the respective set of simple roots is
ai, 03, . . . , a2^+1. (The last of them is long.)

2. The type of spherical orbit (3,22,11) in Q = so(V) is
f 3Ai, if I is odd,
^ AI + Ai, if I is even.

4. Orbits of small complexity.

Recall, with some variations, a formula for the complexity of Ge
obtained in [Pa94]. The following assertion which is implicit in [Pa94, 1.2]
was suggested by the referee.

4.1. LEMMA.— Let P be a parabolic subgroup of G and Y a P-
variety. IfL is a Levi subgroup of P, then cc{G *p Y) = CL^Y).

Proof. — Consider the canonical projection G^pY —>• G / P . Since BG
has a dense orbit in G / P , the minimal codimension of B^-orbits in G*p Y
is equal to the minimal codimension of (BG?)*-orbits in V, where (BG;)* is
the stabilizer of a point in the dense orbit in G / P . For a suitable choice of
Be, we obtain (Be)* = BG n P = BL. D

Maintain the notation of sect. 1. Let S be a stabilizer in general
position (== s.g.p.) for the ^-action on ^(2). We shall use the notation

^ ) As usual in the theory of partitions, a-7 := a , . . . , a (j times).
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S = s.g.p.(K,Q(2)) as a shorthand. The reader is referred to [VP89, §7] for
the basic facts on s.g.p. As s(2) is an orthogonal ^-module, a result of D.
Luna [Lu72] asserts that S is reductive. Set 5(^.7) = 9 fl(z).

i^j
4.2. THEOREM.— 1. CG(Ge) = CL(0(2)) +C5(s(^3));

2.CG(Ge)=^(g(^2)).

Proof.— 1. Since Le c± L / K is the dense orbit in g(2), we have
CL(fl(2)) = CL(L/K). Hence (1) is nothing but the first formula in
[Pa94,2.3].

2. Let P be the parabolic subgroup corresponding to p := s(^0).
Then L is a Levi subgroup of P. Since Ge = Pe and Pe = s(>2) (see
1.1), the homogeneous vector bundle G *p fl(>2) is birationally isomorphic
to Ge. (Actually, the collapsing G *p ̂  2) -> G-fl(^ 2) = Ge is an
equivariant resolution ofGe.) Hence cc{Ge) = CG(G*pg(^2)). We conclude
by Lemma 4.1. Q

Remark. — The first formula in (4.2) is convenient for theoretical
arguments, while the second one is sometimes better suited for practical
computations. The significance of these formulas is that computing of the
complexity of Ge is reduced to that for a representation space. In case
of representations, there is an explicit algorithm for doing this [Pa87].
Actually, given a representation R -> GL(V) of a reductive group R,
the algorithm says how to find s.g.p.{R,V © V*) =: R,,. The group R^
is reductive and has some other nice properties. Then cp(V) = dimY —
dim BR -\- dim B^.

4.3. PROPOSITION. — If dim g(4) ^ 2 or ht (e) ^ 5, then cc(Ge) ^ 2.

Proof.—In view of Theorem 4.2(1), it suffices to show that
cs'(s(^ 3)) ^ 2. We are to find at least two algebraically independent
B^-invariant rational functions on s(^3).

It follows from Theorem 3.2 that in both cases fl(4) ^ 0. Since
ad/ : g(4) —^ 5(2) is injective, there is a J^-module W^ such that
S(2) ^ s(4) © Wi. Because S = s.g.p.(^,s(2)), we have ^(fl(2)5) is dense
in 5(2). It follows that fl(4)5 ^ 0. Write g(4) = 5(4)5 © W^, where W^
is an 6'-module. Because ^(4) is an orthogonal J^-module (1.2), the same
holds for W^. Hence kl^)]5 contains at least two algebraically independent
functions whenever dim Q (4) ^ 2. If dim Q (4) = 1, we examine the following
possibilities:
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(a) Assume s(6) ^ 0. Then 5(6) = (ad 6)^(4) and 0(6) - g{6)s. This
yields another ^-invariant function in A;[g(^3)].

(b) Assume fl(5) ^ 0. Then s(5) and [/,s(5)] C s(3) are two different
isomorphic 5'-submodules in fl(^3). Obviously, this produces a non-constant
B^-invariant rational function on ^(^3). D

Remark. — Similar arguments prove that if ht (e) ^ 2n + 1 (n ^ 2),
then cc(Ge) ^ n. But I think there ought to exist a quadratic polynomial
n ̂  (f)(n) such that cc{Ge) ^ (f){n).

By (2.6) and (4.3), the nilpotent orbits of complexity 1 are contained
among those with height 4 and dimg(4) = 1. Such orbits exist in all
simple Lie algebras. However, routine computations lead to the following
conclusion:

4.4. THEOREM.— 1. Nilpotent orbits of complexity 1 exist only for
G = SLn- For each n ^ 3 there exist a unique such orbit. Its weighted
Dynkin diagram is 2-0-...-0-2 and the partition is (3,ln-3). Moreover,
this orbit is the unique minimal non-spherical one.

2. For all other simple groups, the minimal non-spherical orbits are
of complexity 2.

Proof. — For the classical groups, the classification of the minimal
non-spherical (= m.n.s.) orbits follows from (2.3), (2.6), and an explicit
description, due to Gerstenhaber and Hesselink, of the closure ordering,
see [CM93, 6.2]. For the exceptional groups, one uses 3.2(3) and the Hasse
diagrams for the closure ordering, see [Spal, IV.2].

1. For SLn, there is a unique m.n.s. orbit 0 = (3,171"3). It is even and
of height 4. For n = 3, 0 is the regular nilpotent orbit and the assertion
follows from counting dimensions. Let n ^ 4. Then L = 57^-2-(k*)2 and
the L-modules fl(2) and fl(4) are as follows: ^(2) = A(^i)(g)£+^((^i)* (g)/^,
^(4) = J?(0)0£^. Here R(X) stands for the irreducible representation of the
semisimple part with highest weight A, while e and p. are basic characters
of the central torus; dim^(2) = 2n - 4 and dimg(4) = 1. Obviously, g(2)
is a spherical L-module. It is not hard to compute that K ^ S'Ln-3'k*,
S c± 5'1^-4-k*, and S acts trivially on ^(4). Applying then (4.2), we get
cc(0) = 1.

The minimal nilpotent orbit lying 'over5 0 is

^ ' = 1 (^ o m-5\ •r ^ c • Then it already turns out thatL v°5 z " ) 1 )i n ^ ^ o
CG(O') = 2.
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2. For SOn (n ^ 7) and En (n = 6, 7, 8), the unique m.n.s. orbit is
of type As; F4 has two m.n.s. orbits of types As and As; 5'psn (n ^ 2)
has the m.n.s. orbits of types As (for n ^ 3) and Cs. The corresponding
partitions are (3,3,1271-6) and (4,1271-4), respectively. Finally, the m.n.s.
orbit for Gs is 10-dimensional (and distinguished). All these orbits are of
complexity 2.

For instance, consider the orbit of type As for G = F4. Here
L = Spnyk*, fl(2) = R{^) 0 e, and s(4) = R{^) 0 £2; dims(2) = 8,
dim^(4) = 7. This information is easily being extracted from the weighted
Dynkin diagram given in Table 1 in Section 5. Because dimg(4) ^ 2,
Proposition 4.3 implies that CG^O) ^ 2. Let us find the exact value. Here
K c^ Gs and CL{L/K) = 0. Next, g(2) affords the sum of the simplest (7-
dimensional) and the trivial 1-dimensional representation of Gs. Therefore
5' ̂  S'L3, the long root subgroup of Gs. It is easily seen that ^(4) affords the
simplest representation of Gs and that S (4)1^3 = ^(^'i) + -R(^s) + -R(O).
Whence c^(g(4)) = 2 and cc(0) =2. D

This result confirms a claim in [Vi86, n. 9] concerning orbits of
complexity 1 in the universe that "it appears there should be few of them".

5. The complexity of nilpotent orbits of 0-groups.

Let 6 be an automorphism of 5, of finite order m. Fix a primitive
m-th root of unity ^. Consider the periodic grading

5 = Q 0^
j'eZ^

where Qj is the 0-eigenspace of Q corresponding to (^. Following Vinberg,
we shall say that the connected reductive group Go acting linearly on gi is
a 0-group. The main references on 0-groups are [Vi75], [Vi76], [Vi79]. One
of the basic results is that GQC 9 0 (e € 0i) if and only if e G Af. Such
Go-orbits are called nilpotent, too. Our aim is to study the complexity of
them. Throughout this section, it is assumed that e € At C\ 51. The first
result is:

5.1. THEOREM.— cc{Ge) ^ CGo(Goe).
To demonstrate the theorem, we need the following variation on

Vinberg's themes:
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5.2. LEMMA. — Let G —> GL(y) be a representation of a reductive
group, H C G a reductive subgroup, and W C V an H-stable subspace.
Choose Borel subgroups in H and G such that BH C BG- Suppose that

(*) bnv = ^GV Fl W for all v e W.

For any G-stable locally-closed subvariety X C V and each irreducible
component Y of X D W, we then have

cc(X) ̂  cn(Y).

Proof.— By [Vi86], the complexity cc(X) is equal to the modality
of B^-action on X, i.e., to max trdeg ̂ (X')50, where X' runs through

./L C-^

the irreducible ^-stable subvarieties of X. On the other side, it follows
from (*) and [Vi76, §2] that BGV H W is a union of finitely many BH-
orbits for all v € W, each B^-orbit being an irreducible component
of BQV H W. Therefore, if V C Y is By-stable and irreducible, then
trdeg A^V)^ = trdeg k^BG'Y')30. D

Proof of 5.1. — The lemma applies to V = 5, H == Go, and W = 51.
The condition (*) follows from presence of periodic grading. As (*) holds
also for 0o and Q in place of bn and be, Vinberg's lemma [Vi76, §2] implies
that each irreducible component of GeH^i is a Go-orbit. In particular, one
of the components is Goe. D

It follows that, given a spherical orbit Ge, each irreducible component
of GeHfli is a spherical Go-orbit, too. But a naive hope for the converse fails
to be true. For, any simple Lie algebras has a periodic grading such that Go
is a torus. (Indeed, if x € Q is regular semisimple, with integral eigenvalues,

then 0 = expf————x) yields such a grading for n large enough.) Then
\ n /

all Go-orbits in 51 are spherical, while this is not always the case for the
G-orbits in Gfli. To develop a technique for dealing with the complexity
of Go-orbits and, in particular, for classifying the spherical ones, we need
some preparations.

By a modification of the Morozov-Jacobson theorem, one may assume
that {e,/i,/} is adapted to 0, i.e., h € So and / € s-i. Then Q gains a
Z x Zyyi-grading

8=®9fl(^-
ieZ .»€Z^

We have e € fl(2)i, h e fl(0)o, and / <= fl(-2)_i. By [Vi79, Th. I], all
adapted triples containing e are (G'o)e-conjugate. Therefore the structure
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of this bi-grading does not depend on choice of an adapted triple. One may
say that GQC determines a refinement g(z) = (D Q(i)j of the Z-grading

j'eZm
associated with Ge. However, it is worth noting that another irreducible
component of Ge D 51 may and usually does determine another refinement
of the same Z-grading. We defer discussing of this and related problems
until (5.9) and (5.10).

Denote by LQ and KQ the identity components of the 0-fixed sub-
groups in L and K respectively. Then lo = fl(0)o and it follows from (1.1)
that [io^e] = 5(2)1 and (lo)e = ^o- Clearly, each Q(i)j is a J^o-module and
(fl^)^ i^').?') == 0 unless i + i1 = 0 and j + f = 0. An extension of Propo-
sition 1.2 to the bi-grading is given by

5.3. PROPOSITION. — For all ^,.7 G Z we have

1. Q(2i)i and s(2z)j (B fl(2z)2i-j are orthogonal Ko-modules;

2. Q(2i 4- l)j and Q(2i + 1)21+1-^ are dual KQ-modules.

(The subscripts are being considered as elements ofZ/mZ.^)

Proof.—Let i ^ 0. Recall from (1.2) the bilinear form ^. Since
(ad/)^ : fl(2z)i —^ g(—2z)_^ is bijective, the restriction of the symmetric
form ^2i to Q{2i)i is non-degenerate. The other cases are treated simi-
larly. D

Denote by M an s.g.p. for the JCo-action on fl(2)i. Again, M is
reductive by Luna's result, since fl(2)i is orthogonal. Note that there is no
relation in general between M = s.g.p. (Jfo?s(2)i) and 5' = s.g.p.(J^,0(2)).

5.4. THEOREM.— 1. CGo(Goe) = CLo(fl(2)i)+CM(s(^3)i);

2.CGo(Goe)=CLo(s(^2)i).

Proof.— 1. As well as Theorem 4.2(1), it will be a consequence of
[Pa94, 1.2]. Namely, to derive a formula for the complexity of GQC c^.
Go /(Go) c5 we exploit an embedding of (Go)e mto some parabolic subgroup
in Go. Recall that p = s(^0) and I = ^(0) is a Levi subalgebra in it.
Obviously, then po ''= 0 s(^)o is parabolic in QQ and [o is a Levi subalgebrai^o
in it. Let Au denote the unipotent radical of an algebraic group A. By
Proposition 1.1, Ge C P and (Ge)" C Pu. Set N = {GeY H Go. Then the
identity component of (Go)e is KoN and N = {KoN^. Since N C (Po)^
the embedding KoN C Po is right in terminology of [Pa94]. Because the
component group of the stabilizer does not affect the complexity of an orbit,
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we may apply [Pa94, 1.2] to conclude

c^(Goe) = CG^GQ/K^N) = CL,(LO/KO) + ̂ ((po)"/^.

Since J^o is the identity component of (Z/o)e and Loe is dense in fl(2)i, we
have CLo{Lo/Ko) = c^o(g(2)i). It follows from Proposition l.l(iii) that

pu=^l)=(Qe)UQ^f'Q(^).
Whence

(Po)" = (P")o = (fle)^ead/.g(^3)i =nead/.s(^3)i.

Thus, (po^/n is isomorphic to s(>3)i as J<o- and hence M-module.

2. As is explained in the first part of the proof, the identity component
of (Go)e lies in Po. It follows that the collapsing

Go *?o fl(^ 2)i -^ Go'fl(> 2)i = Goe

is generically finite-to-one. Hence these varieties have the same Go-
complexity. Again, we conclude by Lemma 4.1. D

Remarks.— 1. All the previous results hold without changes if Q =
6»j0j is a Z-grading, i.e., formally m = oo.

2. The paper [Pa94] has dealt not only with the complexity, but
also with the rank of nilpotent orbits. Although the notions are quite
different, the formulas for the both and the proofs turned out to be the
same. This also holds in case of 0-groups. For instance, making use of the
above embedding K^N C PQ and Theorem 1.2 in [loc cit.], one proves the
formula for the rank of Goe: rGo(Goe) = r^o(g(2)i) + rM(s(^3)i).

Although it is already possible to give some estimates for CG?o(Goe),
these are isolated and do not enable us to achieve attractive results. For
this reason, we stick to the case where 0 is involutory. That is, from now
on m = 2 and we intend to describe spherical nilpotent orbits for the
isotropy representation of a symmetric variety G/Go. Now, an adapted sl^-
triple yields a splitting of g(%) (% G Z) in two 7<"o-submodules and as an
immediate corollary of Proposition 5.3 we have

5.5. LEMMA.— (i) For i odd, Q{i)o and Q(i)i are dual KQ-modules;

(ii) for i even, Q{i)o and fl(z)i are orthogonal Ko-modules. D

Our idea is to characterize spherical Go-orbits in terms of the G-orbits
in Q these generate. In view of (5.1), one has to realize which nonspherical
G-orbits may arise in this way. To this end, our main tool is Theorem 5.4.
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5.6. THEOREM. — Suppose 6 is involutory and e € fliFW. If ht (e) ^ 5
or fl(4)i ^ 0, then cco(Goe) > 0.

Proof—Actually, we shall prove that k[^(^ 3)^ 7^ k, which
certainly implies that CM(s(^3)i) > 0, cf. (4.3). The situation splits into 3
cases.

(a) Assume ^(5) ^ 0. By (5.5), fl(5)i and s(5)o are dual Jfo-modules
and hence dual M-modules. Then (ad/)5(5)o and s(5)i are dual M-
modules in fl(^3)i.

(b) Assume fl(4)i -^ 0. By (5.5), it is an orthogonal J<o-module and
hence M-module. Thus, k^S)^ ^ k.

(c) Ifht (e) ^ 5, 0(5) = 0, and fl(4) C So, then 0 ̂  (ade)s(4) = 5(6) =
S(6)i. Consider (ad/)2^^ = (ad/)s(4) c fl(2)i. It is a J^o-submodule.
Since M = s.g.p.(Jfo,0(2)i), we have ^0(0(2)^) is dense in fl(2)i. Whence
((ad/)2s(6)l)M + 0 and, finally, 5(6)^ ^ 0. Thus, k^S)^ contains a
linear function. D

Combining (5.1) and (5.6) gives a complete coherent description for
all G-orbits except for the orbits of height 4:

Let 0 be involutory and 0 a nilpotent orbit. If ht (0) ^ 3, then
each irreducible component of(9Dgi is Go-sphericaL If ht (0) ^ 5,
then none of the irreducible components is Go-spherical. This holds
regardless of0 provided only that 0 D 51 ^ 0.

(5.7) If ht (0) = 4, the answer already depends on relationship between
0 and 0. The complexity of the irreducible components of 0 H ̂ i
may or may not be equal to zero, depending on 0 (see 5.10). Given
e € 0 D 0i, Theorem 5.6 yields a necessary condition for sphericity
ofGoe: ^(4) = Im (ade)4 C flo- It is not however sufficient.

Note that, given e and 0, it is easy to realize when GeHgi 7^ 0. By a result
of L. Antonyan [An82, Th. I], Ge D fli ^ 0 if and only if Gh U 51 7^ 0.
The last condition is immediately being verified by comparing the weighted
Dynkin diagram of e and the Satake diagram of 0:

Gh H fli 7^ 0 if and only if the weighted Dynkin diagram has zero
labels on the black nodes of the Satake diagram and equal labels on the
pairs of nodes connected by arrow.

5.8. Example.—Using (5.4), one can give a recipe for producing
triples (s,0,e) such that e C Si? ^(Ge) > 0, and CQo(Goe) = 0. Let
e be an even nilpotent element with ht (e) = 4. Then cc(Ge) > 0.
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Define a Za-grading of Q by the formulas Qo = fl(—4) (B fl(0) (B fl(4),
0i = 0(-2) C s(2). Then LQ == L, 5(2) = s(2)i, and s(^3)i = 0. Therefore
CGo^Goe) == c^(g(2)). All such orbits with spherical L-module ^(2) are
listed in Table 1.

Table 1

Q characteristic type of 0 L dim^(2) QQ

Sin (n ^ 3)
5(e

5p2n (^3)
^Pl2

f4

C6

2-0-...-0-2
0-2-0-2-0

0-2-0-... ^=0
0-0-0-2-0^=0

2-0^=0-0
2-0-0-0-2

0

A2
2A2
A2
2A2
A2

2A2

SLn^ X (k*)2
(^2)3 X (k*)2

5'L2X5p2n-4Xk*
6'L4 X Sp4 X k*

Spinj x k*

5'pms x (k*)2

2n-
8

4n-
16
8

16

4

8

5^2©5l2©k
5(4 ©512 ©k
^P2n-4©5p4

5p8©Sp4
509

50io©k

In the column "-L", we indicate the simply connected group with Lie algebra
fl(0).

5.9. On behaviour of irreducible components.— In general, different
irreducible components of 0 H ^i determine non-isomorphic bi-gradings
of fl; in particular, the groups LQ can be different. One may address the
following questions in this regard:

Is it possible that these components have different complexity relative
10(70?

Is it possible that spherical and non-spherical components occur
together?

The answer to the first question is "yes" and we present below
an example of triple (5,0, e) such that the complexity of irreducible
components of OH^i takes three values. As for the second question, it seems
that the answer is "no". Such a situation might only occur if ht (0) = 4.
But our computations based on an explicit classification of the G^-orbits
confirm the negative answer. For instance, to compute the complexity of
the irreducible components of GeD^i in the exceptional case, we have used
Djokovic's tables [Dj88]. This will be published elsewhere. It is however
desirable to have a classification-free proof.

5.10. Example. — Let g = si^' Denote by ̂  (1 ^ n ^ ^/2) an inner
involution ofg such that Qo ^ .s(n©5^v-n©k. To emphasize the dependence
on n, we shall write GQ and Q' . The elements of 9' can be thought
of as the pairs of counter operators (A, B), where A € Horn (V, W),
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B € Horn (TV, V), dim V = n, and dim TV = N — n. The orbit classification
in this case was first obtained in [DP65]. (From the modern point of view,
this is a special case of the quiver theory.) We explain this classification
using the language of a6-diagrams introduced in [KP79, sect. 4]. Given
0 = (a i , . . . ,0 t) , a corresponding a^-diagram is obtained if one writes
a string of consecutive symbols "a" and "&", of length a^, in place of part
"c^". Two a^-diagrams are proclaimed to be equivalent if these are obtained
from each other by reordering a6-strings of equal length. There is a bijection
between the irreducible components of On^ and the classes of equivalent
a^-diagrams such that the total number of a's is n.

For N ^ 6, consider 0 = (3,3, l^""6). Its weighted Dynkin diagram is
0-2-0-... -0-2-0. Comparing with the Satake diagram of On, one finds that
OnQ" 7^ 0 if and only if n ^ 2. Here the different irreducible components
of 0 n y correspond to the following a6-diagrams:

I : (bah, bob,...); II : (aha, aha,...); Ill : {aha, bah,...).

The strings of length 1 are uniquely determined by the constraint
that the symbol "a" appears exactly n times. Note that case I (resp. II)
occurs if and only if n ^ 2, N — n ^ 4 (resp. n ^ 4, N — n ^ 2) and
case III occurs if and only if 3 ^ n ^ N — 3. This again shows that
(9 Fig' 7^ 0 only for 2 ^ n ^ N—2. Furthermore, this intersection contains
at most 3 irreducible components. Making use of these a^-diagrams, one
can write explicitly an ^-triple adapted to 0n- An explicit matrix form of
the latter enables us to determine the decompositions Q{i)oQ)Q{'i)i and then
to compute the complexity. The answer is that the complexity relative to
G^ of the irreducible components of 0 D ̂ w is equal to: n — 2 in case I;
T V — n — 2 in case II; 1 in case III. For instance, if N = 9 and n = 4 then there
are irreducible components of complexity 1, 2, and 3. Since cc{0) = T V — 2 ,
one obtains a nice illustration to Theorem 5.1 as well. It also follows from/Q\
above formulas that, for n = 2, 0 D Q\ ' is irreducible and is a spherical
G^-orbit.

6. Questions, observations, remarks.

6.1. Irreducibility.—Theorem 2.6 says that Af8^, the union of
all nilpotent spherical G-orbits, is determined set-theoretically by the
equations (ade)4 = 0. Hence Af8^ is closed^. A direct verification shows

^ ) It is not hard to prove that X®P is closed for any G- variety X.
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that A/'̂ 11 is irreducible. The explicit expression for the maximal spherical
orbit in the classical case is derived from [Pa94, sect. 4]; in the exceptional
case, look at the tables in [Spal, IV.2]. It might be interesting to give
an a priori proof. However, irreducibility fails for arbitrary ^-groups. For
instance, (A/'Hfli)^11 has 2 irreducible components for an involution of SL^.
A more exotic example is an involution of F^ of maximal rank.

Making use of the known normality results (due to Broer and Kraft
& Procesi), one sees that AT^ is normal for G = Ap, Bsp, Cp, Dp, F4;
and not normal for Bsp+i and G2. It is likely Af^ is normal for Ep, and
I think there ought to be a unified proof for A-D-E.

6.2. The defining ideal. — It would be interesting to describe concep-
tually the defining ideal of (A/* Ft fli)^11.

In case m = 1, i.e., for the adjoint representation, Theorem 2.6 shows
that A/^ is determined set-theoretically by polynomials of degree 4. In
the classical case, it is however clear that the matrix coefficients of (ade)4

do not generate a radical ideal. Indeed, for the "multiplicity-free" reason,
the covariants of type Q of degree > 1 must vanish on Af^. But there
exist such covariant of degree 2 (resp. 3) for Q = si(V) (resp. Q = so(V)
or 5p(V)). However, I see no obstructions to that the coefficients of (ade)4

would generate a radical ideal in the exceptional case.

6.3. Dimension. — By definition, dim 0 ^ dimBc for 0 C A/^.
Our aim here is a bit sharper inequality. Without loss of generality, we
may assume that Q is simple. Denote by ko (resp. A;i) the number of even
(resp. odd) exponents of Q. Then ko + k\ = rkg =: p.

PROPOSITION. — IfO C .^sph, then dimO ^ dimBc - ko.

Proof. — This is easily verified case-by-case, but we give a conceptual
proof. Let 5 = Q^ © Q^ be the decomposition corresponding to an
involution of maximal rank ^max. This means ^max contains a Cartan
subalgebra (= C.s.a.) of Q. By [An82, th. 2], we have 0 H s^ ^ 0. It
then follows from [KR71, prop. 5] that dim(0 U fl^) = ^dimO. Since
each irreducible component of 0 D Q^ is G^^-spherical (5.1), we have

1 dim 0 = dim(0 n Q^) ̂  dim ̂ ax.

Here B^ is a Borel subgroup of G^. Thus, it suffices to demonstrate
that dimB^ = ^ (dim BG - ko). This is equivalent to the equality in the
next Lemma, since dim G^^ = dim BG — p . D
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LEMMA.— rkG^^fci.

Proof. — Let () be a ^"^-stable C.s.a. of 0 such that i)o is a C.s.a.
of S^^. Set a := 0max [^. Since the G-orbit of characteristics of regular
nilpotent elements intersects Q^^ (consider an adapted .s^-triple!), l)o
contains regular semisimple elements. By [Sp74, 6.5], the eigenvalues of a
are e^1 (1 ^ i ^ p\ where the e-^s are the "eigenvalues of 0max on the set of
basic invariants". The latter means that homogeneous generators Fi,.. . , Fp
of the polynomial algebra k^^ can be chosen so that 0max•I^ = e^Fi. (Of
course, ^ € {1, —1}.) On the other hand, there is a C.s.a. 1)' C fi™^, i.e.,
a ' :== 0^ \^= -id. By [Sp74, 6.4(v)], the eigenvalues of a' are ̂ (-l)7711

(1 ^ i ̂  p), where mi , . . . , m? are the exponents of Q. Whence ei = 1 if m^
is odd and ei = —1 if mi is even. Finally, rkGg^ = dim()o = #{i | 6i = 1}
=A;i. D

We have proven that dimA/"8^ ^ dimBc — ko. Actually, the equality
holds, but I do not know a unified proof. A promising approach is discussed
in the next subsection.

There is another curious coincidence related to another involution. By
[An82, Th. 3(2)], there is a unique, up to G-conjugation, inner involution
(9mt of s such that all nilpotent G-orbits intersect ^t. (^ ^ 6^^ for
Ap, D2p+i, and EG.) One can conceptually prove that dim ̂  — dim ̂ mt =
ko — k\. Since rkGo111' = rkG, this implies dim^^ = dim Be — A;o. That is,
dimA/'^^dims1^.

6.4. A relationship with the index ofBo- — The index of an algebraic
group (or its Lie algebra) is the minimal codimension of its orbits in the
coadjoint representation. The index ind BG of BG for all simple groups was
computed in [Tr83, §4]. This result can be stated as: mdBc = ko. It seems
however that no explanation of this equality is known. Our observation is:

PROPOSITION. —IfOc Af^, then dim 0 ^ dim BG - ind BG'

Proof. — By the very definition of sphericity, there is x € 0 such that
Qx + ^G = Q- Taking the orthocomplements, we obtain

(V) [s,a:]n[bG,bG]={0}.

Let x be the image of x in ^l^c^o}' The latter is identified with the
Bc-module (b<?)*. Since x € [s,a'], we have x ^ 0. Because [5,3*] = [bc,^],
equality (V) implies that dim 5G—ind BG ^ dim BGX = dim BGX = dim 0.

D



1474 DMITRI I. PANYUSHEV

Given an ^ e (be)* ^ S/[^ be], it would be interesting to realize, is
there x € Q over ^ such that Gx is spherical?

6.5. In search of a uniform proof.— Recently, Fan and Stembridge
found a relationship in the simply laced case between the spherical nilpotent
orbits and the "commutative" elements in the Weyl group W. They proved
(see [FS97, Th. 3.1(a)]) that, for a natural map (j) : W -^ AT/G, the
set We of commutative elements is just the preimage of A/4/G, where
.A/4 = [e C M | ht(e) < 4}. But their hope [FS97, 3.4(d)] that better
understanding of the fibres of (f) may lead to a uniform proof of (2.6) seems
to me groundless. For: (1) the proof of Theorem 3.1(a) in [loc.cit.] also
uses classification results; (2) while the concept of a spherical orbit is quite
general, the above relationship breaks in the non simply laced case, even
if one replaces "commutative elements" in W by "fully commutative" or
"short-braid avoiding" ones. To see this, it suffices to consider the groups
Sp4 and G^.

Actually, case-by-case (classification) arguments in proving (2.6) were
used only for the orbits of height 3. My opinion is that a right way consists
in a better understanding of the orbits of height 3, as special case of orbits
of odd height.
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